Ground Water Flow & Contamination: Introduction

Amended by Dr. Fuentes after Original by Dr. Philip B. Bedient (+2005)

Vertical Distribution of GW

Vertical Zones of Subsurface Water

- <u>Soil water zone</u>: extends from the ground surface down through the major root zone, varies with soil type and vegetation but is usually a few feet in thickness
- <u>Vadose zone</u> (unsaturated zone): extends from the surface to the water table through the root zone, intermediate zone, and the capillary zone
- <u>Capillary zone</u>: extends from the water table up to the limit of capillary rise, which varies inversely with the pore size of the soil and directly with the surface tension

Porosity

Soil Classification Based on Particle Size (after Morris and Johnson)

Material	Particle Size, mm
Clay	< 0.004
Silt	0.004 - 0.062
Very fine sand	0.062 - 0.125
Fine sand	0.125 - 0.25
Medium sand	0.25 - 0.5
Coarse sand	0.5 - 1.0

Aquifer Systems

Ground Water Use in the U.S.A.

U.S. Ground Water Regions

Contamination and Remediation

- Advective transport
- Diffusion and dispersion
- Volatilization
- Adsorption
- Biodegradation processes
- Chemical Reaction
- NAPLs
- Remediation Processes

Sources of Contamination

- Industrial spills and leaks
- Surface impoundments
- Storage tanks and pipes
- Landfills
- Burial areas and dumps
- Injection wells

Areas of Industrial Contamination

- Surface soils
- Subsurface soils
- Shallow ground water
- Deep ground water
- Vapors above water table
- Drinking water wells
 - **Receiving streams/lakes**

Contamination of Ground Water

Typical Leaking UST - BTEX

Typical DNAPL Spill Zone

DNAPL Our Most Difficult Challenge

- DNAPL source
- Residual phase
- Trapped on lenses
- Pools in low areas
- Creates soluble plumes for years
- Extremely hard to remediate

Typical Industrial Site

- Buried fuel tanks
- Above ground chem tanks
- Ponds and Impoundments
- Buried drums (older)
- Landfill area (hidden)
- Waste process area
- Receiving streams/lakes
- Nearby residential area

Typical Contaminated Site

Objectives of a Field Site Study Monitoring Well Location

• Evaluate:

Contour Lines

- Surface soils
- Subsurface soils
- Shallow ground water
- Deep ground water
- Vapors in subsurface
- Drinking water wells
- Receiving streams/lakes

The Major Aquifers of Texas

Major Aquifers of Texas

The Edwards Group

Chlorinated Solvents

Name	Structure	Uses and Other Sources
Trichloromethane (chloroform)	CI CI_C_CI H	Liquid used in manufacture of anesthetics, pharmaceuticals, fluorocarbon refrigerants and plasics. Used as solvent and insecticide. Formed from methane when chlorinating drinking water.
Vinyl chloride (chloroethene)	H C = C H H C = C C C I	Gas used in the manufacture of polyvinyl chloride. End product of microbial degradation of chlorinated ethenes.
Chloroethane	H H C C C C CI H H	Liquid used to manufacture tetraethyl lead. Degradation product of chlorinated ethanes.
1,2-Dichloroethane	H H CICCCI H H	Liquid used to manufacture vinyl chloride. Degradation product of trichloroethane.

Chlorinated Solvents (con't)

Name	Structure	Uses and Other Sources
Trichloroethene (Trichloroethylene)		Solvent used in dry cleaning and meta degreasing. Organic synthesis. Degradation product of tetrachloroethene.
Tetrachloroethene (perchloroethene) (perchloroethylene)		Solvent used in dry cleaning and meta degreasing. Used to remove soot from industrial boilers. Used in manufacture of paint removers and printing inks.
1,2-Dibromo-3-chloropropane (DBCP)	Br Br Cl e H—C—C—C—н H H H	Soil fumigant to kill nematodes. Intermediate in organic synthesis.
o-Dichlorobenzene (1,2-dichlorobenzene)	CI	Chemical intermediate. Solvent. Fumigant and insecticide. Used for industrial odor control. Found in sewage form odor control chemicals

used in toilets.

BTEX-Related Compounds

Name	Structure	Molecular Weight	Solubility in Water	Soil-Water Partition Coefficient
Benzene	\bigcirc	78.11	1780 mg/L	97
Toluene	CH ₃	92.1	500 mg/L	242
Xylene, ortho	CH ₃ CH ₃ CH ₃	106.17	170 mg/L	363
Xylene, meta	CH ₃ CH ₃ CH ₃	106.17	173 mg/L	182
Xylene, para	CH ₃ CH ₃	106.17	200 mg/L	331
Ethyl benzene	CH2CH3	106.17	150 mg/L	622