Fundamentals of Hydraulic Engineering Systems

Fifth Edition

Chapter 3b

Water Flow in Pipes

Description of Pipe Flow Definitions and Visualization

Definitions and Visualization

Questions: What is a streamline? What is a stream tube? Streamline: imaginary lines drawn in the flow field which are everywhere tangent to velocity vectors Stream tube: a grouping (bundle) of streamlines Visualization:
Question: Define steady flow?
Question: Given steady flow, is fluid acceleration possible?
Local acceleration: (dV/dt) (equals zero in steady flow) Convective acceleration:
$V(d V / d s) \rightarrow V$ change over distance

Stream Tube

Pearson

Flow Continuity - Pipe Flow

(Importance: Determining pipe velocities and flows.)
Mass flux in = Mass flux out
$\gamma\left[\mathrm{d}\left(\mathrm{Vol}_{1-1}\right) / \mathrm{dt}\right]=\gamma\left[\mathrm{d}\left(\mathrm{Vol}_{2-2}\right) / \mathrm{dt}\right]$
$\gamma \mathrm{A}_{1}\left[\mathrm{~d}\left(\mathrm{~S}_{1}\right) / \mathrm{dt}\right]=\gamma \mathrm{A}_{2}\left[\mathrm{~d}\left(\mathrm{~S}_{2}\right) / \mathrm{dt}\right]$
where $S=$ velocity, thus

$$
\begin{gathered}
\gamma \mathrm{A}_{1}\left(\mathrm{~V}_{1}\right)=\gamma \mathrm{A}_{2}\left(\mathrm{~V}_{2}\right) \\
\mathrm{A}_{1}\left(\mathrm{~V}_{1}\right)=\mathrm{A}_{2}\left(\mathrm{~V}_{2}\right) \\
\left(\mathbf{2}^{\text {d }} \text { Key Equation }\right)
\end{gathered}
$$

The continuity equation for steady, incompressible flow.

Figure 3.3 General description of flow in pipes

Pearson

Forces in Pipe Flow (1 of 3)

Importance: Anchoring pipe bends and nozzles.
Applying Newton's $2^{\text {nd }}$ Law to the moving mass in the CV:
$\sum \mathrm{F}=\mathrm{ma}=\mathrm{m}(\mathrm{dV} / \mathrm{dt})$
In finite difference form:
(for convective acceleration)
$\sum \mathrm{F}=\left(\mathrm{mV} \mathrm{V}_{2}-\mathrm{mV}_{1}\right) / \Delta \mathrm{t}$
but since Mass $(\mathrm{m})=\gamma(\mathrm{Vol})$;
$\sum \mathrm{F}=\left[\gamma(\mathrm{Vol})\left(\mathrm{V}_{2}\right)-\gamma(\mathrm{Vol})\left(\mathrm{V}_{1}\right)\right] / \Delta \mathrm{t}$
and since $\rho Q=\mathrm{Vol} / \Delta t$

$$
\sum F=\rho Q\left(V_{2}-V_{1}\right)
$$

$3^{\text {rd }}$ Key Equation

Forces in Pipe Flow (2 of 3)

Example Problem

Find the anchoring force required to hold the bend in place. The 180-degree bend is in the horizontal plane with $\mathrm{Q}=0.40 \mathrm{~m}^{3} / \mathrm{s}$, water pressure $=100 \mathrm{kPa}$, pipe diameter $=20 \mathrm{~cm}$, bend volume $=0.100 \mathrm{~m}^{3}$,
 and pipe bend weight $=400 \mathrm{~N}$.

Note: Forces that need to be accounted for: weight, pressure (pA), and reaction forces due to change of direction, drag, and contraction/expansion.
Note: The impulse-momentum equation is in vector form, so we need to solve it in all directions:

$$
\sum F_{x}=\rho Q\left(V x_{2}-V x_{1}\right) ; \text { etc. }
$$

Note: Pressure forces always act toward the control volume.

Forces in Pipe Flow (3 of 3)

Example Problem - Solve on White Board

$\sum F_{x}=\rho Q\left(V_{X_{2}}-V_{X_{1}}\right) ; \rightarrow+$ (positive)
$\sum F_{x}=R_{x}+P_{1} A_{1}+P_{2} A_{2}$
$P_{1} A_{1}=P_{2} A_{2}=(100)\left[\pi(0.1)^{2}\right]=3.14 \mathrm{kN}$
$\mathrm{V}=\mathrm{Q} / \mathrm{A}=0.4 /\left[\pi(0.1)^{2}\right]=12.7 \mathrm{~m} / \mathrm{s}$
$\mathrm{R}_{\mathrm{x}}+2(3,140)=(998)(0.40)(-12.7-12.7)$
$\mathbf{R}_{\mathrm{x}}=-16,400=-16.4 \mathrm{kN}$ or $16.4 \mathrm{kN} \leftarrow$
$\sum F_{y}=\rho Q\left(V_{y 2}-V_{y 1}\right) ; \mathbf{R}_{\mathrm{y}}=\mathbf{0} \mathbf{k N}$
$\sum F_{z}=\rho Q\left(V_{z_{2}}-V_{z_{1}}\right) ; R_{z}=W t$.
$\mathbf{R}_{\mathbf{z}}=400+(0.1)(9790)=\mathbf{1 . 3 8} \mathbf{~ k N}(\mathbf{u p})$

Homework
Problems:

Thrust Block Details

Rf: City of Auburn, AL
https://www.auburnalabama.org/PWDir /Specs\%20and\%20Details/Revised\%2 OWRM\%20Standard\%20Details\%2020 12/Water\%20Details\%20\%2024X36\%20REVISED\%202012.pdf

Note: A preferred method of thrust restraint requires externally restrained joint devices: Mega-Lugs in lieu of concrete blocks.

For an excellent article on advances in pipe restraints, see: bulldogrestraintsystem.com/TexasASC ESectionalPaper.pdf

Pearson

Copyright

