

Statistios \&

Flood Frequency Chapter 3

Dr. Philip B. Bedient

Predicting rTH00DS

Oregon flood scene

Flood Frequency Analysis

- Statistical Methods to evaluate probability exceeding a particular outcome - $\mathrm{P}(\mathrm{X}>20,000 \mathrm{cfs})=10 \%$
- Used to determine return periods of rainfall or flows
- Used to determine specific frequency flows for floodplain mapping purposes (10, 25, 50, 100 yr)
- Used for datasets that have no obvious trends
- Used to statistically extend data sets

Random Variables

- Parameter that cannot be predicted with certainty
- Outcome of a random or uncertain process - flipping a coin or picking out a card from deck
- Can be discrete or continuous
- Data are usually discrete or quantized
- Usually easier to apply continuous distribution to discrete data that has been organized into bins

Typical CDF

Figure 3.5
Cumulative frequency histogram for the Siletz River, plotted vs. class intervals.

Freq Fistogram of Flows

Figure 3.4
Relative frequencies (probabilities) for the Siletz River, plotted vs. their class mark.
Probability that Q is 10,000 to $15,000=17.3 \%$
Prob that $Q<20,000=1.3+17.3+36=54.6 \%$

Probability Distributions

CDF is the most useful form for analysis

$$
F(x)=P(X \leq x)=\sum_{i} P\left(x_{i}\right)
$$

$$
F\left(x_{1}\right)=P\left(-\infty \leq x \leq x_{1}\right)=\int_{-\infty}^{x^{1}} f(x) d x
$$

$$
P\left(x_{1} \leq x \leq x_{2}\right)=F\left(x_{2}\right)-F\left(x_{1}\right)
$$

Moments of a Distribution

Used to characterize a distribution or set of data

Moments taken about the origin ($\left.1^{\text {st }}\right)$ or the mean ($2^{\text {nd }}, 3^{\text {rd }}$, etc)

Discrete $\mathbf{P}\left(\mathbf{x}_{\mathrm{i}}\right)$

$$
\mu_{N}^{\prime}=\sum_{-\infty}^{\infty} x_{i}^{N} P\left(x_{i}\right)
$$

Continuous $\mathrm{f}(\mathrm{x})$

$$
\mu_{N}^{\prime}=\int_{-\infty}^{\infty} x^{N} f(x) d x
$$

Moments of a Distribution

First Moment about the Origin - Mean

$$
\begin{aligned}
& E(x)=\mu=\sum x_{i} P\left(x_{i}\right) \\
& E(x)=\mu=\int_{-\infty}^{\infty} x f(x) d x
\end{aligned}
$$

Discrete

Continuous

$\operatorname{Var}(x)=$ Variance

Second moment about mean

$$
\operatorname{Var}(x)=\sigma^{2}=\sum_{-\infty}^{\infty}\left(x_{i}-\mu\right)^{2} P\left(x_{i}\right)
$$

$$
\operatorname{Var}(x)=\int^{\infty}(x-\mu)^{2} f(x) d x
$$

$$
\operatorname{Var}(x)=E\left(x^{2}\right)-(E(x))^{2}
$$

$$
c v=\frac{\sigma}{\mu}=\text { Coeff. of Variation }
$$

Mstimates of Moments from a Dataset

$$
\begin{gathered}
\bar{x}=\frac{1}{n} \sum_{i}^{n} x_{i} \Rightarrow \text { Mean of Data } \\
s_{x}^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2} \Rightarrow \text { Variance } \\
\text { Std Dev. } S_{x}=\left(S_{x}^{2}\right)^{1 / 2}
\end{gathered}
$$

Skewness Goefficient Used to evaluate high or low data points - flood or drought data

Skewness $\rightarrow \frac{\mu_{3}}{\sigma^{3}} \rightarrow$ third central moment

$$
C_{s}=\frac{n}{(n-1)(n-2)} \frac{\sum\left(x_{i}-\bar{x}\right)^{3}}{s_{x}^{3}} \text { skewness coeff. }
$$

$$
\text { Coeff of } \operatorname{Var}=\frac{\sigma}{\mu}
$$

Mean, Median, Mode

- Positive Skew moves mean to right
- Negative Skew moves mean to left
- Normal Dist' n has mean = median = mode
- Median has highest prob. of occurrence

Symmetrical

Positive skew

Figure 3.9

Sliewed PDI - Long Right Tail

Figure 3.7
Continuous probability density function.

Brays Bayou Peaks (1936-2002) - skewed right

Skewed Data

Glimate Change Data

Siletz River Data

Siletz River near Siletz, OR, 1925-99
With 5-yr Running Mean

Figure 3.2
Time series of annual maximum peak flows for the Siletz River, near Siletz, Oregon. Also shown is the 5 -yr running mean, from which longerterm trends can sometimes be discerned. Only quantitative methods of time series analysis can determine for sure whether or not there are periodicities or nonstationary components in the data, but none are obvious visually.

Stationary Data Showing No Obvious Trends

Data with Trends

Figure 3.3
Hypothetical examples of nonstationary time series. (a) Linear trend. (b) Periodic trend. (c) Change in variance. (d) Change in average.

Trequency Fistogram

Figure 3.4
Relative frequencies (probabilities) for the Siletz River, plotted vs. their class mark.
Probability that Q is 10,000 to $15,000=17.3 \%$
Prob that $Q<20,000=1.3+17.3+36=54.6 \%$

Gumulative Fistogram

Figure 3.5
Cumulative frequency histogram for the Siletz River, plotted vs. class intervals.
Probability that $Q<20,000$ is 54.6%
Probability that $\mathrm{Q}>\mathbf{2 5 , 0 0 0}$ is 19%

PDIF - Gamma Dist

Figure 3.7
Continuous probability density function.

Major Distributions

- Binomial - P (x successes in n trials)

■ Exponential - decays rapidly to low probability - event arrival times

- Normal - Symmetric based on μ and σ
- Lognormal - Log data are normally dist' d
- Gamma - skewed distribution - hydro data
- Log Pearson III -skewed logs -recommended by the IAC on water data - most often used

Binomial Distribution

The probability of getting x successes followed by $n-x$ failures is the product of prob of n independent events:

$$
p^{\mathrm{x}}(1-\mathrm{p})^{\mathrm{n}-\mathrm{x}}
$$

This could be used to represent the case of flooding - a success is exceeding a certain level while a failure is falling below that level in any given year. Thus, over a 25 year period, one would just add up the number of successes and the number of failures by year.

Binomial Distribution

The probability of getting x successes followed by $n-x$ failures is the product of prob of n independent events: $p^{x}(1-p)^{n-x}$

This represents only one possible outcome. The number of ways of choosing x successes out of n events is the binomial coeff. The resulting distribution is the Binomial or $\mathrm{B}(\mathrm{n}, \mathrm{p})$.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{x})=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& \mathrm{x}=0,1,2,3, \ldots, \mathrm{n}
\end{aligned}
$$

Bin. Coeff for single success in 3 years $=3(2)(1) / 2(1)=3$
For 3 success in 3 years $=6 /(3)(2)(1)=1$

Binomial Dist' $n \mathbf{B}(n, p)$

Figure 3.13
Binomial Probability mass function (PMF). (From Benjamin and Cornell, 1970, Fig. 3.3.1.)

Risk and Reliability

The probability of at least one success in n years, where the probability of success in any year is $1 / T$, is called the RISK.

Prob success $=p=1 / T$ and Prob failure $=1-p$

$$
\begin{aligned}
\text { RISK } & =1-P(0) \\
& =1-\operatorname{Prob}(\text { no success in } n \text { years) } \\
& =1-(1-p)^{n} \\
& =1-(1-1 / T)^{n}
\end{aligned}
$$

$$
\text { Reliability }=(1-1 / T)^{n}
$$

Design Periods vs RISK and Design Inife

Expected Design Life (Years)
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Risk } \\ \mathbf{\%}\end{array} & \mathbf{5} & \mathbf{1 0} & \mathbf{2 5} & \mathbf{5 0} & \mathbf{1 0 0} \\ \hline \mathbf{7 5} & 4.1 & 7.7 & 18.5 & 36.6 & 72.6 \\ \hline \mathbf{5 0} & 7.7 & 14.9 & 36.6 & 72.6 & 144.8 \\ \hline \mathbf{2 0} & 22.9 & 45.3 & 112.5 & 224.6 & 448.6 \\ \hline \mathbf{1 0} & 48 & 95.4 & 237.8 & 475.1 & 949.6 \\ \hline\end{array}\right\}^{2}$

Rist Hzample

What is the probability of at least one 50 yr flood in a 30 year mortgage period, where the probability of success in any year is $1 / \mathrm{T}=1.50=0.02$

$$
\begin{aligned}
\text { RISK } & =1-(1-1 / T)^{\mathrm{n}}=1-(1-0.02)^{30} \\
& =1-(0.98)^{30}=0.455 \text { or } 46 \%
\end{aligned}
$$

If this is too large a risk, then increase design level to the 100 year where $p=0.01$

$$
\text { RISK }=1-(0.99)^{30}=0.26 \text { or } 26 \%
$$

Important Probability

Distributions

Normal - mean and std dev. - zero skew

Log Normal (Log data) - same as normal

Gamma - skewed data
Exponential- constant skew

Normal, Logiv, IPLI

Siletz River, Comparison of PDFs

Figure 3.15
Four PDFs fit to data for the Siletz River. Fit is by the method of moments, as shown in the text, with moments given in Example 3.3.

Normal Prob Paper

Figure 3.16
Normal probability paper.

Normal Prob Paper

$1-F \longrightarrow$

9909	99.9	99

- Place mean at $\mathrm{F}=50 \%$
||

Std Dev $=-1000$

- Place one S_{x} at 15.9 and 84.1%
- Connect points with st. line
- Plot data with plotting position formula $\mathrm{P}=\mathrm{m} / \mathrm{n}+1$
بس
$\begin{array}{llllll}0.01 & 0.1 & 0.5 & 2 & 5 & 10\end{array}$

$$
\begin{gathered}
20 \quad 3040 \\
F
\end{gathered}
$$

Figure 3.16
Normal probability paper.

Normal Dist' n rit

Figure P3.19
Normal probability plot for Kentucky River data. (From Haan, 1977, p. 137.)

Hesponential Dist' n

Figure 3.14

Txpponential Dist' n

$$
f(t)=k e^{-k t} \quad \text { for } t \geq 0
$$

$$
F(t)=1-e^{-k t}
$$

Avg Time Between Events

$$
\begin{aligned}
& E(t)=\int_{0}^{\infty}(t k) e^{-k t} d t \\
& \text { Letting } u=k t \\
& \text { Mean or } E(t)=\frac{1}{k} \int_{0}^{\infty} u e^{-u} d u=\frac{1}{k} \\
& \operatorname{Var}=\frac{1}{k^{2}}
\end{aligned}
$$

Gamma Dist' n

$$
Q_{n}=\frac{1}{K \Gamma(n)}\left(\frac{t}{k}\right)^{n-1} e^{-t / K}
$$

Mean or $E(t)=n \mathrm{~K}$

$$
\text { Var }=n K^{2} \quad \text { where } \Gamma(n)=(n-1)!
$$

Parameters of Dist' n

Distribution	Normal x	LogN $Y=\log x$	Gamma x	Exp t
Mean	μ_{x}	μ_{y}	nk	$1 / \mathrm{k}$
Variance	$\sigma_{\mathrm{x}}{ }^{2}$	$\sigma_{\mathrm{y}}{ }^{2}$	nk^{2}	$1 / \mathrm{k}^{2}$
Skewness	zero	zero	$2 / \mathrm{n}^{0.5}$	2

Frequency Analysis of Peak Flow Data

Year	Rank	Ordered cis
1940	1	42,700
1925	2	31,100
1932	3	20,700
1966	4	19,300
1969	5	14,200
1982	6	14,200
1988	7	12,100
1995	8	10,300
2000	$\ldots \ldots$	$\ldots \ldots$.

Trequency Analysis of Peak Flow Data

- Take Mean and Variance (S.D.) of ranked data
- Take Skewness C_{s} of data (3rd moment about mean)
- If C_{s} near zero, assume normal dist' n
- If C_{s} large, convert $\mathrm{Y}=\log \mathrm{x}$ - (Mean and Var of Y)
- Take Skewness of Log data - $\mathrm{C}_{\mathrm{s}}(\mathrm{Y})$
- If C_{s} near zero, then fits Lognormal
- If C_{s} not zero, fit data to Log Pearson III

Siletz River Thxample

 75 data points - Txxcel ToolsOriginal Q $\quad \mathrm{Y}=\log \mathbf{Q}$

Mean	20,452	4.2921
Std Dev	6089	0.129
Skew	0.7889	-0.1565
Coef of Variation	0.298	0.03

Siletz River Frxample - Fit Normal and Iognt

Normal Distribution

$Q=Q_{m}+z S_{Q}$

$$
\begin{aligned}
Q_{100}= & 20452+2.326(6089)=34,620 \mathrm{cfs} \\
& \text { Mean }+\mathrm{z} \text { (S.D.) }
\end{aligned}
$$

$$
\text { Where } z=\text { std normal variate - tables }
$$

$\underline{\text { Log } N \text { Distribution }}$
 $$
\underline{Y}=Y_{m}+k S_{Y}
$$

$$
Y_{100}=4.29209+2.326(0.129)=4.5923
$$

$$
k=\text { freq factor and } Q=10^{Y}=39,100 \mathrm{cts}
$$

Iog Pearson Type III

$\underline{\text { Log Pearson Type III } Y=Y_{m}+k S_{Y}}$
K is a function of Cs and Recurrence Interval Table 3.4 lists values for pos and neg skews

For $C s=-0.15$, thus $K=2.15$ from Table 3.4

$$
\begin{aligned}
& Y_{100}=4.29209+2.15(0.129)=4.567 \\
& Q=10^{Y}=36,927 \text { cfs for LP III }
\end{aligned}
$$

Plot several points on Log Prob paper

Togiv Prob Paper for GDIT

Figure 3.17

TogiT Plot of Siletz R.

Figure 3.18
Lognormal plot of Siletz River flows, with 90% confidence intervals. Only every fifth value is plotted in the middle of the ranked series, for additional clarity.

Siletz River Flow Data

Figure 3.20
Comparison of four fitted CDFs for Siletz River flows 1925-1999.

Tlow Duration Gurves

(a)

(b)

Figure 3.12
Flow-duration curve for the Siletz River. (a) Arithmetic scale, used for analysis of yield for water supply. (b) Logarithmic scale, useful when maximum and minimum flows have large separation.

Trends in data have to be removed before any Frequency Analysis

White Oak at Houston (1936-2002)

