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Abstract

Cutting forces are small, and in many cases insignificant, compared with noise during the micro-machin-
ing of many non-metals. The Neural-Network-based Periodic Tool InspectBiT({Nis introduced to evalu-
ate tool condition periodically on a test piece during the machining of non-metal workpieces. The cutting
forces are measured when a slot is being cut on the test piece and the neural network estimates the tool
life from the variation of the feed- and thrust-direction cutting forces. The performances of three encoding
methods (force variation, segmental averaging and wavelet transformations) and two neural networks [back-
propagation (BP) and probabilistic neural network (PNN)] are compared. The advantagéBTdf axe
simplicity, low cost, reliability and simple computational requiremenitsl999 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Micro-end-mills with less than 1 mm diameter have a very short and unpredictable tool life
when they are used to cut metals. However, it is possible to obtain a long tool life (a few hours)
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from these types of tool when non-metallic materials such as graphite electrodes and plastics are
machined at conservative cutting conditions. After a long machining operation, the micro-tools
wear out, lose material and their dimensions change. When the tool is rounded the quality of the
surface finish deteriorates, burrs are created, and the dimensional accuracy of the manufactured
parts is ruined. The Neural-Network-based Periodic Tool Inspect#? TN is introduced to evalu-

ate tool condition during the machining of soft materials with very small cutting forces. The
N2PTI requires the tool to cut a test piece, which is attached to a dynamometer. When the test
piece is machined the variation of the feed- and thrust-direction cutting force is measured. Neural
networks estimate the tool wear depending on the information about the cutting forces. In this
paper, the performances of three encoding and two neural networks are discussed.

To estimate tool wear in conventional machining operations, cutting forces have been monitored
for turning [1-3], drilling [4,5] and milling [6] operations. Neural networks [4—-8] and various
approaches including wavelet transformation [1] and fuzzy logic were used to estimate tool wear
[9] from the collected data. To improve the accuracy, the synthesis of multiple sensors has been
proposed [4,8,9]; however, their cost and fine-tuning of the system restrict the practical implemen-
tation of these approaches.

The N?PTI is developed with the following goals.

® To obtain the cutting force signal of micro-machining with an acceptable signal-to-noise (S/N)
ratio: typically the cutting forces are very small when electrodes and plastic materials are micro-
machined. The inertia forces and other sources create noise which has an amplitude almost
equal to or larger than that of the cutting force signals. The S/N ratio of the cutting force is
too low to evaluate the tool condition accurately. The material of the test piece and the cutting
conditions can be selected to have desired S/N ratios.

® To have a low-cost, reliable system convenient for industrial applications: the characteristics
of the cutting forces change continuously during the machining of a workpiece, if the metal
removal rate and machining parameters change. TH&TNuses a test piece and cuts the
material at exactly the same cutting conditions. In this test, the characteristics of the cutting
forces are only affected by the tool wear. The encoding and interpretation of the signal become
much simpler and the cost of the system is reduced.

In the following sections, neural networks, the operation of tRET, the experimental set-up,
results and conclusions are presented.

2. Theoretical background

In this study wavelet transformation [10—13] was used to encode the cutting force signals. For
classification, backpropagation (BP) [14—-16] and a probabilistic neural network (PNN) [17] were
used. In this section, wavelet transformation and PNN will be outlined briefly. The backpropag-
ation method can be reviewed in the first paper in this series [18].
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2.1. Wavelet transformation

Wavelet transformations [10,11] are used to represent a signal with a family of functions
derived from a single function. The relationship between a signal and its wavelet transformation
can be represented with the following relationship:
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andf(t) is the original function. The coefficients of the wavelet transformcang andd(i, j). &(t)

and y(t) are named the scaling function and the primary wave, respectively. It is possible to
calculate the wavelet coefficients in a computationally very efficient manner by using digital
filters [13].

2.2. Probabilistic neural network

The PNN has four layers [17]. These layers are the input, pattern, summation and output layers.
One neuron is assigned to the pattern layer for each training case. After training, pattern and
summation layer neurons create the output. For each class there is one summation neuron. Training
is very fast; however, the size of the network depends on the number of training cases. If there
are many training cases, a large network will be established. In this paper the basic version of
the PNN with a single scaling parameter is used.

3. The proposed Neural-Network-based Periodic Tool Inspector (RPTI)

The operation of the MPTI is outlined in Fig. 1. The RPTI evaluates the tool wear at periodic
intervals. The workpiece is attached to the table of the milling machine. A test piece is installed
on a dynamometer, which is attached to the table next to the workpiece. The user prepares the
part program to cut the workpiece and periodically move the tool to the test piece to cut a slot
on it. The feed- and thrust-direction cutting forces are measured while the test piece is being cut.

To estimate the tool usage (wear), the raw data are processed in two stages: encoding and
classification (Fig. 2). In the first stage, hundreds of cutting force measurements are reduced to
a few representative parameters. The encoded parameters are given to the neural network in the
second stage for estimation. The system is first trained on the experimental data with known
usage. The performance of the system is evaluated from the estimation accuracy of the system
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Fig. 1. Operation of the NPTI.
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Fig. 2. Tool wear estimation from the cutting force variations.

on data it has never used before. Three different encoding methods and two neural networks
were used.

In this study, the primary goal was to investigate the tool life estimation accuracy of the neural
networks. In practical applications theT'| should be designed by considering the requirements
of the application. The system might be trained for a different size and type of tool ahead of time
or a simple threshold might be assigned.

In the following sections these three encoding methods are presented.
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3.1. Force-variation-based encoding (FVBE)

The encoded parameters are calculated for each cutting force separately from the difference of
the measured maximum and minimum values in each period. Two parameters (feed- and thrust-
direction force variations) are given to the neural network. The neural network is first made to
run in the training and later in the testing mode. During the training mode two inputs (feed- and
thrust-direction cutting force variation) and one output (the tool life) are given to the network.
The network establishes a model between the inputs and the outputs. In the testing mode only
the two inputs are given to the network. The network estimates the tool life (output) by inspecting
the feed- and thrust-direction cutting force variations.

The FVBE-based encoding and neural-network (NN)-based classification process is presented
in Fig. 3.

3.2. Segmental-average-based encoding (SABE)

Feed- and thrust-direction forces are sampled and normalized. Starting from the maximum data
point of one complete rotation period, the data of one revolution are divided into 10 segments
with equal lengths (data points) and the averages of each segment are calculated. In total 20
parameters (10 for each cutting force) are presented to the NN. This encoding and classification
process is presented in Fig. 4.

3.3. Wavelet-transformation-based encoding (WTBE)

In the first step, wavelet transformation of the data of each cutting force is performed five times
to compress the data to the desired level. The approximation coefficients of each force component
after the last transformation are normalized to minimize the influence of the depth of cut. These
16 normalized parameters (eight for each cutting force) are presented to the NN. Fig. 5 presents
the proposed processing of the data.

Find the cutting force
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difference) NETWORK
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Fig. 3. Tool wear estimation by using FVBE.
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Fig. 5. Tool wear estimation by using WTBE.

4. Experimental set-up

The experimental set-up is presented in Fig. 6. The main workpiece, a POCO-EDM-C3 elec-
trode, and an aluminum test piece were held with the help of screws on a 9257B three-component
Kistler dynamometer. The dynamometer was connected to a charge amplifier. The feed- and
thrust-direction forces were digitized by using a Nicolet 310 digital oscilloscope. The cutting
forces were recorded while the aluminum test piece was cut. A 1/16 in. carbide tool was used to
collect the experimental data. The spindle speed was 15,000 rev/min. The tool was worn by cutting
POCO EDM-C3 electrode material with a feed rate of 20 in./min and 0.030 in. depth of cut. To
test the tool condition, an aluminum test piece was cut at 15,000 rev/min with a feed rate of
5in./min and a 0.015 in. depth of cut (Table 1).

5. Results and discussion

The performances of three encoding and two classification methods were studied on the experi-
mental data. The cutting forces during machining of the electrode with a new tool were almost
smaller than the inertia-related false force measurements. When the tool wears out the cutting
forces increase and the S/N ratio become acceptable. The cutting forces were always significant
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Fig. 6. The diagram of the experimental set-up for tool wear on POCO EDMC-3.

Table 1

Test conditions for POCO EDMC-3 and aluminum test workpiece

Tool type Carbide two-flutes end-mill
Tool diameter (in.) 0.0625

Spindle speed (rev/min) 15,000

Feed rate (in./min) 5 (electrode)

2.5 (aluminum)

Depth of cut (in.) 0.015
(both same)
Workpiece POCO EDMC-3
Aluminum

when the aluminum test piece was cut. For encoding, the signals from machining of the test piece
were used. The machined slots of the aluminum test piece are presented in Fig. 7 (see Section
5.3 for a typical cutting force signal).

In this section, the performances of each encoding and classification method will be outlined.

5.1. Force-variation-based encoding

Experimentally observed cutting force variation readings are presented in Fig. 8 by means
bubble diagrams. The size of the bubble corresponds to the tool life. The observed thrust- and
feed-direction force variations are shown on endY axes, respectively. It can be inferred
from the diagram that both of the cutting force variations increased while the tool wore out.
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Fig. 7. The machined slots of the test piece.

EXPERIMENTAL RESULTS
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Fig. 8. The variation of the feed- and thrust-direction cutting forces with tool usage (wear). The usage of the tool is
written for each circle. The areas of the circles are proportional to the usage.

The cutting force variations were obtained at five different stages of tool life and used to train
BP and PNN (basic) neural networks. BP had two hidden nodes. The training of the BP and PNN
took 11 s and 1.54 s, respectively. After the training, the neural networks estimated the tool life
of four other cases they had never seen before. The estimation accuracy of both neural networks
is presented and compared with the other methods in Section 5.4.
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5.2. Segmental averaging-based encoding

For segmental averaging, 40 cases at four different wear levels were used to train the BP and
PNN neural networks. Both neural networks had 20 inputs and one output. The BP-type neural
network had 10 hidden nodes. Training of the BP and PNN took 121.5 s and 12.3 s, respectively.
The estimation accuracy of the networks was tested on the training cases and 30 test cases col-
lected at three different wear levels. The estimation accuracy of the approach is outlined in Section
5.4 and compared with the other approaches.

5.3. Wavelet-transformation-based encoding

The wavelet transformation represented the original signal very accurately by only eliminating
the high-frequency components. The original signal and recomposed signal (using only eight
approximation parameters) are presented in Fig. 9.

The BP and PNN were trained on the encoded parameters of 32 cases obtained at four different
wear levels. Both neural networks had 16 inputs and one output. Eight hidden nodes were used
for the BP networks. Training of the BP took 156.2 s while the PNN finished the same task in
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Fig. 9. Comparison of the original and recomposed signal after wavelet transformation: (a) original signal; (b) recom-
posed signal by using eight approximation parameters.
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15.3 s. The performance of the networks was tested on 24 cases at three different wear levels.
The estimation accuracy of the networks is presented in Section 5.4.

5.4. Comparison of the performances of the proposed encoding and classification methods

The estimation accuracy of the proposed encoding approach and neural networks is outlined
in Table 2. The performances of the six proposed methods were acceptable. According to the
selected components of the monitoring hardware and allowable user involvement, one of the
proposed six approaches can be used.

The best results were obtained when wavelet-transformation-based encoding (WTBE) was used.
The recomposed signals after the wavelet transformation, using only eight approximation coef-
ficients, were very well represented by the original signal with 200 data points. The only missing
information was the noise. Segmental-averaging-based encoding (SABE) was the second best.
Compared with preparation of the wavelet transformation program, this approach can be
implemented in a very short time. Force-variation-based encoding (FVBE) gave the worst esti-
mates; however, it was very simple and can be easily implemented with very low-cost hardware.

Training of the BP was almost 10 times longer than that of the PNN but the average estimation
error was two to five times better. The speed and automatic selection of the internal structure
make the PNN very attractive. However, when the training set does not distribute in the parameter
space with very small resolution, the performance of the PNN is limited since it tries to remember
the training data and declines drastically. The training times of the BP reported in the paper were
for the selected hidden layer structure (number of nodes in the hidden layer). Since the user has
to try different numbers of nodes until he finds the best size, the training process should be
repeated. The actual time spent on training of the BP-type network is much longer than the time
spent in training the PNN.

6. Conclusion

An off-line tool wear estimation method is proposed primarily for the micro-machining of non-
metals. Although the proposed approach is almost inevitable for non-metals, which create very

Table 2
Estimation accuracy of the proposed encoding approaches and neural networks
. . Segmental average Wavelet transformation
Material: POCOEDMC-3 Force-variation-based | (40 training-30  network (32 training—24
machined, tested on aluminum  encoding . .
testing) testing)
Analog PNN (basic) Analog PNN (basic) Analog PNN (basic)
Training Average 6.60 21.00 4.78 12.54 3.49 19.62
Maximum 13.73 30.08 10.71 18.50 9.24 31.53
Minimum 1.47 13.46 0.47 7.72 0.85 14.09
Testing Average 12.28 25.64 10.46 23.53 7.07 28.65
Maximum 21.16 34.21 12.88 25.96 8.84 37.04

Minimum 4.48 15.09 8.14 16.72 5.09 23.99
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small cutting forces during micro-machining operations, it might be used for conventional machin-
ing operations to evaluate tool wear with a reliable low-cost system. TR INevaluates the

cutting force signals recorded at identical cutting conditions. In such conditions, only changes
related to usage (wear) affect the characteristics of the cutting force. Since this relationship can
be easily represented, many encoding and mapping techniques can be used. The disadvantage c
the NePTI is the inability to monitor tool wear continuously during the machining of a workpiece
when the cutting conditions change continuously.

Three different encoding methods were proposed in the study. The wavelet-transformation-
based encoding (WTBE) was the most sophisticated approach and the smallest estimation errors
were observed when this approach was used. Especially if wavelet transformation hardware
becomes commercially available at affordable prices, this approach can be easily implemented.
The accuracy of the segmental-averaging-based encoding (SABE) was also very good but not on
a par with WTBE. Even the performance of the force-variation-based encoding (FVBE) was
satisfactory for many applications.

To estimate the usage (wear) from the encoded signal, backpropagation and probabilistic neural
networks were used. Both approaches were found acceptable but BP gave the most accurate esti
mations.

On the basis of the results, WTBE and a BP neural network was the best combination for
N2PTI. This combination had an excellent average usage (wear) estimation error of 7.07% relative
to the whole range on test data that were never before seen. The maximum and minimum errors
were 8.84% and 5.09%, respectively. On the training data the error was better than half of
these values.
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