Fundamentals of Hydraulic Engineering Systems

Fifth Edition

Chapter 2a

Water Pressure and
Pressure Forces

Pressure Concepts and Definitions

Atmospheric Pressure: The weight of the atmospheric column of gases divided by the area upon which it acts. (At sea level and normal conditions: $\left.1.014 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}(\mathrm{~Pa})=1 \mathrm{bar}\right)$

Free Surface of Water: Water placed in a container seeks a horizontal surface minimizing its position (potential) energy. ("Water seeks its own leve!!")

Pressure Variation in a Static Fluid (1 of 3)

Three holes are drilled in the container below. Will water shoot out the same distance? Why or why not?

Concept: All surfaces in a static fluid are subject to normal pressure forces, but not shear forces since there is no fluid motion. Recall that $r=z\left(\frac{d v}{d y}\right)$, but $\left(\frac{d v}{d y}\right)=0$.
Note: Pressure varies with depth!

Pressure Variation in a Static Fluid (2 of 3)

Figure 2.1 Hydrostatic pressure on a prism

Sum forces along the x-axis:

$$
\sum F_{x}=P_{A} d A-P_{B} d A+\gamma L(d A) \sin \theta=0
$$

Pressure Variation in a Static Fluid (3 of 3)

But $\mathrm{L}(\sin \theta)=\mathrm{h}$, thus simplifying

$$
\boldsymbol{P}_{B}-\boldsymbol{P}_{A}=\gamma h, \text { or } P_{B}=P_{A}+\gamma h
$$

If A and B are at the same elevation?

$$
P_{B}=P_{A}
$$

What if A is at the water surface?

$$
\left(P_{B}\right)_{a b s}=\gamma h+P_{A}=\gamma h+P_{a t m}
$$

Pressure gages measure pressure above or below atmospheric. Thus, Gage Pressure: $P=P_{a b s}-P_{a t m}=\gamma h$;
Also, $h=P / \gamma$ (Pressure Head)

Surfaces of Equal Pressure

Identify equal pressure surfaces (ES) in the figure below. Equal pressure surfaces must: 1) have same elevation 2) be the same liquid, and 3) be connected.
$E S=$ equal pressure surface
NES = nonequal pressure surface

Figure 2.4 Hydraulic pressure in vessels

Manometer Applications

Example Problem - Solve on White Board

Find the pressure in the water pipe $\left(P_{A}\right)$ if $y=8 \mathrm{~cm}, \mathrm{~h}=6 \mathrm{~cm}$, and M is mercury.

Atmosphere

Note: Some people prefer the "swim-through" technique over the technique in the book.

Copyright © 2017, 2010, 1996 Pearson Education, Inc. All Rights Reserved

Differential Manometers

Example Problem - Solve on White Board

Find the pressure in the water pipe $A\left(P_{A}\right)$ if $P_{b}=30 \mathrm{kPa}, \mathrm{y}=20$ $\mathrm{cm}, \mathrm{h}=10 \mathrm{~cm}$, and M is mercury. Note : $1 \mathrm{kPa}=1,000 \mathrm{~N} / \mathrm{m}^{2}$

$$
\mathrm{P}_{\mathrm{A}}=42.3 \mathrm{kPa}
$$

Note: Some people prefer the "swim-through" technique over the technique in the book.

Hydrostatic Forces on Flat Surfaces (1 of 2)

Figure 2.9 Hydrostatic pressure on a plane surface

Find pressure on strip $d A$:

$$
P=\gamma h=\gamma y(\sin \theta)
$$

Hydrostatic Forces on Flat Surfaces (2 of 2)

Pressure force on strip $d A$?

$$
d F=\gamma y(\sin \theta) d A
$$

Pressure Force on area AB?

$$
\begin{aligned}
& F=\int_{A} \gamma y(\sin \theta) d A \\
& F=\gamma(\sin \theta) \int_{A} y d A, \text { but } \\
& \int_{A} y d A=\bar{y} A(\text { first moment of area }) \\
& F=\gamma(\sin \theta) \bar{y} A=\gamma \overline{\boldsymbol{h}} A(\text { see figure })
\end{aligned}
$$

The location of this hydrostatic (pressure) force is:
$y_{p}=\left[I_{o} /(A \bar{y})\right]+\bar{y}$ (location of CP or Center of Pressure)
Purpose (of finding hydrostatic forces): Moment Calculations

Hydrostatic Force Example Problems (1 of 2)

1. A swimming pool is 75 ft long, 30 ft wide, and 5 ft deep. Find the hydrostatic force on the bottom of pool.
2. Find the force on the $30-\mathrm{ft}$-wide wall and its location.

$F_{\text {bottom }}=7.01 \times 10^{5} \mathrm{lbs} \quad F_{\text {wall }}=2.34 \times 10^{4} \mathrm{lbs} ; h_{p}=3.33 \mathrm{ft}$
Copyright © 2017, 2010, 1996 Pearson Education, Inc. All Rights Reserved

Hydrostatic Force Example Problems (2 of 2)

3. Find the force (and its location) on a 2 -ft-diameter coach's viewing port on the side of the pool.

$$
\begin{aligned}
& F_{\text {port }}=196 \mathrm{lbs} \\
& h_{p}=1.25 \mathrm{ft}
\end{aligned}
$$

Homework Problems:

Hydrostatic Force Applications

Grand Coulee Dam in the State of Washington and a typical water tower.
P Pearson

Copyright

