2.53

2.54

2-40

An electric motor (Figure P2.53) has an eccentric mass of 10 kg (10% of the total mass)
and is set on two identical springs (k= 3200 /m). The motor runs at 1750 rpm, and the
mass eccentricity is 100 mm from the center. The springs are mounted 250 mm apart
with the motor shaft in the center. Neglect damping and determine the amplitude of the
vertical vibration.

Solution:
Given mo = 10 kg, m= 100 kg, k=2x3.2N/mm, , e=0.1m
rev  min 27 rad

. d
® =1750 )= 183.26 rad/s
S

min 60sec rev
Vertical vibration:

W = w =8 rad/s
n N 100

)
p=2e 183309
. a)n 8
From equation (2.84)
2
m
X=et T _=—001m
m|1-r"|

Consider a system with rotating unbalance as illustrated in Figure P2.53. Suppose the
deflection at 1750 rpm is measured to be 0.05 m and the damping ratio is measured to be
§=0.1. The out-of-balance mass is estimated to be 10%. Locate the unbalanced mass

by computing e.

Solution: Given: X=0.05m, { =0.1, m, =0.1m, and from the solution to problem

2.53 the frequency ratio is calculated to be » = 22.9. Solving the rotating unbalance:
Equation (2.84) for e yields: :
me r mX \/(1 — ") +(2¢r)
X = —— = e = 5 =
m J(1— ) +(2Lr)? m, r
This sort of calculation can be introduced to discuss the application of machinery
diagnostics if time permits. Machinery diagnostics deals with determining the location
and extend of damage from measurements of the response and input.

0.499 m

A fan of 45 kg has an unbalance that creates a harmonic force. A spring-damper system
is designed to minimize the force transmitted to the base of the fan. A damper is used
having a damping ratio of { = 0.2. Calculate the required spring stiffness so that only

10% of the force is transmitted to the ground when the fan is running at 10,000 rpm.

Solution: The equation of motion of the fan is b
. . 2 . Sua
mx +cx +kx = mye” si
The steady state solution as given by equation (2.84) is

e

i

?emur
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x(t) = 218 sinffor - ¥)
m J(1-r ) +(20ry
where 7 is the standard frequency ratio. The force transmitted to the ground is

meye kr? mye cor?
sinwt +

moJA-rY @y m Ja-r) 2
Taking the magnitude of this quantity, the magnitude of the force transmitted becomes
7= e K+ Fo? = oud 1+ (28r)
b Ji-ry @yt a-ry iy
From equation (2. 81) the magnitude of the force generated by the rotating mass F,is
' | E =mew’ F’ww,w.ﬂv b be 0.1 m,ewf
The Iimitation stated in the problem is that Fg= 0.1F,, or brrw Pn(, Shbepend
2 V1+(@28r )
JA=rY +28ry
Setting { = 0.2 and solving for 7 yields:

r'=17.84r* =99 =0
which yields only one positive solution for #*, which is

Ft)=kx+cx = coswt

myeq = 0.1mye’

g @ _ K _(10000x2x Y 1
| y m 60 22.28
m
2
10000x 27} 1
— k=45 i =2.21%10° N/m
60 2228

el = o [Uere )]
Qe a8r") _ o (14487Y) = 1220 rt s 457
.ol . - +[~2'3q‘§']r -1

0=rt-11.84r-499

.84 +2¢.73
rr 17.84 2 [an)=-401CTD - 'ﬂ_{e
Z

g n ~h4%s
: A mpl-Ppss;Lle.

W
o r=J2228 =472 = ,“.f'; »
Wt ”Eﬂ = zf“rlmm'?“gl”zz s

CWgw By E 22"‘3“""‘/s
ke mwl =2 z:SXlOL ”/m

= 22.2
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The time ¢, for which x = 0 when the curve crosses the axis, 1s given by
tin (—C,/Cy) In (—C,/Cy)

v= f—a - 20/0*-1

The time ™ at which the maximum point on the curve occurs, obtained

(:21)

by setting x = 0, is defined by x(g),c,qs:b,,,ciesi
E In (_5,_C2/§,Cl) . In (—ﬁcz/ﬁcl) . o )
= LT 2 (-22) -
' . ~($‘— 9,) 20/ -1 $i2 ~Swy, +nd %
St - _  Sam Jug W [FLT
EXAMPLE 3-1 A weight of 9 1b is supported by a spring having a con-
'stant of 2 Ib/in. and a dashpot having a damping constant of 1.3 Ib sec/in.
The mass has an initial displacement of 4 in. and an initial velocity of zero.
Express the relation that governs the motion of the mass.
: x(t)= ‘:4"'&* et b
SOLUTION k " ik
k [2 x386
, o= /_: = __><-8_ = 9.26 rad/sec
K= 2bylamn 224)b A m 9 . ' S
W) r , 9 : E

cel.3 lbs cl2m: 8.4 %-: c, = 2mc_uﬁ= 2 x§§8 x 9.26 = 0.432 1b secfin. -

. n - fi (8076 1b-s Ly
m=W.9 .21 ¢ 13 L r - Ris
9 32 ki 4 ¢ . 0432 3‘01" 79 . ?) 57

S, 7 =+ /T = y=(3.01 + 2.84) x 926 =542
From Eq. 3-20, . .

C,+C,=4 K== x, -
N ISTC, 542G, =0 [bsd)av,
Solving simultaneously yields : .
o C =412
C, = —0.119

Then the motion relation becomes '
x =4.12¢” 157 — 011974 %

3-6. CRITICALLY DAMPED MOTION

For the case of critical damping, xcorrespbr_ldir}g to { = 1, the motion is
governed by Eg. 3-17. This relation is a product of the linear function
(A + Bt) and the decdying exponential e~ Separate curves for these parts
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The values of constants 4 and B can be determined from these. The time ¢/,
for which x = 0 at the crossing point, is defined by
| . |
- &y ;
The time ® for which x maximum occurs, obtained by setting x = 0, is given -
by

(3-24)

sl & .
= ) (3-25)

EXAMPLE 3-2 A mass of 20 kg is supported by an elastic member having
a modulus of 320° N/m, and the system is critically damped. For initial
conditions of zero displacement and velocity of 3 m/s, determine the maxi-

-mum displacement and the displacement at t = 0.5, 1, and 2 sec.

SOLUTION Based on the initial condit_ibns, the constants £ and garc
determined as o /

. €0 Bzi (646 uxt)
' : -t o
gnd the sglutlon (Eq. 3-17) becomes [cz . (C,Ngt)(-%)]‘ o, (k)
‘ x = Xgte A
with
Xo=3mfs

- k /320
= —— —_— = 4
@ \/Tn 20 rad/s

~ The time at which the maximum displacement oceurs is (v=o "*'Mff)

x(t)

mo bl A1 1 oo '
w RZ w 4 [3

= %, 4™ 3 % 0.25¢74*025 = 02759 m = 27.59 cm "

and »

xmax

Xi=0.5 =3 % 0.5¢74*%5 = 0.2030 m = 20.30 cm _
Xpoy =3 % 1e7**1 = 0.05495 m = 5.495 cm
X,_ =3 x 2¢7**? = 0002013 m = 02013 cm

- 3-7. MOTION FOR BELOW-CRITICAL DAMPING

Damping corresponding to { < 1 is referred to as subcritical or below-
critical damping, and the system is said to be underdamped. For this condi-
tion, the solution is specified by Eq. 3-15: The motion is of harmonic form, .
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Exammatlon of Bgs. 3-32 through 3.34 reveals that in every instance the

~ time between an x = 0 point and the next xn.x point is Jess than the time
between this x,,, point and the following x = 0 point. Similarly, the time
between an x = 0 point and the next x,,;, point is less than the time between
this. Xpmin pomt and the-following x = 0 point. The described unequal time
intervals occur because the dampmg aids the spring in stopping the'outward
mofion but opposes the spring dunng the inward motion. ,

e "The foregomg is made clearer by the curve for Eq. 3-26, shown in Flg

: 346 Tt should be noted that the period 1, as defined by the time between

successive-points-of the same kind (for example, maximum points), is given

by

Wyt =12n

. 2n 2n -
"C:—-::-——-————————' (3‘35)

N S 2
From Eqs 3.30 and 3-26 the curve which goes through the maximum
points is found to have the equation

N it S

L1kew1se by substltutmg Eq 3-31° info Eq. 3-26; the curve through the
minimum points is expresséd by ) T .
: «

x= /T X ot ' (3-37)

iv4l

EXAMPLE 3-3 A mass of 3.174 kg is supported by a spring having a.
modulus of 700 N/m and a dashpot having a damping constant of 14.18
- s/m. Write the equation that governs the motion of the mass.’

i

f /3 74 14 85 rad/sec

cc = Imw =2 x 3,174 x 14.85 = 9427 N - s/m

1418 .
= 9427 =015

JI= 0 = /T=(0.15)7% = 0989
w, = 0989 x 1485 =147 =, [75» ™
[ 2 015 x 1485 =223 -

SOLUTION

Then the'equa’aon of motion is
x = Xe 223 sin (147 + ¢)
"@ﬂd%mmd é’ e2a] . (sies $<.2)
¥ qu e !M(‘K@) ,@a(“’ﬂ) whast. Xo X, Xy Wt Wt
% 3 cons 3 consecuine eycles




