Fundamentals of Hydraulic Engineering Systems

Fifth Edition

Chapter 2b

Water Pressure and Pressure Forces

Hydrostatic Forces - Curved Surfaces (1 of 4)

Visualization and Analysis
Consider the curved gate AB.
Visualization: Draw the pressure prism acting on the gate.

Note: Pressures will act normal to the gate and increase with depth.

Question: Will the resultant force have x and y components?

Analysis: Solve for horizontal \& vertical components separately.
 How would you obtain the forces

Pearson

Hydrostatic Forces - Curved Surfaces (2 of 4)

Example Problem

Find the component forces on the semicircular gate AB (assume a unit width).

Horizontal Component (F_{H}). $F_{H}=\gamma \bar{h} A$ Note: The area for curved surfaces is the vertical projection of the surface area. ($A^{\prime} \mathrm{B}^{\prime}$, in this case a rectangle.)

$F_{H}=\gamma \bar{h} A=\gamma(H / 2)(H \cdot 1)=\gamma(H)^{2} / 2$
Location: $h_{p}=\left[I_{o} /(A \bar{h})\right]+\bar{h}=\left[\left(H^{3} / 12\right) /\left(H^{*} H / 2\right)\right]+H / 2=2 H / 3$

Hydrostatic Forces - Curved Surfaces (3 of 4)

Example Problem

Vertical Component ($F_{V 1}$). $\uparrow+$
$F_{v 1}=W=\gamma(V o l)$ Note: The force is equal to the weight of the water column above the surface.
$F_{V 1}=-\gamma\left[(H / 2 * H / 2)-\left\{(1 / 4)\left(\pi(H / 2)^{2}\right\}\right]\right.$
$F_{V 1}=-\gamma\left[\left(H^{2} / 4\right)-\left\{\pi(H)^{2} / 16\right\}\right]$
$F_{V 2}=\gamma(\mathrm{Vol})$ Note: This force is

equal to the weight of the imaginary water column above.

Hydrostatic Forces - Curved Surfaces (4 of 4)

Find $\mathbf{F}($ total $)$ and $\boldsymbol{\theta} \mathbf{w} /$ vector analysis.

$$
\begin{aligned}
& F_{v 2}=\gamma\left[\left(H / 2^{*} H / 2\right)+\left\{(1 / 4)\left(\pi(H / 2)^{2}\right\}\right]=\gamma\left[\left(H^{2} / 4\right)+\left\{\pi(H)^{2} / 16\right\}\right]\right. \\
& F_{v}=F_{v 1}+F_{v 2}=\gamma(\pi / 8) H^{2}
\end{aligned}
$$

Buoyancy and Archimedes Principle (1 of 2)

Find the hydrostatic force on the top and bottom of the box.
$F_{\text {Top }}=-p A=-\gamma h_{1} A$ (Positive is up.)
$F_{\text {Botom }}=p A=\gamma h_{2} A$
Find the net (Buoyant) force:

$F_{V}=\gamma\left(h_{2}-h_{1}\right)$ A; But $\left(h_{2}-h_{1}\right) A=$ Vol; \quad Therefore, $F_{V}=\gamma(\mathrm{Vol})$
Archimedes Principle: The buoyant force on a submerged object is equal to the weight of the water displaced.

Question: Why is it easier to float in the ocean than a lake?

Flotation Stability (1 of 2)

Equilibrium Position Definitions:
W = weight, $\mathrm{G} \rightarrow$ location of weight (center of gravity)
$\gamma \cdot$ Vol $=$ buoyant force
$B \rightarrow$ location of buoyant force (center of buoyancy);
i.e., the center of gravity of the liquid

X-section: ship's hull volume displaced by the floating body

Undisturbed Position:
$\mathrm{W}=\gamma \cdot \mathrm{Vol} \rightarrow$ No moment (G and B are on same vertical line)

Flotation Stability (2 of 2)

Non-equilibrium Position

 Disturbance (wind or waves)The heal (or list) angle is θ.
G location doesn't change.
B^{\prime} is new buoyancy location.
Result: Moment (or couple)
Righting Moment ($\mathrm{M}=\mathrm{W} \cdot \mathrm{X}$)
(i.e., will resist overturning)

Definitions: $M \rightarrow$ metacenter $G M \rightarrow$ metacentric height;
Equations: $M=W \cdot X=W(G M) \sin \theta$,
$G M=M B \pm G B=I_{0} / \mathrm{Vol} \pm G B$; where $\mathrm{Vol}=$ submerged volume;
$I_{0}=$ moment of inertia of waterline x -section area

Buoyancy and Archimedes Principle (2 of 2)

Example Problem

Find the buoyant force on the semicircular gate $A B$ (unit width) and compare it to the net vertical force ($F_{v}=F_{v 1}+F_{v 2}$) that we computed previously.

Homework Problems:

Buoyancy in Action

The Welland Canal connects Lake Ontario and Lake Erie through a series of locks and dams allowing ships to bypass Niagara Falls.

Copyright

