
.

Chapter 8

The Von Neumann Method for
Stability Analysis

Various methods have been developed for the analysis of stability, nearly all of
them limited to linear problems. However, even within this restriction the
complete investigation of stability for initial, boundary value problems can be
extremely complicated, particularly in the presence of boundary conditions
and their numerical representation.

The problem of stability for a linear problem with constant coefficients is
now well understood when the influence of boundaries can be neglected or
removed. This is the case either for an infinite domain or for periodic
conditions on a finite domain. In the latter case we consider that the
computational domain on the x-axis of length L is repeated periodically, and
therefore all quantities, the solution, as well as the errors, can be developed in
a finite Fourier series over the domain 2L. This development in the frequency
domain (in space) forms the basis of the Von Neumann method for stability
analysis (Sections 8.1 and 8.2). This method was developed in Los Alamos
during World War II by Yon Neumann and was considered classified until its
brief description in Cranck and Nic'flolson (1947) and in a publication in 1950
by Charney et at. (1950). At present this is the most widely applied technique
for stability analysis, and furthermore allows an extensive investigation of the
behaviour of the error as a function of the frequency content of the initial data
and of the solution, as will be seen in Section 8.3. The generalization of the
Yon Neumann method to multidimensional problems is presented in Section
8.4.

If the problem of stability analysis can be treated generally for linear
equations with constant coefficients and with periodic boundary conditions, as
soon as we have to deal with nop-constant coefficients and (or) non-linear
terms in the basic equations the information on stability becomes very limited.
Hence we have to resort to a local stability analysis, with frozen values of the
non-linear and non-constant coefficients, to make the formulation linear. In
any case, linear stability is a necessary condition for non-linear problems but it
is certainly not sufficient. We will touch on this difficult problem in Section
8.5.

Finally, Section 8.6 presents certain general techniques in order to obtain the
stability conditions from the Yon Neumann analysis.
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8.1 FOURIER DECOMPOSITION OF THE ERROR I

If u;n is the exact solution of the difference equation and u;n the actual
computed solution the difference might be due to round-off errors and to
errors in the initial data. Hence,

u;n = u;n + £;n (8.1.1)

where £;n indicates the error at time level n in mesh point i. Clearly, any linear
numerical scheme for uf is satisfied exactly by u;n, and therefore the errors e;n
are also solutions of the same discretized equation.

In order to present the essentials of the method we will first refer to the
previous examples. Considering scheme (7.2.5) and inserting equation (8.1.1)
leads to

,-;1'+1_,-;1' ..1'+1_..1' a au/ u/ ~/ ~/ ( n r,n ) ( n n).1t + .1t = - u:x: u;+ 1 - U;-I - u:x: e;+ 1 - e;

(8.1.2) ,
I

Since u;n satisfies exactly equation (7.2.5) we obtain the equation for the errors
..1'.
.., .

e1'+I-£1' a-!._-":;i~ = - u:x: (e7+ 1 - £7-1) (8.1.3)

which is identical to the basic scheme. Hence the errors ef do evolve over time
in the same way as the numerical solution uf. !

The general demonstration of this property is obvious when the operator '

Iform (equation (7.2.27» is applied, considering the operator C to be linear. If
en designates the column vector of the errors at time level n:

, ..n
~;-I(

n n (8 4 ' e = e; .1. ) ..

n
£;+1

relation (8.1.1) can be written, with [;n indicating the exact solution,

Un = [;n + en (8.1.5)

Inserting this equation into the basic scheme leads to

[;n+1 + en+1 = c[;n + Cen (8.1.6)1

or

en+1 = Cen (8.1.7)

by definition of [;n as a solution of
[;n+ 1 = c[;n (8.1.8)
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Hence time evolution of the error is determined by the same operator C as the
solution of the numerical problem.

If the boundary conditions are considered as periodic the error tin can be
decomposed into a Fourier series in space at each time level n. Since the space
domain is of a finite length we will have a discrete Fourier representation
summed over a finite number of harmonics.

In a one-dimensional domain of length L the complex Fourier representa-
tion reflects the region (0, L) onto the negative part (- L, 0), and the
fundamental frequency corresponds to the maximum wavelength of
Amax = 2L. The associated wavenumber k = 211"/A attains its minimum value
kmin = 1I"/L. On the other hand, the maximum value of the wavenumber kmax
of the finite spectrum on the interval (- L, L) is associated with the shortest
resolvable wavelength on a mesh with spacing ~X. This shortest wavelength is
clearly equal to Amin = 2~x (see Figure 8.1.1), and consequently, kmax = 11"/ ~X.

Therefore with the mesh index i, ranging from 0 to N, with Xi = i . ~X and

~x=L/N (8.1.9)

all the harmonics represented on a finite mesh are given by

kj= jkmin=j i = j ~ j= 0, 1,2, ..., N (8.1.10)

with the maximum value of j being associated with the maximum frequency.
Hence with kmax = 11"/ ~X the highest value of j is equal to the number of mesh

I

Errordistribution

/
I

Figure 8.1.1 Fourier representation of the error on the interval (- L, L)

i
I

I
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intervals N. Any finite mesh function, such as £f' or the full solution Uin, will be
decomposed into a Fourier series as

N N
£f'= ~ EJ'elkj.iAX= ~ Ejne/ijrfN (8.1.11)

j= -N j=-N

where 1= J - I and Ejn is the amplitude of the jth harmonic.
The harmonic associated with j = 0 represents a constant function in space.

The produce kjdX is often represented as a phase angle:

j7/"
<t> = kj' dX=- (8.1.12)

N

and covers the domain (- 7/" , 7/") in steps of 7/"/ N. The region around <t> = 0
corresponds to the low frequencies while the region close to <t> = 7/" is associated
with the high-frequency range of the spectrum. In particular, the value <t> = 7/"

corresponds to the highest frequency resolvable on the mesh, namely the
frequency of the wavelength 2dX. Since we deal with linear schemes the
discretized equation (8.1.7), which is satisfied by the error tin, must also be
satisfied by each individual harmonic.

8.1.1 Amplification factor

Considering a single harmonic Ejn e1iq" its time evolution is determined by the
same numerical scheme as the full solution Uin. Hence inserting a representa-
tion of this form into equation (8.1.3) for the example considered we obtain,
dropping the subscript j,

(En+ 1 - En) e/iq, + -E- (En el(i+ I),p - En el(i-l>tP>] = 0
dt 2dX

or, dividing by e/iq"

(En+l - En) + ~ En(elq, - e-lq,) = 0 (8.1.13)
2

where the parameter

(] = ~ (8.1.14)
dX

has been introduced.
The stability condition (7.2.25) will be satisfied if the amplitude of any error

harmonic En does not grow in time, that is, if the ratio

I En+l l101= ~ ~I forall<t> (8.1.15)

The quantity 0, defined by,

En+l
0=-;;- (8.1.16)E
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is the °'Vplijication factor, and is a function of time step At, frequency and
mesh size Ax. In the present case from equation (8.1.13) we have

G - 1 + ~ . 21 sin cf> = 0
2

or

G = 1 - Iu sin cf> (8.1.17)

The stability condition (8.1.15) requires the modulus of G to be lower or equal
to one. For the present example,

I G 12 = 1 + U2 sin2cf> (8.1.18)

and is clearly never satisfied. Hence the centred scheme (7.2.5), for the
convection equation with forward difference in time is unconditionally
unstable.

Example of scheme (7.2.8): conditional stability

Inserting the single harmonic En eliI/> into scheme (7.2.8) written for the error
we obtain

(En+l - En)elil/> + UEn(elil/> - el(i-l)I/» = 0

or after division by En eliI/>,

G = 1 - u + ue-ll/>
2 (8.1.19)

= 1 - 2u sin cf>/2 - 1 u sin cf>

In order to analyse the stability of scheme (7.2.8), that is, the regions where
the modulus of the amplification factor G is lower than one, a representation
of G in the complex plane is a convenient approach. Writing ~ and 11,
respectively, for the real and imaginary parts of G we have

~ = 1 - 2u sin2cf>/2 = (1 - u) + u cos cf>

. (8.1.20)
11= -usmcf>

which can be considered as parametric equations for G with cf> as a parameter.
We recognize the parametric equations of a circle centred on the real axis ~ at
(1 - u) with radius u.

In the complex plane of G the stability condition (8.1.15) states that the
curve representing G for all values of cf> = k Ax should remain within the unit
circle (see Figure 8.1.2). It is clearly seen from Figure 8.1.2 that the scheme is
stable for

0 < u ~ 1 (8.1.21)

Hence scheme (7.2.8) is conditionally stable and condition (8.1.21) is known as
the Courant-Friedrichs-Lewy or CFL condition. The parameter u is called

~
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Region of
instobility

~G

Figure 8.1.2 Complex G plane representation of upwind
scheme (7.2.8), with unit circle defining the stability region

the Courant number. This condition for stability was introduced for the first
time in 1928 in a paper by Courant et al. (1928), which can be considered as
laying the foundations of the concepts of convergence and stability for finite
difference schemes, although the authors were using finite difference concepts
as a mathematical tool for proving existence theorems of continuous prob-
lems. Observe that the upwind scheme (7.2.8) is unstable for a < 0 (see also

Problem 8.1).

8.1.2 Comment on the CFL condition

This fundamental stability condition of most explicit schemes for wave and
convection equations expresses that the distance covered during the time

Chorocteristic
dx/df=-q

,

n+1

n

i

Figure 8.1.3 Geometrical interpretation of the CFL condi-
tion, (] ~ 1
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interval dt, by the disturbances propagating with speed a, should be lower
than the minimum distance between two mesh points. Referring to Figure
8.1.3, the line PQ is the characteristic dxldt = a, through P, and defines the
domain of dependence of the differential equation in P. On the other hand, the
difference equation defines a numerical domain of dependence of P which is
the domain between PAC.

The CFL stability condition (J ~ 1 expresses that the mesh ratio dtl dX has
to be chosen in such a way that the domain of dependence of the differential
equation should be contained in the domain of dependence of the discretized
equations. In other words, the numerical scheme defining the approximation
Uin+! in (mesh point i) must be able to include all the physical information
which influences the behaviour of the system in this point.

Example of scheme (7.2.6): unconditional stability

The implicit, backward Euler scheme with central space differencing of the
convection equation offers a third situation with respect to stability properties.
Performing the same stability analysis with scheme (7.2.6), the error amplitude
En+! becomes, after introduction of an harmonic of the form En e1iI/J,

elil/J(En+ 1 - En) + ~ En+! (e1I/J - e-II/J)elil/J = 0

or

G - 1 + ~ G(ell/J - e-II/J) = 0
2

leading to
1

G= r. (8.1.22)
1 + ~(J SIn cP

The modulus of G is always lower than one, for all values of (J, since

I 12 * 1G = G. G = 1 2. 2 (8.1.23)
+ (J SIn cP

and therefore the implicit scheme (7.2.6) is unconditionally stable. Hence it is
seen that schemes can have either conditional stability, unconditional stability
or unconditional instability.

The Von Neumann method offers an easy and simple way of assessing the
stability properties of linear schemes with constant coefficients when the
boundary conditions are assumed periodic.

8.2 GENERAL FORMULATION OF VON NEUMANN'S METHOD:
SYSTEM OF EQUATIONS

Referring to the second definition of stability (equation (7.2.35», the Von
Neumann method can be restated on the basis of the development of the
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solution Uin in a Fourier series, that is, writing

N N
Uin = ~ v::' elik",t.x= ~ v::' eli,p (8.2.1)

m=-N m=-N

where v::' is the amplitude of the mth harmonic of Uin. An arbitrary harmonic
can be singled out and, when introduced into the scheme, stability requires
that no harmonic should be allowed to increase in time without bound. Since
Uin and the error tin satisfy the same numerical equation, the results obtained
from equation (8.2.1) are identical to those obtained above. The amplification
factor G is defined here as the ratio of the amplitudes v::', that is, omitting the
m subscript,

n+l '
VG = -n = G(cf>, ~t, ~x) (8.2.2)
v

and definition (7.2.35) leads to the stability condition (8.1.15).
In order to formulate the general Von Neumann stability condition it is

necessary to write the discretized equations in operator and matrix forms.

8.2.1 Matrix and operator formulation

We consider that the numerical scheme is obtained in two steps: a space
discretization, followed by a time integration.

(1) When a space discretization is applied (for instance, a finite difference
method) the differential space operator is aproximated by a discretized space
operator S, leading to the method of line formulation for the discrete values
Uin = U(Xi, n~t), where Xi is the co-ordinate of mesh point i:

duidt = SUi + qi (8.2.3)

The qi term contains eventual sources and the contributions from boundary
conditions. The matrix representation of the above system of ordinary
differential equations in time is written with the vector Un, defined by equation
(7.2.26) as

dUdt = SU + Q (8.2.4)

where we use the same notation for the discretized space operator and its
matrix representation.

(2) When a time-integration scheme is applied to the above space-
discretized equations, corresponding to a two-level scheme connecting time
levels (n + 1) and n, the numerical scheme associated with the differential
problem generalizes equation (7.2.27):

Uin+l=C'Uin+qi (8.2.5)
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or, in matrix form,
Un+1 = CUn + Q (8.2.6)

where C can be considered as a discretization operator of the scheme.
For a two-level implicit scheme, of the form BI un+ 1 = Bo un the difference

operator C is defined by C = Bl1 Bo. Note that for the Euler method we have
C = 1 + ~tS. Some examples of the matrix representation of C have been
given in Chapter 7 and we illustrate these various representations with a few
additional examples.

The linear diffusion equation

au a2uat = a axz (8.2.7)

The one-dimensional linearized shallow- water equations

These equations have been treated in Example 3.4.1 and we write here v for the
x-component of the velocity, keeping the notation U for the column of the two
dependent variables. The equations are linearized by setting v and h equal to Vo
and ho in the non-linear terms:

ah ah av
-+vo-+ho-=Oat ax ax

(8.2.8)
av av ah
-+vo-+g-=O
at ax ax

Here the vector u is defined by

u=I~1 (8.2.9)

and the system is written as

aU aU-ai+Aa-x=O (8.2.10a)

where
A= l vo ho

l (8.2.10b)

g Vo

It is seen that, under this form, equation (8.2.10) generalizes the single
convection equation.

Wave equation

a2w 2 a2w~ af - a axz = 0 (8.2.11a)



292

Table 8.1.

Space discretization Matrix representation of 5
Differential equation operator 5 (excluding boundary conditions)

Heat dilfusion Second order central difference
au a'u dui cx
-=cx, -=,(u/+1-2ui+Ui-l)at ax dt Ax + I -2 I

cx
a' cx 5= ,

L=cx- =-(£-2+£-I)U/ I -2 I Ax
ax' Ax'

I -2 1cx
5=-(£-2+£-1)

Ax'

Shallow waler equation Cenlral scheme
au au du/ U/+I-Ui-1
-+A-=O -=-A
at ax dt 2 Ax

I v
Ih -A Ui-1

u= II 5=_(£-£-1) hi-I
v 2Ax

I v

iA =
I Vo h. I U= Ui = h /

g Vo
I V

!a U/+I
L=-A- hi+1

ax

+A -A
-0 -

5= 2Ax 2Ax
+A -A- 0-

2Ax 2Ax

each el~ment is a (2 x 2) matrix
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Table 8.1. (continued)

Discretization operator C of time
integrated scheme Matrix representation of C Amplification matrix

Euler method
a.1/ 0 G=I+~(e/.-2+e-'.)

13=-;- ~ (1-26) ~ G=I-26(I-cos~)
.1x C= ~ (1-26) ~ G=I-4~sin2~/2

a .11 ~ (I - 26) ~
ur+' = ur+-;-(u1+,-2ur+ u1-1) 0

4X

=[I+~(E-2+E-')]ur

C.I+~(E-2+E-1)

Trape2oidal (Cronck-Nicyolson)
method

.11 41 I '. Iur.'=ur+-sur+-sur.1 A- ~/2 (I-~) ~/2 I ~
( I. 2 -I. )2 2 - ~/2 (I -~) ~/2 + 2 e - + e

( .11 ) ( 41 ) , . G= 1-2 s ur+'= 1+2 S ur+' . . l-i(e/.-2+e-I.)

.11 .11 B= I -~/2(1+~) -~/2
IB=I--S,A=I+-S -~/2 (I+~) -~/2

2 2 . .

C=B-1'A C=B-1A

Euler method
A.1/ A 41". '" ." I. -I-U, =Uj --(u/+,-Uj-l) A.11 A41 G=I~-(e -e )
2.1x - 1 -- 2.1x

A.11 24X 24X G=

C=I--(E-E-1) A41 A41 1)0.11 ho.11
~ 2.1x C= - 1 -- I-l-sin~ -l-sin~

C= 24X 24X .1x .1x

1)0.11 -I ho41 -I A.11 A41 g.1I, Vo41,
I--(E-E ) --(E~E ) - 1 -- -l-sm~ I-l-sm~

2.1x 24X 24X 2.1x 4X .1x

g.111 1)041
---(E-E-1) I--(E-E-')

.1x 2 24X

Lo.-Friedrichs scheme
I ( A4 ) 1 ( A.1I )ur.'=(u7.,+u7-1)/2 1( A 41) 1 ( A.1 ) G=- 1-- e/-+- 1+- e-i.

A.11 - 1+- 0 - 1-- 2.1x 2 .1x

--(U1+I-u7-1) 2 4X 2 4X .11
2.1x C= G=cos~-l-Asin~

C= 1( A4 ) I ( A.1) 4X 1

( A .1
) 1 ( A 4) - 1+- 0 - 1-- G=

- 1-- E+- 1+- E-' 2 4X 2.1x .1 4
2 .1x 2 4X . cos~-~lsin~ -l-.!.hosin~

4X .1x

41 .1/
-l-gsin~ cos~-I)o-lsin~

4X .1x

(continued)
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;; Table 8.1. (continued)

Space discretization Matrix representation of S
Differential equation operator S (excluding boundary conditions)

Wa.e equation Central scheme 0
a'wa'w dui Ui.,-Ui-1 A A
--0'-=0 -=A -- 0-
aI' ax' dl 2 .1x 2 .1x 2 .1x
or A S=
au au S=-(E-E-') A A-=A- 2.1x -- 0 -
al ax 2.1x 2.1x

0
1 0

1U= Forward/backward scheme
W The two components 0, ware discretized

1 0 a 1 separately.
I IA = d A- Ao A.

a 0 ~=~(w/.,-wlJ S= A- Ao A.
a dl .1x A - Ao A.

L=A- da Wi ax -=-(0/-01-1)
dl .1x

1 0 alE-I)
IS= 0(I-E-1) 0 ~

1 00 110-0 1100
1 ~~; S = E- 1 + + E .-

:. -QO a 0 00
i'"

. A-E-I + Ao + A.E

with the initial boundary conditions, for t = 0,

w(x, 0) = f(x)

ow (8.2.]lb)
-ai (x,O) = g(x)

This wave equation is written as a system of first-order equations; for instance,

ou ow
-=0-
ot ox

(8.2. ]2)
ow ou
-=0-
ot ox

Defining

u=I:1 (8.2.]3)

we can write the system as

~ = A ~ (8.2.]4a)
ot ox
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Table 8.1. (continued)

Discretization operator C of time
integrated scheme Matrix representation of C Amplification matrix

-
Backward Euler .

Un+' U.+1 A 111;+1 - 0-1 1 I. I.
ur'=Ur+A A 111 -A 111 0- =I--(e -e- )211x - I - 211x

1 211x 211x A .A 111 C- = ~I
C-1zl--(E-E-1) A 111 -A 111 O-'=l-l-sin,p

211x - I - I1x

211x 211x

Forward Euler scheme-two slep!
semi-implicit

a 111 I I 1-re'."
1Ui'+I~Uin=-(w7+I-W/') C-CoC+ 0= -,.', ,

I1x C - C- Co C+ l-ye 1 --y
a 111 C- Co C+ - 2 . "'

/2,+1 n ( n+1 r+l) -y- asln",
Wi -Wi=- Vi -V-I

I1x

or,witha=al1l/l1x I I -a

ICo=
C= a 1-2a'

I 1 alE-I) I 1 0 0
I(I-E-1)a l+a'(I-E-1)(E-l) C-= -a a'

1 1 -a I 1 0 0 I 1 0 a
IC- + E-1 C -

-al-2a' -a a' +-Oa'

+ I~ :,1 E

with

A=I~ ~I (8.2.14b)

These operators are summarized in Table 8.1 for some representative schemes
and the operators Sand C are expressed as a function of the shift operator E
defined in Chapter 4. Note that the matrix representation of the operators S
and C of Table 8.1 do not contain the boundary points. This will be dealt with
in Chapter 10.

8.2+2 The general Von Neumann stability condition

When a single harmonic is applied to scheme (8.2.5) the operator C will act on
the space index i, since C can be considered as a polynomial in the
displacement operator E, as can be seen from Table 8.1. Hence we obtain,
inserting

Ujn = un eli,p (8.2.15)

into the homogeneous part of scheme (8.2.5),
eli,p + Un+ 1 = C(E) eli,p . un = G«f». Un . eli,p



296

and after division by eIiIP,

Vn+1 = G(cf». vn = [G(cf»]nvl (8.2.16)

with

G(cf» = C(eIIP) (8.2.17)

The matrix G(cf» is called the amplification matrix, and reduces to the
previously defined amplification factor when there is only one equation to be
discretized. Observe that G(cf» or G(k) can be considered as the discrete
Fourier symbol of the discretization operator C, and is obtained from C by
replacing Ej by eljlP (see Table 8.1 for several examples).

The stability condition (7.2.35) requires that the matrix [G(cf»] n remains

uniformly bounded for all values of cf>. The bound of a matrix G is defined by
the maximum value of the ratio of the two vector magnitudes

I G. ulII GII = Max I I (8.2.18) U~O u

where 1 u I is any vector norm. For instance, the L2 norm is defined by the
square root of the sum of the components squared
I u IL2 = (I ul12 + ... + I Up 12).1/2 if u is a vector with p components.

Since G is a (p x p) matrix with p eigenvalues AI, ..., Aj, ..., Ap obtained as
solutions of the polynomial

detl G- All =0 (8.2.19)

its spectral radius is defined by the modulus of the largest eigenvalue:

p(G) = Max I Aj I (8.2.20)
j; I,p

We have the following properties (see, for instance, Varga, 1962):

II GII ~ Mjax~=Mjaxl Ajl =p(G) (8.2.21)

where g; are the eigenvectors of G, and

IIGlln~IIGnll~pn(G) (8.2.22)

The Von Neumann necessary condition for stability can be stated as the
condition that the spectral radius of the amplification matrix satisfies
(Richtmyer and Morton, 1967)

p( G) ~ I + O(.:lt) (8.2.23)

for finite ~t and for all values of cf>, in the range (- 11",11"). This condition is less
severe than the previous one (equation (8.1.15», which corresponds to a
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condition

p( G) ~ 1 (8.2.24)

The possibility for the spectral radius to be slightly higher than one for
stability allows the treatment of problems where the exact solution grows
exponentially (for instance, equation (7.1.5), with a source term q propor-
tional to the temperature, q = bT, b > 0). However, in other cases condition
(8.2.23) allows numerical modes to grow exponentially in time for finite values
of dt. Therefore the practical, or strict, stability condition (8.2.24) is
recommended in order to prevent numerical modes growing faster than
physical modes solution of the differential equation. (We will return to this
important aspect in Chapter 10.) In this connection, when some eigenvalues
are equal to one they would generate a growth of the form dt(In-l), where m is
the multiplicity. Hence eigenvalues >..j = 1 should be simple.

Conditions (8.2.23) or (8.2.24) are also sufficient for stability if G is a
normal matrix, that is, if G commutes with its Hermitian conjugate. In this
case, equation (8.2.22) is valid with an equality sign in the L2-norm, that is,
II G IIL, = p( G) and II G211L, = p2( G). In particular, for a single equation this is
satisfied, and therefore condition (8.2.24) is sufficient and necessary for the
stability of two-level schemes of linear equations with constant coefficients
Other cases for which the above condition is also sufficient for stability can be
found in Richtmyer and Morton (1967).

Properties

(1) If G can be expressed as a polynomial of a matrix A, G = P(A), then the
spectral mapping theorem (Varga, 1962) states that

>"(G) = P(>"(A» (8.2.25)

where >"(A) are the eigenvalues of A. For example, if G is of the form

G = 1 - IaA + (3A2

then

>"(G) = 1-Ia>"(A)+(3>..2(A)

(2) If G can be expressed as a function of several commuting matrices the
above property remains valid. That is, if

G = P(A, B) with AB = BA (8.2.26)

the two matrices have the same set of eigenvectors, and

>"(G) = P(>"(A), >"(B» (8.2.27)

This property ceases to be valid when the matrices do not commute.
Unfortunately this is the case for the system of flow equations in two and three
dimensions. Therefore additional conjectures have to be introduced in order to
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derive stability conditions for schemes applied to the linearized flow equations
in multi-dimensions. More details will be found in Volume 2 when dealing with
the discretization of Euler equations.

Note that this condition of strict stability is called zero stability by Lambert
(1973) when applied to the discretization of initial value problems in systems of
ordinary differential equations (see also Chapter II). f

Example 8.2.1 Shallow-water equations

Referring to Table 8.1 we deduce readily the amplification matrix for the two
schemes considered. The steps can easily be followed and we leave it to the
reader to reproduce this table as an exercise.

Euler method: For the Euler method in time the amplification factor is

1 I voAt '.1. h At I . .I.
- - sm '/' - 0 - sm '/'

Ax Ax
JG = (E8.2.1) )

At I ..1. 1 I voAt . .I.-g- sm,/, - -sm,/,
Ax Ax

The stability condition (8.2.24) requires a knowledge of the eigenvalues of G,
and these are obtained from

[>- - (1 - Iuosin It»] 2 + u2sin21t> = 0 (E8.2,2)

where

Uo = ~ (E8.2.3)
Ax

u = (gho) 1/2 ~ (E8.2.4)
Ax

Hence the two eigenvalues are

>-:t = 1 - I(uo :t u)sin It> (E8.2.5)

and the spectral radius is given by(At)2 p(G) = I >-+ I = 1 + ~ (vo + KiiiJr sin21t> ~ 1 (E8.2.6)

The scheme is therefore unstable, as might be expected from the previous
analysis of the central, Euler scheme for the convection equation.

Lax-Friedrichs scheme: This scheme was introduced by Lax (1954) as a way
of stabilizing the unstable, forward in time, central scheme of the previous
example. It consists of replacing u;n in the right-hand side by the average value
(u7+ I + u7-1 )/2, maintaining the scheme as first order in time and space. It is
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f

n+1

n

n-1

j-1 i i +1

Figure 8.2.1 Lax-Friedrichs scheme for convection equa-
tions

schematically represented in Figure 8.2.1:

u;n+l = i(U7+1 + U7-1) - ~ A(U7+1 - U7-1) (E8.2.7)

The reader can deduce the amplification matrix following the steps of Table

8.1, obtaining

cos <t> - uoI sin <t> - I ~ ho sin <t>

~x
G = (E8.2.8)

- I ~ g sin <t> cos <t> - uoI sin <t>

~x

The eigenvalues A of G are given by

(>" - cas cf> + uoI sin cf»2 + u2sin2cf> = 0

or

A:t = cos <t> - I(uo :t u)sin <t> (E8.2.9)

The spectral radius is given by
p(G) = I A+ 1= [COS2<t> + (uo + U)2 sin2<t>J 1/2 (E8.2.10)

The stability condition p( G) ~ 1 will be satisfied if (for vo > 0)

(uo + u) ~ 1

or

r7::-L:-'\ ~ t
(vo+,,(gho»-~1 (E8.2.11)

~x

This is the CFL condition for the wave speed (vo + J[iii;;j), which is the largest
eigenvalue of A.
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Example 8.2.2 Second-order wave equation (a2wlat2) - a2(a2wlax2) = 0

The forward-backward scheme, with semi-implicit time integration, of Table
8.1 :

n+ 1 n oAt ( n n ) Vj -Vi =~ Wj+l-Wj /'

(E8.2.12)
Wjn+l - Win = ~ (Vjn+l - v7!?)

is equivalent to the three-level, centred scheme for the second-order wave
equation, that is, to the scheme

Wjn+l - 2wjn + Wjn-l = u2(w7+( - 2wjn + W7-1) (E8.2.13)

where u = 0 Atl Ax (see also Problems 8.3 and 8.4). The amplification matrix is
obtained from Table 8.1 as

I 1 I el~ 12
1G= I -1~/2 "( 2 (E8.2.14)

"(e 1-"(

where

"( = 2u sin 1/>/2 (E8.2.15)

The eigenvalues of G are obtained from
(1 - >")(1 - "(2 - >") + "(2 = 0 J

leading to the two solutions

>":t = ~ [(2 - "(2) :t I"(J(4 - "(2)] (E8.2.16)

For "(2 > 4, that is, for I u sin 1/>/21 > 1 or I ul > 1, the spectral radius

p(G) = I >..+ I > 1

and the scheme is unstable. On the other hand, when "(2 ~ 4, that is, for

I ul ~ 1 (E8.2.17)
p( G) = I >..+ I = 1

the scheme is stable, although only marginally, since the norm of G is equal to
one.

For negative values of 02, that is, for negative values of U2, the wave
equation becomes elliptic:

a2w 2 a2wa"f2 + 1 0 I aX2 = 0 (E8.2.18)

and the scheme

(W7++(1 - 2 Win + W7--11) + 1(121 (w7+ I - 2 Win + w7+ 1) = 0 (E8.2.19)
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Figure 8.2.2 Unstable resolution scheme for Laplace
equation

is unstable. Indeed, when a2 is negative, the positive eigenvalue A+ becomes

A+ = 1 + 21 uI2sin2ct>/2 + 21 ul sin ct>/2J(1 + 1 uI2sin2ct>/2) ~ 1 (E8.2.20)

This shows that an elliptic problem cannot be treated numerically as an initial
value problem. This is not surprising, since it is known that the Cauchy
or initial value problem is not well posed for an elliptic equation (see, for
instance, Courant and Hilbert, 1962, Volume II).

Observe that the above scheme, with 1 a21 = 1, is the five-point difference
operator for the Laplace equation, in the space (x, f). This scheme, as it
stands, can be solved in a stable way for the associated boundary value
problem, say on a rectangle 0 ~ x ~ L, 0 ~ t ~ T, with any of the methods to
be described in Chapter 12.

What the above results show is that the numerical solution of the elliptic
problem cannot be obtained by a propagation from the points indicated by a
circle in Figure 8.2.2 towards the point (i, n + 1). Such an algorithm is
basically unstable. A resolution method for elliptic equations based on this
marching scheme has nevertheless been developed by Roache (1971) and is
called the error vector propagation method (EVP). This is based on a
computation of the error generated in the marching procedure from t = 0 to
t = T and a comparison with the imposed boundary condition on t = T.
However, this method cannot be stabilized when the number of grid points in
the marching direction increases (McAveney and Leslie, 1972). The reader will
find a recent account of this approach in the monograph edited by Book
(1981), chapter 7 by Madela and McDonald.

8.3 THE SPECTRAL ANALYSIS OF NUMERICAL ERRORS

The amplification matrix G allows, next to an assessment of stability, an
evaluation of the frequency distribution of the discretization errors generated
by the numerical scheme. Definition (8.2.16) of the amplification matrix
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defines the numerical representation of the time evolution of the solution, and
the amplitude vn of the harmonic corresponding to the wavenumber k can be
written as

vn=Oe-/"'/"=Oe-/",.n~/ (8.3.1)

where", = ",(k) is a complex function of the rea1 number k, representing the

numerical dispersion relation. The function O(k) is obtained from the Fourier
decomposition of the initial solution, since for u(x, 0) = f(x) at t = 0 we have,
assuming that the initial solution is represented exactly in the numerical
scheme, with the exception of round-off errors:

O(k) = -21 rL f(x) e-/kx dx (8.3.2)
L J-L

Actually, this defines the harmonic k of the solution Ujn following equation
(8.2.15) as l-'

oJ \'". ~ ~(k\e.(k x -(u ) (Ujn)k = O(k) e-/"'(n~/) e/k(j~x) (8.3.3)

and is a discrete formulation of the single-wave representation applied in. ; equation (3.4.13). In this latter form the exact solution is represented as

v e -! W Ttb~ eI. k(cAx) Ujn = 0 e-/iiJ!/ :/k(j~X) (8.3.4)

As seen in Chapter 3, the exact dispersion relation c;J = c;J(k) can be obtained
from the differential system as a solution of the eigenvalue equation (3.4.20),
while the approximate relation between", and k, obtained from the amplifica-
tion matrix G, is the numerical dispersion relation of the scheme.

From equation (8.2.16) we have

vn = Gn . VO = Gn . 0 = e-/"'n~/ . 0 (8.3.5)

and G can be written as
G = e-/"'~/ (8.3.6) ,

A comparison with the exact amplification function

G=e-/';;~/ (8.3.7)

will allow us to investigate the nature and frequency spectrum of the numerical
errors. Since", is a complex function the amplification matrix can be separated
into an amplitude I G I and a phase «1>. With

",=~+I7J (8.3.8)

we have
G=e+"~/'e-/~~/I I -/41 (8.3.9a)= G e

where
1 G I- ,,~/- e (8.3.9b)

«I> = ~At
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A similar decomposition, performed for the txact solution

<J= ~+ Iii (8.3.10)

following equation (3.4.24), leads to

IGI=eil.11 and <f?=f~t (8.3.11)

The error in amplitude, called the diffusion or dissipation error, is defined
by the ratio of the computed amplitude to the exact amplitude:

101£D = ~ (8.3.12)
e"

The error on the phase of the solution, the dispersion error, can be defined as
the difference

eq,=cI>-<f? (8.3.13)

suitable for pure parabolic problems, where <f? = 0, in the absence of convec-
tive terms. For convection-dominated problems the definition

eq, = cI>/<f? (8.3.14)

is better adapted. In particular, for hyperbolic problems such as the scalar
convection equation (7.2.1) the exact solution is a single wave propagating
with the velocity a. Hence

~ =ka~t (8.3.15)

8.3.1 Error analysis for parabolic problems

Let us consider as an example the error analysis for the explicit central
discretization of the heat diffusion equation (8.2.7). Consider the explicit
scheme, with space-centred differences

n+l n a~t ( n 2 n n ) (8 3 16)Uj = Uj +~ Ui+l- Uj + Uj-l . .
~x

the amplification factor is 9btained from Table 8.1 as

0 = 1 - 4fJ sin2<1>/2 (8.3.17)

with

a~tfJ = ~ (8.3.18)
~x

The stability condition is

11 - 4fJ sin 2<1>/21 ~ 1

which is satisfied for

1 ~ (1 - 4fJ sin2<1>/2) ~ -1

I
!
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i

that is, I

0 ~ {3 ~ 1/2 (8.3.19)

Hence the above scheme is stable for

aAt I
a ~ 0 and (3 = --r ~ _2 (8.3.20) Ax

The first condition expresses the stability of the physical problem, since for
a < 0 the analytical solution is exponentially increasing with time.

The exact solution corresponding to a wavenumber k is obtained by
searching a solution of the type

ii = 0 e-IcJt elkx (8.3.21)

Inserting into equation (8.2.7) we have

<.3(k) = - lak2 = - 1{3 . cf> 21 At (8.3.22)

The exact solution of this parabolic problem is associated with a purely
imaginary eigenvalue <.3, that is, with an exponential decay in time of the initial
amplitude if a > 0:

ii = 0 elkx e-ak2t (8.3.23)

Hence the error in the amplitude is measured by the ratio

= I - 4{3 sin 2cf>/2
(8 3 24)£D A-~.t/>/4~ . .

e

Expanding in powers of cf> we obtain l

1-{3cf>2+{3cf>4/12+... {32cf>4 {3cf>4
£D=I":'{3cf>2+({32cf>4/2)+...~ I-~+U+...

2k 4A 2 k 4
~ I-~+~ AtAx2 (8.3.25)

For the low frequencies (cf> ~ 0) the error in amplitude remains small; while at
high frequencies (cf> ~ 71") the error could become unacceptably high, partic-
ularly for the larger values of {3 ~ 1/2. However, for (3 = 1/6 the two first terms
of the expansion cancel, and the error is minimized, becoming of higher order,
namely of the order 0(At2, AX4) for constant values of (3 = aAtlAx2 andproportional to k6. '

Since G is real there is no error in phase, that is, there is no dispersive error
for this scheme. It is seen that the error is proportional to the fourth and sixth
power of the wavenumber, indicating that the high frequencies are computed
with large errors. However, the amplitudes of these high frequencies are
strongly damped since they are equal to e-ak2t. Therefore this will generally
not greatly affect the overall accuracy, with the exception of situations where
the initial solution u(x,O) contains a large number of high-frequency com-
ponents (see also Problem 8.5). '
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8.3.2 Error analysis for hyperbolic problems

A hyperbolic problem such as the convection equation Ut + aux = 0 represents
a wave travelling at constant speed without damping, that is, with constant
amplitude. The exact solution for a wave of the form u = e-IcJt elkx is given by

u = e-lkat elkx (8.3.26)
I ' Hence the exact amplification function is defined by the real value of (;j:

(;j = ka = ~
ij = 0 (8.3.27)

The error in amplitude will be given by the modulus of the amplification factor

tD = I G I (8.3.28)

and the error in phase (the dispersive error) is defined by

cI> cI>
£(/1=-=- (8.3.29)ka ~t ucj>

An initial sinusoidal wave will be damped in the numerical simulation by a
factor I G I per time step and its propagation speed will be modified by the
dispertion error t.p. When this ratio is larger than one (t.p > 1) the phase error
is a leading error and the numerical computed wave speed, a, is larger than the
exact speed, since

a = cI>!(k~t) = acl>!(ucj» (8.3.30)

and

t.p=a!a (8.3.31)

This means that the computed waves appear to travel faster than the physical
waves. On the other hand, when £(/I < 1 the phase error is said to be a lagging
error, and the computed waves travel at a lower velocity than the physical
ones.

Example 8.3.1 Lax-Friedrichs scheme for the convection equation

Applying the Lax-Friedrichs scheme to the single convection equation (see
Table 8.1) leads to

n+ 1 1( ft n ) U ( n n
) (E8Ui =:2 Ui+l+Ui-l -:2 Ui+l-Ui-l .3.1)

The amplification factor is obtained by inserting a single harmonic un elki.1x:

G = cos cj> - lu sin cj> (E8.3.2)

leading to the CFL stability condition I u I ~ 1.
The accuracy of the scheme is obtained from the modulus and phase of the



~~ ~~I ~~ ,~ ""c, " (
::Plification factor: -

101 = 1 cos21/> + a2sin21/> I 1/2

I (£8.3.3)cI> = tan- (a tan 1/»

This defines the dissipation error

eD = 1 01 = 1 cos21/> + a2sin21/> 11/2 (£8.3.4)

and the dispersion error

e~ = ~ = tan-I (a tan 1/» (£8.3.5)
al/> al/>

As can be seen, the choice a = I gives the exact solution, but lower values of a
will generate amplitude and phase errors.

Two equivalent graphical representations for the amplification factor are
applied in practice. Cartesian representation of I 0 I and e~ as a function of the
parameter I/> = k ~x, ranging from 0 to 'If or a polar representation for I 0 I and

Lax - Friedrich scheme

10

IGI
0.8

0.6

0.4

0.2 CFL=0.25

0.0 0 45 90 135 180 "

:,:~'~~ Phase angle

Lax- Friedrichs scheme
6

~c/I = .

5

4

3

2

1;;
1

0 45 90 135 180
Phase angle

Figure 8.3.1 Amplitude and phase errors for Lax-Friedrichs
scheme applied 10 the convection equation
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£,p, where ~ is represented as the polar angle. Figure 8.3.1 shows the Cartesian
representation of I G I and £.p for the Lax-Friedrichs scheme. For small values
of U the waves are strongly damped, indicating that this scheme is generating a
strong numerical dissipation. The phase error is everywhere larger or equal to
one, showing a leading phase error, particularly for ~ = 11", £.p = Ifu (see also
Problem 8.6).

Example 8.3.2 Explicit upwind scheme (7.2.8)

The amplification factor for this scheme is defined by equation (8.1.19). Its
modulus is given by

I G 1= [(1 - u+ U COS ~)2 + u2sin2~] 1/2 = [1- 4u(1 - u)sin2~f2] 1/2

(E8.3.6)

First order upwind scheme
90

180 0

270
(a) Diffusion error

First order upwind scheme

90

CFL=O.

......
.180 0......

270
( b) Dispersion error

Figure 8.3.2 Polar representation of amplitude and phase
errors for the upwind scheme applied to the convection

equation
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and the phase error is I

£~ = tan-1[(a sin <1»/(1 - a + a cos <1»] (E8.3.7)

a<l>

A polar representation is shown in Figure 8.3.2.
For a = 0.5 the phase error £~ = 1, but for a < 0.5, £~ < 1, indicating a

lagging error, while the numerical speed of propagation becomes larger than
the physical speed, £~ > 1 for Courant numbers a > 0.5 (see also Problem

8.7).

Example 8.3.3 The Lax- Wendroff scheme for the convection equation

The schemes of the two previous examples are of first-order accuracy, which
is generally insufficient for practical purposes. The first second-order scheme
for the convection equation with two time levels is due to Lax and Wendroff
(1960). The original derivation of Lax and Wendroff was based on a Taylor
expansion in time up to the third order such to achieve second-order accuracy.
In the development

u;n+l = u;n + ~t(Ut); + ~ (Utt); + 0(~t3) (E8.3.8)

the second derivative is replaced by

Utt = a2uxx (E8.3.9)

leading to

2~2ur+1 = u;n - a ~t(ux); + E--!- (uxx); + 0(~t3) (E8.3.10)
2

When this is discretized centrally in mesh point i we obtain .
2

U;n+l = U;n -~ (U7+1 - u7-.I) +~ (U7+1 - 2u;n + U7-1) (E.8.3.11)

As can be seen, the third term, which stabilizes the instability generated by the
first two terms, is the discretization of an additional dissipative term of the

form (a2 ~t/2)uxx.
The amplification matrix from the Yon Neumann method is

G = 1 - I a sin <I> - a2(1 - cos <1» (E.8.3.12)

In the complex G-plane this represents an ellipse centred on the real axis at the
abscissa (1 - a2) and having a semi-axis length of a2 along the real axis and a
along the vertical axis. Hence this ellipse will always be contained in the unit
circle if the CFL condition is satisfied (Figure 8.3.3). For a = 1 the ellipse

becomes identical to the unit circle. The stability condition is therefore

lal ~ 1 (E8.3.13)

~
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Figure 8.3.3 Polar representation of the amplification factor for Lax-WendrotT
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The dissipation error is given by
II G 12 = 1 - 4u2(1 - u2)sin4ct1/2 (E8.3.14) i

and the phase error by

e~ = tan-1[(u sin ctI)f.(1 - 2u2sin2ct1/2)] (E8.3.15) I
uctl I

To the lowest order we have

e~ ~ 1 - !(1 - U2)ctl2 + 0(ctl4) (E8.3.16)

This relative phase error is mostly lower than one, indicating a dominating
lagging phase error. On the high-frequency end the phase angle cI> goes to zero
if u 2 < 1/2 and tends to 11" if u 2 > 1/2. These diffusion and dispersion errors

are represented in Figure 8.3.4.
The phase error is the largest at the high frequencies, hence this will tend to

accumulate high-frequency errors (for instance, those generated at a moving

Lax-WendrotT scheme
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Figure 8.3.4 Dispersion and diffusion errors for Lax-WendrotT scheme
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discontinuity). When the linear equation Ut + aux = 0 is solved for a propaga-
ting discontinuity, oscillations will appear being the shock as can be seen from
Figure 8.3.6 (to be discussed in Section 8.3.4, which compares the results
computed with four different schemes).

8.3.3 Extension to three-level schemes

The properties of the amplification factor in the previous sections were based
on two-level schemes, allowing a straightforward definition of G. However,
many schemes can be defined which involve more than two time levels,
particularly when the time derivatives are discretized with central difference
formulas. A general form, generalizing equations (8.2.6), would be

Un+1 + boUn + blUn-1 = CUn + Q (8.3.32)

For instance, for the convection equation Ut + aux = 0 and a central difference
in space we can define a scheme

U!'+I-U!'-I a, 2At '= - UX (u7+1 - u7-1) (8.3.33)

which is second-order accurate in space and time. This scheme is known as the
leapfrog scheme, because of the particular structure of its computational
molecule (Figure 8.3.5) where the nodal value Uin does not contribute to the
computation of uf + I.

This scheme treats three levels simultaneously and, in order to start the
calculation, two time levels n = 0 and n = I have to be known. In practical

f computations this can be obtained by applying another, two-level, scheme for
the first time step. The method applied for the determination of the ampli-
fication matrix, consists of replacing the multi-level scheme by a two-step

n+1

n

n-1

j-1 i i +1
Figure 8.3.5 Computational molecule for the leapfrog

scheme
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system through the introduction of a new variable Z:

Z-" Z~ Un-I (8.3.34)

Equation (7.3.32) then ~comes

Un+1 = - blZn + (C- bo)Un + Q
Zn+1 = Un (8.3.35)

and by defining a new variable

w= I ~I (8.3.36)

the system is rewritten as

Wn+1 = twn + Q (8.3.37)

and analysed as in the previous cases.
Alternatively, the method of introducing an additional variable is fully

equivalent to a more direct approach, whereby we write for the amplitudes un
of a single harmonic

Un-I = 0-1. un (8.3.38)

and

un+l = O. un (8.3.39)

When this is introduced into the three-level scheme a quadratic equation for 0
is obtained.

Example 8.3.4 The leapfrog scheme for the convection equation

Scheme (8.3.33) will be written with the new variable Z as follows:
j n+1 n ( n n )Ui =Zi-UUi+i-Ui-1

n+1 n (E8.3.17)Zi = Ui

and as a function of the vector W we obtain the system
Win + I = twin (E8.3.18)

With the introduction of the shift operator E the operator t becomes

t= I-U(E;E-I) ~I (E8.3.19)

The amplification matrix becomes

0 = 1- u(elIP1- e-1IP) ~ I (E8.3.20)

The eigenvalues of 0 are readily obtained as

}.,:t = - fu sin <t> ~ j(l - u2sin2<t» (E8.3.21)
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and are to be considered as the amplification factors of the three-level scheme.
Indeed, applying the second approach (8.3.38) and (8.3.39) to equation
(8.3.33), for a harmonic <p = k Ax, leads to

(G - 11 G) = - u(eI.p - e-I.p) (E8.3.22)

with the two solutions

G = -]u sin <p :t J(1 - uIsin 2<p) (E8.3.23)

If u > 1 the scheme is unstable, since the term under the square root can
become negative, and for these values G is purely imaginary and in magnitude
larger than one. This is best seen fQr the particular value <p = 11"12.

For I u I ~ 1 the scheme is neutrally stable, since

I G I = 1 for I u I ~ 1 (E8.3.24)

The phase error is given by

t.p = :ttan -l[U sin <pIJ(1 - ~2sin2<p)] = :t sin -l(U sin <p) (E8.3.25)

u<p u<p

Hence the leapfrog scheme should give accurate results when the function u
has a smooth variation, since the amplitudes are correctly modelled, so much
that for low frequencies the phase error is close to one since t.p = :t 1 for <p -+ o.

.I. However, high-frequency errors tend to remain stationary since t.p -+ 0 for
I

<I> -t 11" and, since they are undamped, they can accumulate and destroy the
accuracy of the numerical solution. This is clearly seen in Figure 8.3.6.

Example 8.3.5 Du Fort and Frankel scheme for the heat-conduction
equation

I The scheme of Du Fort and Frankel (1953) is obtained from the unstable
f 'leapfrog' explicit scheme applied to the diffusion equation (8.2.7) (see

Problem 8.9):

ur+1 - Ujn-l = 2(~) (U7+1 - 2ujn + U7-1) (E8.3.26)

by averaging out the term Ujn in time as (Ujn+ 1 + Ujn-l )/2. This leads to the
., scheme (3 = a Atl Ax2:

n + 1 n - 1 2 a At ( n n + 1 n - 1 n ) (E8 3 27 )Uj - Uj = --y Uj+l - Uj - Uj + Uj-l .. a
Ax

or
ujn+l(1 + 2(3) = ujn-l(1 - 2(3) + 2(3(u7+1 + U7-1) (E8.3.27b)

The amplification matrix is obtained from the system, with Zn = Un-l~
Wjn+ 1 = C. wI' (E8.3.28)
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where

2,8(£+£-') ~
C = 1 + 2,8 1 + 2,8 (E8.3.29)

1 0

Hence

4,8 cos c/> ~
G = 1 + 2,8 1 + 2,8 (E8.3.30)

1 0

and the two eigenvalues, representing the amplification factors of the scheme,
are given by

A.1: =2,8 cos c/> :tlJ112~4,82Sin2c/» (E8.3.31)

A plot of the eigenvalues A.1: for different values of,8 as a function ofc/>, or a
direct calculation of the condition I A.1: I < 1, shows that the scheme of Du
Fort and Frankel is unconditionally stable for ,8 > O. This is very unusual for
an explicit scheme. However, as will be seen in Chapter 10, this scheme is not
always consistent.

Note that, for three-level schemes, there are two amplification factors,
although the exact solution has a single value of the amplification. For the
leapfrog scheme applied to the wave equation it can be observed that one of
the two solutions has a negative phase error, that is, it propagates in the wrong
direction. Hence the solution with the + sign corresponds to the physical
solution, while the other is a spurious solution generated by the scheme. More
insight into this aspect will appear from the stability analysis of Chapter 10
dealing with the matrix method.

I8.3.4 A comparison of different schemes for the linear convection equation

It is instructive to compare the results obtained with the four schemes
described in Examples 8.3.1-8.3.4 when applied to the linear convection,
equation. The effects of the diffusion and dispersion errors can be dem-
onstrated, as a function of frequency, with the following two test cases, a
propagating discontinuity and a sinusoidal wave packet.

The former is typical of a signal with a high-frequency content, since the
Fourier decomposition of a discontinuity contains essentially high-order
harmonics. On the other hand, the sinusoidal wave packet can be chosen to
correspond to a selected value of the wavenumber and hence to a fixed value of
the phase angle c/> for a given mesh size ~x.

Figure 8.3.6 compares the computed results for the propogating dis-
continuity at a Courant number of 0.8 after 50 time steps on a mesh size

,



~ 315

(a) First order upwind scheme (b) Lax-Friedrichs scheme

3 CFL=.8 50 time steps 3 CFL=.8 50 time steps

- U exact - U exact
2 . U calculated 2 . U calculated..
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.-
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(c) Lax- Wendroff scheme (d) Leap-frog scheme

3 CFL=.8 50 time steps 3 CFL=.8 50 time steps

--... - U exact A... - U exact"9 ..2 .. U calculated 2 . U calculated.. .
~.

.
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0 0

2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 4.0

x x

Figure 8.3.6 Comparison of four schemes on the linear convection equation for a propaga-

ting discontinuity

Ax = 0.05. The strong dissipation of the first-order upwind and Lax- Fried-
richs schemes is clearly seen from the way the discontinuity is smoothed out.
Observe also the 'double' solution obtained with the Lax-Friedrichs scheme,
illustrating the odd-even decoupling discussed in Section 4.4 (Figure 4.4.4).
Looking at Figure 8.2.1 it can be seen that ul' + I does not depend on Uin but on

the neighbouring points U 7- t and U 7+ t. These points also influence the
I . n+l n+l h ' l n .11 ' fl . d d I h .so utlons Ui+2, Ui+4, ..., W Ie Ui WI In uence In epen ent y t e pOints

u7:1, U7:3t, ... The solutions obtained at the even- and odd-numbered
points can therefore differ by a small constant without preventing convergence
and such a difference appears on the solution shown in Figure 8.3.6(b).

The second-order Lax - Wendroff and leapfrog schemes generate oscillations
due to the dominating high-frequency dispersion errors, which are mostly
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(a )First order upwind scheme ( b) Lax- Friedrichs scheme
CFL =08 80time steps CFL= 08 80time steps
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(c) Lax- Wendroff scheme ( d ) Leap- frog scheme
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Figure 8.3.7 Comparison of four schemes on the linear convection equation
for a propagating wave packet for q, = '/f/lO

lagging. The leapfrog scheme, which has no damping, generates stronger
high-frequency oscillations compared with the Lax-Wendroff scheme, whose
amplification factor is lower than one at the phase angle cf> = 11", where
G(1I") = 1 - 2(12.

The test cases of the moving wave packet allow us to experiment with the
freqpency dependence of the schemes at the low end of the spectrum. Figure
8.3.7 compares the four schemes for a phase angle cf> equal to 11"/10 at a
Courant number of 0.8 after 80 time steps on a mesh Ax = 0.025. The strong
diffusion error of the first-order schemes is clearly seen, showing that they are
useless for time-dependent propagation problems of this kind. The second-
order schemes give accurate results at these low frequencies, the oscillations at
the beginning of the wave packet being created by the high-frequency errors
generated by the slope discontinuity of the solution at this point. Hence a
behaviour similar to the propagating discontinuity of the previous figure
appears.

The same computations performed at a higher frequency corresponding to a
phase angle of cf> = 11"/5, are shown in Figure 8.3.8. The first-order schemes are
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(a) First order upwind scheme ( b) Lax-Friedrichs scheme
CFL = 08 80 time steps CFL =08 80time steps
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(c )Lax- Wendroff scheme (d) Leap-frog scheme
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Figure 8.3.8 Comparison of four schemes on the linear convection equation
for a propagating wave packet for <I> = 11"/5

more severely damped while the increasing, lagging dispersion errors of the
two- second-order schemes can be seen by the phase shift of the computed
solutions. The Lax-Wendroff scheme has a diffusion error which increases
with frequency, as can be seen in Figure 8.3.4, and an amplitude error
develops. The leapfrog scheme has a better behaviour with regard to the
amplitude of the wave, as can be seen from the amplitudes of the second and
third periods, although the first period of the wave is spoiled by the high-
frequency oscillations generated at the initial slope discontinuity.

8.3.5 The numerical group velocity

The group velocity of a wave packet, containing more than one frequency, has
been defined in Chapter 3 (equation (3.4.35» and is also the velocity at which
the energy of the wave is travelling. For a one-dimensional wave we have

vo(k) = ~ (8.3.40)
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defining the group velocity as the derivative of the time frequency with respect
to the wavenumber *. For a linear wave it is seen from equation (8.3.27) that
the group velocity is equal to the phase speed o.

By writing the amplification factor as equation (8.3.9) the numerical
dispersion relation", = ",(k) = ~ + 117 can be defined, and the numerical group

velocity

d~ (d"')vG(k) = dk= Re\dk (8.3.41)

will represent the travelling speed of wave packets centred around the
wavenumber k. Since the errors generated by a numerical scheme generally
contain a variety of frequencies it is more likely that they will travel at the
numerical group velocity instead of the numerical phase speed d, defined by
equation (8.3.30).

For the leapfrog scheme (equation (8.3.33» the introduction of equation
(8.3.6) into equation (£8.3.23) leads to the numerical dispersion relation:

sin ",11.1 = u sin <I> (8.3.42)

from which we derive

cos <I> cos <I>

VG= 0 A= 0 (1 2. 2 ) 1/2 (8.3.43)cos ",~I - U SIn <I>

For low frequencies the group velocity is close to the phase speed 0, but forthe high
frequencies «I> := 1/") the group velocity is close to - 0, indicating that the high
wavenumber packets will travel in the opposite direction to the wave phase
speed o. This can be observed in Figure 8.5.2, where it is seen that the
high-frequency errors, generated upstream of the stationary shock, travel in
the upstream direction.

An instructive example is provided by the exponential wave packet

u(x, 1 = 0) = exp( - ax2)sin 21/"kwx (8.3.44)

1
Ini1ial wave Wave packet at' = 2
packet E fxact position 0

wave packetat' = 2

/
0

box = 1/80

400 time
CFL=0.4 steps

-1
0 1 2 3 4

Figure 8.3.9 Solution of the linear propagation of an exponential wave packet by
the leapfrog scheme, after 400 time steps, for t/> = 'K/4
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shown in Figure 8.3.9 for a phase angle ct> = k~x = 71"/4, corresponding to a
wavelength of >.. = 8~x. The solution of the linear wave equation UI + aux = 0
with the leapfrog scheme is shown in the same figure after 400 time steps for a
Courant number of 0.4 and ~x = 1/80 for a = 1. If the initial solution is
centred at x = 1 the exact solution should be located around x = 3 at time
t = 400~t = 2. However, the numerical solution is seen to have travelled only
to the point x ~ 2.475, which indicates a propagating speed of 0.7375 instead
of the phase speed a = 1. This corresponds exactly to the computed group
velocity from equation (8.3.43), which gives a value of Va = 0.7372 at ct> = 71"/4.

These properties of the group velocity should be kept in mind when
analysing numerical data associated with high-frequency solutions. More
details on the applications of the concept of group velocity to the analysis of
numerical schemes can be found in Vichnevetsky and Bowles (1982), Trefethen
(1982) and Cathers and O'Connor (1985). The last reference presents a
detailed, comparative analysis of the group velocity properties of various finite
element and finite difference schemes applied to the one-dimensional, linear
convection equation. Trefethen (1983, 1984) has derived some important
relations between group velocity and the stability of numerical boundary
conditions of hyperbolic problems. His results can be expressed by the
condition that the numerical boundary treatment should not allow group
velocities at these boundaries to transport energy into the computational
domain. We refer the reader to the original references for more details and
derivations.

8.4 MULTI-DIMENSIONAL VON NEUMANN ANALYSIS

For problems in more than one space dimension the Fourier decomposition at
the basis of the Von Neumann stability analysis can be performed separately in
each space direction through the introduction of a wavenumber vector if.. For
instance, the solution u(x, t) will be represented as a superposition of
harmonics of the form

u(x, t) - (} e-I"'1 eliio x (8.4.1)

where the scalar product if.. x is defined as

if.. x = xxx + XyY + XxZ (8.4.2)

In discretized form, with mesh point indexes i, j, k, we have

(if.. X)i,j,k = i(xx~x) + j(Xy~Y) + k(xz~z) = i. ct>x + j . ct>y + k. ct>z

(8.4.3)
and the three parameters ct>x, ct>y, ct>z range from - 71" to 71" is each of the three
space directions. The further determination of the amplification matrix
remains unchanged from the one-dimensional case.
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8.4.1 Parabolic equations

Let us consider as an example the two-dimensional heat diffusion equation
(7.1.15). The obvious generalization of the one-dimensional explicit central
scheme (8.3.16) for the parabolic equation, written as

au (a2u a2u)at = a axz + a? (8.4.4)

is
[ n 2 n + n n 2 n n

]uij+l-uij=a~t UI+l.j-~~~ UI-l.j+UI.j+l-~~~+UI.j-l (8.4.5)

A discrete Fourier decomposition is defined by
uij = 2:; un e/xxi L\x e/x..j L\y (8.4.6)

xx. x..

where the range of Xx and Xy is defined sepatately for each direction, as in the
one-dimensional case. Inserting a single component into the discretized
scheme, the amplification matrix 0 is still defined, as in the one-dimensional
case, as

Un+l = Gun (8.4.7)

We obtain, from equation (8.4.5), after division by un ei/l/>x ej/I/>,.,

0-1 =fJ[(e/l/>x+ e-/l/>x-2) + (~)2(e/I/>I'+e-/I/>"-2)]

(8.4.8)
0-1 = -4fJ(sin2cf>x/2+ (~)2 sin2cf>y/2)

The strict stability condition becomes

11 - 4fJ( sin2cf>x/2 + (~)2 sin2cf>y/2) I ~ 1 (8.4.9)

which leads to

a> 0 (8.4.10)

and

fJ(1 + (~)) ~~

or
( 1 1 ) 1

a ":;:i:X2 + A7 ~t ~ :2 (8.4.11)

This stability condition is necessary and sufficient and is analogous to
condition (8.3.20) but puts a more severe requirement on the time step. For
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instance, if ~x = ~y the time step is reduced by a factor of two, compared
with the one-dimensional case:

~X2
~t ~ - (8.4.12)

4a

8.4.2 The two-dimensional convection equation

Consider the system of p equations

o~+ A iJ-Y + B!!!! = 0 (8.4.13)
ot ox oy

where A and Bare (p x p) constant matrices, with the property AB = BA.
Applying a Lax-Friedrichs scheme to this system leads to

Un+l 1 (U n Un Un Un ) ~t A(U n Un )ij =4 i,j+l+ i+l,j+ i-I,j+ i,j-1 -lli i+I,j- i-I,j

-~ B(U~j+1 - U~j-l) (8.4.14)

With the decomposition (8.4.6) for a single harmonic the amplification matrix
becomes

O=! (cos t/>x+cos t/>y)-~ A [sin t/>x-~ B [sin t/>y (8.4.15)
2 ~x ~Y

The spectral radius p can be obtained from equation (8.2.22) and the fact that
G is a normal matrix. Hence with

1101112 = p(O*O) = p2(0)

p(O*O) = l(cos t/>x + cos t/>y)2 + (ux sin t/>x + Uy sin t/>y)2 (8.4.16)

where

~t ~tUx = - p(A) Uy =- p(B) (8.4.17)
~x ~Y

A necessary condition is obtained by looking at the most unfavourable
situation, namely t/>x and t/>y independent but small. Expanding the sine and
cosine functions up to higher order.

110111,= 1- [G-u;)t/>;+G-u;)t/>;-2uxuyt/>xt/>y] +O(t/>~,t/>j) (8.4.18)

The quadratic form in t/>x, t/>y between parentheses has to be positive for
stability. Thus if the discriminant is negative the quadratic form never goes
through zero avoiding a change of sign. This will occur if

(u;+u;)~! (8.4.19)
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representing the interior of a circle in the (ax, ay) plane of radius J2/2, centred
at the origin. This condition is also shown to be sufficient in Section 8.6. Here
again, this condition is far more severe than the corresponding one-
dimensional case.

As can be seen from these examples, it is much more difficult to obtain the
stability limits for multi-dimensional problems, even for linear equations, and
several non-sufficient stability conditions can be found in the literature.
Actually, even for one-dimensional problems, controversial results from Yon
Neumann analysis have appeared in the literature (see Chapter 10 for a
discussion of a famous example concerning the convection-diffusion

equation).

8.5 STABILITY CONDITIONS FOR NON-LINEAR PROBLEMS

Most of the mathematical models describing the various approximations
to a flow problem contain non-linear terms, or eventually non-constant
coefficients. In these cases the Yon Neumann method for stability analysis
based on the Fourier expansion cannot strictly be applied since we can no
longer isolate single harmonics. Nevertheless, if we introduced a complete
Fourier series into the discretized scheme with non-constant coefficients the
amplification matrix would become a function of all wavenumbers, instead
of a linear superposition of amplification matrices for single harmonics. In
addition, for non-linear problems the amplification matrix would also become
a function of the amplitude of the solutions and not only of their frequency
as in the constant-coefficient, linear case. Hence these contributions could
generate instabilities, even with schemes which are basically linearly stable.

8.5.1 Non-constant coefficients

Consider a linear problem with non-constant coefficients, for instance, the

one-dimensional, parabolic problem

au a ( au)at = ax a(x) ax (8.5.1)

or the hyperbolic problem

au auat + a(x) ax = 0 (8.5.2)

A two-step numerical scheme applied to these equations will be written as

Uin+ 1 = C(X, E)u;n (8.5.3)

For instance, for an explicit, central scheme the parabolic equation (8.5.1)
becomes

Uin + 1 = Uin + ~ [ai+ 1/2(u7+ 1 - Uin) - ai-l/2(uf' - U7-1)] (8.5.4)

~x
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where

ai+ 1/2 = a(Xi+ 1/2) (8.5.5)

Hence

C(x, E) = 1 + ~ [a(xi+ 1/2)(E - 1) - a(xi-1/2)(I - E- I)] (8.5.6)

~x

The hyperbolic equation (8.5.2) with an explicit, upwind scheme for a> 0 will
be written as

Uin+l=Uin-~a(Xi-1/2)(Uin-u7-1) (8.5.7)
~x

or

C(x,E)= I-~ a(xi+1/2)(I-E-1) (8.5.8)
~x

The amplification matrix is now a function of x and not only of the
wavenumber k. Indeed, introducing a single harmonic (Uin)k = un elik /lX, a
local amplification matrix can be defined by

G(x, k) = C(x, el-P) (8.5.9)

where the variable coefficients are formally retained as functions of x.
In the two examples above we have

G(x, <1» = 1 + ~ [a(x) (e1-P - 1) - a(x)(1 - e-l-P)] (8.5.10)
~x

and for the hyperbolic example

G(x, <1» = 1 - ~ a(x)(1 - e-l-P) (8.5.11)

~x

Under general conditions (see Richtmyer and Morton, 1967) it can be proved
that for linear, non-constant coefficient problems a local Yon Neumann
analysis will provide a necessary condition for stability. That is, freezing the
coefficients at their value at a certain point and applying the Yon Neumann
method provides a local stability condition. However, in order to obtain also
sufficient conditions for stability, additional restrictions on the amplification
matrix G have to be introduced. These conditions are connected with the
generation of high-frequency harmonics due to the non-linear behaviour and
to the necessity of damping these frequencies in order to maintain stability.
This is particularly urgent for non-linear hyperbolic problems, since they
describe essentially propagating waves without physical damping. Even with
parabolic problems, where such a physical damping exists an additional
condition on the amplification matrix is required. This is provided by the
concept of dissipative schemes.
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8.5.2 Dissipative schemes (Kreiss, 1964)

A scheme is called dissipative (in the sense of Kreiss) of order 2r, where r is a
positive integer, if there exists a constant 0 > 0 such that for wavenumbers x
with </>j = (XjI1.Xj) ~ 11" for each space component j (j = 1,2,3 in a three-
dimensional space) the eigenvalues A of the amplification matrix satisfy the
condition

I A(X, I1.t, x)1 ~ 1-01 x'l1.xl2r (8.5.12)

for all x and for 0 < ~t < T. This condition ensures that for </> = 11", that is, for

the high frequencies associated with the (2~xj) waves (the shortest waves to be
resolved on the mesh), enough dissipation is provided by the discretization to
avoid their negative impact on the stability.

For parabolic problems we can show, under fairly general conditions
(Richtmyer and Morton, 1967), that if a 0 > 0 exists such that

I O(X,</»1 ~ 1-0</>2 for -11" ~ </> ~ 11" (8.5.13)

the corresponding schemes are stable. In particular, a scheme with an
amplification matrix, such that the spectral radius p( 0) = 1 for </> = 11", is not
dissipative in the sense of Kreiss.

For hyperbolic problems we have the following theorem of Kreiss (1964): If
the matrix A is Hermitian, uniformly bounded and Lipshitz continuous in x,
then if the scheme is dissipative of order 2r and accurate of order (2r - 1), it is

stable.
This is a sufficient condition for stability, but many schemes applied in

practice do not satisfy this condition.

Lax-Friedrichs scheme

From the amplification factor of the Lax scheme (equation (E8.3.2»

O«/» = cos </> - ](1 sin </>

we deduce that 0(11") = 1 for all (1. Hence the Lax scheme is not dissipative in
Kreiss's sense. However, since this scheme damps strongly all frequencies, as
seen earlier, it remains generally stable even for non-linear problems such as
the Euler equations (Di Perna, 1983).

Upwind scheme

According to equation (E8.3.6) the modulus of the amplification factor
becomes, for small values of </>,

101=1-(1(1-(1)</>2+... (8.5.14)

and is dissipative of order 2 for 0 < (1 < 1. Since

10(11")1 = 11-2(11 (8.5.15)
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the upwind scheme is dissipative in the sense of Kreiss. The order of the
scheme being one, the conditions of Kreiss's theorem are satisfied and the
upwind scheme will be stable for functions a(x) such that

0 a(x)~t 1«
~x

for all values of x in the computational domain.

Lax- Wendroff scheme

The dissipation of the scheme is of fourth order, since for small <1>, from
equation (E8.3.13)

2

101=1-~(I-u2)<I>4+0«I>6) (8.5.16)

showing that the Lax- Wendroff scheme is dissipative to the fourth order.
Since 0(11") = 1 - 2U2 the Lax-Wendroff scheme is dissipative in the sense of
Kreiss for non-zero values of u.

8.5.3 Non-linear problems

Very little information is available on the stability of general non-linear
discretized schemes. Within the framework of the Yon Neumann method
it can be said that the stability of the linearized equations, with frozen
coefficients, is necessary for the stability of the non-linear form but that it is
certainly not sufficient. Products of the form u(au/ax) will generate high-
frequency waves which, through a combination of the Fourier modes on a
finite mesh, will reappear as low-frequency waves and could deteriorate the
solutions. Indeed, a discretization of the form

(u~);=u;(~~i~) (8.5.17)

becomes, when the Fourier expansion (8.2.1) is introduced,( a) ( ) fk,; ~x
u~ =2:: 2:: v(k2)efk,;~x V(kl)~(efk,~x-e-fk,~~

ax; k, k, 2~x
(8.5.18)

=~ 2:: 2:: v(k1)v(k2) ef(k,+k,)~x sin kl~x
~x k, k,

The sum (k1 + k2)~X can become larger than the maximum value 11"
associated with the (2~x) wavelength. In this case the corresponding harmonic
will behave as a frequency [211" - (k1 + k2)~X] and will therefore appear as a
low-frequency contribution. This non-linear phenomenon is called aliasing,
and is to be avoided by providing enough disipation in the scheme to damp the
high frequencies.
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For non-linear problems we also observe that the coefficient of a single
harmonic k1 is a function of the amplitude of the signal through the factor
V(k2) in the above development of the non-linear term uUx. Hence for small
amplitudes the non-linear version of a linearly stable scheme could remain
stable, while an unstable behaviour could appear for larger amplitudes of the
solution. In this case the scheme could be generally stabilized by adding
additional dissipation to the scheme without affecting the order of accuracy.

A typical example is the leapfrog scheme, which is neutrally stable, I G I = I
for alii (] I < I. Hence this scheme is not dissipative in the sense of Kreiss, and
when applied to the inviscid Burger's equation Ut + UUx = 0, the computations
become unstable in certain circumstances, as can be seen from Figure 8.5.1.
This figure shows the computed solutions of Burger's equation for a stationary
shock, after 10,20 and 30 time steps at a Courant number of 0.8 and a mesh
size of .1.x = 0.05. The open squares indicate the exact solution. The amplitude
of the errors increases continuously, and the solution is completely destroyed
after 50 time steps. The instability is entirely due to the non-linearity of the
equation, since the same scheme applied to the linear convection equation does
not diverge, although strong oscillations are generated, as shown in Figure
8.3.6(d).

In the present case the high-frequency errors are generated by the fact that
the shock is located on a mesh point. This point has zero velocity and, with an
initial solution passing through this point, a computed shock structure is
enforced with this internal point fixed, creating high-frequency errors at the
two adjacent points. This is clearly seen in Figure 8.5.1, looking at the
evolution of the computed solutions, and also by comparing it with Figure
8.5.2, which displays the results of an identical computation for a stationary
shock located between two mesh points. This computation does not become
unstable, since the shock structure is not constrained by an internal point.
Observe also the propagation of the generated high-frequency errors away
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Figure 8.5.1 Solutions of Burger's equation with the leapfrog scheme, after 10,20 and 30 time
steps, for a stationary shock located on a mesh point



327

2

1

0

-1

10 time steps 20 time steps 30 time steps
-2

0 1 2 3 4 5 6

Figure 8.5.2 Solutions of Burger's equation with the leapfrog scheme, after 10,20 and 30 time
steps, for a stationary shock located between mesh points

from the shock position. They propagate at a velocity equal to the numerical
group velocity of the scheme, associated with the errors with the shortest 2~x

wavelength.
Other sources of non-linear instability have been identified for the leapfrog

scheme applied to Burger's equation and are described as a 'focusing'
mechansim by Briggs et al. (1983). The structure of this mechanism has been
further investigated by Sloan and Mitchell (1986).

This mechanism is not the classical, finite amplitude instability generated by
terms of the form of equation (8.5.18). This instability can be analysed by
considering group of modes which are closed under aliasing, that is, modes
kt, k2, k3, ..., such that

211"(k1 + k2)~X = k3 ~x (8.5.19)

For instance, referring to definition (8.1.10) of the discrete wavenumber kj it is
seen that the modes k1 ~x = 211"/3, k2 ~x = 11" and k3 ~x = 11"/3 satisfy equation

(8.5.19) for all permutations of the three modes.
By investigating solutions which contain a finite number of closed modes,

the non-linear contributions from terms of the form (8.5.18) can lead to
exponentially growing amplitudes, for Courant numbers below one, when the
amplitudes reach a certain critical threshold function of (J. This is the
mechanism which generates the instability of Figure 8.5.1.

The 'focusing' mechanism, described by Briggs et al., is of a different
nature. It corresponds to an amplification and a concentration of the initial
errors at isolated points in the grid. This generates sharp local peaks as a result
of the non-linear interaction between the original stable modes and their
immediate neighbours in wavenumber space, even for initial amplitudes below
the critical threshold for finite amplitude instabilities. Once the critical
amplitude is reached locally it starts growing exponentially. The particular
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character of this focusing property lies in its local aspect, while other
non-linear instabilities are global in that the breakdown, for a continuous
solution, occurs uniformly throughout the grid.

It has to be added that this focusing process can take a long time, several
thousand time steps, depending on the initial error level. Figure 8.5.3, from
Briggs et af. (1983), illustrates this process for an initial solution composed of
three modes (7r/3, 27r/3, and 7r) with amplitudes below critical such that the
computed solution should remain stable. The dashed line indicates the critical
level above which finite amplitude instability develops. The computed results
are shown for a Courant number of 0.9 and i1x = 1/300 after 400, 1000, 2000,
2200, 2400 and 2680 time steps. Until 1000 time steps the solution still retains
its periodic structure; by 2000 time steps the envelope of the initial profile
begins to oscillate, and local amplitudes start to concentrate until the critical
threshold is reached at a single point after 2680 time steps. From this stage
onwards the classical mechanism takes over and the solution diverges rapidly.
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Figure 8.5.3 Solutions of Burger's equation with the leapfrog scheme for a wave solution
with three modes, after 400, 1000,2000,2200,2400 and 2680 time steps. (From Briggs et al.,

1983)
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This mechanism has a strong resemblance to the chaotic behaviour of
solutions of non-linear equations and their multiple bifurcations, which are
also the basis of descriptions of the generation of turbulence. The reader might
refer in this relation to a recent study of McDonough and Bywater (1986) on
the chaotic solutions to Burger's equation.

The above examples indicate the degree of complexity involved in the
analysis of the stability of non-linear equations and the need for methods
which would prevent the development of instabilities for long-term comput-
ations. A frequently applied method consists of adding higher-order terms
which provide additional dissipation in order to damp the non-linear
instabilities without affecting the accuracy. Examples of this approach will be
presented in Volume 2, when dealing with the discretization of the Euler
equations.

8.6 SOME GENERAL METHODS FOR THE DETERMINATION OF
VON NEUMANN STABILITY CONDITIONS

Although simple in principle and in its derivation, the Von Neumann
amplification matrix is often very tedious and complicated to analyse in order
to obtain the practical stability limits on the parameters of the scheme. If it is
straightforward to obtain necessary conditions, it is much more difficult to
derive the sufficient conditions for stability. The variety of imprecise condi-
tions found in the literature for relatively simple problems, such as the
one-dimensional convection-diffusion equation, testify to these difficulties.
The situation is still worse for multi-dimensional problems. For instance, the
correct, necessary and sufficient stability limits for the convection-diffusion
equation in any number of dimensions had been obtained only recently
(Hindmarsh et al., 1984).

Due to the importance of the Von Neumann analysis, we will present a few
methods which allow the derivation of precise, necessary and sufficient
stability conditions for some limited, but still frequently occurring, discretiz-
ations. The first case treats the general two-level, three-point central schemes
in one dimension, while the second will present the stability criteria for
multi-dimensional, centrally discretized convection-diffusion equations, and,
because of its importance, we will reproduce the derivation of Hindmarsh et
al. (1984). The last case is of a more general nature, and applies to any
amplification matrix obtained for an arbitrary system of discretized equation,
allowing the reduction of the polynomial (8.2.19) to simpler forms.

8.6.1 One-dimensional, two-level, three-point schemes

We consider here the general scheme
b n+l b n+l +b n+l n n n3Ui+1 + ZUi IUi-l = a3Ui+1 + aZUi + alUi-1

(8.6.1 )
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where, for consistency, we should have (u; = constant should be a solution)

b3 + bz + b, = a3 + az + a, = 1 (8.6.2)

with an arbitrary normalization at one. After elimination of bz and az, the
Iamplification factor is

0- a3(e1tP - 1) + a,(e-1tP - 1) + 1
- b3(eltP-1)+ b,(e-1tP-1)+ I

(8.6.3)
1 - (a3 + a,)(1 - cos cP) + /(a3 - a,)sin cP

= 1 - (b3 + b,)(1 - cos cP) + /(b3 - b,)sin cP

Hence

1 a IZ = I 00.1 = A ,{Jzz + Az{J + I (8.6.4)
B,{J + Bz{J + 1

where

{J = sin zcP/2

A, = 16a3al BI = 16b3b, (8.6.5)
Az = 4[(a3 - a,)z - (a3 + a,)] Bz = 4[(b3 - b,)z - (b3 + hi)]

Note that the denominator (B,{Jz + Bz{J + I) ~ 0 in the range 0 ~ {J ~ 1, since
(I + BI + Bz) = (1 - 2bz)z is always non-negative. Hence the condition

I a IZ ~ 1 leads to
z(A,-B,){J +(Az-Bz){J~O (8.6.6)

and for all values of 0 ~ {J ~ 1 the necessary and sufficient Von Neumann
stability conditions are

(A z- Bz) ~ 0
(8.6.7)(A, - B, + Az - Bz) ~ 0

Example 8.6.1 Diffusion equation

Considering scheme (8.3.16) we have b3 = bl = 0, a3 = a, = (J. Hence

B, = 0 Bz = 0
z (E8.6.1)

A,=16{J Az=-8{J

and we obtain the necessary and sufficient conditions

B>O
(E8.6.2)

8{J(2{J - 1) ~ 0

leading to the earlier obtained relation

0 < {J ~ 1/2
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8.6.2 Multi-dimensional space-centred, convection-diffusion equation

We consider here a general scalar equation in a space of dimension M of the
form

au - - - --
ai+(a' V)u= V'(aVu) (8.6.8)

where a is a diagonal diffusivity tensor and a central discretization of
second-order accuracy:

M - M 2
1 ( n+ I ) ~ OmUJ ~ OmUJ-;- UJ - UJ + LI am ~ = LI am AT (8.6.9)

ut n=1 uX,n In=1 uXm

where J represents a mesh point index (for instance, in two dimensions J(i, j)
and J(i, j, k) in a three-dimensional Cartesian mesh). The operator 5m is the
central difference acting on the variable Xm, that is

~=- 2! .(Ui,j+l,k-Ui,j-I,k) ifm=j (8.6.10)
uXm uxJ

and the second derivative operator o~ is similarly defined:

O~nUJ 1 ( 2 ) ' f '
(8 6 )-;-T=72 Ui,j+I,k- Uijk+Ui,j-I,k I m=} . .11

uX,n uXj

Defining

Um = am Atl Axm
I 2 (8.6.12){J,ll = am At AxlII

the above scheme becomes
M

uJ+ 1= uJ - 2:; (UIII 5'l1uJ - (J'IIO~,UJ) (8.6.13)
m=1

This discretized equation represents the scheme to be analysed indepen-
dently of the original equation (8.6.8), used as a starting point. Hence the
following results can be applied to a wider range of problems; for instance, the
two-dimensional convection equation, discretized with the Lax-Friedrichs
scheme (8.4,14), can clearly be written in the above form. As will be seen
in Volume 2, many numerical schemes for the inviscid system of Euler
equations can also be written in this way.

With representation (8.4.1), and <P,li = }(III Ax'II' the amplification factor
becomes

M M
0 = 1 - 12:; UIII sin <PilI - 4 2:; {J,ll sin 2<p1I1/2 (8.6,14)

111=1 m=1

The modulus squared is given by

1012= [1-411~1 {Jmsin2<p1I1/2]2+ [II~I Umsin<PIII]2 (8.6.15)
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The extreme conditions are obtained when all cf>,n = 7r, on the one hand, and
when all cf>,n go to zero on the other. In the first case we obtain the condition

(1 - 4 I~I (3,n)2 ~ I (8.6.16)

Hence this leads to

M I
o~ L:; (3'n~- (8.6.17)

m=1 2

In the second case, performing a Taylor expansion around cf>,n = 0, and
neglecting higher-order terms, we obtain

I 012= [1-'n~1 (3,ncf>fn] 2+ ['~I ulncf>m] 2+0(cf>~1)

(8.6.18)
M (M )2

= 1 - 2 I~I (3,ncf>fn + I~I U,ncf>,n + O(cf>~,)

The right-hand side is a quadratic expression in the cf>,n. Following Hindmarsh
et al. (1984), it can be written as follows, introducing the vectors- T - )T d h d. I .
cf>=(cf>I,...,cf>M) ,U=(UI,...,UM an t e lagona matnx
(3 = diag«(3I, ..., (3M), neglecting higher-order terms:

1012= 1- cJ;T(2.B - if (8) ifT)cJ; (8.6.19)

For I 012 to be lower than one, the symmetric matrix (2.B - ifxifT) must be
non-negative definite. In particular, the diagonal elements (2(3,n - uf,,) must be

non-negative, implying uf" < 2(3m. If one of the (3m is zero, then Um (or am) is
also zero and the corresponding mth dimension can be dropped from the
problem. Therefore we can assume all (3m > 0 and the equality sign on the
lower bound of equation (8.6.17) has to be removed.

Defining the diagonal matrix ;y' by ;y' = diag«2(31) 1/2, ..., (2(3M) 1/1, we have

2.B - if (8) ifT= ;y'(/- ;y'-lif (8) ifT;y'-I);y' (8.6.20)

and the matrix

A s/-(;y'-lif) (8) (;y'-lif)Ts/- a (8) aT (8.6.21)

should also be non-negative definite. Considering the associated quadratic
form, for any M-dimensional vector X,

xTAx= xT. x- (aT. X)2 (8.6.22)

the matrix A is non-negative definite if and only if
M 2

aT. a= L:; ~ ~ I (8.6.23)
In= 1 2(3,n
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The Von Neumann stability conditions are therefore
M 1

0 < l:: {3m ~ - (8.6.24a)
m=1 2

and
M 2l:: ~ ~ 2 (8.6.24b)

m= 1 {3m

Assuming all am positive, we can easily prove that these conditions are
sufficient from the Schwartz inequality applied to the sum

[ M ] 2 [ M (I (J I) ] 2

m~1 (J,n sin <t>,n ~ I~I -Ji;:; (J({3m) I sin <t>,n I)

M 2 M
""' (J In ""' {3 . 2~ L.I -. L.I In Sin <t>m

In=1 {3,n In=1

M

< l:: 2{3,n sin 2<t>,n (8.6.25)
In= 1

where the second condition (8.6.24b) has been applied.
If any {3m = 0 the above condition implies that (Jm = 0 and the sum (8.6.25) is

obtained by summing first only over those m for which {3,n > O. Inserting this
relation into the expression of 1 G 12, we obtain

[ M ] 2 M
I G 12 ~ '1 - 4 I~I {3m sin2<t>,n/2 + 8 /~I {3,n sin2<t>,n/2' Cos2<t>m/2

(8.6.26)M [ M ] 2
= 1 - 8 m~1 {3,n sin4<t>,n/2 + 4 I~I {3m sin2<t>,n/2

Applying the first stability condition (8.6.24a) with the Schwarjz inequality on ~t""'"
the last term we obtain

M M M
I G 12 ~ 1 - 8 l:: {3,n sin4<t>,n/2 + 16 l:: {3,n sin4<t>,n/2' l:: {3m

In=1 /n=1 m=1

M M
< 1 - 8 l:: {3,n sin4<t>,n/2 + 8 l:: {3,n sin4<t>,n/2 (8.6.27)

/1-=1 m=1

< 1

This completes the proof that conditions (8.6.24) are necessary and sufficient
for the strict Von Neumann stability of scheme (8.6.13).

Example 8.6.2 The two-dimensional Lax-Friedrichs scheme (8.4.14)

Writing (8.4.14) in the above form we have

- ~t (A) - ~t (8)(JI - - Amax (J2 - - Amax (E8.6.3)
~x ~y
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and

(31 = (32 = 1 (E8.6.4)

leading to condition (8.4.19).

Example 8.6.3 Two-dimensional convection-difJusion equation

Consider the energy equation

aT aT aT (a2T a2~- + U - + v - = a --r + --r (E8.6.5)
at ax ay ax ay

discretized with central differences and an Euler explicit time integration,

T'n+ I T n (11 (T n Tn ) (12 (T n Tn )ij - ij = - "2 i+ I.j - i-l,j -"2 i.j+ 1- i,j-1

+ (31(T;+I,j-2Tij+ T;-I.j)+(32(Ti,j+I-2Tij+ Ti,j-l)

(E8.6.6)

where

u~t v~t(11 = - (12 = -
~x ~y

(E8.6,7)

,81 =~ ,82 =~~x ~y

The necessary and sufficient stability conditions are as follows:

( 1 1 ) 1
(,81 + ,82) = a ~t ~ + ~ ~ - (E8.6.8a)

~x ~y 2

2 2 ~
!!...!. +!!.}.. = ~ (U2 + V2) ~ 2 (E8.6.8b)
,81 ,82 a

Hence the maximum allowable time step is given by

. (1 ~X2 ~y2 2a)~t ~ Mm - 2 2'2 (E8.6.9)
2a ~x + ~y q

where q2 = U2 + V2 is the square of the velocity v(u, v). Observe that the
second condition (E8.6.8b) is independent of the mesh sizes ~x, ~y.

Additional remarks: If all {3", are equal, we have the necessary and sufficient
condition

M 1~ (1fn ~ 2{3 ~ - (,811l = (3) (8.6.28)
,n=1 M

Otherwise for ,8 = Max,n{3,n the above condition is sufficient.
Introducing the mesh Reynolds, or Peclet, numbers R,n = (a,n ~X'n/a'n) the
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stability condition (8.6.24b) can be written as
M

0 < ~ umRm ~ 2 (8.6.29)
m=1

or as
M

~ {3mR~n ~ 2 (8.6.30)
m=1

When all Rm are lower than two (Rm < 2) it is seen that condition (8.6.24a) is
more restrictive. The second condition (8.6.24b) will be the more restrictive
one when all the Rm are larger than two. Otherwise both conditions have to be
satisfied, that is,

~t~Min ( 1 2' ; / ) (8.6.31) 2}:;m(am/~xm) }:;m(am am)

8.6.3 General multi-level, multi-dimensional schemes

In the general case (discussed in Section 8.2) the strict Yon Neumann stability
condition is expressed by requirements on the eigenvalues of the matrix G,
obtained as a solution of det I G - AI I = O. These eigenvalues are the zeros of

the polynomial of degree p, when G is a p x p matrix,

P(A) = det I G - All = 0 (8.6.32)

The stability condition (8.2.24) requires that all the eigenvalues should be
lower than or equal to one, and the eigenvalues Aj = 1 should be single. Hence
this condition has to be satisfied by the zeros of the polynomial P(A). A
polynomial satisfying this condition is called a Yon Neumann polynomial.

The following remarkable theorem, based on the Schur theory of the zeros
of a polynomial, can be found in Miller (1971). Let P(A) be the associated
polynomial of

P(A) = takA k (8.6.33)
k=O

- ~ * k
P(A) = 2... ap-kA (8.6.34)

k=O

where a: is the complex conjugate of ak, and define a reduced polynomial of
degree not higher than (p - 1):

PI (A) =! [P(O)P(A) - P(O)P(A)] (8.6.35)
A

Then the zeros of P(A) satisfy the stability conditions (P(A) is a Yon
Neumann polynomial) if and only if

(1) I P(O) I > I P(O) I and PI (A) is a Yon Neumann polynomial; or
(2) PI (A) = 0 and the zeros of dP/dA = 0 are such that I A I ~ 1.
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Hence applying this theorem reduces the analysis to the investigation of the
properties of a polynomial of a lower degree (at least p - I). Repeating the
application of this theorem to PI or to dP/d).., the degree of the resulting
polynomials is further reduced until a polynomial of degree one, which can be
more easily analysed, is obtained.

Examples of applications of this technique to various schemes for the
convec\ion-oi\\usion equation can ~e \ouno'm c'nan \\~~~), ~nele "f>ome
stability conditions for higher-order schemes are obtained for the first time.

Example 8.6.4 Leapfrog scheme applied to the convection-diffusion
equation

The equation

au au a2u
-+a-=a~ (E8.6.10)at ax ax

is discretized with central differences in space and time, leading to a leapfrog
scheme with the diffusion terms discretized at level (n - I):

n+1 n-1 ( n n ) 2R ( n-1 2 n-1 n-l ) (E8611)Ui -Ui =-UUi+I-Ui-I+/.IUi+I-Ui +Ui-1 ..
The amplification factors or eigenvalues are solutions of the second-order
polynomial (applying the method of Section 8.3.3)

P()") = )..2 + 2)"u/ sin cf> - 1 - 4fj(cos cf> - 1) = 0 (E8.6.12)

We obtain

P()") = 1 - 2)"u/ sin cf> - [1 + 4fj(cos cf> - 1)])..2 (E8.6.13)

The condition I P(O) I > I P(O) I leads to

11-4fj(1-cos cf»1 < 1

or

4fj < 1 (E8.6.14)

which is a necessary condition for stability.
Constructing PI ()..), we obtain, with -y = 1 - 4fj(1 - cos cf»,

PI ()..) = ),,(1 - -y2) + 2u/(1 - -y) sin cf> (E8.6.15)

and the stability condition becomes I A (0) I > I PI (0) I, or

Iu sin cf>1 ~ 1-2fj(1-coscf» (E8.6.16)

Following Chan (1984), this leads to the necessary and sufficient condition, for i

all cf>,

u2+4fj~ I (E8.6.17)

i
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Summary

The Von Neumann stability method, based on a Fourier analysis in the space
domain, has been developed for linear, one- and multi-dimensional problems.
This method is the most widely applied technique and the amplification factor
is easily obtained. Although the stability conditions cannot always be derived
analytically, we could, if necessary, analyse the properties of the amplification
matrix numerically. These properties also contain information on the disper-
sion and diffusion errors of a numerical scheme, allowing the selection of a
scheme as a function of the desired properties. For non-linear problems it has
been shown that a local, linearized stability analysis will lead to necessary
conditions.

References

Book, D. L. (Ed.) (1981). Finite Difference Techniquesfor Vectorized Fluid Dynamics
Calculations, New York: Springer Verlag.

Briggs, W. L., Newell, A. C., and Sarie, T. (1983). 'Focusing: a mechanism for
instability of nonlinear finite difference equations.' Journal of Computational
Physics, 51,83-106.

Cathers, B., and O'Connor, B. A. (1985). 'The group velocity of some numerical
schemes.' Int. Journal for Numerical Methods in Fluids,S, 201-24

Chan, T. F. (1984). 'Stability analysis of finite difference schemes for the advection-
diffusion equation.' SIAM Journal of Numerical Analysis, 21, 272-83.

Charney, J. G., Fjortoft, R., and Von Neumann, J. (1950). 'Numerical integration of
the barotropic vorticity equation.' Tellus, 2, 237-54.

Courant, R., Friedrichs, K. 0., and Lewy, H. (1928). 'Uber die partiellen differenz-
gleichungen der mathematischen Physik.' Mathematische Annalen, 100, 32-74.
English translation in IBM Journal (1967), 215-34.

Courant, R., and Hilbert, D. (I 962).,Methods of Mathematical Physics, Vols I and II,
New York: John Wiley Interscience.

Cran~k, J., and Nic~olson, P. (1947). 'A practical method for numerical evaluation of
solutions of partial differential equations of the heat conduction type.' Proceedings
of the Cambridge Philosophical Society, 43, 50-67.

Du Fort, E. C., and Frankel, S. P. (1953). 'Stability conditions in the numerical
treatment of parabolic equations.' Math. Tables and Other Aids to Computation, 7,
135-52.

Hindmarsh, A. C., Gresho, P. M., and Griffiths, D. F. (1984). 'The stability of explicit
Euler time integration for certain finite difference approximations of the multidimen-
sional advection-diffusion equation.' Int. Journal for Numerical Methods in Fluids,
4,853-97.

Hirt, C. W. (1968). 'Heuristic stability theory for finite difference equations.' Journal
of Computational Physics, 2, 339-55.

Kreiss, H. o. (1964). 'On difference approximations of the dissipative type for
hyperbolic differential equations.' Comm. Pure and Applied Mathematics, 17,
335-53.

Lambert, J. D. (1973). Computational Methods in Ordinary Differential Equations,
Chichester: John Wiley.

Lax, P. D. (1954). 'Weak solutions of nonlinear hyperbolic equations and their
numerical computation.' Comm. Pure and Applied Mathematics, 7, 159-93.



338

Lax, P. D., and Wendroff, B. (1960). 'Systems of conservation laws.' Comm. Pure and
Applied Mathematics, 13, 217-37.

McAveney, B. J., and Leslie, L. M. (1972). 'Comments on a direct solution of
Poisson's equation by generalized sweep-out method.' Journal Meteor, Society of
Japan, 50, 136.

McDonough, J. M., and Bywater, R. J. (1986). 'Large-scale effects on local small-scale
chaotic solutions to Burger's equation.' AIAA Journal, 24, 1924-30.

Miller, J. J. H. (1971). 'On the location of zeros of certain classes of polynomials with
applications to numerical analysis.' Journal Inst. Math. Applic., 8, 397-406.

Peyret, R., and Taylor, T. D. (1983). Computational Methods for Fluid Flow, New
York: Springer Verlag.

Richtmyer, R. D., and Morton, K. W. (1967). Difference Methods for Initial Value
Problems, 2nd edn, Chichester: John Wiley/Interscience.

Roache, P. J. (1971). 'A new direct method for the discretized Poisson equation.'
Second Int. Conf. on Num. Methods in Fluid Dynamics, New York: Springer
Verlag.

Sloan, D. M., and Mitchell, A. R. (1986). 'On nonlinear instabilities in leap-frog finite
difference schemes.' Journal of Computational Physics, 67, 372-95.

Trefethen, L. N. (1982). 'Group velocity in finite difference schemes.' SIAM Review,
24,113-36

Trefethen, L. N. (1983). 'Group velocity interpretation of the stability theory of
Gustafsson, Kreiss and Sundstrom.' Journal of Computational Physics, 49,
199-217.

Trefethen, L. N. (1984). 'Instability of difference models for hyperbolic initial
boundary value problems.' Comm. Pure and Applied Mathematics, 37, 329-67.

Varga, R. S. (1962). Matrix Iterative Analysis, Englewood Cliffs, NJ: Prentice-Hall.
Vichnevetsky, R., and Bowles, J. B (1982). Fourier Analysis of Numerical Approxima-

tions of Hyberbolic Equations, Philadelphia: SIAM Publications.

PROBLEMS

Problem 8.1

Derive the succession of operators for the various examples of Table 8.1.

Problem 8.2
Apply a forward space differencing with a forward time difference (Euler method) to
the convective equation u, + aux = O. Analyse the stability with the Von Neumann
method and show that the scheme is unconditionally unstable for a > 0 and condi-
tionally stable for a < O. Derive also the equivalent differential equation and show why
this scheme is unstable when a > O.

Problem 8.3

Show that the forward/backward scheme for the second-order wave equation (E8.2.l2)
is

n+1 2 n n-1
(aat)2( " 2 n " )Wi - Wi + Wi-I = - Wi+l- Wi + Wi-I

ax
referring to Table 8.1. Obtain the explicit form of the operators and matrices S, C and
G.
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Problem 8.4

Consider the same space discretization of the second-order wave equation as in the
previous problem but apply a full Euler scheme (forward in time):

n+l n ( n n )Vi - Vi = (J Wi+ I - Wi

n+l n ( n n )Wi - Wi = (J Vi - Vi-I

Calculate for this scheme the operators and corresponding matrices C and G.

" Problem 8.5

Solve the one-dimensional heat conduction equation Ut = auxx for the following
conditions, with k an integer:

u(x,O)=sink7fx O~x~l
u(O, t) = 0
u(l, t) = 0

applying the explicit central scheme (8.3.16). Compare with the exact solution for
different values of (:1, in particular (:1 = 1/3 and (:1 = 1/6 (which is the optimal value).
Consider initial functions with di[q:ent wavenumbers k, namely k = 1,5,10.

The exact solution is u = e-ak 'X t sin k7fx. Compute with Xi = i~x and i ranging

from 0 to 30. Make plots of the computed solution as a function of X and of the exact
solution. Perform the calculations for five and ten time steps and control the error by
comparing with equation (8.3.25) for ED in the case of (:1 = 1/3. Calculate the
higher-order terms in ED for (:1 = 1/6 by taking more terms in the expansion.

Problem 8.6

Calculate the amplitude and phase errors for the Lax-Friedrichs scheme (E8.3.1) after
ten time steps for an initial wave of the form

u(x,O) = sin k7fx 0 ~ X ~ 1

for k = 1, 10. Consider ~x = 0.02 and a velocity a = 1. Perform the calculations for
u = 0.25 and u = 0.75. Plot the computed and exact solutions for these various cases
and compare and comment on the results.
Hint: The exact solution is Ii = sin 7fk(x - I). The exact numerical solution is

I ii;n = I Gin sin 7fk(Xi - an ~t) where a is the numerical speed of propagation and is
I equal to a e", (eq!;lation (E8.3.5». Show that we can write iiin = I G I"
i sin(7rk(xi-n~t)+n(cI>-cI»).

Problem 8.7

Repeat Problem 8.6 with the upwind scheme (7.2.8).

Problem 8.8

Repeat Problem 8.6 with the leapfrog scheme (8.3.33).

Problem 8.9

Apply the central difference in time (leapfrog scheme) to the heat-conduction equation
with the space differences of second-order accuracy:

a~t
Uin+l- Uin-1 = 2 -z (u7+1-2ul' + u7-1)

~x
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Calculate the amplification matrix and show that the scheme is unconditionally
unstable.

Problem 8.10

Analyse the leapfrog scheme with the upwind space discretization of the convection
equation Ut + aux = O. This is the scheme

n+l n-1 2 ( n n
)Ui -Ui =-qUi-Ui-1

Calculate the amplification matrix and show that the scheme is unstable.

Problem 8.11
Consider the implicit upwind scheme (7.2.9) and analyse its stability. Show that the
scheme is unconditionally stable for a > 0 and unstable for a < O.

Problem 8.12
Write a program to solve the linear convection equation and obtain Figure 8.3.6.

Problem 8.13
Write a program to solve the linear convection equation and obtain Figures 8.3.7 and
8.3.8 for the wave packet problem. Compare with similar calculations at CFL = 0.2

Problem 8.14
A~ply an upwind (backward in space) discretization to the two-dimensional convection

equation
U, + aux + buy = 0

with an explicit Euler time integration. Perform a Yon Neumann stability analysis and
show that we obtain the CFL conditions in both directions.

Problem 8.15

Apply the Dufort-Frankel scheme to the leapfrog convection-diffusion equation
n+1 n-1 ( n n )+2(:1( n n+1 ,,-I n )Ui -Ui = -q Ui+I-Ui-1 Ui+I-Ui -Ui +Ui-1

and show, by application of Section 8.6.3, that the stability condition is Iql < I,
independently of the diffusion related coefficient (:1.
Hint: Write the scheme as

n+ In-I ( n n ) 2(:1( n 2 n + n )Ui -Ui = -q Ui+I-Ui-1 + Ui+l- Ui Ui-1

- 2(:1(Uin+l- 2Uin + Uin-l)

Problem 8.16
Write a program to solve Burger's equation for the stationary shock and obtain the results
of Figures 8.5.1 and 8.5.2.

..
Problem 8.17

Obtain the results of Example 8.3.3 for the Lax-Wendroff scheme.
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Problem 8.18

Obtain the results of Example 8.3.4 for the leapfrog scheme and derive the expansion of
the dispersion error in powers of the phase angle.

Problem 8.19

Obtain the relations of Example 8.3.5.

Problem 8.20

Apply a central time integration (leapfrog) method to the finite element scheme of
Problem 5.14, considering the linear equation f = au. The scheme is

( n+1 n-I )+4( n+1 n-I )+( n+1 n-l ) 6 ( n n ) 0U;-I - U;-I U; - U; U;+I - U;+I + U U;+I- U;-I =
Determine the amplification factor and obtain the stability condition U ~ I/J3.
Determine the dispersion and diffusion errors and obtain the numerical group velocity.
Compare with the leapfrog scheme (8.3.33).
Hint: The amplification factor is

G = - /b :t ~ b = 3u sin <f>

2+cos<f>

Problem 8.21

Apply a generalized trapezium formula in time as defined by Problem 7.5, to the finite
element discretization of Problem 5.14. Obtain the scheme
( n+1 n ) 4( n+1 n) ( n+1 n ) 38 ( n+1 n+l )Ui-l - U;-I + U; - U; + U;+I - U;+I + U U;+I - U;-I

+ 3(1 - 8)u(u7+ 1 - u7-1) = 0
and derive the amplification factor

G = 2 + cos <f> - 3(1 - 8)/u sin 8

2+cos<f>+38/usin<f>
Show that the scheme is unconditionally stable for 8 ~ 1/2.

Show that for 8 = 1/2 (the trapezium formula), there is no dissipation error, and
obtain the numerical dispersion relation as tan(w.1tI2) = 3u sin <f>1 [2(2 + cos <f»].

Problem 8.22

Find the numerical group velocities for the upwind, Lax-Friedrichs and Lax-Wendroff
schemes for the linear convection equation, applying the relation (8.3.41) to the real
part of the numerical dispersion relation. Plot the ratios vola in function of <f> and
observe the deviations from the exact value of I.

i Hint: Obtain

I First order upwind scheme vo = a[(I- u)cos <f> + u]/[(1 + u(cos <f> - 1»2 + U2 sin2 <f>]
, Lax-Friedrichs scheme vo = al(cos2 <f> + u2 sin2 <f»

Lax-Wendroff scheme vo = a[(1 - 2U2 sin2 1P12)cos IP + U2 sin2 IP] I
[(I - 2u2 sin2 1P12)2 + U2 sin2 IP]
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