Probability and Random Variables
[image: image1.png]D. Probabilities of Events:

An assignment of real numbers to the events defined on S is known as the probability measure.
In the axiomatic definition, the probability P(4) of the event A is a real number assigned to A that
satisfies the following three axioms:

Axiom 1: PA)=0 6.1
Axiom 2: P(S)=1 ' 6.2
Axiom 3: P(AUB)=PA)+PB) ifANB=@ (6.3

With the preceding axioms, the following useful properties of probability can be obtained (Probs. 6.1—
6.4):

1.  P@A=1-PA) 6.4)
2. P@)=0 6.5)
3. PA)<P®B ifAdcB (6.6)
4. P <1 6.7)
5.  P(AUB)= P(4)+ P(B)— P(AN B) 6.8)
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[image: image3.png]A. Random Variables:

Consider a random experiment with sample space S. A random variable X (A) is a single-valued real
function that assigns a real number called the value of X(1) to each sample point A of S. Often we use a
single letter X for this function in place of X(1) and use r.v. to denote the random variable. A
schematic diagram representing a r.v. is given in Fig. 6-1.
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Fig. 6-1 Random variable X as a function




[image: image4.png]The distribution function [or cumulative distribution function (cdf)] of X is the function defined by -
Fy(x) =P(X<x) —00<x<0 (6.26)




[image: image5.png]Let Sx(x) =

The function fy(x) is called the probability density function (pdf) of the continuous r.v. X.

dFy(x)
p 6.36)




TWO-DIMENSIONAL RANDOM VARIABLES

[image: image6.png]A. Joint Distribution Function:

Let § be the sample space of a random experiment. Let X and Y be two r.v.’s defined on S. Then
the pair (X, Y) is called a two-dimensional r.v. if each of X and Y associates a real number with every
element of S. The joint cumulative distribution function (or joint cdf) of X and Y, denoted by Fyy(x, ),
is the function defined by

Fyy(x,y) = P(X<x,Y <) (6.39)




TWO-DIMENSIONAL RANDOM VARIABLES

[image: image7.png]E. Joint Probability Density Functions:
Let (X, Y) be a continuous two-dimensional r.v. with c¢df Fyy(x, 3) and let

FFyr(x,9)
A

fyylx, 3} = (6.47)





STATISTICAL AVERAGES
[image: image8.png]The expectation (or mean) of a r.v. X, denoted by E(X) or uy, is defined by

> xipx(x) X : discrete

[Z% xfx(x)dx X : continuous




[image: image9.png]B. Moment:
The nth moment of a r.v. X is defined by

(> xIpx(x;) X : discrete
EXxhY=1411 6.74)
[Z0 x"fx(x) dx X : continuous
C. Variance:
The variance of a r.v. X, denoted by ¢% or Var(X), is defined by
Var (X) = o = E[(X - py)’] 6.75)
Thus,
3 (= ux)?px(x:) X : discrete

ok=1" \ (6.76)

J %% (x = ) fx(x) dx X : continuous




[image: image10.png]C. Normal (or Gaussian) Distribution:

A r.v. X is called normal (or gaussian) r.v. if its pdf is of the form

Tx(x) = ——\/ZI_M /@) 6.91)
The corresponding cdf of X is
, rx (x—p)/
Fy(x) = — J_ e—(f-u)z/(Zdz)d€ = \/%J‘— e—iz/Zdé (6.92)

This integral cannot be evaluated in a closed form and must be evaluated numerically. It is convenient
to use the function Q(z) defined as

0@) = ﬁ :oe"fz/ 2d¢ (6.93)

Then Eq. (6.92) can be written as

Fy(x)=1- Q(x ; ") 6.94)
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Fig. 6-3 Normal distribution

py=p of=go’ S (6.95)




GAUSSIAN DISTRIBUTION
	Q(0.0) = 0.500000000
Q(0.1) = 0.460172163
Q(0.2) = 0.420740291
Q(0.3) = 0.382088578
Q(0.4) = 0.344578258
Q(0.5) = 0.308537539
Q(0.6) = 0.274253118
Q(0.7) = 0.241963652
Q(0.8) = 0.211855399
Q(0.9) = 0.184060125
	Q(1.0) = 0.158655254
Q(1.1) = 0.135666061
Q(1.2) = 0.115069670
Q(1.3) = 0.096800485
Q(1.4) = 0.080756659
Q(1.5) = 0.066807201
Q(1.6) = 0.054799292
Q(1.7) = 0.044565463
Q(1.8) = 0.035930319
Q(1.9) = 0.028716560
	Q(2.0) = 0.022750132
Q(2.1) = 0.017864421
Q(2.2) = 0.013903448
Q(2.3) = 0.010724110
Q(2.4) = 0.008197536
Q(2.5) = 0.006209665
Q(2.6) = 0.004661188
Q(2.7) = 0.003466974
Q(2.8) = 0.002555130
Q(2.9) = 0.001865813
	Q(3.0) = 0.001349898
Q(3.1) = 0.000967603
Q(3.2) = 0.000687138
Q(3.3) = 0.000483424
Q(3.4) = 0.000336929
Q(3.5) = 0.000232629
Q(3.6) = 0.000159109
Q(3.7) = 0.000107800
Q(3.8) = 0.000072348
Q(3.9) = 0.000048096
Q(4.0) = 0.000031671


RANDOM PROCESSES
[image: image12.png]Sample space

Outcome

Fig. 7-1 Random process




[image: image13.png]B. Statistical Averages:

As in the case of random variables, random processes are often described by using statistical averages

(or ensemble averages).
The mean of X(t) is defined by

px® = EIXO1 = | sfuinds o




[image: image14.png]The autocorrelation of X(t) is defined by
Rxx(1y, ) = E[X(#)X(22)]
= J_m J_w Xy Xof (X1, X253 1y, ) dxydxy 7.8)




STATIONARITY

[image: image15.png]Wide-Sense Stationary:

A random process X(z) is called wide-sense stationary (WSS} if its mean is constant

EIX()] = px (7.14)
and its autocorrelation depends only on the time difference t
E[X()X(t + 1)] = Rxx(1) (7.15)

From Egs. (7.9) and (7.15) it follows that the autocovariance of a WSS process also depends only on the
time difference t: .





RANDOM PROCESSES

[image: image16.png]D. Time Averages and Ergodicity:

The time-averaged mean of a sample function x(¢) of a random process X(¢) is defined as
1 T/2
X = {x()) = lim —I x() dt (7.20)
T—oT ) _1/2 )

where the symbol (-} denotes time-averaging.
Similarly, the time-averaged autocorrelation of the sample function x(f) is defined as

_ T/2
Rie(®) = (x(0x(z + D)) = Jim % J O+ D 7.21)

Note that % and Ryx(t) are random variables; their values depend on which sample function of X (t) is used in
the time-averaging evaluations.
If X(r) is statlonary then by taking the expected value on both sides of Eqgs. (7.20) and (7. 21 ), we obtain

T/2
E‘=lim—J E[x(t)]dt = 7.22
B = fim 7|, Elolds = g (7.22)
which indicates that the expected value of the time-averaged mean is equal to the ensemble mean, and

- 1 (72
ElRye(®)] = Jim - J_m E[x(t)x(t + )]dt = Ryx(%) (7.23)




ERGODICITY
[image: image17.png]A stationary process X(¢) is called ergodic in the mean if
X = (x(0) = EIX(0] = px - (7.24)
Similarly, a stationary process X(¢) is called ergodic in the autocorrelation if

Ryx (1) = (x()x(t + 1)) = E[X()X(t +1)] = Rxx(7) (7.25)






















