

Dr. Philip B. Bedient

Predicting FLOODS

Oregon flood scene

Houston flood scene (photo courtesy of Houston chronicle)

Flood Frequency Analysis

- Statistical Methods to evaluate probability exceeding a particular outcome - P (X >20,000 cfs) = 10%
- Used to determine return periods of rainfall or flows
- Used to determine specific frequency flows for floodplain mapping purposes (10, 25, 50, 100 yr)
- Used for datasets that have no obvious trends
- Used to statistically extend data sets

Random Variables

- Parameter that cannot be predicted with certainty
 Outcome of a random or uncertain process flipping a coin or picking out a card from deck
- Can be discrete or continuous
- Data are usually discrete or quantized
- Usually easier to apply continuous distribution to discrete data that has been organized into bins

Typical CDF

Figure 3.5

Cumulative frequency histogram for the Siletz River, plotted vs. class intervals.

Freq Histogram of Flows

Figure 3.4

Relative frequencies (probabilities) for the Siletz River, plotted vs. their class mark. Probability that Q is 10,000 to 15, 000 = 17.3%Prob that Q < 20,000 = 1.3 + 17.3 + 36 = 54.6%

Probability Distributions

CDF is the most useful form for analysis

$$F(x) = P(X \le x) = \sum_{i} P(x_i)$$

 $F(x_1) = P(-\infty \le x \le x_1) = \int f(x) dx$ $-\infty$

 $P(x_1 \le x \le x_2) = F(x_2) - F(x_1)$

Moments of a Distribution

Used to characterize a distribution or set of data

Moments taken about the origin (1st) or the mean (2nd, 3rd, etc)

Discrete P (x_i)

$$\mu'_N = \sum_{-\infty}^{\infty} x_i^N P(x_i)$$

Continuous f (x)

$$\mu_N = \int_{-\infty}^{\infty} x^N f(x) dx$$

Moments of a Distribution

First Moment about the Origin - Mean

$$E(x) = \mu = \sum x_i P(x_i)$$

$$E(x) = \mu = \int_{-\infty}^{\infty} x f(x) dx$$

Continuous

Var(x) = Variance Second moment about mean

$$Var(x) = \sigma^2 = \sum_{-\infty}^{\infty} (x_i - \mu)^2 P(x_i)$$

$$Var(x) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

$$Var(x) = E(x^2) - (E(x))^2$$

$$cv = \frac{\sigma}{\mu}$$
 = Coeff. of Variation

Estimates of Moments from a Dataset $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \Rightarrow$ Mean of Data

$$s_x^2 = \frac{1}{n-1} \sum (x_i - \bar{x})^2 \implies \text{Variance}$$

Std Dev.
$$S_x = (S_x^2)^{1/2}$$

Skewness Coefficient Used to evaluate high or low data points - flood or drought data

Skewness
$$\rightarrow \frac{\mu_3}{\sigma^3} \rightarrow$$
 third central moment

$$C_s = \frac{n}{(n-1)(n-2)} \frac{\sum (x_i - \bar{x})^3}{s_x^3}$$
 skewness coeff.

Coeff of Var =
$$\frac{\sigma}{\mu}$$

Mean, Median, Mode

- Positive Skew moves mean to right
- Negative Skew moves mean to left
- Normal Dist' n has mean = median = mode
- Median has highest prob. of occurrence

Effect of skewness on PDF and relative locations of mean, median, and mode. (From Haan, 1977, Fig. 3.3.).

Skewed PDF - Long Right Tail

Brays Bayou Peaks (1936-2002) – skewed right

Skewed Data

Climate Change Data

Siletz River Data

Figure 3.2

Time series of annual maximum peak flows for the Siletz River, near Siletz, Oregon. Also shown is the 5-yr running mean, from which longerterm trends can sometimes be discerned. Only quantitative methods of time series analysis can determine for sure whether or not there are periodicities or nonstationary components in the data, but none are obvious visually.

Stationary Data Showing No Obvious Trends

Data with Trends

Figure 3.3

Hypothetical examples of nonstationary time series. (a) Linear trend. (b) Periodic trend. (c) Change in variance. (d) Change in average.

Frequency Histogram

Figure 3.4

Relative frequencies (probabilities) for the Siletz River, plotted vs. their class mark. Probability that Q is 10,000 to 15, 000 = 17.3%Prob that Q < 20,000 = 1.3 + 17.3 + 36 = 54.6%

Cumulative Histogram

Figure 3.5

Cumulative frequency histogram for the Siletz River, plotted vs. class intervals.

Probability that Q < 20,000 is 54.6 % Probability that Q > 25,000 is 19 %

PDF - Gamma Dist

Major Distributions

- Binomial P (x successes in n trials)
- Exponential decays rapidly to low probability event arrival times
- **Normal** Symmetric based on μ and σ
- Lognormal Log data are normally dist' d
- Gamma skewed distribution hydro data
- Log Pearson III -skewed logs -recommended by the IAC on water data - most often used

Binomial Distribution

The probability of getting x successes followed by n-x failures is the product of prob of n independent events:

 $p^{x} (1-p)^{n-x}$

This could be used to represent the case of flooding – a success is exceeding a certain level while a failure is falling below that level in any given year. Thus, over a 25 year period, one would just add up the number of successes and the number of failures by year.

Binomial Distribution

The probability of getting x successes followed by n-x failures is the product of prob of n independent events: $p^{x} (1-p)^{n-x}$

This represents only one possible outcome. The number of ways of choosing x successes out of n events is the binomial coeff. The resulting distribution is the Binomial or B(n,p).

P(x) =
$$\frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

x = 0, 1, 2, 3, ..., n

Bin. Coeff for single success in 3 years = 3(2)(1) / 2(1) = 3For 3 success in 3 years = 6 / (3) (2)(1) = 1

Binomial Dist'n B(n,p)

Binomial Probability mass function (PMF). (From Benjamin and Cornell, 1970, Fig. 3.3.1.)

Risk and Reliability

The probability of at least one success in n years, where the probability of success in any year is 1/T, is called the RISK.

Prob success = p = 1/T and Prob failure = 1-p

RISK = 1 - P(0)= 1 - Prob(no success in n years) = 1 - (1-p)^n = 1 - (1 - 1/T)^n

Reliability = $(1 - 1/T)^n$

Design Periods vs RISK and Design Life

Expected Design Life (Years)

Risk %	5	10	25	50	100	
75	4.1	7.7	18.5	36.6	72.6	
50	7.7	14.9	36.6	72.6	144.8	
20	22.9	45.3	112.5	224.6	448.6	$\left\{ \right\} x $
10	48	95.4	237.8	475.1	949.6	

Risk Example

What is the <u>probability of at least</u> one 50 yr flood in a 30 year mortgage period, where the probability of success in any year is 1/T = 1.50 = 0.02

RISK = 1 - $(1 - 1/T)^n = 1 - (1 - 0.02)^{30}$

 $= 1 - (0.98)^{30} = 0.455 \text{ or } 46\%$ If this is too large a risk, then increase design level to the 100 year where p = 0.01

RISK = 1 - $(0.99)^{30}$ = 0.26 or 26%

Important Probability Distributions

Normal – mean and std dev. – zero skew Log Normal (Log data) – same as normal Gamma – skewed data

Exponential- constant skew

Normal, LogN, LPIII

Four PDFs fit to data for the Siletz River. Fit is by the method of moments, as shown in the text, with moments given in Example 3.3.

Normal probability paper.

Normal Dist'n Fit

Normal probability plot for Kentucky River data. (From Haan, 1977, p. 137.)

Exponential Dist'n

Exponential Dist'n $f(t) = k e^{-kt}$ for $t \ge 0$ $F(t) = 1 - e^{-kt}$ Avg Time Between Events

$$E(t) = \int_{0}^{\infty} (tk)e^{-kt}dt$$
Letting $u = kt$

$$Mean \quad or \quad E(t) = \frac{1}{k}\int_{0}^{\infty} ue^{-u}du = \frac{1}{k}$$

$$Var = \frac{1}{k^{2}}$$

Gamma Dist'n

$$Q_{n} = \frac{1}{K\Gamma(n)} \left(\frac{t}{k}\right)^{n-1} e^{-t/K}$$
Mean or $E(t) = nK$

$$Var = nK^{2} \quad where \Gamma(n) = (n-1)!$$

$$n = 1 \qquad Unit Hydrographs$$

$$n = 2 \qquad n = 3$$

Parameters of Dist'n

Distribution	Normal	LogN	Gamma	Exp
	X	Y = logx	X	t
Mean	$\mu_{\rm x}$	μ _y	nk	1/k
Variance	σ_x^2	σ_y^2	nk ²	1/k ²
Skewness	zero	zero	2/n ^{0.5}	2

Frequency Analysis of Peak Flow Data

Year	Rank	Ordered cfs
1940	1	42,700
1925	2	31,100
1932	3	20,700
1966	4	19,300
1969	5	14,200
1982	6	14,200
1988	7	12,100
1995	8	10,300
2000		

Frequency Analysis of Peak Flow Data

- Take Mean and Variance (S.D.) of ranked data
- Take Skewness C_s of data (3rd moment about mean)
- If C_s near zero, assume normal dist' n

- If C_s large, convert Y = Log x (Mean and Var of Y)
- Take Skewness of Log data C_s(Y)
- If C_s near zero, then fits Lognormal
- If C_s not zero, fit data to Log Pearson III

Siletz River Example 75 data points - Excel Tools

Original Q Y = Log Q

Mean	20,452	4.2921	
Std Dev	6089	0.129	
Skew	0.7889	- 0.1565	
Coef of Variation	0.298	0.03	

Siletz River Example - Fit Normal and LogN

<u>Normal Distribution</u> $Q = Q_m + z S_Q$ $Q_{100} = 20452 + 2.326(6089) = 34,620 cfs$ Mean + z (S.D.)

Where z = std normal variate - tables

Log N Distribution $Y = Y_m + k S_Y$ $Y_{100} = 4.29209 + 2.326(0.129) = 4.5923$ $k = freq factor and Q = 10^Y = 39,100 cfs$

Log Pearson Type III Log Pearson Type III $Y = Y_m + k S_Y$

K is a function of *C*s and *Recurrence* Interval *Table 3.4 lists values for pos and neg skews*

For $C_{S} = -0.15$, thus K = 2.15 from Table 3.4

 $Y_{100} = 4.29209 + 2.15(0.129) = 4.567$

 $Q = 10^{Y} = 36,927$ cfs for LP III Plot several points on Log Prob paper

LogN Prob Paper for CDF

LogN Plot of Siletz R.

Lognormal plot of Siletz River flows, with 90% confidence intervals. Only every fifth value is plotted in the middle of the ranked series, for additional clarity.

Siletz River Flow Data

Flow Duration Curves

Flow-duration curve for the Siletz River. (a) Arithmetic scale, used for analysis of yield for water supply. (b) Logarithmic scale, useful when maximum and minimum flows have large separation.

Trends in data have to be removed before any Frequency Analysis

White Oak at Houston (1936-2002)

