Pipelines and Pipe Networks Chapter 4 - STUDENT OUTCOMES

1. Explain the hydraulic principles used to analyze and design pipelines connecting two reservoirs.
2. Describe the negative pressure scenarios that can occur in pipelines and pumps.
3. Understand branching pipe system analysis.
4. Define the hydraulic concepts used to evaluate the flow in complex pipe networks.
5. Describe water hammer phenomena in pipelines and the available solution methodologies.
6. Calculate solutions to various pipeline and pipe network problems that involve these concepts.

Definitions and Concepts (Pipe Systems, Pipelines, and Pipe Networks)

Pipe Systems: an arrangement of interconnecting pipes in series, parallel, or branches to transport fluids.
Pipelines:
Pipe Networks:
The Two Reservoir Problem: (See the figure below.)
Q: How do you determine the head loss?
Q: Between what 2 points?

Definitions and Concepts (Pipelines Connecting Two Reservoirs)

The Two Reservoir Problem: (See the figure below.) Q: Write out the equation that results from balancing energy between the two reservoir (water) surfaces.

Two Reservoir Example Problem

(Find the head loss given pipe size, material, and flow rate.)
Determine the water surface elevation in reservoir "A."
Energy Eq'n: $h_{A}-h_{B}=h_{L}$
\square

\square
\square
\square

Two Reservoir Example Problem

(Find the flow rate given pipe size, material, and head loss.)

Determine the flow rate in the galvanized iron pipe.
$h_{A}-h_{B}=100 \mathrm{~m}=h_{L}$
$h_{L}=h_{e}+h_{f}+h_{d}$
$h_{L}=\left[f(L / D)+\sum K\right]\left(V^{2} / 2 g\right)$

\qquad

Two Reservoir Example Problem

(Find the pipe size given material, flow rate, and head loss.)

Determine the galvanized iron pipe size required.
$h_{A}-h_{B}=100 \mathrm{~m}=h_{L}$
$h_{L}=h_{e}+h_{f}+h_{d}$
$h_{L}=\left[f(L / D)+\sum K\right]\left(V^{2} / 2 g\right)$

\qquad

Pipelines with Negative Pressure

(When does pressure becomes sub-atmospheric?)
Exercise 1: Draw the EGL and HGL for the pipeline below. Exercise 2: Given the datum, draw and identify the three forms of energy at point 1. Repeat for point 2.

Q: What can you say about the pressure head at point 2?
Q: When is this scenario likely to happen?

Negative Pressure
Homework Problems:
Example
Determine the pressure head at the summit of the pipeline. Balance energy: A to B Found $\mathrm{Q}=411 \mathrm{~L} / \mathrm{s}$. Next?

