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Learning Objectives

• Recognize the importance of studying Vibration

• Describe a brief the history of vibration

• Understand the definition of Vibration 

• State the process of modeling systems 

• Determine the Degrees of Freedom (DOF) of a system

• Identify the different types of  Mechanical Vibrations 

• Compute equivalent values for Spring elements, Mass elements and 
Damping elements

• Characterize harmonic motion and the different possible representation

• Add and subtract harmonic motions

• Conduct Fourier series expansion of given periodic functions
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Importance of studying Vibration

• All systems that have mass and any type of flexible components are 
vibrating system. 

• Examples are many: 
• We hear because our eardrums vibrate

• Human speech requires the oscillatory motion of larynges

• In machines, vibration can loosen fasteners such as nuts.

• In balance in machine can cause problem to the machine itself or surrounding 
machines or environment. 

• Periodic forces bring dynamic responses that can cause fatigue in materials

• The phenomenon known as Resonance leads to excessive deflections and 
failure.

• The vibration and noise generated by engines causes annoyance to people 
and, sometimes, damage to property.
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Importance of studying Vibration
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Brief history
• People became interested in vibration when they created the first musical instruments ( as long as 4000 B.C.). 

• Pythagoras ( 582 – 507 B.C)  is considered the fisrt person to investigate musical sounds. 

• Galileo Galilei (1564-1642) is considered to be the founder of modern experimental science, he conduct experiments on the 
simple pendulum, describing the dependence of the frequency of vibration and the length.

• Robert Hooke (1635–1703) also conducted experiments to find a relation between the pitch and frequency of vibration of a 
string.

• Joseph Sauveur (1653–1716) coined the word “acoustics” for the science of sound.

• Sir Isaac Newton (1642–1727) his law of motion is routinely used to derive the equations of motion of a vibrating body.

• Brook Taylor (1685–1731), obtained the natural frequency of vibration observed by Galilei and Mersenne.

• Daniel Bernoulli (1700–1782), Jean D’Alembert (1717–1783), and Leonard Euler (1707–1783)., introduced partial derivatives in 
the equations of motion.

• J. B. J. Fourier (1768–1830) contributed on the development of the theory of vibrations and led to the possibility of expressing any 
arbitrary function using the principle of superposition.

• Joseph Lagrange (1736–1813) presented the analytical solution of the vibrating string.

• Charles Coulomb did both theoretical and experimental studies in 1784 on the torsional oscillations of a metal cylinder suspended 
by a wire.  He also contributed in the modeling of dry friction. 

• E. F. F. Chladni (1756–1824) developed the method of placing sand on a vibrating plate to find its mode shapes.

• Simeon Poisson (1781–1840) study vibration of a rectangular flexible membrane.

• Lord Baron Rayleigh (1842 – 1919) Among the many contributions, he develop the method of finding the fundamental frequency 
of vibration of a conservative system by making use of the principle of conservation of energy.
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Definition of Vibration 

• Any motion that repeats itself after an interval of time.

• A vibratory system, in general, includes a means for storing potential 
energy (spring or elasticity), a means for storing kinetic energy (mass 
or inertia), and a means by which energy is gradually lost (damper).

Excitations
(input): 
Initial 
conditions 
of external 
force

Responses (output)  
T            U

D
Energy dissipation

F(t) r(t)
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Modeling 
systems
• All mechanical 

and structural 
systems can be 
modeled as 
mass-spring-
damper 
systems

Real system

Mechanical 
Model

Mathematical 
Model 

Solution

Analysis 

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

Respuesta

análisis del

sistema para

que la

respuesta

sea

coherente.

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

Respuesta

análisis del

sistema para

que la

respuesta

sea

coherente.
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Degrees of freedom

Single DoF systems: Two DOF System 

The minimum number of independent coordinates 
required to determine completely the positions of all 
parts of a system at any instant of time

Three DoF systems: 



Prof. Carmen Muller-Karger, PhD
Figures and content adapted from  Textbook: 

Singiresu S. Rao.  Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Classification of Vibration 

• Free Vibration: When a system, after an initial 
disturbance, is left to vibrate on its own. No 
external force acts on the system. The system 
oscillates at its natural frequency. Example: a 
pendulum.

• Forced Vibration: When a system is subjected 
to an external force (often, a repeating type of 
force).  The oscillation that arises in machines 
such as diesel engines is an example of forced 
vibration.
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Types of response 

• Undamped and damped Vibration

• Linear of nonlinear Vibration 

• Deterministic ond Random Vibration  

𝑙 ሷ𝜃 + 𝑚𝑔𝑠𝑖𝑛𝜃 = 0
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Mechanical Vibrations
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Spring Elements

The force related to a elongation or reduction in length 
opposes to the displacement of the end of the spring and is 
given by :

𝐹 = 𝑘𝑥

The work done (U) in deforming a spring is stored as strain 
or potential energy in the spring, and it is given by

𝑈 =
1

2
𝑘𝑥2

𝐹 = 𝑎𝑥 + 𝑏𝑥3

Non-linear spring element:

ቤ𝑘 =
𝑑𝐹

𝑑𝑥
𝑥∗
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Example: Spring constant of a rod
• Find the equivalent spring constant of a uniform rod of length l, cross-

sectional area A, Area Moment of Inertia I and Young’s modulus E

𝛿 =
𝛿

𝑙
𝑙 = 𝜀𝑙 =

𝐹𝑙

𝐴𝐸

𝑘 =
𝐹𝑜𝑟𝑐𝑒

𝑑𝑒𝑓𝑙𝑒𝑥𝑖𝑜𝑛
=
𝑊

𝛿
=
3𝐸𝐼

𝑙3

𝛿 =
𝑊𝑙3

3𝐸𝐼

𝑘 =
𝐹𝑜𝑟𝑐𝑒

𝑑𝑒𝑓𝑙𝑒𝑥𝑖𝑜𝑛
=
𝐹

𝛿
=
𝐴𝐸

𝑙

1. Subjected to an axial tensile (or 
compressive) force F

2. Cantilever bean subjected to a transversal 
load at the free end. 
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Original system Equivalent model Spring Constant of a 

Rod under axial 
load

Cantilever beam 
with end force

Simple support 
beam with load in 
the middle 

Propeller Shaft 
subjected to a 
torsional moment

Equivalent spring constants

𝑘 =
𝐴𝐸

𝑙

𝑘 =
3𝐸𝐼

𝑙3

𝑘 =
𝐺𝐽

𝑙
𝐽 =

𝜋(𝐷4 − 𝑑4)

32

𝑘 =
48𝐸𝐼

𝑙3
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Combination of Springs 
Springs in Parallel Springs in Series

W= 𝑘1𝛿𝑠𝑡 + 𝑘2𝛿𝑠𝑡

W= (𝑘1+𝑘2)𝛿𝑠𝑡

W= (𝑘𝑒𝑞)𝛿𝑠𝑡

𝑘𝑒𝑞 = (𝑘1+𝑘2)

W= 𝑘1𝛿1 = 𝑘2(𝛿𝑠𝑡−𝛿1) = 𝑘𝑒𝑞𝛿𝑠𝑡

𝛿1 =
𝑊

𝑘1

1

𝑘𝑒𝑞
=

1

𝑘1
+

1

𝑘2

𝛿1 = 𝑘2(𝛿2−𝛿1)

𝛿𝑠𝑡 =
𝑊

𝑘𝑒𝑞

𝑘2 𝛿𝑠𝑡 −
𝑊

𝑘1
= 𝑊 𝛿𝑠𝑡 =

𝑊

𝑘2
+
𝑊

𝑘1
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Mass or Inertia Elements

• The mass or inertia element is assumed to be a rigid body; it can gain 
or lose kinetic energy whenever the velocity of the body changes.

• For single DoF system for a simple analysis, we can replace several 
masses by a single equivalent mass.  

• The key step is to choose properly a parameter that will describe the 
motion of the system and express all other parameters in term of the 
chosen one.  

• Calculate the kinetic energy of the system and  make it equal to the 
kinetic energy of the equivalent system
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Kinetic energy

ҧ𝑣 = ҧ𝑣𝑝 + ഥ𝜔𝑧 × ҧ𝑟

x´

y´

𝑝

𝐺

GENERAL MOTION

𝜔

𝛼

dm

x

y

𝑜

In general for one rigid body the 

kinetic energy can be calculated 

as  

𝑇 =
1

2
𝑚( ҧ𝑣𝑝)

2+
1

2
𝐼𝑝𝑧𝑧(𝜔𝑧)

2+ ҧ𝑣𝑝 ∙ ഥ𝜔𝑧 ×𝑚 ҧ𝑟𝐺

For a system with several rigid bodies is 

the sum of the kinetic energy of each 

body: 
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Example 1: Translational masses by a rigid bar

𝑇 =
1

2
𝑚1( ሶ𝑥1)

2+
1

2
𝑚2( ሶ𝑥2)

2+
1

2
𝑚3( ሶ𝑥3)

2 ሶ𝑥𝑒𝑞 = ሶ𝑥1

ሶ𝑥3 =
𝑙3

𝑙1
ሶ𝑥1ሶ𝑥2 =

𝑙2

𝑙1
ሶ𝑥1

𝑇 =
1

2
𝑚1( ሶ𝑥1)

2+
1

2
𝑚2

𝑙2
𝑙1

ሶ𝑥1

2

+
1

2
𝑚3

𝑙3
𝑙1

ሶ𝑥1

2

𝑇 =
1

2
𝑚1 +𝑚2

𝑙2
𝑙1

2

+𝑚3

𝑙3
𝑙1

2

( ሶ𝑥1)
2

𝑚𝑒𝑞 = 𝑚1 +𝑚2

𝑙2
𝑙1

2

+𝑚3

𝑙3
𝑙1

2

• Let’s choose ሶ𝑥1 as the parameter that will describe the motion of the 
system and find the equivalent kinetic energy 
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Example 2: Translational and 
rotational masses coupled 
together

Since the system is rotating without slipping and the gear is fix at its center ሶ𝜃 = ሶ𝑥/𝑅

𝑇 =
1

2
𝑚( ሶ𝑥)2+

1

2
𝐽𝑜( ሶ𝜃)2

• If we choose as the parameter that will 
describe the motion of the system ሶ𝑥𝑒𝑞 = ሶ𝑥

𝑇 =
1

2
𝑚( ሶ𝑥)2+

1

2
𝐽𝑜

ሶ𝑥

𝑅

2

• If we choose as the parameter that will 
describe the motion of the system ሶ𝑥𝑒𝑞 = ሶ𝜃

𝑇 =
1

2
𝑚( ሶ𝑥)2+

1

2
𝐽𝑜( ሶ𝜃)2

𝑇 =
1

2
𝑚( ሶ𝜃𝑅)2+

1

2
𝐽𝑜 ሶ𝜃

2

𝑚𝑒𝑞 = 𝑚𝑅2 + 𝐽𝑜
𝑇 =

1

2
𝑚𝑅2 + 𝐽𝑜 ( ሶ𝜃)2
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Damping element

• In many practical systems, the vibrational energy is gradually 
converted to heat or sound. Due to the reduction in the energy, the 
response, such as the displacement of the system, gradually 
decreases. Damping force exists only if there is relative velocity 
between the two ends of the damper.

• We will consider three types of damping:
• Viscous Damping: the damping force is proportional to the velocity of the 

vibrating body. 

• Coulomb or Dry-Friction Damping: damping force is constant in magnitude 
but opposite in direction to that of the motion

• Material or Solid or Hysteretic Damping: due to friction between the internal 
planes, which slip or slide as the deformations take place
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In general viscous Dampers 

Dampers in ParallelDampers in Series

𝑐𝑒𝑞 = (𝑐1+𝑐2)
1

𝑐𝑒𝑞
=

1

𝑐1
+
1

𝑐2

Non-linear damper element:

ቤ𝑐 =
𝑑𝐹

𝑑 ሶ𝑥
𝑥∗

Non-linear damper element:

𝐹 = 𝑐𝑣
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Damping constant of parallel plates separated by 
viscous fluid.
• According to Newton’s laws of viscous flow: 

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦

𝐹 = 𝜏𝐴 =
𝜇𝐴𝑣

ℎ

𝑑𝑢

𝑑𝑦
=
𝑣

ℎ

𝐹 = 𝑐𝑣 =
𝜇𝐴

ℎ
𝑣

𝑐 =
𝜇𝐴

ℎ

• If A is the surface area at the moving plate, 
and expressing the force in term of the 
damping constant: 

• Gradient of the velocity: 
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Damping constant of a journal bearing
• According to Newton’s laws of viscous flow, u 

is the radial velocity, and v the tangential 
velocity of the shaft: 

𝜏 = 𝜇
𝑑𝑢

𝑑𝑟

𝑇 = (𝜏𝐴)𝑅 =
𝜇(𝜔𝑅) 2𝜋𝑅𝑙 𝑅

𝑑

𝑇 = 𝑐𝜔

𝑐 =
𝜇2𝜋𝑅3𝑙

𝑑

𝑑𝑢

𝑑𝑟
=
𝑣

𝑑
=
𝜔𝑅

𝑑

If A is the surface area at the moving shaft (2𝜋𝑅𝑙), 
and expressing the torque T=F R in term of the 
damping constant: 

• Gradient of the velocity: 
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Harmonic Motion or Periodic Motion, 
Definitions and Terminology

Harmonic motion: Motion is repeated 
after equal intervals of time

Cycle: The movement from one position, going to the 
other direction and returning to the same position

Amplitude:  The maximum displacement of a vibrating 
body from its equilibrium position.

Period of oscillation: The time taken to complete one 
cycle of motion, is denoted by τ.

Frequency of oscillation: The number of cycles per unit 
time 

Circular frequency of oscillation: The number of cycles 
per unit time.

𝜏 =
2𝜋

𝜔

𝑓 =
1

𝜏
=

𝜔

2𝜋

𝜔 =
2𝜋

𝜏

𝐴
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Harmonic Motion or Periodic Motion, 
Definitions and Terminology

Synchronous motion : have the same frequency or angular velocity, ω. 
Need not have the same amplitude, and they need not attain their 
maximum values at the same time.

Phase angle: means that the maximum of the second vector would 
occur f radians earlier than that of the first vector.

wt

wt+f

O

P1

P2

Vectorial representation

𝑥 𝑡 = sin(𝜔𝑡)

ሶ𝑥 𝑡 = −ω𝑐𝑜𝑠(𝜔𝑡)

Displacement:

Velocity: 

Acceleration: ሷ𝑥 𝑡 = −𝜔2sin(𝜔𝑡)
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Complex-number representation
• Any vector in the xy-plane can be represented as a complex 

number:

ത𝑋 = a + ib = 𝐴 cos 𝜔𝑡 + 𝑖𝑠𝑖𝑛 𝜔𝑡

• The magnitude

• Using Euler form

ത𝑋 = A𝑒𝑖𝜔𝑡 = A𝑒𝑖𝜃 = 𝐴 cos 𝜔𝑡 + 𝑖𝑠𝑖𝑛 𝜔𝑡

A = 𝑎2 + 𝑏2

ത𝑋 = A𝑒−𝑖𝜔𝑡 = A𝑒−𝑖𝜃 = 𝐴 cos 𝜔𝑡 − 𝑖𝑠𝑖𝑛 𝜔𝑡

ത𝑋 = A𝑒𝑖𝜔𝑡

or

ሶത𝑋 =
𝑑 ത𝑋

𝑑𝑡
=
𝑑(A𝑒𝑖𝜔𝑡)

𝑑𝑡
= 𝑖ωA𝑒𝑖𝜔𝑡

ሷത𝑋 =
𝑑2 ത𝑋

𝑑𝑡2
=
𝑑2(A𝑒𝑖𝜔𝑡)

𝑑𝑡2
= −ω2A𝑒𝑖𝜔𝑡

Displacement:

Velocity: 

Acceleration:

Expansion by series

cos 𝜃 = 1 −
𝜃2

2!
+
𝜃4

4!
−
𝜃6

6!
+ ⋯

sin 𝜃 = 𝜃 −
𝜃3

3!
+
𝜃5

5!
−
𝜃7

7!
+ ⋯

For very small angles:

cos 𝜃 ≈ 1

sin 𝜃 ≈ 𝜃
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Adding harmonic motion

• Recall trigonometry identities: 

𝑥1(𝑡) = 𝐴1 cos 𝜔𝑡

𝑥2 (𝑡) = 𝐴2 𝑠𝑖𝑛 𝜔𝑡

𝑥𝑡(𝑡) = 𝑥1 𝑡 + 𝑥2 𝑡 = 𝐴1 cos 𝜔𝑡 +𝐴2 sin 𝜔𝑡 = 𝐴𝑐𝑜𝑠 𝜔𝑡 − 𝛼

sin 𝑎 + 𝑏 = sin 𝑎 𝑐𝑜𝑠 𝑏 + cos 𝑎 𝑠𝑖𝑛 𝑏

cos 𝑎 + 𝑏 = 𝑐𝑜𝑠 𝑎 𝑐𝑜𝑠 𝑏 − sin 𝑎 𝑠𝑖𝑛 𝑏

• Adding harmonic motions: 

𝑥𝑡(𝑡) = 𝐴𝑐𝑜𝑠 𝜔𝑡 − 𝛼 = Acos(𝛼) cos 𝜔𝑡 + Asin(𝛼) sin 𝜔𝑡

𝐴1 = Acos(𝛼)

𝐴2 = Asin(𝛼)
𝐴 = 𝐴1

2 + 𝐴2
2 = (Acos(𝛼))2+(Asin(𝛼))2

𝛼 = 𝑡𝑎𝑛−1
𝐴2
𝐴1

• Two different ways of write a 
harmonic motion: 

𝒙𝒕(𝒕) = 𝑨𝟏 𝐜𝐨𝐬 𝝎𝒕 +𝑨𝟐 𝐬𝐢𝐧 𝝎𝒕

𝒙𝒕(𝒕) = 𝑨𝒄𝒐𝒔 𝝎𝒕 − 𝜶

or

𝑨 = 𝑨𝟏
𝟐 + 𝑨𝟐

𝟐

𝜶 = 𝒕𝒂𝒏−𝟏
𝑨𝟐
𝑨𝟏
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Adding harmonic motion

• Recall trigonometry identities: 

cos A + cos B = 2 cos
𝐴 + 𝐵

2
cos

𝐴 − 𝐵

2

Phenomenon Beats: occurs when adding 
two harmonic motion with frequencies close 
too one another the resultant motion 

𝒙𝟏(𝒕) = X𝒄𝒐𝒔 𝝎 𝒕

cos A − cos B = −2 sin
𝐴 + 𝐵

2
sin

𝐴 − 𝐵

2

sin A − sin B = 2 cos
𝐴 + 𝐵

2
sin

𝐴 − 𝐵

2

sin A + sin B = 2 sin
𝐴 + 𝐵

2
cos

𝐴 − 𝐵

2

𝒙𝟐(𝒕) = X𝒄𝒐𝒔 𝝎 + 𝜹 𝒕

𝒙(𝒕) = X𝒄𝒐𝒔 𝝎 𝒕+X𝒄𝒐𝒔 𝝎 + 𝜹 𝒕

𝒙(𝒕) = 𝐗 𝐜𝐨𝐬
𝜹

𝟐
𝒕 𝒄𝒐𝒔 𝝎 +

𝜹

𝟐
𝒕

Beats frequency is twice the frequency of the term  𝐗 𝐜𝐨𝐬
𝜹

𝟐
𝒕 since 

two peaks pass in each cycle. 
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Harmonic Analysis: Fourier Series 

where ω=2π/τ is the fundamental frequency. 

To determine the coefficients , we multiply by cos(nωt) and sin(nωt), 
respectively, and integrate over one period τ=2π/ω—for example, from 0 
to 2π/ω. 

𝑥 𝑡 =
𝑎0

2
+ 𝑎1 𝑐𝑜𝑠 𝜔𝑡 + 𝑎2 𝑐𝑜𝑠 2𝜔𝑡 + ⋯ 𝑏1 𝑠𝑖𝑛 𝜔𝑡 + 𝑏2 𝑠𝑖𝑛 2𝜔𝑡 + ⋯

𝑥 𝑡 =
𝑎0
2
+ 

𝑛=1

∞

𝑎𝑛 𝑐𝑜𝑠 𝑛𝜔𝑡 + 𝑏𝑛 𝑠𝑖𝑛 𝑛𝜔𝑡

Any periodic function of time can be represented by Fourier series as 
an infinite sum of sine and cosine terms

𝑎0 =
𝜔

𝜋
න
0

2𝜋/𝜔

𝑥 𝑡 𝑑𝑡 =
2

𝜏
න
0

𝜏

𝑥 𝑡 𝑑𝑡

𝑎𝑛 =
𝜔

𝜋
න
0

2𝜋/𝜔

𝑥 𝑡 𝑐𝑜𝑠 𝑛𝜔𝑡 𝑑𝑡 =
2

𝜏
න
0

𝜏

𝑥 𝑡 𝑐𝑜𝑠 𝑛𝜔𝑡 𝑑𝑡

𝑏𝑛 =
𝜔

𝜋
න
0

2𝜋/𝜔

𝑥 𝑡 𝑠𝑖𝑛 𝑛𝜔𝑡 𝑑𝑡 =
2

𝜏
න
0

𝜏

𝑥 𝑡 𝑠𝑖𝑛 𝑛𝜔𝑡 𝑑𝑡
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Harmonic Analysis: Fourier Series 

Where: 

𝑥 𝑡 = 𝑑0 + 𝑑1 𝑐𝑜𝑠 𝜔𝑡 − 𝜑1 + 𝑑2 𝑐𝑜𝑠 2𝜔𝑡 − 𝜑1 +⋯

𝑥 𝑡 = 𝑑0 +

𝑛=1

∞

𝑑𝑛 𝑐𝑜𝑠 𝑛𝜔𝑡 − 𝜑𝑛

Fourier series can also be represented by the sum of sine terms only or 
cosine terms only.

𝑑0 =
𝑎0
2

𝑑𝑛 = 𝑎𝑛
2 + 𝑏𝑛

2

𝜑𝑛 = 𝑡𝑎𝑛−1
𝑏𝑛
𝑎𝑛



Prof. Carmen Muller-Karger, PhD
Figures and content adapted from  Textbook: 

Singiresu S. Rao.  Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Fourier Series in complex numbers

𝑥 𝑡 =
𝑎0
2
+ 

𝑛=1

∞

𝑎𝑛
𝑒𝑖𝑛𝜔𝑡 + 𝑒−𝑖𝑛𝜔𝑡

2
+ 𝑏𝑛

𝑒𝑖𝑛𝜔𝑡 − 𝑒−𝑖𝑛𝜔𝑡

2
= 𝑒𝑖𝜔0

𝑎0
2
− 𝑖

𝑏0
2

+

𝑛=1

∞

𝑒𝑖𝑛𝜔𝑡
𝑎𝑛 − 𝑖𝑏𝑛

2
+ 𝑒−𝑖𝜔𝑡

𝑎𝑛 + 𝑖𝑏𝑛
2

𝑐−𝑛 =
𝑎𝑛 + 𝑖𝑏𝑛

2

𝑒𝑖𝜔𝑡 = cos 𝜔𝑡 + 𝑖𝑠𝑖𝑛 𝜔𝑡

𝑒−𝑖𝜔𝑡 = cos 𝜔𝑡 − 𝑖𝑠𝑖𝑛 𝜔𝑡

cos 𝜔𝑡 =
𝑒𝑖𝜔𝑡+𝑒−𝑖𝜔𝑡

2

sin 𝜔𝑡 =
𝑒𝑖𝜔𝑡−𝑒−𝑖𝜔𝑡

2

Since:

The Fourier Series can be written as :

With:

𝑐𝑛 =
𝑎𝑛 − 𝑖𝑏𝑛

2
𝑏0 = 0

The Fourier Series can be written in a very compact form :

𝑥 𝑡 = 

𝑛=−∞

∞

𝑐𝑛𝑒
𝑖𝑛𝜔𝑡 𝑐𝑛 =

𝜔

𝜋
න
0

2𝜋/𝜔

𝑥 𝑡 𝑐𝑜𝑠 𝑛𝜔𝑡 − 𝑠𝑖𝑛 𝑛𝜔𝑡 𝑑𝑡 =
1

𝜏
න
0

𝜏

𝑥 𝑡 𝑒−𝑖𝑛𝜔𝑡𝑑𝑡with



Prof. Carmen Muller-Karger, PhD
Figures and content adapted from  Textbook: 

Singiresu S. Rao.  Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Time and frequency domain representations

• The Fourier series expansion 
permits the description of any 
periodic function using either 
a time-domain or a frequency-
domain representation.

• Note that the 
amplitudes 𝑑𝑛 and the phase 
angles 𝜑𝑛 corresponding to 
the frequencies ωn can be 
used in place of the 
amplitudes 𝑎𝑛 and 𝑏𝑛 for 
representation in the 
frequency domain.


