FUNDAMENTALS OF HYDRAULIC ENGINEERING SYSTEMS - 5TH Edition

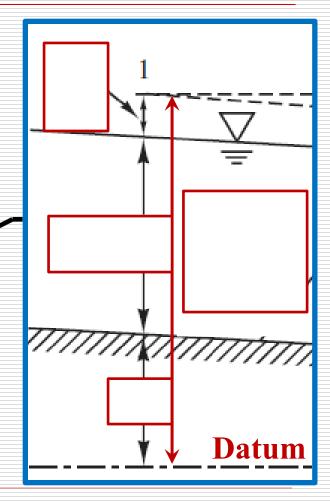
Houghtalen, Akan, and Hwang Pearson/Prentice Hall

Chapter 6
Water Flow in
Open Channels

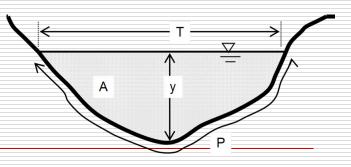
Energy Principles in Open Channels

(Three Forms of Energy per Unit Weight)

Like pipe flow, the energy forms are: Potential, Pressure, and Kinetic and expressed as energy head: > Position + Pressure + Velocity = H Since V varies across channel -Avg "V" Head = $\alpha(V^2/2g)$ where α = energy coef. (1.05 to 1.20) Also, p/γ can vary if bottom slope is not constant due to centrifugal force.



Hydraulic Efficiency in Open Channels



Recall Manning's Eq'n: $Q = AV = (k_M/n)AR_h^{2/3}S_e^{1/2}$

Based on this equation, how would we maximize Q for a given slope and "n" value? Ans:

Alternatively:

Which of the shapes below is most efficient?

Is that shape practical? Why? Note the best alternatives.

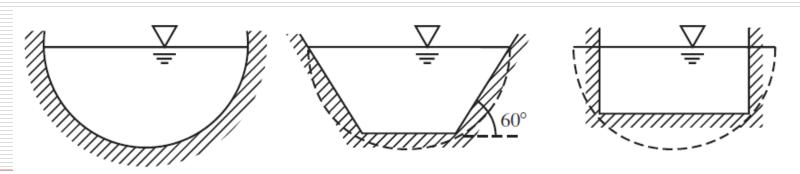
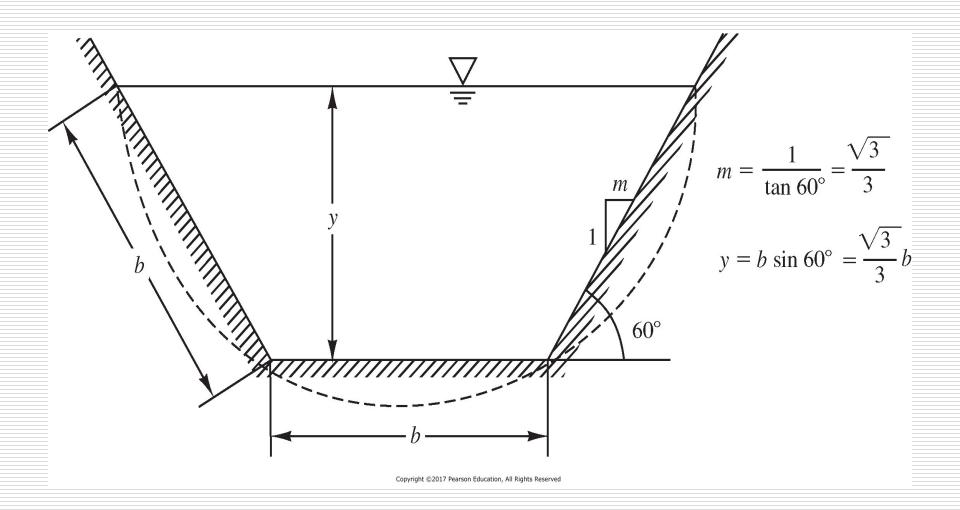


Figure 6.5 Hydraulically efficient sections

Figure 6.6 Best hydraulic trapezoidal section {see demonstration of the BH Trapezoidal section or half-hexagon)



Specific Energy in Open Channels

(Interrelationships Between Energy Forms)

Total Energy Head in Open Channels:

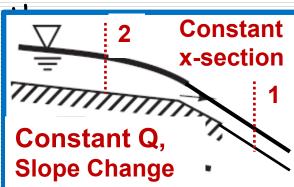
 $H = z + y + V^2/2g \rightarrow$ arbitrary datum

However, specific energy head is:

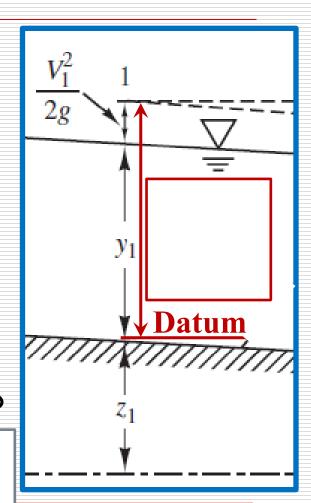
$$E = y + V^2/2g = y + Q^2/(2gA^2)$$

when the channel bottom is the datum.

If $E_2 = E_1$ below (minimal losses), how do

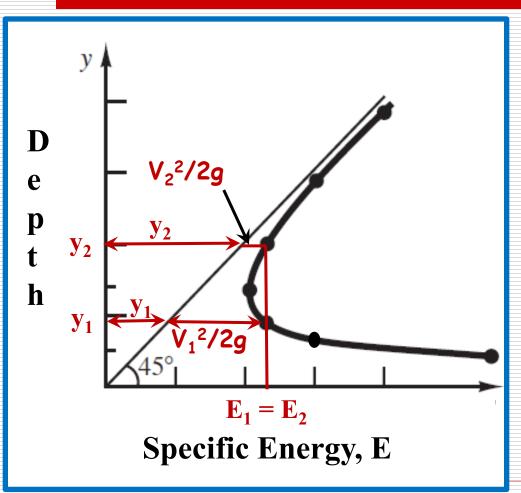


the specific energy components change from Section 2 to 1?



Specific Energy Curves

(Flow Regimes & Alternate Depths)



$E = y + Q^2/(2gA^2)$

For a constant Q, plotting "E" vs. a varying "y" (depth) of a given X-section yields:

← Specific Energy Curve

Observe that 2 different flow conditions occur at most energy levels, $E_1 = E_2$

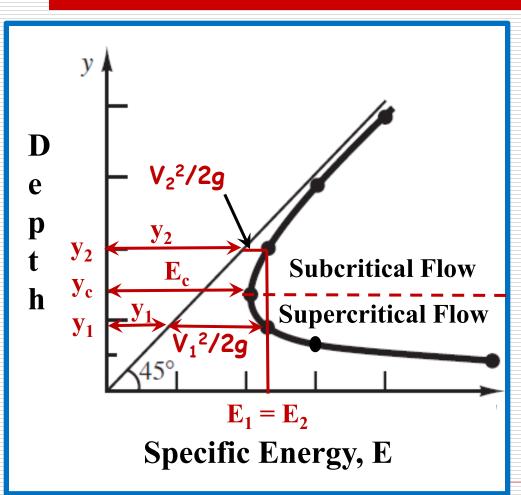
 $E_1 \rightarrow low depth, high V$

 $E_2 \rightarrow high depth, low V$

Alternate depths: y₁ & y₂

Minimum Energy and Critical Depth

(Subcritical and Supercritical Flow)



At one location, the energy is a minimum ($E_c \rightarrow critical$ flow) and the depth is called critical depth (y_c).

It separates flow regimes:

Supercritical Flow:

 $E_1 \rightarrow low depth, high V$

Subcritical Flow:

E₂ → high depth, low V Steep channel slopes will produce supercritical flow.

Critical Depth & the Froude Number

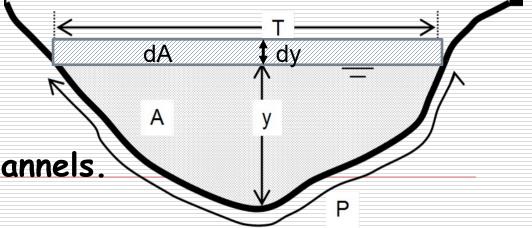
(Minimizing Specific Energy in a Channel)

To find y_c , set the 1st derivative of E equal to 0: dE/dy = 0 $dE/dy = d/dy [y + Q^2/2gA^2] = 1 - [2Q^2/2gA^3](dA/dy) = 0$ Note from the figure that dA/dy = T. Substituting yields, $1 = Q^2T/gA^3 \rightarrow Also$, A/T = D (hydraulic depth). Thus, $1 = Q^2/(gDA^2) = V^2/gD$ or $1 = V/(gD)^{1/2} = N_F \rightarrow Froude Number$

Rectangular channels:

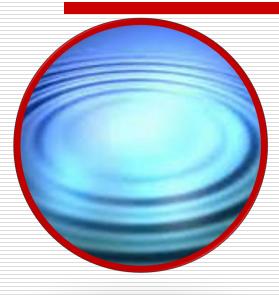
 $y_c = (q^2/g)^{1/3}$; q = Q/b and b = channel width.

Use: $Q^2/g = A^3/T = DA^2$ to find y_c for all other channels.



Froude Number and Critical Depth

(Rectangular and Non-rectangular Channels)



 $N_F \rightarrow Ratio of inertial to gravity force.$

Alternatively, the ratio of flow velocity to the velocity of a disturbance wave.

← Disturbance wave (throw stone in pond)

 $N_F = V/(gD)^{1/2} = 1$ (critical flow). Thus the channel velocity equals the wave speed.

 $N_F < 1$ (subcritical flow) \rightarrow The channel velocity (V) is less than the wave speed (gD)^{1/2} (i.e., throw a stone into channel and the disturbance wave will propagate upstream).

 $N_F > 1$ (supercritical flow) Disturbance wave washes away.

Critical Depth & Froude Number

(Example Problem - Rectangular Channel)

Given: Concrete channel with $S_o = 0.01 \rightarrow$

Find normal & critical depths & N_F.

From Table 6.2: n = 0.013, & Table 6.1:

Find d_n:

Q =
$$(1/n)AR_h^{2/3}S_o^{1/2} = (1/n)(A^{5/3}/P^{2/3})S_o^{1/2}$$

Solving iteratively (or w/charts or software), $y_n = 2.31m$

$$D = A/T =$$

$$D = A/T = N_F = V/(gD)^{1/2} =$$

Rectangular

Q = 100 cms

b = 5m

Flow is supercritical since $N_F > 1$. q = Q/b =

$$y_c = (q^2/g)^{1/3} = (20^2/9.81)^{1/3} =$$

Note: $y_n < y_c$

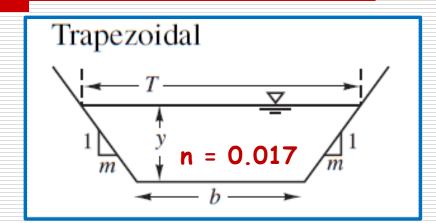
Critical Depth & Froude Number

(Example Problem → Trapezoidal Channel)

Given: Channel w/Q = 1510 cfs

$$S_o = 0.00088$$
, $m = 1.5$, $b = 25$ ft

Solution: From Table 6.1:



$$A = y(25 + 1.5y) T = 25 + 3y$$
. At critical depth: $Q^2/g = A^3/T$

$$Q^2/g = (1510)^2/32.2 = 70,800 = [y_c(25 + 1.5y_c)]^3/[25 + 3y_c]$$

Solving iteratively (or w/charts or software), $y_c = 4.41$ ft

Recall from previous class for this channel: $y_n = 6.25$ ft

Since
$$y_n > y_c \rightarrow Flow is$$

Alternative Solution

(Trapezoidal Channel, Fig. 6.9a)

Homework Problems:

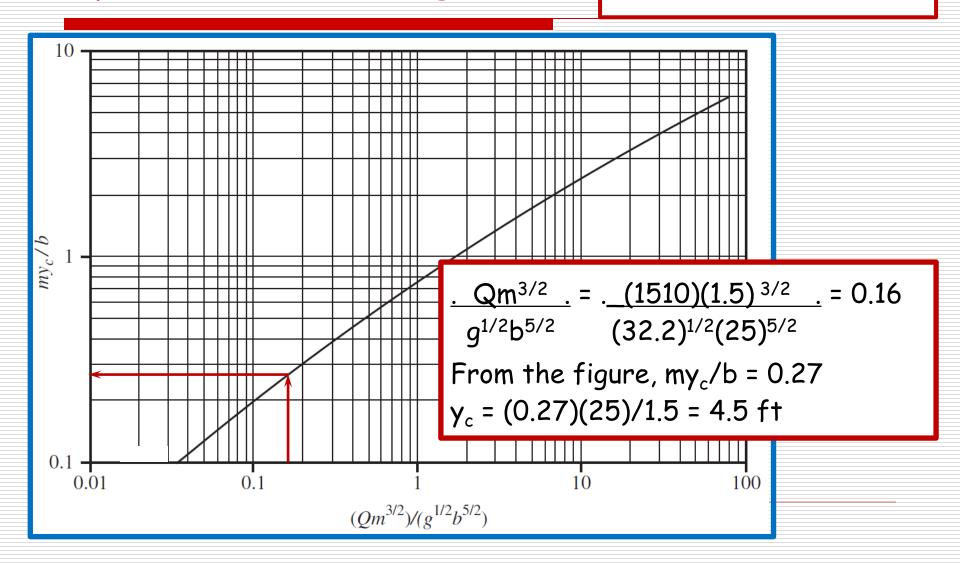


Figure 6.9b Critical depth solution for circular sections

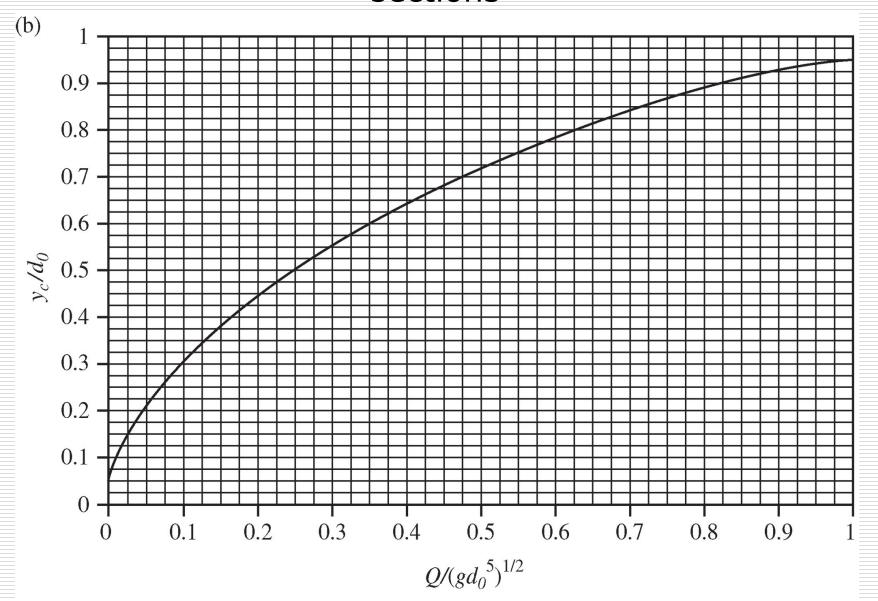


TABLE 6.6 Stable Side Slopes for Channels

TABLE 6.6 Stable Side Slopes for Chanr

Material	Side Slope ^a (Horizontal:Vertical)	
Rock	Nearly Vertical	
Muck and peat soils	¹ / ₄ :1	
Stiff clay or earth with concrete lining	$\frac{1}{2}$:1 to 1:1	
Earth with stone lining or earth for large channels	1:1	
Firm clay or earth for small ditches	$1^{1}/_{2}:1$	
Loose, sandy earth	$1\frac{1}{2}:1$ 2:1 to 4:1	
Sandy loam or porous clay	3:1	

^a If channel slopes are to be mowed, a maximum side slope of 3:1 is recommended.

Source: Based on V. T. Chow, Open Channel Hydraulics (New York: McGraw-Hill, 1959).

Copyright ©2017 Pearson Education, All Rights Reserved

TABLE 6.7 Suggested Maximum Permissible Channel Velocities

TABLE 6.7 Suggested Maximum Permissible Channel Velocities

Channel Material	V _{max} (ft/s)	V _{max} (m/s)
Sand and Gravel		
Fine sand	2.0	0.6
Coarse sand	4.0	1.2
Fine gravel ^a	6.0	1.8
Earth		
Sandy silt	2.0	0.6
Silt clay	3.5	1.0
Clay	6.0	1.8

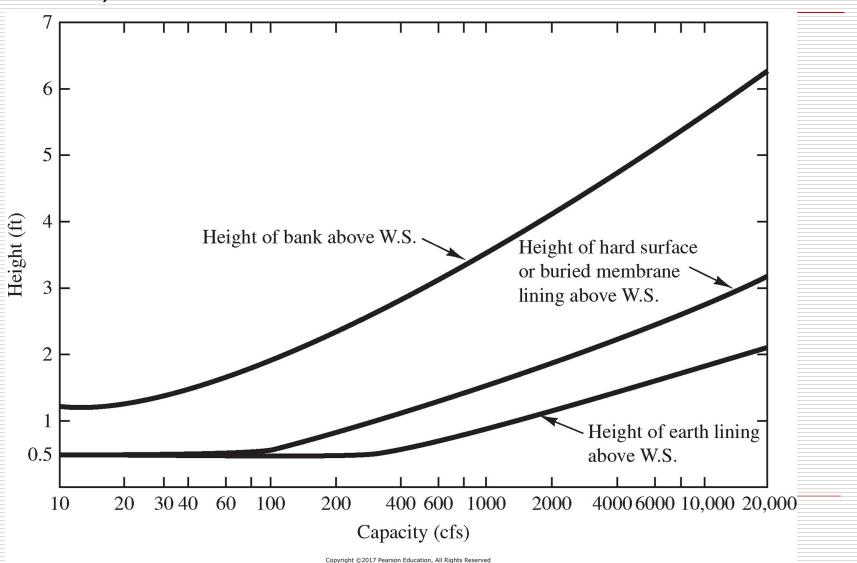
^aApplies to particles with median diameter (D_{50}) less than 0.75 in (20 mm).

Source: U.S. Army Corps of Engineers. "Hydraulic Design of Flood Control Channels," Engineer Manual, EM 1110-2-1601. Washington, DC: Department of the Army, 1991.

Copyright ©2017 Pearson Education, All Rights Reserved

Figure 6.15 Recommended freeboard and height of banks in lined channels.

Source: U.S. Bureau of Reclamation, Linings for Irrigation Canals, 1976.



Supercritical Flow on a Spillway

Fresno Dam, Montana (USA)

Rf.→http://www.usbr.gov/projects/Facility.jsp?fac_Name=Fresno+Dam