Water Pressure \& Pressure Forces Chapter 2 - STUDENT OUTCOMES

1. Understand the difference between absolute pressure and gage pressure.
2. Recognize surfaces of equal pressure and their use in determining manometry pressure.
3. Explain how hydrostatic forces on flat and curved surfaces are obtained.
4. Define the concept of buoyancy.
5. Describe the concept of flotation stability.
6. Calculate solutions to various problems that involve these pressure concepts.

Pressure Concepts and Definitions

Atmospheric Pressure: The weight of the atmospheric column of gases divided by the area upon which it acts. (At sea level and normal conditions: $1.014 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}(\mathrm{~Pa})=1 \mathrm{bar}$)

Free Surface of Water: Water placed in a container seeks a horizontal surface minimizing its position (potential) energy. ("Water seeks its own level!")

Pressure Variation in a Static Fluid

Three holes are drilled in the container below. Will water shoot out the same distance? Why or why not? Concept: All surfaces in a static fluid are subject to normal (pressure) forces, but not shear forces since there is no fluid motion. Recall that $\tau=\mu(d v / d y)$, but $(d v / d y)=0$.

Note: Pressure varies with depth!

Pressure Variation in a Static Fluid

Sum forces along the x-axis:

But $\mathrm{L}(\sin \theta)=\mathrm{h}$, thus simplifying

If A and B are at the same elevation?

What if A is at the water surface?

Pressure gages measure pressure above or below atmospheric. Thus,
\square

Surfaces of Equal Pressure

Identify equal pressure surfaces (ES) in the figure below. Equal pressure surfaces must: 1)
2)
3)

(a)

(b)

(c)

Manometer Applications

(Example Problem - Solve on White Board)

Find the pressure in the water pipe $\left(P_{A}\right)$ if $y=8 \mathrm{~cm}, h=6 \mathrm{~cm}$, and M is mercury.

Note: Some people prefer the "swim-through" technique over the technique in the book.

Differential Manometers

(Example Problem - Solve on White Board)
Find the pressure in pipe $A\left(P_{A}\right)$ if $P_{b}=30 \mathrm{kPa}, y=20 \mathrm{~cm}$, $h=10 \mathrm{~cm}$, and M is mercury. Note: $1 \mathrm{kPa}=1,000 \mathrm{~N} / \mathrm{m}^{2}$

Note: Some people prefer the "swim-through" technique over the technique in the book.

Hydrostatic Forces on Flat Surfaces

Find pressure on strip $d A$:

The location of this hydrostatic (pressure) force is:

Purpose (of finding hydrostatic forces): Moment Calculations

Hydrostatic Force Example Problems

1) A swimming pool is 75 ft long, 30 ft wide, and 5 ft deep. Find the hydrostatic force on the bottom of pool.
2) Find the force on the 30 -ft-wide wall and its location.

Hydrostatic Force Example Problems

3) Find the force (and its location) on a 2-ft-diameter coach's viewing port on the side of the pool.

Homework Problems:

