Hydraulic Efficiency in Open Channels

Recall Manning's Eq'n: $Q=A V=\left(k_{M} / n\right) A R_{h}{ }^{2 / 3} S_{e}{ }^{1 / 2}$
Based on this equation, how would we maximize Q for a given slope and " n " value? Ans:
Alternatively: \qquad
Which of the shapes below is most efficient?
Is that shape practical? Why? Note the best alternatives.

Figure 6.5 Hydraulically efficient sections

Energy Principles in Open Channels

 (Three Forms of Energy per Unit Weight)Like pipe flow, the energy forms are: Potential, Pressure, and Kinetic and expressed as energy head: Position + Pressure + Velocity $=\mathrm{H}$

Since V varies across channel
Avg "V" Head $=\alpha\left(V^{2} / 2 g\right)$ where $\alpha=$ energy coef. (1.05 to 1.20) Also, p / γ can vary if bottom slope is

Specific Energy in Open Channels

(Interrelationships Between Energy Forms)
Total Energy Head in Open Channels: $H=z+y+V^{2} / 2 g \rightarrow$ arbitrary datum However, specific energy head is: $E=y+V^{2} / 2 g=y+Q^{2} /\left(2 g A^{2}\right) \Rightarrow$ when the channel bottom is the datum. If $E_{2}=E_{1}$ below (minimal losses), how do
 the specific energy components change from Section 2 to 1?

Specific Energy Curves

(Flow Regimes \& Alternate Depths)

Minimum Energy and Critical Depth (Subcritical and Supercritical Flow)

Specific Energy, E

At one location, the energy is a minimum ($E_{c} \rightarrow$ critical flow) and the depth is called critical depth (y_{c}). It separates flow regimes: Supercritical Flow: $E_{1} \rightarrow$ low depth, high V Subcritical Flow: $\mathrm{E}_{2} \rightarrow$ high depth, low V Steep channel slopes will produce supercritical flow.

Critical Depth \& the Froude Number
 (Minimizing Specific Energy in a Channel)

To find y_{c}, set the $1^{1 \text { st }}$ derivative of E equal to $0: d E / d y=0$ $d E / d y=d / d y\left[y+Q^{2} / 2 g A^{2}\right]=1-\left[2 Q^{2} / 2 g A^{3}\right](d A / d y)=0$ Note from the figure that $d A / d y=T$. Substituting yields, $1=Q^{2} T / g A^{3} \rightarrow$ Also, $A / T=D$ (hydraulic depth). Thus, $1=Q^{2} /\left(g D A^{2}\right)=V^{2} / g D$ or $1=V /(g D)^{1 / 2}=N_{F} \rightarrow$ Froude Number Rectangular channels: $y_{c}=\left(q^{2} / g\right)^{1 / 3} ; q=Q / b$ and $b=$ channel width.
Use: $Q^{2} / g=A^{3} / T=D A^{2}$ to find y_{c} for all other channels.

Froude Number and Critical Depth

 (Rectangular and Non-rectangular Channels)
$N_{F} \rightarrow$ Ratio of inertial to gravity force. Alternatively, the ratio of flow velocity to the velocity of a disturbance wave.
\leftarrow Disturbance wave (throw stone in pond) $N_{F}=V /(g D)^{1 / 2}=1$ (critical flow). Thus the channel velocity equals the wave speed.
$N_{F}<1$ (subcritical flow) \rightarrow The channel velocity (V) is less than the wave speed $(g D)^{1 / 2}$ (i.e., throw a stone into channel and the disturbance wave will propagate upstream).
$N_{F}>1$ (supercritical flow) Disturbance wave washes away.

Critical Depth \& Froude Number
 (Example Problem - Rectangular Channel)

Given: Concrete channel with $\mathrm{S}_{0}=0.01 \rightarrow$
Find normal \& critical depths \& N_{F}.
From Table 6.2: $n=0.013$, \& Table 6.1:
$A=$ \square $\mathrm{P}=$ \square Find d_{n} :
$Q=(1 / n) A R_{h}{ }^{2 / 3} S_{0}^{1 / 2}=(1 / n)\left(A^{5 / 3} / P^{2 / 3}\right) S_{0}^{1 / 2}$

Hence, $\left.Q n / S_{0}{ }^{1 / 2}=\left(100^{*} 0.013\right) /(0.01)^{1 / 2}=\left(5 y_{n}\right)^{5 / 3 /\left[5+2 y_{n}\right.}\right]^{2 / 3}$
Solving iteratively (or $w /$ charts or software), $y_{n}=2.31 \mathrm{~m}$
$V=Q / A=$ \square $D=A / T=$ \square $N_{F}=V /(g D)^{1 / 2}=$
Flow is supercritical since $N_{F}>1$. $q=Q / b=$ \square $y_{c}=\left(q^{2} / g\right)^{1 / 3}=\left(20^{2} / 9.81\right)^{1 / 3}=$ \square Note: $y_{n}<y_{c}$

Critical Depth \& Froude Number

 (Example Problem \rightarrow Trapezoidal Channel)Given: Channel $w / Q=1510 \mathrm{cfs}$ $S_{0}=0.00088, m=1.5, b=25 \mathrm{ft}$
Solution: From Table 6.1:
$A=$ \square $T=$ \square Thus,

$A=y(25+1.5 y) T=25+3 y$. At critical depth: $Q^{2} / g=A^{3} / T$ $Q^{2} / g=(1510)^{2} / 32.2=70,800=\left[y_{c}\left(25+1.5 y_{c}\right)\right]^{3} /\left[25+3 y_{c}\right]$
Solving iteratively (or w/charts or software), $y_{c}=4.41 \mathrm{ft}$ Recall from previous class for this channel: $y_{n}=6.25 \mathrm{ft}$ Since $y_{n}>y_{c} \rightarrow$ Flow is

