Chapter 3 (Cont.): Water Flow in Pipe Systems

Review - Key Hydraulic Equations (1 of 2)

Review from the last two classes.
Mean Velocity: $\quad V=\frac{Q}{A}$
Continuity:

$$
\mathrm{A}_{1}\left(\mathrm{~V}_{1}\right)=\mathrm{A}_{2}\left(\mathrm{~V}_{2}\right)
$$

Momentum:

$$
\sum F=\rho Q\left(V_{2}-V_{1}\right) \quad \text { (or Impulse-Momentum) }
$$

Bernoulli:

$$
\begin{aligned}
& h_{1}+\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}=h_{2}+\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g} \\
& h_{1}+\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}=h_{2}+\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+h_{L}
\end{aligned}
$$

Energy:

Review - Key Hydraulic Equations (2 of 2)

Darcy-Weisbach: $h_{f}=f\left(\frac{L}{D}\right)\left(\frac{V^{2}}{2 g}\right) \rightarrow f:$ Moody Diagram ${ }^{\text {. }}$
You can solve most pipe flow problems with these equation's!
*Note: $\frac{e}{D}=$ relative roughness; $\quad N_{R}=\frac{(D V \rho)}{\mu}=\frac{(V D)}{v}$

Friction Factors for Flow in Pipes: The Moody Diagram

Pearson

Friction Factors for Various Types of Flows (Review)

The Darcy-Weisbach Equation

$$
h_{f}=f(L / D)\left(V^{2} / 2 g\right)
$$

Determination of the Friction Factor

- Laminar Flow:
- Turbulent Flow:
- Complete Turbulence:
- Turb. (smooth pipe):
"f"requires N_{R}
"f"requires N_{R} and (e/D)
" f "requires(e/D)
"f"requires N_{R}

Other Friction Loss Formulas

- Background: Popular formulas based on experiments.
- Empirical formulas - not dimensionally consistent (must use units established for formulas in experiments).
- Applicable only to conditions and ranges of experiments.

What are the vertical tubes? What do they measure? Sketch the HGL.

Manning's Equation

$$
V=\left(\frac{1.49}{n}\right) R_{h}^{2 / 3} S^{1 / 2}
$$

Define the variables? $R_{h}=\frac{A}{P}$ Where is h_{f} ?
Is the equation dimensionally consistent?
$n \rightarrow$ Table 3.3 see Slide 13 based on pipe material.
(" n " is between 0.01 and 0.025 for most pipes)

Note: This equation is often used for open channel flow.

Table 3.3 Manning's Roughness Coefficient, n, for Pipe Flows

Type of Pipe	Manning's \boldsymbol{n} Min.	Manning's \boldsymbol{n} Max.
Brass	0.009	0.013
Cast iron	0.011	0.015
Cement mortar surfaces	0.011	0.015
Cement rubble surfaces	0.017	0.030
Concrete, precast	0.011	0.015
Copper	0.009	0.013
Corrugated metal (CMP)	0.020	0.024
Ductile iron (cement mortar lined)	0.011	0.013
Glass	0.009	0.013
High-density polyethylene (HDPE)	0.009	0.011
Polyvinyl chloride (PVC)	0.009	0.011
Steel, commercial	0.010	0.012
Steel, riveted	0.017	0.020
Vitrified sewer pipe	0.010	0.017
Wrought iron	0.012	0.017

The Hazen-Williams Formula

$$
\mathrm{V}=1.318 \mathrm{C}_{\mathrm{HW}} \mathrm{R}_{\mathrm{h}}^{0.63} \mathrm{~S}^{0.54}
$$

Define the variables. Where is h_{f} ? Units?
$\mathrm{C}_{\mathrm{HW}} \rightarrow$ Table 3.2 see Slide 15 based on pipe material (usually between 100 and 150 except very old pipes!)

Pipe cleaning and lining projects will increase pipe flow and pressure. Homework Problems:

Pipe Tuberculation and Lining http://www.ci.wilmington.de.us

Table 3.2 Hazen-Williams Coefficient, CH $_{W}$, for Different Types of Pipes

Pipe Materials	$\mathbf{C H}_{w}$
Brass	$130-140$
Cast iron (common in older water lines) New, unlined	130
10-year-old	$107-113$
20-year-old	$89-100$
30-year-old	$75-90$
40-year-old	$64-83$
Concrete or concrete lined	140
Smooth	120
Average	100
Rough	$130-140$
Copper	140
Ductile iron (cement mortar lined)	

Pipe Materials	$\mathbf{C H}_{\boldsymbol{w}}$
Glass	140
High-density polyethylene (HDPE)	150
Plastic	$130-150$
Polyvinyl chloride (P V C)	150
Steel Commercial	$140-150$
Riveted	$90-110$
Welded (seamless)	100
Vitrified clay	110

Pipe Flow: Circular Culvert

Copyright © 2017, 2010, 1996 Pearson Education, Inc. All Rights Reserved

Copyright

Fundamentals of Hydraulic Engineering Systems

Fifth Edition

Chapter 3d

Water Flow in Pipes

Copyright © 2017, 2010, 1996 Pearson Education, Inc. All Rights Reserved

In-Class Siphon Experiment (1 of 4)

Bernoulli's Equation

Let's test the validity of the Bernoulli Equation.
Does $\mathbf{Q}_{\mathrm{B}}($ Bernoulli $)=\mathbf{Q}_{\mathrm{m}}($ measured $)$?

Questions:

1. How would we obtain the experimental flow rate?

$$
\mathbf{Q}=\frac{\text { Volume }}{\text { time }}
$$

In-Class Siphon Experiment (2 of 4)

Bernoulli's Equation

2. How would we obtain the Bernoulli flow rate?

Energy balance between 2 points
3. What 2 points to find Q ? Resulting eq'n? Data needed?

$$
h_{1}+\frac{P_{1}}{\gamma}+\frac{\mathrm{V}_{1}^{2}}{2 g}=h_{2}+\frac{\mathrm{P}_{2}}{\gamma}+\frac{\mathrm{V}_{2}^{2}}{2 g} \rightarrow h_{1}-h_{2}=h=\frac{\mathrm{V}_{2}^{2}}{2 g}
$$

In-Class Siphon Experiment (3 of 4)

Perform the experiment and compare results.
Does $\mathbf{Q}_{\mathrm{B}}($ Bernoulli $)=\mathbf{Q}_{\mathrm{m}}($ measured $)$?

$$
\mathrm{Q}_{\mathrm{m}}=\frac{2 \text { litres }}{(75 \mathrm{sec})}=0.0267 \mathrm{~L} / \mathrm{s}
$$

Bernoulli Calculations:

$$
\begin{aligned}
& \mathrm{h}=0.6 \mathrm{~m}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}} ; \mathrm{V}=3.43 \mathrm{~m} / \mathrm{sec} ; \\
& \mathbf{Q}_{\mathrm{B}}=\mathrm{V} . \mathrm{A}=\mathbf{0 . 0 9 7 0 \mathrm { L } / \mathbf { ~ s e c }}
\end{aligned}
$$

Why don't the flow rates compare closely? Perform the calculations a second time with the modifications* you think are necessary.
*Include friction loss in the analysis.

In-Class Siphon Experiment (4 of 4)

Energy Equation Calculations:

$$
h=\frac{V^{2}}{2 g}+\frac{f(L / D) V^{2}}{2 g}=\frac{V^{2}}{2 g}[1+f(L / D)]
$$

Moody Diagram for f (next slide):

$$
\begin{aligned}
& \frac{e}{D}=\frac{0.0015}{6}=0.00025 ; \text { w/measured } \\
& V ® N_{R}=\frac{0.863(0.006)}{1^{\prime} 10^{-6}}=5,200
\end{aligned}
$$

$$
h=0.6=\frac{V^{2}}{2 g[1+\underline{0.038(1.56 / 0.006)]}}
$$

$$
\mathrm{V}=1.05 \mathrm{~m} / \mathrm{s} ; \mathrm{Q}_{\mathrm{m}}=\mathrm{AV}=0.0297 \mathrm{~L} / \mathrm{s}
$$

Better!! Can we improve the results?

* Include entrance loss: Q = 0.0281.

Copyright © 2017, 2010, 1996 Pearson Education, Inc. All Rights Reserved

Pipe Flow Problems (Iterative Solution)

Example Problems - Solve on White Board
Determine the flow rate ($\mathrm{L} / \mathrm{sec}$) in a 4-cm-diameter copper pipe. The pressure at point A is 210 kPa , and the pressure at point B is 180 kPa . The elevation at A is 90 cm higher than point B and the two points are separated by 91.9 meters of pipeline. Assume no minor losses and water @ $10^{\circ} \mathrm{C}$.

Solution:

$\gamma=9800 \mathrm{~N} / \mathrm{m}^{3} ; v=1.306 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec} ; \mathrm{e}=0.0015 \mathrm{~mm} ; \mathrm{h}_{\mathrm{L}}=\mathrm{h}_{\mathrm{f}}=3.96 \mathrm{~m}$;
Final $f=0.022 ; V=1.24 \mathrm{~m} / \mathrm{sec} ; Q=1.56 \mathrm{~L} / \mathrm{sec}$

