Pump Combinations - Large Flow Range

 (Concepts and Visualization)Design Objective: Operate pumps at their peak efficiency.
Q: What is the flow range for operating this pump at an 80% or better efficiency?

Q: A project requires a pump head of 60 ft but Q varies (250-1000 gpm). Will this pump work? \rightarrow

Using Pumps in Parallel

(Concepts and Visualization)

Pumps in Parallel: Flows are additive for a given pump head.
Q: A project requires a pump head of 60 ft , but Q varies (250 to 1000 gpm). Design an efficient pump system. A: Use two pumps in parallel: Pump $1 \rightarrow$ high efficiency for $Q=250$ to 500 gpm \& Pump 2
\rightarrow high " e " for $Q=300$ to 550 gpm . Use both pumps for high flows.

Pump Combinations - Large Head Range

 (Concepts and Visualization)Design Objective: Operate pumps at their peak efficiency.
Q: What is the pump head range for operating this pump at efficiencies greater than 80%.

Q: A project requires a flow of 200 gpm , but H_{p} varies (60 to 155 feet). Will this pump work? \rightarrow

Using Pumps in Series

(Concepts and Visualization)
Pumps in Series: Heads are additive for a given pump flow.
Q: A project requires a flow of 200 gpm , but H_{p} varies (60 to 155 feet). Design an efficient pump system. A: Use two pumps in series: Pump $1 \rightarrow$ high efficiency for $H_{p}=40$ to 80 ft \& Pump $2 \rightarrow$ high " e " for $H_{p}=45$ to 90 ft . Use both pumps for high heads.

Analysis of Pumps in Series and Parallel (Example Problem)

For a pump-pipeline system; $E_{B}=90 \mathrm{~m}, E_{A}=80 \mathrm{~m}, L=300 \mathrm{~m}$, $D=40 \mathrm{~cm}, e=0.12 \mathrm{~mm}, v=1.31 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}$. Find the Q, e, and H_{p} for 1 pump, 2 pumps in series, \& 2 pumps in parallel.
Solution: From an energy balance:
or, $H_{p}=$ \qquad where $H_{s}=E_{B}-E_{A}=10 \mathrm{~m}$ Note: The pump adds energy to overcome static lift $\left(H_{s}\right)$, friction loss, and minor losses. Note that $\sum K=1.65$

Determine the system head curve for this pipeline.

Pumps in Series					
ample Problem - con			2.44		
Fill in the solution table \rightarrow					
			Plot the system head curve on the pump's characteristic curves. Find the Q, e, and H_{p} for 1 pump, 2 pumps in series, \& 2 in parallel.		

Selection of a Pump (Visualization and Design Concepts)

Q: What is the best type of pump for high heads and low flows? ...for low heads and high flows? What is the best type for a broad range of flow and head conditions?

Selection of a Pump (Design Concepts and Example Problem)

The required flow for a
pipeline is $70 \mathrm{~L} / \mathrm{sec}$. Based
on the energy equation,
the required pump head is
40 m. Based on the
manufacture's pump
selection chart, either
Pump I or Pump II will
work. The characteristic
curves for each pump are
shown on the next slide.

Selection of a Pump
 (Design Concepts and Example Problem)

Q: Choose the best pump and state its operating conditions.

