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ABSTRACT. Machining conditions are optimized to minimize the production 
cost in conventional manufacturing. In specialized manufacturing applications, such as 
micro machining and mold making, achievement of specific goals may be the primary 
objective. The Genetically Optimized Neural Network System (GONNS) is proposed for 
the selection of optimal cutting conditions from the experimental data when analytical or 
empirical mathematical models are not available. GONNS use Backpropagation (BP) 
type neural networks (NN) to represent the input and output relations of the considered 
system. Genetic Algorithm (GA) obtains the optimal operational condition by using the 
NNs. In this study, multiple NNs represented the relationship between the cutting 
conditions and machining related variables. Performance of the GONNS was tested in 
two case studies. Optimal operating conditions were found in the first case study to keep 
the cutting forces in the desired range while a merit criterion (metal removal rate) was 
maximized in micro-end-milling. Optimal operating conditions were calculated in the 
second case study to obtain the best possible compromise between the roughness of 
machined mold surfaces and the duration of finishing cut. To train the NNs 81 mold parts 
were machined at different cutting conditions and inspected. 
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I. INTRODUCTION 

 

The objective is the minimization of the product cost in conventional 

manufacturing. However, during the manufacturing of precision parts the achievement of 

very high quality standards becomes the primary objective. Avoidance of premature tool 

breakage and creation of very smooth surfaces are the primary concerns in micro 

machining and mold making, respectively. Most of the time, it is very difficult to find the 

related analytical or empirical expressions and proper coefficients to calculate the optimal 

operating conditions for the considered material and tool. The Genetically Optimized 

Neural Network System (GONNS) is proposed to represent the relationship between the 

operating conditions and the cutting related variables by using neural networks (NN) and 

to determine the optimal machining parameters by using the Genetic Algorithm (GA) 

with minimal human interference. 

GAs have been widely used for the selection of the operating conditions in 

machining operations [1-22]. To simplify the modeling, simulated annealing [23-24], 

fuzzy logic [25-26], and NNs [27-33] have been used with the GAs. The GA finds the 

optimal solutions quickly when the analytical or empirical models are available. 

However, the development of models and the creation of large databases for each 

material and tool combination is time consuming and costly. GONNS have its own 

modeling and optimization tool to model the system from experimental data and to obtain 

the optimal operating conditions. 

GONNS [31-33] use multiple Backpropagation (BP) type NN [34-37] to represent 

the characteristics of a system. For each output such as cutting force, metal removal rate, 
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surface roughness, and machining time, one NN is used to achieve the best possible 

accuracy. Multiple NNs and a GA [38-41] are located in a cluster. The GA finds the 

optimal machining parameters of this complex system by adjusting the values of the 

selected inputs of the NNs [34] by following an efficient procedure that mimics nature. If 

necessary, multiple clusters are used to represent different environments such as different 

types of machine tools. The number of GAs is equal to the number of clusters. 

The handbooks [42] and conventional optimization programs have been prepared 

by considering the widely used materials, tools, and operating conditions. They cannot be 

used if micro tools, complex tool paths of mold making, and exotic materials are 

involved. In this paper, the performance of the GONNS was evaluated in two case 

studies, which involve micro tools and mold making. 

In micro-end-milling operations, the tool life is very short and unpredictable 

compared to the conventional machining. Many manufacturers change these tiny tools 

according to a very conservative schedule to avoid tool breakage until the machining of 

each part is completed. The premature tool breakage can be avoided if the feed direction 

cutting force is kept below an experimentally determined limit. In this study, machining 

parameters were selected to limit the feed direction cutting force and to maximize the 

metal removal rate. 

 In mold making, the creation of complex shapes with very smooth surface finish 

is required. The molds are generally prepared in two stages. In the first stage, sculptured 

or free form surfaces are preferably machined by using multi-axis (3 to 5 axis) milling 

machines. In the second stage, surfaces are manually polished. For precision and 

minimization of the polishing cost, the best possible surface finish should be obtained at 
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the first stage without sacrificing the productivity [43]. In this study, operating conditions 

were selected to minimize the machining time while the surface roughness was kept at 

the desired level. 

The theoretical background of the components of GONNS will be introduced 

briefly in the next section. Implementation of the GONNS in machining, experimental 

setups, results and conclusion will follow. 

 

II. THEORETICAL BACKGROUND 

 

BP [34-37] is one of the basic and most frequently used NNs. The user determines 

the number of inputs, outputs, hidden layers, and nodes of the hidden layers. In most 

applications, each node is connected to all the nodes of the next layer. The hidden and 

output layer nodes multiply the incoming values by weights and use a transfer function to 

determine their output. Sigmoid is the most commonly used transfer function. Linear, 

Gaussian, and various hyperbolic functions have also been used depending on the need. 

The network starts to process the incoming training signals with arbitrary weights. The 

error is calculated by comparing the output of the network with the corresponding values 

in the training file. All the weights are adjusted by back-propagating the errors through 

the network at each interaction. This process is repeated many times until the network’s 

output errors are reduced to an acceptable level. The user selects the learning rate and the 

momentum to control the speed and the stability of the network.  

GA uses the biological evolution principles including natural selection, and 

survival of the fittest [38-41]. The user determines the number of the binary digits to be 
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assigned for each parameter and their boundaries. Additional bits can be assigned for 

switches. All the parameters and the switches are represented with a chromosome. The 

algorithm tries to find the best 0 and 1 combination of this string either to minimize or to 

maximize the objective function. The penalty functions might be used to force some of 

the parameters to stay in the selected range. The user generally selects the population 

size, the number of children for each set of the parents, and the probability of mutation. 

The chromosomes are generated randomly for the first generation. Generally, GAs follow 

a five-step optimization procedure which includes: (1) selection of the mating parents; (2) 

selection of the hereditary chromosomes from the parents; (3) gene crossover; (4) gene 

mutation, and (5) creation of the next generation.  

The cutting forces of the micro-end-milling operations can be estimated by using 

analytical expressions [44]. In this study, the NNs of the GONNS were used instead of 

the analytical expressions. The NNs are capable of representing the characteristics of 

many systems as long as proper training data is available. 

 

III. PROPOSED OPTIMIZATION SYSTEM BASED ON THE GONNS 

 

The same GONNS was used for both case studies in this paper after its 

architecture was slightly modified (Figure 1) by considering the problem. The GONNS 

used two BP type NNs and one GA in both case studies. Each NN had one output to have 

the best possible accuracy; however, the number of their inputs was different in the 

considered problems. 
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For micro-end-milling operations, the NNs were trained to estimate the maximum 

feed direction cutting force and the merit criteria (Figure 1a) by using the experimental 

data presented in Appendix 1 and calculated metal removal rate, respectively. The inputs 

of both NNs were the depth of the cut, feed rate and tool radius. The operator selected the 

tool radius according to the part geometry. The GA selected the optimal depth of the cut 

and feed rate to maximize the merit criteria which was the metal removal rate while the 

feed direction cutting force was selected below an experimentally obtained value to have 

the desired tool life. 

In mold making, the surface finish at the critical locations is important. To obtain 

the desired surface characteristics and to keep the machining time within a reasonable 

range, two NNs and one GA was used (Figure 1b). The inputs of the NNs were the feed 

rate, spindle speed, radial depth of the cut and the tolerance. One NN was trained to 

estimate the surface roughness while the other one was trained to estimate the machining 

time by using the experimental results in Appendix 2. The GONNS estimated all the 

cutting parameters either to minimize the surface roughness or the machining time. 
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a) GONNS’ architecture for the-end-milling operations. 
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GENETIC ALGORITHM 
BASED-OPTIMIZER 

b) GONNS’ architecture for mold making. 

Figure 1. The architecture of the proposed GONNS. 
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Integra model 10 digital oscilloscopes were used to monitor and save the cutting force 

data. 

 In the second case study, the molds were machined by using the five axis Deckel 

Maho DMU 60 P high speed CNC milling machine with 12,000 rpm maximum spindle 

speed, and 10 m/min maximum feed rate. The machine had a 15 kW spindle motor and 

equipped with a 30 collet tool holder. CNC part programs were prepared by using 

ProENGINEER CAD/CAM software on a personal computer with Intel Pentium IV 2.0 

GHZ processor. The workpiece was Aluminum 6061 (Figure 2). The surface roughness 

of the machined parts was measured by using Mitatoyu Surftest 301 portable surface 

roughness tester. 

 

Figure 2. The completed part after the machining operation. 
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V. RESULTS AND DISCUSSION 

 

 The performance of the GONNS was evaluated previously by the same group [31] 

on a simulated system which was defined by two analytical expressions. Each one of 

these equations was represented by one BP type neural network. GONNS was asked to 

identify the function which gives the maximum and minimum values and the proper input 

values to obtain these results. GONNS identified the function accurately, and the 

estimation error was less than 2% of the range of the considered variable. When the 

maximization of the difference of these two functions was asked, the GONNS estimated 

the input parameters and the result with less than 2% and 3% accuracy respectively. 

Performance of the GONNS was evaluated in two case studies by using the 

experimental data in this study. The optimal cutting conditions were obtained for micro-

end-milling operations to maximize the metal removal rate while the feed direction 

cutting force was kept below a critical value to have the desired tool life. In the second 

case study, the cutting conditions were optimized to obtain the best possible compromise 

between the machining time and surface quality. 

Case Study 1: Optimization of the machining parameters to avoid premature tool 

breakage: 

Two-flute micro-end-mills with 0.020”, and 0.0625” diameter were used to 

machine the POCO-3 graphite workpiece. The spindle speed was 15,000 rpm and 50% 

overlapping climb milling operations were performed with both tools. The feed direction 

maximum cutting forces were found at 16 different cutting conditions and presented in 

Appendix 1.  
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The contour plots of the feed direction cutting force variation (Figure 3) were 

generated by using the NNs to visualize their characteristics at different operating 

conditions. The feed rate and the depth of the cut were the two inputs of the NNs. Two 

separate BP type NNs with 10 hidden nodes were trained to estimate the feed direction of 

the cutting forces of the micro-end-mills with 0.020” and 0.0625” tool diameters. The 

performance of the NNs was evaluated for the training cases. Their estimation errors 

were averaged at 8.4 % and 4.8% (of the force and machining time range) for the micro-

end-mills with 0.020” and 0.0625” diameters, respectively. 
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(15,000 rpm spindle speed, 0.020 inch HS steel tool, graphite workpice)
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a) Tool diameter is 0.02 inch. 
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b) Tool diameter is 0.0625 inch. 

Figure 3. Some of the training cases, tool life and the typical feed direction cutting force 

estimations with a trained NN. 

GONNS used two BP type NNs. First NN was trained by using the 16 values in 

Table A.1.1 and A.1.2 to estimate the feed direction cutting forces. The second NN was 

trained to estimate the merit. In this case, the merit was the metal removal rate. The 

training file was prepared by calculating the metal removal rate at all the possible 100 

combinations of the tool diameters of 0.02”, 0.03”, 0.04”, 0.05” and 0.06”, and also the 

depth of the cuts of 0.01”, 0.05”, 0.10” and 0.15”, and the feed rates of 20 ipm, 40 ipm, 

60 ipm, 80 ipm, and 100 ipm. Both NNs had 8 nodes in their single hidden layer. 

During the optimizations, the tool diameter was fixed since the operator selects it 

according to the part of the geometry. Experimental studies indicated that the life of 

micro-end-mills was correlated to the feed direction cutting force. The selected values for 

the maximum allowable cutting forces are presented in Table 1. GONNS was asked to 
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maximize the metal removal rate. The population size, child number, cross-probability, 

mutation-probability, creep-probability was selected as 6, 1, 0.2, 0.1, and 0.05, 

respectively during the optimization process. The Pentium VI processor at 2.8 GHz clock 

speed was used for the optimization. Optimum values were found in less than 500 

iterations. GA was stopped after at least 3,000 iterations were completed. The program 

completed 4,000 iterations in less than one minute in all the studied cases. The 

optimization results are presented in the Table 2. The metal removal rate estimation error 

of the related NN at these new conditions (it was seen during the training) was less than 

2% of the range of this parameter. 

Table 1. The range of the parameters in the optimization study. 

 
Cutting conditions (acceptable range) Given values to the 

optimization 
program 

Depth of cut (inch) Feed rate (ipm) 

Fixed 
Radius 
(inch) 

Feed 
force 

Range (N) 

Minimum 
(inch) 

 
Maximum

 

 

 

(inch) 
Minimum 

(inch) 
Maximum

(inch) 

0.03 0-28 0.02 0.07 24 100 
0.04 0-40 0.05 0.1 26 100 
0.05 0-50 0.06 0.125 28 100 

 

Table 2. The optimization results for micro-end-milling operations. 

Results of the optimization Given values to the 
optimization 

program 
Optimized output 
values of the NNs 

Estimated input values 
to work at the optimal 

conditions 
Fixed 
Radius 
(inch) 

Feed 
direction 

force 
Range (N) 

Optimal 
Feed 

direction 
force (N) 

Metal 
removal 

rate 
(in3/min) 

Depth of 
cut (inch) 

Feed rate 
(inch per 
minute) 

0.03 0-28 28.00 0.087 0.070 84.07 
0.04 0-40 40.00 0.179 0.1 90.82 
0.05 0-50 50.00 0.297 0.125 92.53 
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Case Study 2: Optimization of the machining parameters to obtain the best 

compromise between the surface quality and machining time: 

 A critical part of a mold was selected. That part was manufactured 81 times out of 

Aluminum 6061 blocks with 30 mm × 30 mm × 90 mm dimensions. Machining was 

performed at three stages. The first two stages, rough and semi-finish cut were the same 

for all the parts. A flat end mill with a 12 mm diameter was used for rough cutting. The 

depth of the cut was 1.5 mm. 3-D spiral tool motions were performed with 3 mm 

stepovers at 2,500 mm/min feed rate and 5,000 rpm spindle speed. The rough cutting 

continued until 0.6 mm thick material was left on the desired final surface. A ball-end 

mill with a 12 mm diameter was used at the second stage to machine the material with a 

0.3 mm depth of cut. The tool moved parallel to the longest axis of the experimental 

workpiece in the horizontal plane. The step over, feed rate, and spindle speed were 3 mm, 

700mm/min, and 3,000 rpm, respectively. 0.3 mm thick material was left on the desired 

mold surface after the second stage. 

The finishing cut (third stage) was performed with a ball-end mill with 10 mm 

diameter. The tool motions were in 5 axis and perpendicular to the tool motions in the 

second stage of cutting. Finishing cut continued until the desired surface was obtained. 

The range of the cutting parameters (cutting speed, feed, radial depth of cut and 

tolerance) was selected by considering the recommendations of the tool manufacturer 

[45], and the test values were determined according to the statistical experimental design 

technique; three-level full factorial design [46] for four parameters. A Sandvik (R216.42-

10030-AK191 1010) ball end-mill (10 mm diameter, 45° helix angle, TiAlN coated solid 
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carbide, 2-flutes) was used for the final cut. The compressed cooling oil was directed to 

the machined surface at a very high velocity. The machining times of only the final cuts 

were listed in Appendix 2. 

The surface roughness of the machined surfaces was measured by using a 

Mitatoyu Surftest 301 portable surface roughness tester. The stylus traced the surface 

with a 0.25 mm cut of length in the perpendicular direction to the path of the cutting tool 

in the finishing cut. The surface roughness was measured three times at 10 different 

regions for each cutting condition and the average Ra value is presented in Appendix 2. 

 One NN was trained to estimate the surface roughness while the other one was 

trained to estimate the machining time by using the experimental values in Appendix 2. 

The population size, child number, cross-probability, mutation-probability, and creep-

probability were selected the same as the first case study. Since the NNs had one more 

input, and the number of optimized parameters was doubled, the GA was allowed to 

iterate between 9,000 and 12,000 times. The ranges of the cutting parameters are 

presented in Table 3. The cutting conditions were optimized to obtain the best 

compromise between two critical cutting related values: surface roughness and machining 

time. Spindle speed, feed rate, radial depth of cut and tolerance were optimized while any 

one of the two key performance parameters were kept in the desired range while the other 

one was minimized. A series of alternatives were provided to the user. The optimization 

results are presented in Table 4. 
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Table 3. Range of cutting parameters for the second case study. 

 

 

 

Cutting 
speed 

(m/min) 

Feed Rate 
(mm/tooth) 

Radial depth 
of cut (mm) 

Tolerance 
(mm) 

74-123 0.07-0.12 0.1-0.3 0.01-0.001 

 

Table 4. Optimization results. 

OPTIMIZATION OF OPERATING CONDITIONS FOR MOLD MAKING 
Optimize to minimize 
one parameter while 

keeping the other in the 
desired range 

Optimized operating conditions - The minimized critical parameter is 
underlined 

Range is 
selected 

for 

Critical parameters Operating conditions  
Minimize 

the 
following 
parameter 

Machining 
time 
(min) 

Roughness 
(μm) 

Machining 
time 
(min) 

Cutting 
Speed 

(m/min) 

Feed Rate 
(mm/tooth) 

Radial 
depth 
of cut 
(mm) 

Tolerance
(mm) 

Full 
(7.3-65) 

0.142 54.985 89.508 0.07 0.1 0.01 

7.3-10 0.342 9.999 88.645 0.12 0.27 0.001 

 
Roughness 

7.3-20 0.207 15.968 86.262 0.082 0.3 0.001 
 Roughness 

(μm) 
      

Full 
(0.2-1.58) 

1.013 7.174 122.996 0.12 0.3 0.001 

0.2-0.5 0.5 8.682 97.924 0.12 0.297 0.001 

 
Machining 

time 
0.2-0.8 0.683 7.398 123 0.12 .3 0.01 
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VI. CONCLUSION 

 

GONNS was proposed for selection of the optimal cutting conditions in 

specialized machining operations from the experimental data without developing any 

analytical or empirical models. NNs were trained by using a series of experimental results 

to represent the relationship between the machining parameters and the cutting related 

values such as feed direction cutting force, metal removal rate, surface roughness, and 

machining time. GA determined the optimal cutting conditions to minimize or maximize 

one of the machining related values while the machining parameters and secondary 

values were kept in the desired range. The performance of the GONNS was evaluated in 

two case studies.  

In the first case study, two NNs represented the relationship between the 

operating conditions and the feed direction cutting force and a merit. Metal removal rate 

was used as the merit. GA estimated the optimal machining parameters to obtain the 

maximum metal removal rate while the feed direction cutting force was kept below a 

critical value to avoid premature tool breakage. Since there are no analytical equations to 

represent the system, the accuracy of the result cannot be calculated quantitatively. 

However, the contour maps obtained by the NNs represented the data well and had very 

small error for the training cases. The selected optimal operating points coincided with 

the suggestion of the trend of the contour maps of the NNs. 

In the second case study, the cutting conditions were optimized to obtain the best 

compromise between two critical machining related values: surface roughness and 

machining time. Spindle speed, feed rate, radial depth of cut and tolerance were 
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optimized while any one of the two key performance values were kept in the desired 

range while the other one was minimized. GONNS generated a series of alternatives for 

the user. The results demonstrated the compromise between the machining time and 

estimated surface roughness. When the minimization of the surface roughness requested, 

GONNS selected high cutting speed and very small feed rate. To minimize the machining 

time, very high cutting speed and the feed rate were selected. The surface roughness 

deteriorated in these cases. The tendency of the estimations of the GONNS agreed with 

the theoretical expectations. 

GONNS was originally developed for the selection of the optimal material and the 

operating conditions for composite materials. The mapping tool of the GONNS, BP type 

NNs are very flexible. They create reliable models even when the training data set is 

pretty small and the system has nonlinear characteristics. The only drawback is the long 

computational time of the training process. The GA generally finds the optimal operating 

conditions even if multiple NNs represent highly nonlinear systems. After the training, 

NNs make the estimations very quickly and GA obtains the optimal solutions efficiently. 

The simplicity of the modeling, the speed of the optimization, and the reliability of the 

process even with small data sets are the main advantages of the GONNS and make it an 

excellent optimization tool for metal cutting operations. These characteristics were 

observed in both of the cases studies in this paper. 

The previous studies indicated that better than 3% accuracy could be expected 

from GONNS when the NNs represented the simulated systems. The characteristic 

equations of these systems could be represented with 3-D surface plots with smooth 

surface and single peak. The input and output relationships are very complex in the 
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manufacturing operations and the estimation errors are expected to depend on the 

characteristics and quality of the training data. In the both cases studied, the estimations 

of the GONNS agreed with the observed trend of the data and theoretical expectations.  

GONNS allows definition of a series of clusters. Each cluster may represent 

machining at a different type of machine tool. In our implementation, there was no limit 

for the number of allowable clusters. However, up to six NNs can be used in each cluster 

with one GA. All the clusters could be optimized at the same time and the best machine 

and optimal operating conditions could be obtained. 
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APPENDIX 1. The observed cutting forces at the test conditions 

Table A.1.1. Observed maximum cutting forces with the 0.020” diameter end-mill. 

Feed direction maximum 
cutting force (N) 
Feed rate (ipm) 

Depth of 
cut (inch) 

20 70 120 
0.05 8.25 16.5 --- 
0.03 7.5 13.25 --- 
0.01 5 8.75 10 

 

Table A.1.2. Observed maximum cutting forces with the 0.0625” diameter end-mill. 

Feed direction maximum 
cutting force (N) 
Feed rate (ipm) 

Depth of 
cut (inch) 

30 65 100 
0.15 23.5 30 70 
0.1 16.25 24.5 42.5 

0.062 14.5 20 37.5 
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APPENDIX 2. The observed surface roughness at the test conditions 
Table A.2.1. Measured surface roughness at the test conditions. 
 

  

 

Cutting 
speed 

Feed 
Rate 

Radial depth 
of cut Tolerance Average surface 

rough. 
Machining 

time 
Trail No (m/min) (mm/tooth) (mm) (mm) (μm) (min) 

1 74 0.07 0.1 0.001 0.26 64 
2 98.5 0.07 0.1 0.001 0.31 47 
3 123 0.07 0.1 0.001 0.27 45 
4 74 0.095 0.1 0.001 0.32 48 
5 98.5 0.095 0.1 0.001 0.36 36 
6 123 0.095 0.1 0.001 0.85 29 
7 74 0.12 0.1 0.001 0.48 39 
8 98.5 0.12 0.1 0.001 0.37 28 
9 123 0.12 0.1 0.001 1.58 24 

10 74 0.07 0.2 0.001 0.36 32 
11 98.5 0.07 0.2 0.001 0.59 24 
12 123 0.07 0.2 0.001 0.52 19 
13 74 0.095 0.2 0.001 0.51 23 
14 98.5 0.095 0.2 0.001 0.53 17 
15 123 0.095 0.2 0.001 0.81 15 
16 74 0.12 0.2 0.001 0.53 21 
17 98.5 0.12 0.2 0.001 0.47 14 
18 123 0.12 0.2 0.001 0.93 12 
19 74 0.07 0.3 0.001 0.49 22 
20 98.5 0.07 0.3 0.001 0.50 17 
21 123 0.07 0.3 0.001 1.22 13.3 
22 74 0.095 0.3 0.001 0.42 15.3 
23 98.5 0.095 0.3 0.001 0.58 12 
24 123 0.095 0.3 0.001 1.31 9 
25 74 0.12 0.3 0.001 0.67 13 
26 98.5 0.12 0.3 0.001 0.47 10 
27 123 0.12 0.3 0.001 0.98 7.3 
28 74 0.07 0.1 0.0055 0.37 64 
29 98.5 0.07 0.1 0.0055 0.30 49 
30 123 0.07 0.1 0.0055 0.37 48 
31 74 0.095 0.1 0.0055 0.53 45 
32 98.5 0.095 0.1 0.0055 0.47 37 
33 123 0.095 0.1 0.0055 0.64 29 
34 74 0.12 0.1 0.0055 0.65 39 
35 98.5 0.12 0.1 0.0055 0.52 30.3 
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Cutting 
Speed 

Feed 
Rate 

Radial Depth 
of Cut Tolerance

 

Average Surface 
Rough 

 
Machining 

Time 

Trail No (m/min) (mm/tooth) (mm) (mm) (μm) (min) 
36 123 0.12 0.1 0.0055 1.15 23.3 
37 74 0.07 0.2 0.0055 0.49 33 
38 98.5 0.07 0.2 0.0055 0.89 24 
39 123 0.07 0.2 0.0055 0.71 20.3 
40 74 0.095 0.2 0.0055 0.80 24 
41 98.5 0.095 0.2 0.0055 0.66 29 
42 123 0.095 0.2 0.0055 0.76 15 
43 74 0.12 0.2 0.0055 0.58 20.3 
44 98.5 0.12 0.2 0.0055 0.32 15 
45 123 0.12 0.2 0.0055 0.77 12 
46 74 0.07 0.3 0.0055 0.57 22 
47 98.5 0.07 0.3 0.0055 1.22 16.3 
48 123 0.07 0.3 0.0055 0.83 13.3 
49 74 0.095 0.3 0.0055 0.69 16.3 
50 98.5 0.095 0.3 0.0055 0.91 12.3 
51 123 0.095 0.3 0.0055 0.90 9.3 
52 74 0.12 0.3 0.0055 0.66 13 
53 98.5 0.12 0.3 0.0055 0.73 10 
54 123 0.12 0.3 0.0055 0.82 8 
55 74 0.07 0.1 0.01 0.42 65 
56 98.5 0.07 0.1 0.01 0.20 49 
57 123 0.07 0.1 0.01 0.57 39 
58 74 0.095 0.1 0.01 0.47 48 
59 98.5 0.095 0.1 0.01 0.40 36 
60 123 0.095 0.1 0.01 0.51 30 
61 74 0.12 0.1 0.01 0.48 38 
62 98.5 0.12 0.1 0.01 0.59 35 
63 123 0.12 0.1 0.01 0.47 24 
64 74 0.07 0.2 0.01 0.66 34 
65 98.5 0.07 0.2 0.01 0.78 24.3 
66 123 0.07 0.2 0.01 1.27 20 
67 74 0.095 0.2 0.01 0.50 25 
68 98.5 0.095 0.2 0.01 0.58 18 
69 123 0.095 0.2 0.01 0.66 14 
70 74 0.12 0.2 0.01 0.62 19 
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Cutting 
speed Feed Rate Radial depth 

of cut Tolerance Average surface 
rough. 

 

Machining
Time 

Trail No (m/min) (mm/tooth) (mm) (mm) (μm) (min) 
71 98.5 0.12 0.2 0.01 0.60 15.3 
72 123 0.12 0.2 0.01 0.62 12 
73 74 0.07 0.3 0.01 0.58 23 
74 98.5 0.07 0.3 0.01 0.70 17 
75 123 0.07 0.3 0.01 0.71 13.3 
76 74 0.095 0.3 0.01 0.68 18.3 
77 98.5 0.095 0.3 0.01 0.72 12.3 
78 123 0.095 0.3 0.01 1.05 10.3 
79 74 0.12 0.3 0.01 0.85 9.3 
80 98.5 0.12 0.3 0.01 0.61 10 
81 123 0.12 0.3 0.01 0.62 8 
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PICTURES 

GENETIC ALGORITHM 
BASED-OPTIMIZER 

a) GONNS’ architecture for the-end-milling operations. 
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b) GONNS’ architecture for mold making. 

Figure 1. The architecture of the proposed GONNS. 
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Figure 2. The completed part after the machining operation. 
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a) Tool diameter is 0.02 inch. 
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b) Tool diameter is 0.0625 inch. 

Figure 3. Some of the training cases, tool life and the typical feed direction cutting force 
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