Fundamentals of Hydraulic Engineering Systems

Fifth Edition

Chapter 5c

Water Pumps

Copyright © 2017, 2010, 1996 Pearson Education, Inc. All Rights Reserved

Pump Combinations - Large Flow Range (1 of 2)

Concepts and Visualization
Design Objective: Operate pumps at their peak efficiency.
Q: What is the flow range for operating this pump at an 80% or better efficiency?

A: 520 to 890 gpm .

Pump Combinations - Large Flow Range (2 of 2)

Q: A project requires a pump head of 60 ft but Q varies ($250-1000 \mathrm{gpm}$). Will this pump work? \rightarrow
A: Yes, but inefficiently for some flows (250 gpm)

Pearson

Using Pumps in Parallel

Concepts and Visualization

Pumps in Parallel: Flows are additive for a given pump head.
Q: A project requires a pump head of 60 ft , but Q varies (250 to 1000 gp $\mathrm{m})$. Design an efficient pump system.

A: Use two pumps in parallel: Pump $1 \rightarrow$ high efficiency for $\mathrm{Q}=250$ to 500 gpm \& Pump $2 \rightarrow$ high "e" for Q=300 to 550 gpm . Use both pumps for high flows.

Figure 5.11 Pumb Characteristics for two pumps in paralel

Pump Combinations - Large Head Range (1 of 2)

Concepts and Visualization
Design Objective: Operate pumps at their peak efficiency.
Q: What is the pump head range for operating this pump at efficiencies greater than 80\%.
A: From 90 to 140 feet.

Pump Combinations - Large Head Range (2 of 2)

Q: A project requires a flow of 200 gpm, but H_{p} varies (60 to 155 feet). Will this pump work? \rightarrow

Ans. Yes, but inefficiently for some heads (155 ft)

Pearson

Using Pumps in Series

Concepts and Visualization

Pumps in Series: Heads are additive for a given pump flow.
Q: A project requires a flow of 200 g pm , but H_{p} varies (60 to 155 feet). Design an efficient pump system.

A: Use two pumps in series: Pump $1 \rightarrow$ high efficiency for $\mathrm{H}_{\mathrm{p}}=40$ to 80 ft \& Pump $2 \rightarrow$ high "e" for $\mathrm{H}_{\mathrm{p}}=45$ to 90 ft . Use both pumps for high heads.

Pearson

Analysis of Pumps in Series and Parallel

Example Problem 5.4 (use pump of Fig. 5.13 characteristics)
For a pump-pipeline system; $\mathrm{E}_{\mathrm{B}}=90 \mathrm{~m}, \mathrm{E}_{\mathrm{A}}=80 \mathrm{~m}, \mathrm{~L}=300 \mathrm{~m}$,
$D=40 \mathrm{~cm}, e=0.12 \mathrm{~mm}, v=1.31^{\prime} 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}$. Find the Q, e, and H_{p} for 1 pump, 2 pumps in series, \& 2 pumps in parallel.

Solution: From an energy balance: $E_{A}+H_{p}=E_{B}+h_{L}$

$$
\text { or } \mathrm{H}_{\mathrm{p}}=\mathrm{H}_{\mathrm{S}}+\frac{\left(\left(\frac{\mathrm{fL}}{\mathrm{D}}\right)+\sum \mathrm{K}\right) \mathrm{V}^{2}}{2 \mathrm{~g}} \text {; where } \mathrm{H}_{\mathrm{s}}=\mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{A}}=10 \mathrm{~m}
$$

Note: The pump adds energy to overcome static lift $\left(H_{s}\right)$,
friction loss, and minor losses. Note that $\sum \mathrm{K}=1.65$

Determine the system head curve for this pipeline.

Pumps in Series and Parallel

Fill in the solution table \rightarrow

$Q(\mathrm{~L} / \mathrm{sec})$	$\mathrm{V}(\mathrm{m} / \mathrm{sec})$	N_{R}	f	$H_{S H}(\mathrm{~m})$
0	0	-	-	10.0
100	0.80	2.44×10^{5}	0.0175	10.5
300	2.39	7.30×10^{5}	0.0160	14.0
500	3.98	1.22×10^{6}	0.0155	20.7
700	5.57	1.70×10^{6}	0.0155	31.0

Plot the system head curve on the pump's characteristic curves. Find the Q, e, and H_{p} for 1 pump, 2 pumps in series, \& 2 in parallel.

Cavitation in Water Pumps

Visualization and Energy Conservation Principles

(See Example 5.8)
Q: Balance energy between points 1 and 2 (figure below).
$A: h_{1}=h_{2}+\frac{P_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+h_{L}$ where $h_{2}-h_{1}=h_{p}=h t$. of pump
Q: Solve for $\frac{P_{2}}{\gamma}$:
$A: \frac{P_{2}}{\gamma}=-h_{p}-\frac{V_{2}{ }^{2}}{2 g}-h_{L}$
High negative pressure may cause water to vaporize \& cavitation is to be avoided.
Q: How does a designer avoid cavitation problems?
A: Pump placement (h_{p})
Pearson

Selection of a Pump (1 of 3)

Visualization and Design Concepts

Q: What is the best type of pump for high heads and low flows? ...for low heads and high flows? What is the best type for a broad range of flow and head conditions?

Selection of a Pump (2 of 3)

Design Concepts and Example Problem 5.11

The required flow for a pipeline is $70 \mathrm{~L} / \mathrm{sec}$. Based on the energy equation, the required pump head is 40 m . Based on the manufacture's pump selection chart, either Pump I or Pump II will work. The characteristic curves for each pump are shown on the next slide.

Figure 5.23 Pump Model Selection chart

Selection of a Pump (3 of 3)

Q: Choose the best pump and state its operating conditions.
Pearson

Water Pumps in Parallel

City of Lakeland, Florida
P Pearson
Copyright © 2017, 2010, 1996 Pearson Education, Inc. All Rights Reserved

Copyright

