
Genetic tool monitor (GTM) for micro-end-milling operations

I.N. Tansela,*, W.Y. Baoa, N.S. Reena, C.V. Kropas-Hughesb

aMechanical Engineering Department, Center for Engineering & Applied Science, Florida International University,

10555 West Flagler Street (EAS-3473), Miami, FL 33174, USA
bAir Force Research Laboratory, AFPL/MLLP, Bldg. 655, R166, 2230 Tenth Street, Wright-Patterson AFB, OH 45433-7746, USA

Received 1 June 2004; accepted 3 August 2004

Available online 5 October 2004

Abstract

Almost all existing tool condition monitoring methods require either the critical parameters of models which are experimentally found or

the self-learning algorithms that are trained with existing data. Genetic Tool Monitor (GTM) is proposed to identify the problems by using an

analytical model for micro-end-milling operations and genetic algorithm. The current version of the GTM is capable to monitor the micro-

end-milling operations without any previous experience and is able to estimate symmetrical wear and local damages at the cutting edges of a

tool. Genetic algorithms (GA) are found as a promising health monitoring tool if an expression exists and the necessary computational time is

allowable in that particular application. GTM generates meaningful information about the ongoing operation and allows the establishment of

rules based on the operators’ experience.
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1. Introduction

The consistency of the machining quality is very

important in an automated manufacturing. Many monitoring

techniques have been developed to detect tool breakage and

to estimate tool wear by evaluating the most important

characteristics of the signals coming from sensors such as

dynamometer, accelerometer(s), acoustic emission sensors,

thermocouples, and microphones. The first approach was to

evaluate the characteristics of the signal at different tool

conditions and to set the limits or to relate them to tool wear.

Later, intelligent computational algorithms such as neural

networks were used to automate this task. To use these

methods effectively, the operating conditions such as speed,

feed rate, depth of cut, and the tool-material couple should

be identical or very close to the test conditions. GTM was

developed to interpret the cutting force signals by using

analytical expressions. Theoretically, once the key par-

ameters are estimated in a single test from the data of any

cutting force component, cutting operations can be
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monitored by measuring any cutting force at any operating

condition by using this method. However, GTM should be

used very conservatively to eliminate false alarms and to

ensure that the wear estimations are performed accurately

within an acceptable time frame using a low cost

computational hardware. In this study, the performance of

GTM will be evaluated on simulated and experimental

cutting force data by considering the micro-end-milling of

soft electrode materials.

The genetic algorithm [1–3] estimates any number of

parameters of an analytical expression by using a search

method. It works with linear and non-linear analytical

expressions, and very complex conditional statements can

be included in the objective function. The GTM concept was

developed to estimate the key parameters such as the cutting

force coefficient and run-out of the analytical model [4–8]

during micro-end-milling operations. Other researchers

have used GA to determine the optimal cutting conditions

[9–12] in machining and monitoring of turning [13,14]

operations.

Generally, in academic studies, continuous monitoring of

the machining operations have been aimed, while the

workpiece is cut and the cutting conditions vary. However,
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GTM was developed for micro-end-milling of the graphite

like electrodes of electrical discharge machining (EDM) by

considering the following two requirements:
(a)
 The magnitude of the cutting forces required to remove

the typical electrode material of the EDMs is small with

respect to the noise. It is necessary to cut an aluminum

type material periodically to collect the data with

acceptable signal to noise ratio without wearing the

tool.
(b)
 A continuous monitoring system inspects the machining

operation many times per second during the actual

machining operation. Unexpected force profiles are

always encountered when the cutting conditions vary.

Even 0.01% wrong estimations will give several false

alarms every hour. Machining of electrode with the

same micro-tool sometimes takes a few days and

operation continues during the off-duty hours of the

operators. False errors should be completely eliminated.
The proposed GTM estimates the cutting force coeffi-

cient from the periodically collected data. In some cases,

also the run-out was estimated. Cutting force coefficient

indicates the dullness of the cutting edge and continuously

increases while the operation continues. Contact length of

the cutting edge can be calculated when the run-out is

estimated from the same data. Although, the genetic

algorithm of the GTM [15] may identify most of the cutting

parameters theoretically, the computational time will be

unacceptable in the practical applications and the maximum

two variables will be estimated in this study.

In the following sections, the theoretical background, the

proposed GTM, the simulation, the experimental data

collection, results and conclusion will be presented.
2. Theoretical background

2.1. Genetic algorithms

Genetic algorithms [1–3] use a repeating six-step process

to find the optimal solution by following the natural

selection rule of the genetic evaluation. The user selects

the resolution of the parameters, population size, mating

pool size and the number of the children from each couple

according to the problem, application and resources. The

six-step process includes selection of mating couples

(parents), selection of the hereditary chromosomes of the

next generation, gene crossover, gene mutation, creation of

next generation and evolution. Hereditary chromosome can

be selected from the stronger one of the mating couple, or

one of them in turn, or selected randomly in the second step.

Fixed-point or uniform crossover is used in the third step

according to the problem. Jumping or creeping mutation can

be used mostly with similar end results in the forth step.
The six-step procedure is repeated until the fitness reaches

the desired level.
2.2. Modeling the milling operations

Bao and Tansel [6–8] modeled the micro-end-milling

operations by considering the trajectory of the tip of the

cutting edges of the tool. The following expressions were

derived by considering the tool run-out
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Tool cutter angle j is defined as JZ2p/Z, workpiece

cutting angle 4 is defined as 4Zarccos½ðrKaÞ=r�; engage-

ment angle a is defined as aZb tan b=r: In the expressions,

r is tool radius, ro is run-out length (in.), p is proportional

factor, q is tool cutting angle, b is tooth helix angle, ft is feed

per tooth, g is run-out angle, Km is the cutting force

coefficient.
2.3. Genetic tool monitor (GTM)

Two generations of Genetic Tool Monitor, GTM1 [4]

and GTM2 [15] were prepared by using the modified



Fig. 1. Block diagram of the GTM2.
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versions of Eqs. (1) and (2). They are very similar outside of

the complexity of the analytical equation. The diagram

of the Genetic Tool Monitor (GTM) is presented in the

Fig. 1. The user gives the program all the known parameters

including the operating conditions, and tool geometry.

Depending on the operating conditions, one or more

parameters can be estimated. The objective is mostly to

estimate the key cutting parameters such as cutting force

coefficient, and tool run-out. Depth of cut, entry and exit

angles, and other parameters can also be estimated if an on-

line monitoring of the machining operation is considered.

However, computational time will increase while the

accuracy of the estimations is compromised.

The genetic algorithm estimates the selected parameters.

Cutting forces are estimated by using the analytical model

and by using the estimated parameters. The accuracy of the

estimated parameters is evaluated by comparing

the sampled and estimated cutting force(s). The genetic

algorithm updates the estimated parameters to minimize the

error. The process is repeated until the allowed iteration

number is reached. The value of the cutting force coefficient
Fig. 2. Trajectory of the tool tip
increases when the cutting edges wear out and get dull. The

chipped away segments of the cutting edges reduce the

effective cutting length of the tips. The tip and run-out

estimations start to vary with time.
3. Generation of the simulated data

The simulated data was generated by using the analytical

cutting force model [6–8] and micro-end-milling operations

were considered. The considered trajectory of the cutting

tips and the estimated cutting force is presented in Figs. 2

and 3, respectively.

Feed, thrust and resultant forces of worn out tools were

simulated in this study by considering three different

conditions. In the simulations, the cutting force coefficient

and the contact length of one of the cutting edges was

kept constant. The other edge was assumed to get dull

and/or partially chiped away when the tool wears out. The

contact length of a cutting edge is the section of a tooth

which actively removes material from the workpiece. The

contact length of the perfect cutting edge was taken as

0.001 in. Different levels of dullness and contact length

loss were simulated to evaluate if the GTM2 would be

able to recognize the difference. The cutting force

coefficient of one of the edges was increased first 10%

in three simulations with partial cutting edge loss at three

different levels. In the other three simulations, cutting

force coefficient was increased 20%. For partially chipped

away cutting edges, the contact length was reduced to

0.0009, 0.0008, and 0.0007 in. The center of rotation (run-

out) and diameter of a tool were changed to simulate the

cutting force of a tooth with partially chipped away

cutting edge.
of the analytical model.



Fig. 3. Estimated cutting forces.
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4. Experimental data collection

The data was collected using the experimental set-up

shown in Fig. 4 [6–8]. A POCO-EDM-C3 electrode was

assembled on a Kistler dynamometer. The aluminum test

piece was attached on the electrode and used to collect the

experimental data. Two components of the cutting force on

the horizontal plane were digitized by using a Nicolet 310

digital oscilloscope.

A 1/16 in. carbide tool was used to cut the POCO EDM-

C3 part and the aluminum test piece. The spindle speed was

15,000 rpm in all the tests regardless of the material of the

workpiece. The POCO EDM-C3 electrode material was

machined with a 20 in./min feed rate and a 0.030 in. depth

of the cut. Experimental data was collected by cutting the

aluminum test piece at 15,000 rpm with a 5 in./min feed rate

and a 0.015 in. depth of cut.
5. Results and discussion

The performance of the proposed GTM was evaluated

on the simulated and experimental cutting force data.

GTM estimates the dullness index (DI) when the single

parameter is estimated in both cases. The first estimated

cutting force coefficient value with the new tool is used as

reference (Km)1 value. (DI)n is calculated from the data of

the cutting force profile of one tool rotation by

(Km)n/(Km)1. For a new tool, DI fluctuates around 1.

Smoothly increasing DI values during the machining

indicates that the tool is getting dull.

If a cutting edge is damaged, its cutting force profile

differs from a normal one. The run-out of the tool appears

to be changed. In addition to the DI, the contact length of
a cutting edge was estimated from the simulated data

when two parameters were estimated. The objective was

to see if the genetic algorithm could distinguish the

variation of the force profile due to changes in the cutting

force coefficient or the contact length of a cutting edge.

On the experimental, primarily the DI was estimated to

evaluate the wear when two parameters were considered.

The run-out was estimated without any unit just as an

advisory value and it was called run-out index (ROI). The

ROI of a new tool depends on the type and condition of

the tool holder and adjustment. Since the feed per tooth is

extremely small in micro-end-milling, it is common to

perform the machining operation by using only a single

cutting edge. In this study, ROI is mainly used to improve

the accuracy of the DI estimation. Under the perfect

conditions, both of the cutting edges of the tool wear out

and gets dull simultaneously. ROI will fluctuate and have

very small values. If one of the cutting edges were

chipped, or broken, the contact length of one of the

cutting edges decrease, and the ROI would increase

drastically. This drastic increase indicates that both of the

cutting edges do not remove the same amount of material.
5.1. Performance of the GTM on the cutting force data

The cutting force coefficient and the contact length of

one of the cutting edges was estimated from the resultant

(Figs. 5 and 6), feed (Figs. 7 and 8), thrust direction (Figs. 9

and 10), and cutting forces. To demonstrate the performance

of the prosed approach, simulated and estimated values of

the DI and contact length estimations were compared in

the figures. The genetic algorithm was stopped after 500

iterations in all the test cases. The DI is the ratio of the

estimated cutting force coefficient over the theoretical value



Fig. 4. Experimental set-up: (a) diagram of the experimental set-up; (b)

picture of the set-up; (c) POCO workpiece and aluminium test piece with

slots.

Fig. 5. Cutting force coefficient estimation accuracy of the GTM when the

resultant cutting force is used for estimations (values were taken from Ref.

[15]).

Fig. 6. Contact length estimation accuracy of the GTM when the resultant

cutting force is used for estimations (values were taken from Ref. [15]).

Fig. 7. Cutting force coefficient estimation accuracy of the GTM when the

feed direction cutting force is used for estimations (values were taken from

Ref. [15]).
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of the same coefficent for the perfect tool. The contact

length is the section of the cutting edge which removes the

material.

The cutting force coefficient was estimated with less than

1% error in all the studied cases, either the resultant force or

the single force component was used. The contact length

estimation error was less than 10% when the GTM made the

estimations from the resultant force. The estimation error

was less than 2% when a single force component was used

to estimate the contact length. These results indicated that
GTM was capable to distinguish the variation of the cutting

force coefficient and the change of contact length.
5.2. Performance of the GTM on the experimental data

The resultant cutting force data was calculated from the

sampled two cutting force components. The data segments,

which correspond to one revolution, were isolated starting

from the lowest force value. Then, these were used to make

the estimation of the considered parameters. The considered

segment and the estimation of the genetic algorithm is

presented in Fig. 11.

First, GTM was used to estimate the DI of three cutting

force segments collected at eight wear levels, and results are

presented in the Fig. 12 [15]. DI stayed around unity when

the tool was sharp at the beginning. It quickly increased and



Fig. 9. Cutting force coefficient estimation accuracy of the GTM when the thrust

direction cutting force is used for estimations (values were taken from Ref. [15]).

Fig. 8. Contact length estimation accuracy of the GTM when the feed direction

cutting force is used for estimations (values were taken from Ref. [15]).

Fig. 11. The experimental data of one tool revolution and the estimated

model by the GTM [15].
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stayed at the next level. The DI values of the samples were

very consistent at the same wear levels.

GTM was also used to estimate DI and ROI at the same

time from the same data [15]. DI values were almost the

same when one or two parameters were estimated. ROI had

very small values and fluctuated slightly at the beginning. It

increased very slightly when the tool worn out. The results

are presented in Figs. 13 and 14.
Fig. 12. Variation of the DI with tool wear. GTM2 estimated single value
6. Conclusion

Genetic Tool Monitor (GTM) was introduced and its

performance was evaluated on the simulated and experimen-

tal data. The user does not need to have any expressions for a

system when time series analysis, fuzzy logic and neural

networks are used. It is necessary to study the characteristics

of the data at many different cutting conditions, and to
Fig. 10. Contact length estimation accuracy of the GTM when the thrust

direction cutting force is used for estimations (values were taken from Ref. [15]).
determine the most important indicators of the wear. Based

on these observations, sampling of the data, preliminary

processing, proper use of the method, and interpretation of

the final results should be determined. In case of neural

networks, training data should be provided at all the cutting

conditions. These methods work reliably only if the operating

conditions are similar to the previously considered ones.

It is necessary to have either an analytical or an empirical

expression to be able to use the genetic algorithms. A

carefully obtained analytical or experimental expression
(DI) (values were taken from Ref. [15] and modified).

Fig. 13. Variation of the DI while the tool wears out. DI and ROI were

estimated simultaneously (values were taken from Ref. [15] and modified).



Fig. 14. Variation of the ROI while the tool wears out. DI and ROI were

estimated simultaneously (values were taken from Ref. [15] and modified).
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provides very valuable information about the characteristics

of the system. A genetic algorithm estimates one or more key

parameters of this expression from the incoming data. Since

the genetic algorithm-based diagnostic tools know the

characteristics of the system, once the key parameters are

estimated they can start to monitor the signals without any

previous training, and they are more robust against noisy

signals. If they estimate any parameters of the operating

conditions, they are supposed to continue to operate reliably

even if that parameter changes during the machining

operation and take values, which was never tested before.

Theoretically, a tool condition monitor can be developed

which estimates all the cutting parameters, and it should be

able to estimate the wear continuously while a very complex

part is cut. However, each estimated parameter would

increase the computational time and reduce the accuracy.

In this study, all the cutting conditions were fixed to increase

the reliability of the estimations, to minimize false alarms,

and to detect when any of the components of the system fails.

The accuracy of the estimated parameters was the same

and even better when the data of either of the single force’s

component was used instead of the resultant force.

However, use of the resultant force was preferred on the

experimental data to assure that the method is valid even if

the feed direction is not known.

In this study, machining of non-metallic materials

with miniature tools was considered, and cutting force

data was collected periodically while a test piece was

cut. Since the cutting force was very small relative to the

noise, use of this approach was inevitable. However, the

proposed approach is very attractive to develop low cost

tool condition monitoring systems. These systems may

use a single load cell to collect the data on a test piece

at a carefully selected cutting condition, periodically and

estimate wear with a low cost computational hardware.

The low development and maintenance cost, high

accuracy, and reliability will be the main advantages of

them and compensate the disadvantage of non-continuous

monitoring capability.
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