Contaminant Transport Equations

Amended by H. R. Fuentes After P. B. Bedient

Transport

Advection

- The process by which solutes are transported by the bulk of motion of the flowing ground water.
- Nonreactive solutes are carried at an average rate equal to the average linear velocity of the water.

Hydrodynamic Dispersion

- Tendency of the solute to spread out from the advective pathway
- Two processes

Diffusion (molecular and turbulent)
Dispersion (velocity differences in space)

Diffusion

- Ions (molecular constituents) in solution move under the influence of kinetic activity in direction of their concentration gradients.
- Occurs in the absence of any bulk hydraulic movement
- Diffusive flux is proportional to concentration gradient, per Fick's First Law (M L-2 T^{-1}).

- Where $\mathrm{D}_{\mathrm{m}}=$ diffusion coefficient (typically 1×10^{-5} to $2 \times 10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$ for major ions in ground water)

Diffusion (continued)

Fick's Second Law - derived from Fick's First Law and the Continuity Equation - called "Diffusion Equation"

The Advection-Dispersion Equation Derivation (F is transport flux)

Assumptions:

1) Porous medium is homogenous
2) Porous medium is isotropic
3) Porous medium is saturated
4) Flow is steady-state
5) Darcy's Law applies

Advection Dispersion Equation

In the x-direction:
Transport by advection $=\bar{v}_{x} n C d A \quad$ units $\frac{M}{T}$
Transport by dispersion $=n D_{x}\left(\frac{\partial C}{\partial x}\right) d A \quad$ units $\frac{M}{T}$
Where:

$$
\begin{aligned}
& \bar{v}=\text { average linear velocity } \\
& \mathrm{n}=\text { porosity (constant for unit of volume) } \\
& \mathrm{C}=\text { concentration of solute } \\
& \mathrm{dA}=\text { elemental cross-sectional area of cubic } \\
& \text { element }
\end{aligned}
$$

Hydrodynamic Dispersion D_{x} caused by molecular diffusion and variations in the velocity field and heterogeneities
where:
$\alpha_{x}=$ dispersivity [L]
$D_{m}=$ Molecular diffusion

- Flux = (mass/area/time)
(-) sign before dispersion term indicates that the contaminant moves toward lower concentrations

- Total amount of solute entering the cubic element

$$
=F_{x} d y d z+F_{y} d x d z+F_{z} d x d y
$$

- Difference in amount entering and leaving element =

$$
\left(\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}\right) d x d y d z
$$

- For nonreactive solute, difference between flux in and out = amount accumulated within element
- Rate of mass change in element $=$

- Equate two equations and divide by $d V=$ $d x d y d z$:

$$
-\left(\frac{\partial F_{x}}{\partial x}\right)+\left(\frac{\partial F_{y}}{\partial y}\right)+\left(\frac{\partial F_{z}}{\partial z}\right)=n\left(\frac{\partial C}{\partial t}\right)
$$

- Substitute for fluxes and cancel n :

$$
\begin{aligned}
& \left.-\frac{\partial}{\partial x}\left(\bar{v}_{x} C\right)+\frac{\partial}{\partial y}\left(\bar{v}_{y} C\right)+\frac{\partial}{\partial z}\left(\bar{v}_{z} C\right)\right]^{\prime} \\
& \left\{\frac{\partial}{\partial x}\left[D_{x}\left(\frac{\partial C}{\partial x}\right)\right]+\frac{\partial}{\partial y}\left[D_{y}\left(\frac{\partial C}{\partial y}\right)\right]+\frac{\partial}{\partial z}\left[D_{z}\left(\frac{\partial C}{\partial z}\right)\right]\right\}=\frac{\partial C}{\partial t}
\end{aligned}
$$

- For a homogenous and isotropic medium, \bar{v} is steady and uniform.
- For a homogenous and isotropic medium, is steady and uniform.
- Therefore, D_{x}, D_{y}, and D_{z} do not vary through space.

$$
\left.D_{x}\left(\frac{\partial^{\frac{\partial}{2}}}{\partial^{2}}\right)+D_{y}\left(\frac{\partial^{2} C}{\partial^{2}}\right)+D=\left(\frac{\partial^{2} C}{\partial^{2}}\right)\right]
$$

- Advection-Dispersion Equation 3-D:

$$
\left.-\bar{v}_{x}\left(\frac{\partial C}{\partial x}\right)+\bar{v}_{y}\left(\frac{\partial C}{\partial y}\right)+\bar{v}_{z}\left(\frac{\partial C}{\partial z}\right)\right]=\frac{\partial C}{\partial t}
$$

In 1-D, the AD equation thus becomes:

Accumulation Advection Dispersion

CONTINUOUS SOURCE

- Solution for 1-D Equation for can be found using Laplace Transform

- 1-D soil column breakthrough curves

Solution can be written

$$
\frac{C}{C_{0}}=\frac{1}{2} \operatorname{Erfc}\left(\frac{L-v_{x} t}{\sqrt{4 D_{x} t}}\right)+\left(\frac{1}{2}\right) \operatorname{Exp}\left(\frac{v_{x} L}{D_{x}}\right) \operatorname{Erfc}\left(\frac{L-v_{x} t}{\sqrt{4 D_{x} t}}\right)
$$

or, in most cases

$$
\frac{C}{C_{0}}=\frac{1}{2} \operatorname{Erfc}\left(\frac{L-v_{x} t}{\sqrt{4 D_{x} t}}\right)
$$

where

$$
\begin{aligned}
& \operatorname{Erfc}(B)=1-\operatorname{Erf}(B) \\
& \operatorname{Erf}(B)=\frac{2}{\sqrt{\pi}} \int_{0}^{B} e^{-z^{2}} d z
\end{aligned}
$$

Tabulated error function

Instantaneous Sources Advection-Dispersion Only

Instantaneous POINT Source 3-D:

$$
C(x, y, z, t)=\frac{M}{(4 \pi D t)^{3 / 2}} \exp \left(-\frac{(x-v t)^{2}}{4 D_{x} t}-\frac{y^{2}}{4 D_{y} t}-\frac{z^{2}}{4 D_{z} t}\right)
$$

$$
\begin{aligned}
& M=C_{0} V \\
& D=\left(D_{x} D_{y} D_{z}\right)^{1 / 3}
\end{aligned}
$$

Instantaneous LINE Source 2-D Well:

 (with First Order Decay)$C(x, y, t)=\frac{m}{4 \pi D t} \exp \left(-\frac{(x-v t)^{2}}{4 D_{x} t}-\frac{y^{2}}{4 D_{y} t}-k t\right)$

$$
\begin{gathered}
k=\text { firstorder } \\
\quad \text { decay }\left(t^{-1}\right) \\
m=C_{o} A \\
D=\sqrt{D_{x} D_{y}}
\end{gathered}
$$

Source $\mathrm{T}_{1} \quad \mathrm{~T}_{2}$

Plan View

Instantaneous PLANE Source - 1 D

$C(x, t)=\frac{M}{\sqrt{4 \pi D_{x} t}} \operatorname{Exp}\left(-\frac{(x-v t)^{2}}{4 D_{x} t}\right)$

$$
M=\frac{\text { mass }}{\text { area }}
$$

AD Equation

