Fundamentals of Hydraulic Engineering Systems

Fifth Edition

Chapter 5a

Water Pumps

Copyright © 2017, 2010, 1996 Pearson Education, Inc. All Rights Reserved

Learning Objectives

5.1 Describe the operational difference between centrifugal pumps and other types of pumps.
5.2 Define and use pump characteristic curves.
5.3 Describe the operation of pumps in pipelines, branching systems, and pipe networks.
5.4 Explain series and parallel pump configurations.
5.5 Understand the concepts of cavitation, specific speed, and pump similarity.
5.6 Recognize how pump selection is accomplished.
5.7 Calculate solutions to various pump analysis and design problems involving these concepts.

Description of Pumps and Pump Types

Definitions and Visualization

Pump: a device that converts mechanical to hydraulic energy
Turbo-hydraulic: fluid moved by rotating vanes or another moving fluid (e.g., centrifugal, jet, and propeller pumps)

Positive displacement: fluid moved by precise machine displacements (e.g., screw and reciprocal pumps)

Q: Guess these pump types.

Centrifugal (Radial Flow) Pumps (1 of 7)

Visualization and Flow Principles

Q: Will water be ejected from the pipe T if we spin it?
A: Only if it is filled with water (primed) first.
Q: What principle of physics is being utilized to move water?
A: Centrifugal Force and Momentum Conservation
Figure 5.1 Demour's centrifugal pump

Centrifugal (Radial Flow) Pumps (2 of 7)

Visualization and Derivation of Power Input

From Newton's $2^{\text {nd }}$ Law, derive the impulse momentum equation:

$$
\mathrm{F}=\mathrm{ma}=\mathrm{m}\left(\frac{\mathrm{dV}}{\mathrm{dt}}\right)=\left(\frac{\mathrm{m}}{\mathrm{dt}}\right)(\mathrm{dv})=\rho \mathrm{Q}\left(\mathrm{~V}_{\mathrm{o}}-\mathrm{V}_{\mathrm{i}}\right) \rightarrow \text { from Chap } 3
$$

Q: What is the relationship between force and torque (T)?

A:T = force \times perpendicular

$$
\text { distance }=F \cdot d
$$

applied to impulse-momentum:

Centrifugal (Radial Flow) Pumps (3 of 7)

$T=\rho Q\left(r_{0} V_{0} \cos \alpha_{o}-r_{i} V_{i} \cos \alpha_{i}\right)$
Also, Power (P) $=\omega \mathrm{T}$;
So the Pump Power Input is:
$P_{i}=\rho Q \omega\left(r_{o} V_{o} \cos \alpha_{o}-r_{i} V_{i} \cos \alpha_{i}\right)$

Centrifugal (Radial Flow) Pumps (6 of 7)

Equations for Power Output \& Efficiency

Q: Does energy increase on the output side of the pump? If so, in what form? Does the flow rate increase?
A: The energy increase is in the form of pressure head (see figure below). Flow does not increase (i.e., continuity).

Pump Power Output:

$$
\mathrm{P}_{\mathrm{o}}=\gamma \mathrm{QH}_{\mathrm{p}}
$$

Pump Efficiency:

$$
e_{p}=\frac{P_{0}}{P_{i}}
$$

Motor Efficiency: Overall Efficiency:

$$
\mathrm{e}=\mathrm{e}_{\mathrm{p}} \mathrm{e}_{\mathrm{m}}=\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{m}}}
$$

Centrifugal (Radial Flow) Pumps (7 of 7)

Pump and Motor Selection Example Problem

A centrifugal pump is required to lower the stormwater depth in a 12 ft by 10 ft rectangular sump at the rate of 1 foot every minute. The pump must overcome a lift of 20 feet. If the overall efficiency rating of the pump is 75%, select the appropriate pump (flow rate in gpm) and motor (power in kW). Assume pipeline losses are negligible.

$$
\begin{aligned}
& \text { Ans. } \mathbf{Q}=\left[\frac{\left(12^{\prime}\right)\left(10^{\prime}\right)\left(1^{\prime}\right)}{60 \mathrm{sec}}\right]\left(\frac{449 \mathrm{gpm}}{1 \mathrm{cfs}}\right) \approx \mathbf{9 0 0} \mathbf{~ g p m} \\
& \mathrm{P}_{\mathrm{o}}=\gamma \mathrm{QH}_{\mathrm{P}}=\left(62.3 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(2 \mathrm{ft}^{3} / \mathrm{s}\right)(20 \mathrm{ft})=2,490 \mathrm{ft}-\mathrm{lb} / \mathrm{sec} \\
& \mathrm{P}_{\mathrm{o}}=(2,490 \mathrm{ft}-\mathrm{lb} / \mathrm{sec})\left(\frac{1 \mathrm{hp}}{550 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{sec}}\right)=4.53 \mathrm{hp} \\
& \mathbf{P}_{\mathrm{m}}=\frac{\mathbf{P}_{\mathrm{o}}}{\mathrm{e}}=\left[\frac{4.53 \mathrm{hp}}{(0.75)}\right]\left(\frac{1 \mathrm{~kW}}{1.341 \mathrm{hp}}\right)=\mathbf{4 . 5 0} \mathbf{~ k W}
\end{aligned}
$$

First Drop of Water from a Hand Pump

Everyone is smiling in Jambo, South Sudan.
P Pearson
Copyright © 2017, 2010, 1996 Pearson Education, Inc. All Rights Reserved

Copyright

