ENV 5666 - Water Quality Management

Lecture 2

Fundamentals of Reaction Kinetics and Rates

Reaction Kinetics \& Rates

■ Quantitative definition of the rate of transformation (appearance or disappearance) of a contaminant (e.g., Hg) or indicator (e.g., BOD) in an aquatic environment.
$■$ Found theoretically from the stoichiometry of chemical reactions (if available) or experimentally (mostly in laboratory-controlled conditions).

Reaction Types

- Heterogeneous reaction (i.e., one, two or three phases)
- Homogeneous reaction (i.e., only one phase)
- Reversible reaction $(\mathrm{A} \leftrightarrow \mathrm{B})$: Equilibrium Chemistry
- Irreversible reaction $(\mathrm{A} \rightarrow \mathrm{B})$:

Main focus on single direction with rate of disappearance of a reactant

Reaction Kinetics

Law of Mass Action:

"rate of transformation is proportional to the concentration of reactants ", as follows:
$\alpha \mathbf{A}+\beta \mathbf{B}+\ldots \rightarrow$ products $\operatorname{dc}_{\mathrm{A}} / \mathbf{d t}=-\mathbf{k f}\left(\mathrm{c}_{\mathrm{A}}, \ldots \mathrm{c}_{\mathrm{I}}, \ldots\right)=-\mathrm{kc}_{\mathrm{A}}{ }^{\alpha} \mathrm{c}_{\mathrm{B}}{ }^{\beta}=-\mathrm{kc}_{\mathrm{A}}{ }^{\mathrm{n}}$
c $=$ concentration of a single reactant
$\mathrm{n}=(\alpha+\beta)=$ order of reaction
$\mathrm{k}=$ reaction rate constant, a temperaturedependent rate constant

FIGURE 2.1
A simple experiment to collect rate data for a pollutant in a natural water.

Zero-Order Rate ($\mathrm{n}=\mathbf{0}$)

$$
\mathrm{dc} / \mathrm{dt}=-\mathrm{k}
$$

Which, for data obtained in an experiment in a batch reactor, is the conservation of mass statement (i.e., "Rate of Accumulation = Rate of Transformation").

Then, after integration over time and boundary conditions yields:

$$
\mathbf{c}=\mathbf{c}_{0}-\mathbf{k t}
$$

where:
$\mathrm{c}=\mathrm{c}_{0}$ at $\mathrm{t}=0$ and k has units of $\mathrm{ML}^{-3} \mathrm{~T}^{-1}$

First-Order Rate ($\mathrm{n}=1$) $\mathrm{dc} / \mathrm{dt}=-\mathrm{kc}$

which, after integration of data obtained in a batch reactor experiment, becomes

$$
\begin{aligned}
& \ln \mathbf{c}-\ln \mathbf{c}_{0}=\mathbf{k t} \quad \text { or } \\
& \mathbf{c} \quad=\quad \mathbf{c}_{0} \mathbf{e}^{-\mathbf{k t}}
\end{aligned}
$$

where $\mathrm{c}=\mathrm{c}_{0}$ at $\mathrm{t}=0$ and k with units of T^{-1}

In other words, concentration halves every half-life.

Second-Order Rate ($\mathrm{n}=2$)

$$
\mathrm{dc} / \mathrm{dt}=-\mathrm{kc} \mathrm{c}^{2}
$$

which after integration for data from a batch reactor experiment yields:

$$
1 / \mathbf{c}=1 / \mathbf{c}_{0}+\mathbf{k t}
$$

where $c=c_{0}$ at $t=0$ and k has units of $(M T)^{-1} L^{3}$

Methods to Quantify the Rate of Reaction, k

(all should be based on regression analysis or least-squares methods)

- Integral Method (Eq.2.7)
- Differential Method (Eq. 2.22)
- Method of Initial Rates (Eq. 2.24)
- Method of Half-lives (Eq. 2.29)
- Method of Excess (i.e., one reactant is in excess)
- Numerical Methods (i.e., hand calculations or computer programs, including MSExcel spreadsheets and regression options)

Temperature Effect On Rates

- Rates of most reactions in natural waters increase with temperature.
- Rate approximately double every $10^{\circ} \mathrm{C}$ of increase.
- Arrhenius Equation

$$
\left.k\left(T_{a}\right)=A e^{(-E / R T}\right)
$$

where:

$$
\begin{aligned}
& \mathrm{A}=\text { pre-exponential frequency factor } \\
& \mathrm{E}=\text { activation energy } \\
& \mathrm{R}=\text { the gas constant } \\
& \mathrm{T}_{\mathrm{a}}=\text { absolute temperature }
\end{aligned}
$$

Comparison of Reaction Rate Constants at Two Different Temperatures

- $\mathbf{k}\left(\mathrm{T}_{\mathrm{a} 2}\right) / \mathbf{k}\left(\mathrm{T}_{\mathrm{a} 1}\right)=\mathbf{e}^{\mathrm{E}\left(\mathrm{T}_{\mathrm{a} 2}{ }^{-\mathrm{T}}{ }_{\mathrm{a} 1}\right) / \mathrm{R}\left(\mathrm{T}_{\mathrm{a} 2}{ }^{-\mathrm{T}} \mathrm{T}_{\mathrm{a}}\right)} \approx \theta^{\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right),}$
where $\theta \approx \mathrm{E} /\left(\mathrm{RT}_{\mathrm{a} 2} \mathrm{~T}_{\mathrm{a} 1}\right)$, because most temperature ranges are narrow $(273-313 \mathrm{~K}$, 0 to 100 centigrade or 32 to 211 F)

Use of Rates Expressions

- In the quantitative representation of the "transformation" components (i.e., chemical or biological or both, for instance, decomposition, oxidation, reduction, hydrolysis, photolysis, chemical adsorption, etc.) in the conservation of mass statement!

Lecture 2- Example 2.1

EXAMPLE 2.1. INTEGRAL METHOD. Employ the integral method to determine whether the following data is zero-, first-, or second-order:

$$
\begin{array}{l|ccccccc}
t(\mathrm{~d}) & 0 & 1 & 3 & 5 & 10 & 15 & 20 \\
\hline c\left(\mathrm{mg} \mathrm{~L}^{-1}\right) & 12 & 10.7 & 9 & 7.1 & 4.6 & 2.5 & 1.8
\end{array}
$$

If any of these models seem to hold, evaluate k and c_{0}.
Solution: Figure 2.4 shows plots to evaluate the order of the reaction. Each includes the data along with a best-fit line developed with linear regression. Clearly the plot of \ln versus t most closely approximates a straight line. The best-fit line for this case is

$$
\ln c=2.47-0.0972 t \quad\left(r^{2}=0.995\right)
$$

Therefore the estimates of the two model parameters are

$$
k=0.0972 \mathrm{~d}^{-1}
$$

$$
c_{0}=e^{247}=11.8 \mathrm{mg} \mathrm{~L}
$$

Thus the resulting model is
$c=11.8 e^{-0.0972 t}$
The model could also be expressed to the base 10 by using Eq. 2.15 to calculate
$k^{\prime}=\frac{0.0972}{2.3025}=0.0422$

(a)

(b)

(c)

FIGURE 2.4

 Plots to evaluate whether the reaction is (a) zero-which can be substituted into Eq. 2.16,
$c=11.8(10)^{-0.0422 t}$
The equivalence of the two expressions can be illustrated by computing c at the
ame value of time,
$c=11.8 e^{-0.0972(5)}=7.26$
$c=11.8(10)^{-0.042(5)}=7.26$
Thus they yield the same resul.

Lecture 2 - Example 2.2

EXAMPLE 2.2. DIFFERENTLAL METHOD. Use the differential method to evaluate the order and the constant for the data from Example 2.1. Use equal-area differen-
tiation to smooth the derivative estimates. Solution: The data from Example 2.1 can be differentiated numerically to yield the estimates in Table 2.2. The derivative estimates can be graphed as a bar chart (Fig. 2.7). Then a smooth curve can be drawn that best approximates the area under the histogram.
In other words try to balance out the histogram areas above and below the drawn curve. Then the derivative estimates at the data points can be read directly from the curve. These are listed in the last column of Table 2.2. Figure 2.8 shows a plot of the log of the negative derivative versus the \log of concentration. The best-fit line for this case is

$$
\log \left(-\frac{d c}{d t}\right)=-1.049+1.062 \log c \quad\left(r^{2}=0.992\right)
$$

TABLE 2.2

Data analysis to determine

$\begin{array}{l}\text { derivative estimates from time } \\ \text { series of concentration }\end{array}$

t	c $\left(\mathbf{m g ~ L}^{-1}\right)$	$\frac{-\frac{\Delta c}{\Delta t}}{\left(\mathrm{mg} \mathrm{L}^{-1} \mathrm{~d}^{-1}\right)}$	
$-\frac{d c}{d t}$			
0	12.0	1.3	1.25
1	10.7	1.3	1.1
3	9.0	0.85	0.9
5	7.1	0.95	0.72
10	4.6	0.50	0.45
15	2.5	0.42	0.27
20	1.8	0.14	0.15

FIGURE 2.7

igure 2.8
Plot of $\log (-d c / d t)$ versus $\log c$.
Therefore the estimates of the model parameters ar
$n=1.062$
$k=10^{-1.049}=0.089 \mathrm{~d}^{-1}$
Thus the differential approach suggests that a first-order model is a valid approximation.

Lecture 2 - Example 2.3

EXAMPLE 2.3. INTEGRAL LEAST-SQUARES METHOD. Use the integral
least-square method to analyze the data from Example 2.1. Use a spreadsheet to perform least-square me
the calculation.
Solution: The solution to this problem is shown in Fig. 2.9. The Excel spreadsheet was
used to perform the computation. Similar calculations can be implemented with other used to perform the compuatro
popular packages such as Quattro Pro and Lotus 123 .
 spectively, and the time step for the numerical calculation is typed into cell BS. For this
case a column of calculation times is entered into column A starting at 0 (cell A7) and筑ding at 20 (cell A27). The k_{1} through k_{4} coefficients of the fourth-order RK method (see Lec. 7 for a description of this method) are then calculated in the block B7..E27,
These are then used to determine the predicted concentrations (the c_{p} values) in column F. The measured values $\left(c_{m}\right)$ are entered in column G adjacent to the corresponding pre
dicted values. These are then used in conjunction with the predicted values to compute dicted values. These are then used in conjunction with the predicted values to comput
the squared residual in column H. These values are summed in cell H29. At this point each of the spreadsheets determines the best fit in a slightly differen
way At the time of this book's spublication, the following menu selections would be mad way. At the time of this book's publication, the following menu selectit
on Excel (v. 5.0), Quattro Pro (v. 4.5) and 123 for Windows (v. 4.O):
Excel or 123: t(ool) s(olver)
\qquad
Once you have accessed the solver or optimizer, you are prompted for a target or
lution cell (H29), queried whether you want to maximize or minimize the target cell lution cell (H29), queried whether you want to maximize or minimize the target cel
(minimize), and prompted for the cells that are to be varied (B3..B4). You then activate the algorithm [s(olve) or $g(o)]$, and the results are as in Fig. 2.9 . As shown, the values in
cells $\mathbf{B 3} . . \mathrm{B4}$ minimize the sum of the squares of the residuals $(\mathrm{SSR}=0.155)$ between the cells B3..B4 minimize the sum of the squares of the residuals (SSR $=0.155$) between the
predicted and measured data. Note how these coefficient values differ from Example 2.1 and 2.2. A plot of the fit along with the data is shown in Fig. 2.10.

	$\stackrel{\square}{\text { a }}$	1	-	$\bigcirc 1$		F 1	-	
2	catiuminto min	miegranosat:Gavar	pproaen					
$\stackrel{3}{0}$		${ }^{0.007526]}$						
\div	$\stackrel{\square}{4}$							
\bigcirc		K12663	k,	K3	${ }^{\text {k }} 4.10{ }^{\text {a }}$	${ }^{\circ 0}$	cm	comem
\bigcirc		-1.22659	-1.04090	年		To.asese ${ }^{12}$	10.7	0.018653
\bigcirc		-0.996298	-0.asab		${ }^{-0.082956}$			
$\stackrel{\square}{\square}$		-0.08238	-0.0.8547	-0.77898	-0.0.2326			
12	s	-0.72364	-0.6ssa	-ов8790	0.6519	7239804	7.	0.07989
${ }^{13}$	-	-0.65196	-0.7184	-0.67399	-0.5877	${ }^{6.552989}$		
$\stackrel{19}{15}$		-0.0.5776	${ }_{-0.055789}$	-0.0.59364	-0.35008			
${ }^{16}$	9	-0.47833	-0.65383	-0.4556e	-0.asi75	9.877037		
- ${ }^{17}$	10	-0.433887	-0.0.0978	-0.0.408	-0.3.353931	${ }_{4}^{4.0 .10889}$		
	12	-0.35294	-0.3365	-0.3564	-.31966	3.65563		
${ }^{20}$	${ }^{15}$	-0,31299	-0.3024	-0.3036		${ }^{3.202034}$		
- ${ }^{21}$	14	-0.28009	-0.273737	-0.0.27as			2.5	
23	${ }^{16}$	6 0.23583	-0.2241	-0.22469	-0.21352	2.878987		
${ }^{4}$.0.21359	-0.20287	0.20399	-0.1334	${ }^{2350426}$		
$\frac{28}{26}$	${ }^{18}$	6 0.0 .18343	-0.13368	-0.itase	-0.75527	2007217		
- ${ }_{26}^{27}$		\% \quada, 0.7529 -0.7699	- ${ }_{0}^{-0.196888}$	${ }^{-0.108711}$	-			
-								

The application of the integral least-squares method to determine the order and
rate coefficient of reaction data. This application was pertormed with the Excel
rate coeticient
spreadsheet.

FlGURE 2.10
Plot of fit generated with the integral/least
squares approach.

Lecture 2 - Example 2.5

EXAMPLE 2.5. EVALUATION OF TEMPERATURE DEPENDENCY OF REACTIONS. A laboratory provides you with the following results for a reaction:

$$
\begin{array}{ll}
T_{1}=4^{\circ} \mathrm{C} & k_{1}=0.12 \mathrm{~d}^{-1} \\
T_{2}=16^{\circ} \mathrm{C} & k_{2}=0.20 \mathrm{~d}^{-1}
\end{array}
$$

(a) Evaluate θ for this reaction.
(b) Determine the rate at $20^{\circ} \mathrm{C}$.

Solution: (a) To evaluate this information, we can take the logarithm of Eq. 2.43 and raise the result to a power of 10 to give

$$
\theta=10^{\frac{\log k\left(T_{2}\right)-\log k\left(T_{1}\right)}{T_{2}-T_{1}}}
$$

Substituting the data gives

$$
\theta=10^{\frac{\log 0.12-\log 0.20}{4-16}}=1.0435
$$

(b) Equation 2.43 can then be used to compute

$$
k(20)=0.20 \times 1.0435^{20-16}=0.237 \mathrm{~d}^{-1}
$$

