Water Pumps Chapter 5-STUDENT OUTCOMES

1. Describe the operational difference between centrifugal pumps and other types of pumps.
2. Define and use pump characteristic curves.
3. Describe the operation of pumps in pipelines, branching systems, and pipe networks.
4. Explain series and parallel pump configurations.
5. Understand the concepts of cavitation, specific speed, and pump similarity.
6. Recognize how pump selection is accomplished.
7. Calculate solutions to various pump analysis and design problems involving these concepts.

Description of Pumps and Pump Types (Definitions and Visualization)

Pump:

Turbo-hydraulic: fluid moved by rotating vanes or another moving fluid (e.g., centrifugal, jet, and propeller pumps)
Positive displacement: fluid moved by precise machine displacements (e.g., screw and reciprocal pumps)

Q: Guess these pump types.

Centrifugal (Radial Flow) Pumps (Visualization and Flow Principles)

Q: Will water be ejected from the pipe T if we spin it?
A:
Q: What principle of physics is being utilized to move water?
A:

Figure 5.1 Demour's centrifugal pump

Centrifugal (Radial Flow) Pumps

(Visualization and Derivation of Power Input)
From Newton's $2^{\text {nd }}$ Law, derive the impulse momentum eq'n: $F=\square=\rho Q\left(V_{0}-V_{i}\right) \rightarrow$ from Chap 3

Q: What is the relationship between force and torque (T)?

applied to impulse-momentum:
$T=\rho Q\left(r_{0} V_{0} \cos a_{0}-r_{i} V_{i} \cos a_{i}\right)$
Also, Power (P) =
So the Pump Power Input is:
$\mathrm{P}_{\mathrm{i}}=\rho \mathrm{Q} \omega\left(\mathrm{r}_{0} \mathrm{~V}_{0} \cos \alpha_{0}-\mathrm{r}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}} \cos \alpha_{\mathrm{i}}\right)$

Centrifugal (Radial Flow) Pumps

(Power Input Equation: Variable Definitions)
Q: Explain the meaning of the variables u_{0} and v_{0}.
A:

Q: Define the variable V_{0} ?
Q: Defin

Q: How can the radial velocities $\left(V_{r o} \& V_{r i}\right)$ found given Q ?

Centrifugal (Radial Flow) Pumps

(Equations for Power Output \& Efficiency)
Q: Does energy increase on the output side of the pump? If so, in what form? Does the flow rate increase?
A:

Pump Power Output: $P_{0}=\gamma Q H_{p}$
Pump Efficiency:
$e_{p}=P_{0} / P_{i}$
Motor Efficiency:
$e_{m}=P_{i} / P_{m}$
Overall Efficiency:

Centrifugal (Radial Flow) Pumps

(Pump and Motor Selection Example Problem)

A centrifugal pump is required to lower the stormwater depth in a 12 ft by 10 ft rectangular sump at the rate of 1 foot every minute. The pump must overcome a lift of 20 feet. If the overall efficiency rating of the pump is 75%, select the appropriate pump (flow rate in gpm) and motor (power in kW). Assume pipeline losses are negligible.

Ans. $Q=$
$P_{0}=\square$
$P_{0}=\square$
$P_{m}=\square$

Centrifugal Pumps

 (Example Problem)Find: Pump power input $\left(P_{i}\right)$.

Given: Pump impeller thickness $=30 \mathrm{~cm}$; diameters ($D_{0}=150$ $\left.\mathrm{cm}, D_{i}=50 \mathrm{~cm}\right), V_{i}=17.7 \mathrm{~m} / \mathrm{sec}, \alpha_{i}=45^{\circ}, \beta_{0}=150^{\circ}$, rotation speed $(\omega)=100 \mathrm{rad} / \mathrm{sec}$, and $Q=5.89 \mathrm{~m}^{3} / \mathrm{sec}$.
Ans. $P_{i}=\rho Q \omega\left[r_{0} V_{0} \cos \left(a_{0}\right)-r_{i} V_{i} \cos \left(a_{i}\right)\right] ; u_{0}=$

$v_{\text {ro }}=$	
$v_{\text {to }}=$	
$V_{0}=$	$=\left[(4.17)^{2}+(75-7.22)^{2}\right]^{\frac{1}{2}}=$
$a_{0}=-\quad=3.52^{\circ} ;$ substituting $P_{i}=28,100 \mathrm{~kW}$	

Homework Problems:

