
Chapter 1

Vector Analysis

1.1 Elementary Approach

In science and engineering we frequently encounter quantities that have only
magnitude: mass, time, and temperature. This magnitude remains the same no
matter how we orient the coordinate axes that we may use. These quantities
we label scalar quantities. In contrast, many interesting physical quantities
have magnitude or length and, in addition, an associated direction. Quanti-
ties with magnitude and direction are called vectors. Their length and the
angle between any vectors remain unaffected by the orientation of coordi-
nates we choose. To distinguish vectors from scalars, we identify vector quan-
tities with boldface type (i.e., V). Vectors are useful in solving systems of
linear equations (Chapter 3). They are not only helpful in Euclidean geom-
etry but also indispensable in classical mechanics and engineering because
force, velocity, acceleration, and angular momentum are vectors. Electrody-
namics is unthinkable without vector fields such as electric and magnetic
fields.

Practical problems of mechanics and geometry, such as searching for the
shortest distance between straight lines or parameterizing the orbit of a parti-
cle, will lead us to the differentiation of vectors and to vector analysis. Vector
analysis is a powerful tool to formulate equations of motions of particles
and then solve them in mechanics and engineering, or field equations of
electrodynamics.

In this section, we learn to add and subtract vectors geometrically and
algebraically in terms of their rectangular components.

A vector may be geometrically represented by an arrow with length pro-
portional to the magnitude. The direction of the arrow indicates the direction
of the vector, the positive sense of direction being indicated by the point. In
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this representation, vector addition

C = A + B (1.1)

consists of placing the rear end of vector B at the point of vector A (head to
tail rule). Vector C is then represented by an arrow drawn from the rear of A

to the point of B. This procedure, the triangle law of addition, assigns mean-
ing to Eq. (1.1) and is illustrated in Fig. 1.1. By completing the parallelogram
(sketch it), we see that

C = A + B = B + A. (1.2)

In words, vector addition is commutative.
For the sum of three vectors

D = A + B + C,

illustrated in Fig. 1.2, we first add A and B:

A + B = E.

Then this sum is added to C:

D = E + C.

Alternatively, we may first add B and C:

B + C = F.
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Then

D = A + F.

In terms of the original expression,

(A + B) + C = A + (B + C)

so that these alternative ways of summing three vectors lead to the same vector,
or vector addition is associative.

A direct physical example of the parallelogram addition law is provided
by a weight suspended by two cords in Fig. 1.3. If the junction point is in
equilibrium, the vector sum of the two forces F1 and F2 must cancel the down-
ward force of gravity, F3. Here, the parallelogram addition law is subject to
immediate experimental verification.1 Such a balance of forces is of immense
importance for the stability of buildings, bridges, airplanes in flight, etc.

Subtraction is handled by defining the negative of a vector as a vector of
the same magnitude but with reversed direction. Then

A − B = A + (−B).

The graphical representation of vector A by an arrow suggests using co-
ordinates as a second possibility. Arrow A (Fig. 1.4), starting from the

1Strictly speaking, the parallelogram addition was introduced as a definition. Experiments show
that forces are vector quantities that are combined by parallelogram addition, as required by the
equilibrium condition of zero resultant force.
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origin,2 terminates at the point (Ax, Ay, Az). Thus, if we agree that the vec-
tor is to start at the origin, the positive end may be specified by giving the
rectangular or Cartesian coordinates (Ax, Ay, Az) of the arrow head.

Although A could have represented any vector quantity (momentum, elec-
tric field, etc.), one particularly important vector quantity, the distance from
the origin to the point (x, y, z), is denoted by the special symbol r. We then
have a choice of referring to the displacement as either the vector r or the
collection (x, y, z), the coordinates of its end point:

r ↔ (x, y, z). (1.3)

Defining the magnitude r of vector r as its geometrical length, we find that Fig.
1.4 shows that the end point coordinates and the magnitude are related by

x = r cos α, y = r cos β, z = r cos γ. (1.4)

cos α, cos β, and cos γ are called the direction cosines, where α is the angle
between the given vector and the positive x-axis, and so on. The (Cartesian)
components Ax, Ay, and Az can also be viewed as the projections of A on the
respective axes.

Thus, any vector A may be resolved into its components (or projected
onto the coordinate axes) to yield Ax = Acos α, etc., as in Eq. (1.4). We refer
to the vector as a single quantity A or to its components (Ax, Ay, Az). Note
that the subscript x in Ax denotes the x component and not a dependence on
the variable x. The choice between using A or its components (Ax, Ay, Az) is

2We could start from any point; we choose the origin for simplicity. This freedom of shifting the
origin of the coordinate system without affecting the geometry is called translation invariance.
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essentially a choice between a geometric or an algebraic representation.
The geometric “arrow in space” often aids in visualization. The algebraic set
of components is usually more suitable for precise numerical or algebraic
calculations. (This is illustrated in Examples 1.1.1–1.1.3 and also applies to
Exercises 1.1.1, 1.1.3, 1.1.5, and 1.1.6.)

Vectors enter physics in two distinct forms:

• Vector A may represent a single force acting at a single point. The force of
gravity acting at the center of gravity illustrates this form.

• Vector A may be defined over some extended region; that is, A and its
components may be functions of position: Ax = Ax(x, y, z), and so on.

Imagine a vector A attached to each point (x, y, z), whose length and direction
change with position. Examples include the velocity of air around the wing of
a plane in flight varying from point to point and electric and magnetic fields
(made visible by iron filings). Thus, vectors defined at each point of a region
are usually characterized as a vector field. The concept of the vector defined
over a region and being a function of position will be extremely important in
Section 1.2 and in later sections in which we differentiate and integrate vectors.

A unit vector has length 1 and may point in any direction. Coordinate
unit vectors are implicit in the projection of A onto the coordinate axes to
define its Cartesian components. Now, we define x̂ explicitly as a vector of unit
magnitude pointing in the positive x-direction, ŷ as a vector of unit magnitude
in the positive y-direction, and ẑ as a vector of unit magnitude in the positive z-
direction. Then x̂Ax is a vector with magnitude equal to Ax and in the positive
x-direction; that is, the projection of A onto the x-direction, etc. By vector
addition

A = x̂Ax + ŷAy + ẑAz, (1.5)

which states that a vector equals the vector sum of its components or projec-
tions. Note that if A vanishes, all of its components must vanish individually;
that is, if

A = 0, then Ax = Ay = Az = 0.

Finally, by the Pythagorean theorem, the length of vector A is

A = (
A2

x + A2
y + A2

z

)1/2
. (1.6)

This resolution of a vector into its components can be carried out in a variety
of coordinate systems, as demonstrated in Chapter 2. Here, we restrict our-
selves to Cartesian coordinates, where the unit vectors have the coordinates
x̂ = (1, 0, 0), ŷ = (0, 1, 0), and ẑ = (0, 0, 1).

Equation (1.5) means that the three unit vectors x̂, ŷ, and ẑ span the real
three-dimensional space: Any constant vector may be written as a linear com-
bination of x̂, ŷ, and ẑ. Since x̂, ŷ, and ẑ are linearly independent (no one is
a linear combination of the other two), they form a basis for the real three-
dimensional space.



6 Chapter 1 Vector Analysis

Complementary to the geometrical technique, algebraic addition and sub-
traction of vectors may now be carried out in terms of their components. For

A = x̂Ax + ŷAy + ẑAz and B = x̂Bx + ŷBy + ẑBz,

A ± B = x̂(Ax ± Bx) + ŷ(Ay ± By) + ẑ(Az ± Bz). (1.7)

Biographical Data

Descartes, René. Descartes, a French mathematician and philosopher,
was born in La Haye, France, in 1596 and died in Stockholm, Sweden, in
1650. Cartesius is the latinized version of his name at a time when Latin was
the language of sciences, although he mainly wrote in French. He discovered
his love of mathematics in the army, when he had plenty of time for research.
He introduced the concept of rectangular coordinates, thereby converting
geometry to algebraic equations of the coordinates of points, now called
analytic geometry. Thus, he paved the way for Newton’s and Leibniz’s calcu-
lus. He coined the phrase “Cogito, ergo sum,” which translates to “I think,
therefore I am.”

EXAMPLE 1.1.1 Let

A = 6x̂ + 4ŷ + 3ẑ

B = 2x̂ − 3ŷ − 3ẑ.

Then by Eq. (1.7)

A + B = (6 + 2)x̂ + (4 − 3)ŷ + (3 − 3)ẑ = 8x̂ + ŷ,

A − B = (6 − 2)x̂ + (4 + 3)ŷ + (3 + 3)ẑ = 4x̂ + 7ŷ + 6ẑ. ■

EXAMPLE 1.1.2 Parallelogram of Forces Find the sum of two forces a and b. To practice
the geometric meaning of vector addition and subtraction, consider two forces

a = (3, 0, 1), b = (4, 1, 2)

(in units of newtons, 1 N = 1 kgm/s2, in the Standard International system of
units) that span a parallelogram with the diagonals forming the sum

a + b = (3 + 4, 1, 1 + 2) = (7, 1, 3) = b + a,

and the difference

b − a = (4 − 3, 1, 2 − 1) = (1, 1, 1),

as shown in Fig. 1.5. The midpoint c is half the sum,

c = 1
2

(a + b) =
(

7
2

,
1
2

,
3
2

)
.
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Alternately, to obtain the midpoint from a, add half of the second diagonal that
points from a to b; that is,

a + 1
2

(b − a) = 1
2

(a + b) = c =
(

7
2

,
1
2

,
3
2

)
. ■

EXAMPLE 1.1.3 Center of Mass of Three Points at the Corners of a Triangle Consider
each corner of a triangle to have a unit of mass and to be located ai from the
origin, where

a1 = (2, 0, 0), a2 = (4, 1, 1), a3 = (3, 3, 2).

Then, the center of mass of the triangle is

1
3

(a1 + a2 + a3) = c = 1
3

(2 + 4 + 3, 1 + 3, 1 + 2) =
(

3,
4
3

, 1
)

.

THEOREM 1.1
If we draw a straight line from each corner to the midpoint of the opposite
side of the triangle in Fig. 1.6, these lines meet in the center, which is at
a distance of two-thirds of the line length to the corner.

The three midpoints are located at the point of the vectors

1
2

(a1 + a2) = 1
2

(2 + 4, 1, 1) =
(

3,
1
2

,
1
2

)
1
2

(a2 + a3) = 1
2

(4 + 3, 1 + 3, 1 + 2) =
(

7
2

, 2,
3
2

)
1
2

(a3 + a1) = 1
2

(3 + 2, 3, 2) =
(

5
2

,
3
2

, 1
)

.
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To prove this theorem numerically or symbolically using general vectors, we
start from each corner and end up in the center as follows:

(2, 0, 0) + 2
3

[(
7
2

, 2,
3
2

)
− (2, 0, 0)

]
=

(
3,

4
3

, 1
)

a1 + 2
3

(
1
2

(a2 + a3) − a1

)
= 1

3
(a1 + a2 + a3),

(4, 1, 1) + 2
3

[(
5
2

,
3
2

, 1
)

− (4, 1, 1)
]

=
(

3,
4
3

, 1
)

a2 + 2
3

(
1
2

(a1 + a3) − a2

)
= 1

3
(a1 + a2 + a3),

(3, 3, 2) + 2
3

[(
3,

1
2

,
1
2

)
− (3, 3, 2)

]
=

(
3,

4
3

, 1
)

a3 + 2
3

(
1
2

(a1 + a2) − a3

)
= 1

3
(a1 + a2 + a3).

This theorem is easy to establish using vector algebra, but it is much more
tedious to prove working only with intersecting straight lines of Euclidean
geometry. Thus, this example is not only useful practice but also lets us appre-
ciate the power and versatility of the vector algebra. ■

EXAMPLE 1.1.4 Elastic Forces A movable point a is held elastically (denoted by springs in
Fig. 1.7) by three fixed points ai, i = 1, 2, 3; that is, the force Fi = ki(ai − a)
for each i that a experiences is pointed to ai and proportional to the distance.
Let us show that the elastic forces to three points can be replaced by an elastic
force to a single point.

This holds because the total force is given by

F =
∑

i

Fi =
∑

i

kiai − a
∑

i

ki =
( ∑

i

ki

) (∑
i kiai∑

i ki

− a

)
= k0(a0 − a),
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where k0 = ∑
i ki and a0 = ∑

i kiai/k0. This shows that the resulting force
is equivalent to one with an effective spring constant k0 acting from a point
a0. Note that if all ki’s are the same, then a0 = 1

3 (a1 + a2 + a3) is the center of
mass.

Technical applications apply for bridges and buildings, for which the bal-
ance of forces is vital for stability. ■

Vectors and Vector Space Summary

An ordered triplet of real numbers (x1, x2, x3) is labeled a vector x. The number
xn is called the nth component of vector x. The collection of all such vectors
(obeying the properties that follow) forms a three-dimensional real vector

space, or linear space. We ascribe five properties to our vectors: If x =
(x1, x2, x3) and y = (y1, y2, y3),

1. Vector equality: x = y means xi = yi, i = 1, 2, 3.

2. Vector addition: x + y = z means xi + yi = zi, i = 1, 2, 3.

3. Scalar multiplication: ax = (ax1, ax2, ax3).
4. Negative of a vector: −x = (−1)x = (−x1, −x2, −x3).
5. Null vector: There exists a null vector 0 = (0, 0, 0).

Since our vector components are numbers, the following properties also
hold:

1. Addition of vectors is commutative: x + y = y + x.
2. Addition of vectors is associative: (x + y) + z = x + (y + z).
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3. Scalar multiplication is distributive:

a(x + y) = ax + ay, also (a + b)x = ax + bx.

4. Scalar multiplication is associative: (ab)x = a(bx).

Furthermore, the null vector 0 is unique, as is the negative of a given vector x.
With regard to the vectors, this approach merely formalizes the component

discussion of Section 1.1. The importance lies in the extensions, which will
be considered later. In Chapter 3, we show that vectors form a linear space,
with the transformations in the linear space described by matrices. Finally,
and perhaps most important, for advanced physics the concept of vectors
presented here generalizes to (i) complex quantities,3 (ii) functions, and (iii) an
infinite number of components. This leads to infinite dimensional function
spaces, the Hilbert spaces, which are important in quantum mechanics. A brief
introduction to function expansions and Hilbert space is provided in Chapter 9.

SUMMARY So far, we have defined the operations of addition and subtraction of vectors
guided by the use of elastic and gravitational forces in classical mechanics, set
up mechanical and geometrical problems such as finding the center of mass of
a system of mass points, and solved these problems using the tools of vector
algebra.

Next, we address three varieties of multiplication defined on the basis of
their applicability in geometry and mechanics: a scalar or inner product in
Section 1.2; a vector product peculiar to three-dimensional space in Section
1.3, for which the angular momentum in mechanics is a prime example; and a
direct or outer product yielding a second-rank tensor in Section 2.7. Division
by a vector cannot be consistently defined.

EXERCISES

1.1.1 A jet plane is flying eastward from Kennedy Airport at a constant speed
of 500 mph. There is a crosswind from the south at 50 mph. What is the
resultant speed of the plane relative to the ground? Draw the velocities
(using graphical software, if available).

1.1.2 A boat travels straight across a river at a speed of 5 mph when there is
no current. You want to go straight across the river in that boat when
there is a constant current flowing at 1 mph. At what angle do you have
to steer the boat? Plot the velocities.

1.1.3 A sphere of radius a is centered at a point r1.
(a) Write out the algebraic equation for the sphere. Explain in words why

you chose a particular form. Name theorems from geometry you may
have used.

3The n-dimensional vector space of real n-tuples is often labeled Rn, and the n-dimensional vector
space of complex n-tuples is labeled Cn.
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(b) Write out a vector equation for the sphere. Identify in words what
you are doing.

ANS. (a) (x − x1)2 + (y − y1)2 + (z − z1)2 = a2.

(b) r = r1 + a (a takes on all directions but has a fixed
magnitude, a).

1.1.4 Show that the medians of a triangle intersect at a point. Show that this
point is two-thirds of the way from any corner of the triangle to the mid-
point of the opposite side. Compare a geometrical proof with one using
vectors. If you use a Cartesian coordinate system, place your triangle so
as to simplify the analysis as much as possible. Explain in words why
you are allowed to do so.

1.1.5 The velocity of sailboat A relative to sailboat B, vrel, is defined by the
equation vrel = vA − vB, where vA is the velocity of A and vB is the
velocity of B. Determine the velocity of A relative to B if

vA = 30 km/hr east
vB = 40 km/hr north.

Plot the velocities (using graphical software, if available).

ANS. vrel = 50 km/hr, 53.1◦ south of east.

1.1.6 A sailboat sails for 1 hr at 4 km/hr (relative to the water) on a steady
compass heading of 40◦ east of north. The sailboat is simultaneously
carried along by a current. At the end of the hour the boat is 6.12 km
from its starting point. The line from its starting point to its location lies
60◦ east of north. Find the x (easterly) and y (northerly) components of
the water’s velocity. Plot all velocities.

ANS. veast = 2.73 km/hr, vnorth ≈ 0 km/hr.

1.1.7 A triangle is defined by the vertices of three vectors, A, B, and C, that
extend from the origin. In terms of A, B, and C, show that the vector

sum of the successive sides of the triangle is zero. If software is available,
plot a typical case.

1.1.8 Find the diagonal vectors of a unit cube with one corner at the origin and
three adjacent sides lying along the three axes of a Cartesian coordinate
system. Show that there are four diagonals with length

√
3. Representing

these as vectors, what are their components? Show that the diagonals of
the cube’s surfaces have length

√
2. Determine their components.

1.1.9 Hubble’s law: Hubble found that distant galaxies are receding with a
velocity proportional to their distance (H0 is the Hubble constant) from
where we are on Earth. For the ith galaxy

vi = H0ri,

with our Milky Way galaxy at the origin. Show that this recession of the
galaxies from us does not imply that we are at the center of the universe.
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Specifically, take the galaxy at r1 as a new origin and show that Hubble’s
law is still obeyed.

1.2 Scalar or Dot Product

Having defined vectors, we now proceed to combine them in this section.
The laws for combining vectors must be mathematically consistent. From the
possibilities that are consistent we select two that are both mathematically
and physically interesting. In this section, we start with the scalar product that
is based on the geometric concept of projection that we used in Section 1.1
to define the Cartesian components of a vector. Also included here are some
applications to particle orbits and analytic geometry that will prompt us to
differentiate vectors, thus starting vector analysis.

The projection of a vector A onto a coordinate axis, which defines its
Cartesian components in Eq. (1.5), is a special case of the scalar product

of A and the coordinate unit vectors,

Ax = Acos α ≡ A · x̂, Ay = Acos β ≡ A · ŷ, Az = Acos γ ≡ A · ẑ (1.8)

and leads us to the general definition of the dot product. Just as the projection
is linear in A, we want the scalar product of two vectors to be linear in A and
B—that is, to obey the distributive and associative laws

A · (B + C) = A · B + A · C (1.9)

A · (yB) = (yA) · B = yA · B, (1.10)

where y is a real number. Now we can use the decomposition of B into its
Cartesian components according to Eq. (1.5), B = Bxx̂ + Byŷ + Bzẑ, to con-
struct the general scalar or dot product of the vectors A and B from the special
case as

A · B = A · (Bxx̂ + Byŷ + Bzẑ),

= BxA · x̂ + ByA · ŷ + BzA · ẑ, applying Eqs. (1.9) and (1.10)

= Bx Ax + ByAy + BzAz, upon substituting Eq. (1.8).

Hence,

A · B ≡
∑

i

AiBi =
∑

i

Bi Ai = B · A (1.11)

because we are dealing with components.
If A = B in Eq. (1.11), we recover the magnitude A = (

∑
i A2

i )1/2 of A in
Eq. (1.6) from Eq. (1.11).

It is obvious from Eq. (1.11) that the scalar product treats A and B alike,
is symmetric in A and B, or is commutative. Based on this observation, we
can generalize Eq. (1.8) to the projection of A onto an arbitrary vector B = 0
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The Distributive Law
A ·(B+C) = ABA +
ACA = A(B + C)A
[Eq. (1.9)]

instead of the coordinate unit vectors. As a first step in this direction, we define
AB as AB = Acos θ ≡ A · B̂, where B̂ = B/B is the unit vector in the direction
of B and θ is the angle between A and B as shown in Fig. 1.8. Similarly, we
project B onto A as BA = B cos θ ≡ B ·Â. These projections are not symmetric
in A and B. To make them symmetric in A and B, we define

A · B ≡ AB B = ABA = AB cos θ. (1.12)

The distributive law in Eq. (1.9) is illustrated in Fig. 1.9, which states that
the sum of the projections of B and C onto A, BA + CA, is equal to the projection
of B + C onto A, (B + C)A.

From Eqs. (1.8), (1.11), and (1.12), we infer that the coordinate unit vectors
satisfy the relations

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1, (1.13)

whereas

x̂ · ŷ = x̂ · ẑ = ŷ · ẑ = 0. (1.14)
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If the component definition of the dot product, Eq. (1.11), is labeled an al-
gebraic definition, then Eq. (1.12) is a geometric definition. One of the most
common applications of the scalar product in physics is in the definition of
work = force · displacement · cos θ , where θ is the angle between the force
and the displacement. This expression is interpreted as displacement times the
projection of the force along the displacement direction—that is, the scalar
product of force and displacement, W = F · s.

If A · B = 0 and we know that A = 0 and B = 0, then from Eq. (1.12) cos θ =
0 or θ = 90◦, 270◦, and so on. The vectors A and B must be perpendicular.
Alternately, we may say A and B are orthogonal. The unit vectors x̂, ŷ, and ẑ

are mutually orthogonal.

Free Motion and Other Orbits

EXAMPLE 1.2.1 Free Particle Motion To apply this notion of orthogonality in two dimen-
sions, let us first deal with the motion of a particle free of forces along a straight
line

r(t) = (x (t), y(t)) = (−3t, 4t)

through the origin (dashed line in Fig. 1.10). The particle travels with the
velocityvx = x/t = −3 in the x-direction andvy = y/t = 4 in the y-direction (in
meters per second; e.g., 1 m/sec = 3.6 km/hr). The constant velocity v = (−3, 4)
is characteristic of free motion according to Newton’s equations.

Eliminating the time t, we find the homogeneous linear equation 4x+3y =
0, whose coefficient vector (4, 3) we normalize to unit length; that is, we write
the linear equation as

4
5

x + 3
5

y = 0 = n · r.

x

y

0

ad

r1

r2

n

Figure 1.10

The Dashed Line Is
n · r = 0 and the
Solid Line Is
n · r = d
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where n = (4/5, 3/5) is a constant unit vector and r is the coordinate vector
varying in the xy-plane; that is, r = x̂x + ŷy. The scalar product

n · r = 0 (1.15)

means that the projection onto n of the vector r(t) pointing from the origin
(a point on the line) to the general point on the line is zero so that n is the

normal of the straight line. We verify that

(−3t, 4t) ·
(

4
5

,
3
5

)
= t

5
(−3 · 4 + 4 · 3) = 0.

Because the particle’s velocity is a tangent vector of the line, we can also write
the scalar product as v · n = 0, omitting the normalization factor t/v = t/5.

If we throw the particle from the origin in an arbitrary direction with some
velocity v, it also will travel on a line through the origin. That is, upon varying
the normal unit vector the linear Eq. (1.15) defines an arbitrary straight line
through the origin in the xy-plane. Notice that in three dimensions Eq. (1.15)
describes a plane through the origin, and a hyperplane ((n − 1)-dimensional
subspace) in n-dimensional space.

Now we shift the line by some constant distance d along the normal di-
rection n so that it passes through the point (3, 0) on the x-axis, for example.
Because its tangent vector is v, the line is parameterized as x(t) = 3−3t, y(t) =
4t. We can verify that it passes through the point r2 = (3, 0) on the x-axis for
t = 0 and r1 = (0, 4) on the y-axis for t = 1. The particle has the same velocity
and the path has the same normal. Eliminating the time as before, we find that
the linear equation for the line becomes 4x + 3y = 12, or

n · r = d = 12
5

. (1.16)

The line no longer goes through the origin (solid line in Fig. 1.10) but has
the shortest distance d = 12/5 from the origin. If r1 = (0, 4), r2 = (3, 0)
are our different points on that line, then T = r1 − r2 = (−3, 4) = v is a
tangent vector of the line and therefore orthogonal to the normal n because
n · T = n · r1 − n · r2 = d − d = 0 from Eq. (1.16). Then the general point on
that line is parameterized by

r(t) = r1 + tT (1.17)

because n · r = n · r1 + tn · T = d + t · 0 = d.
Note that in general a straight line is defined by a linear relation, n · r = d,

and its points depend linearly on one variable t; that is, in two dimensions
Eq. (1.17) represents x = x1 + tTx, y = y1 + tTy, with T = (Tx, Ty). The
geometry of Fig. 1.10 shows that the projection of the vectors r1, r2, r on the
normal n is always d—that is, the shortest distance of our line from the origin,
consistent with the algebraic definition n · r = d of our line, from which we
started.
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Equations (1.16) and (1.17) are consistent with the conventional definition
of a straight line by its constant slope (or angle α with the x-axis)

tan α = y − y1

x − x1
↔ (x − x1) sin α − (y − y1) cos α = 0, (1.18)

where the normal n = (sin α, − cos α); upon comparing Eq. (1.18) with Eq.
(1.16), n · r = d = x1 sin α − y1 cos α.

Generalizing to three-dimensional analytic geometry, n · r = d is linear in
the variables (x, y, z) = r; that is, it represents a plane, and the unit vector
n = (n1, n2, n3) is perpendicular to the plane—it is the constant normal of
the plane. If we divide the plane equation by d, the coefficients ni/d of the
coordinates xi of the plane give the inverse lengths of the segments from the
origin to the intersection of the Cartesian axes with the plane. For example,
the point of the plane 6x + 3y + 2z = 6 in Fig. 1.11 on the x-axis defined by
y = 0 = z is (d/n1 = 1, 0, 0) for n1 = 6/7, d = 6/7, noting that 62+32+22 = 72.
The general point on the plane is parameterized as

r(s, t) = r1 + sl1 + tl2,

where s and t are parameters, and it is constructed from three of its points
ri, i = 1, 2, 3, that is, r1 = (1, 0, 0), r2 = (0, 2, 0), r3 = (0, 0, 3) for the plane in
Fig. 1.11, so that the tangent vectors l1 = r2 − r1, l2 = r3 − r1 of the plane are
not parallel. All this generalizes to higher dimensions.

Geometry also tells us that two nonparallel planes a1 · r = d1, a2 · r = d2 in
three-dimensional space have a line in common and three nonparallel planes
a single point in general. Finding them amounts to solving linear equations,
which is addressed in Section 3.1 using determinants.

 d

n1
= 1

 d

n3
= 3

 d

n2
= 2

y

z

x

Figure 1.11

The Plane
6x + 3y + 2z = 6
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Differentiation of a
Vector

More generally, the orbit of a particle or a curve in planar analytic geometry
may be defined as r(t) = (x(t), y(t)), where x and y are functions of the
parameter t. In order to find the slope of a curve or the tangent to an orbit
we need to differentiate vectors. Differentiating a vector function is a simple
extension of differentiating scalar functions if we resolve r(t) into its Cartesian
components. Then, for differentiation with respect to time, the linear velocity
is given by

dr(t)
dt

= lim
	t→0

r(t + 	t) − r(t)
	t

= v =
(

dx

dt
,

dy

dt
,

dz

dt

)
≡ (ẋ, ẏ, ż)

because the Cartesian unit vectors are constant. Thus, differentiation of a
vector always reduces directly to a vector sum of not more than three (for
three-dimensional space) scalar derivatives. In other coordinate systems (see
Chapter 2), the situation is more complicated because the unit vectors are
no longer constant in direction. Differentiation with respect to the space co-
ordinates is handled in the same way as differentiation with respect to time.
Graphically, we have the slope of a curve, orbit, or trajectory, as shown in
Fig. 1.12. ■

EXAMPLE 1.2.2 Shortest Distance of a Rocket from an Observer What is the shortest
distance of a rocket traveling at a constant velocity v = (1, 2, 3) from an
observer at r0 = (2, 1, 3)? The rocket is launched at time t = 0 at the point
r1 = (1, 1, 1).

The path of the rocket is the straight line

r = r1 + tv, (1.19)

or, in Cartesian coordinates,

x (t) = 1 + t, y(t) = 1 + 2t, z(t) = 1 + 3t.
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We now minimize the distance |r−r0| of the observer at the point r0 = (2, 1, 3)
from r(t), or equivalently (r − r0)2 = min. Differentiating Eq. (1.19) with
respect to t yields ṙ = (ẋ, ẏ, ż) = v. Setting d

dt
(r − r0)2 = 0, we obtain the

condition

2(r − r0) · ṙ = 2[r1 − r0 + tv] · v = 0.

Because ṙ = v is the tangent vector of the line, the geometric meaning of this
condition is that the shortest distance vector through r0 is perpendicular

to the line. Now solving for t yields the ratio of scalar products

t = − (r1 − r0) · v

v2
= − (−1, 0, −2) · (1, 2, 3)

(1, 2, 3) · (1, 2, 3)
= 1 + 0 + 6

1 + 4 + 9
= 1

2
.

Substituting this parameter value into Eq. (1.19) gives the point rs = (3/2, 2,
5/2) on the line that is closest to r0. The shortest distance is d = |r0 − rs| =
|(−1/2, 1, −1/2)| = √

2/4 + 1 = √
3/2. ■

In two dimensions, r(t) = (x = a cos t, y = b sin t) describes an ellipse
with half-axes a, b (so that a = b gives a circle); for example, the orbit of a
planet around the sun in a plane determined by the constant orbital angular
momentum (the normal of the plane). If r0 = (x (t0), y(t0)) = (x0, y0) = r(t0)
is a point on our orbit, then the tangent at r0 has the slope ẏ0/ẋ0, where the
dots denote the derivatives with respect to the time t as usual. Returning to the
slope formula, imagine inverting x = x (t) to find t = t(x), which is substituted
into y = y(t) = y(t(x)) = f (x) to produce the standard form of a curve in
analytic geometry. Using the chain rule of differentiation, the slope of f (x)
at x is

df

dx
= f ′(x) = dy(t(x))

dx
= dy

dt

dt

dx
= ẏ

ẋ
.

The tangent is a straight line and therefore depends linearly on one variable u,

r = r (t0) + uṙ (t0), (1.20)

whereas the normal through the given point (x0, y0) obeys the linear equation

(x − x0) ẋ0 + (y − y0) ẏ0 = 0. (1.21)

For the elliptical orbit mentioned previously, we check that the point r0 =
(0, b) for the parameter value t = π/2 lies on it. The slope at t = π/2 is
zero, which we also know from geometry and because ẏ0 = b cos t|t=π/2 = 0,
whereas ẋ0 = −a sin t|π/2 = −a = 0. The normal is the y-axis for which Eq.
(1.21) yields −ax = 0.

A curve can also be defined implicitly by a functional relation, F(x, y) = 0,
of the coordinates. This common case will be addressed in Section 1.5 because
it involves partial derivatives.
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Figure 1.13

The Law of Cosines

Law of Cosines In a similar geometrical approach, we take C = A + B and
dot it into itself:

C · C = (A + B) · (A + B) = A · A + B · B + 2A · B. (1.22)

Since

C · C = C2, (1.23)

the square of the magnitude of vector C is a scalar, we see that

A · B = 1
2

(C2 − A2 − B2) (1.24)

is a scalar. Note that since the right-hand side of Eq. (1.24) is a scalar, the
left-hand side A ·B must also be a scalar, independent of the orientation of the
coordinate system. We defer a proof that a scalar product is invariant under
rotations to Section 2.6.

Equation (1.22) is another form of the law of cosines:

C2 = A2 + B2 + 2AB cos θ. (1.25)

Comparing Eqs. (1.22) and (1.25), we have another verification of Eq. (1.12) or,
if preferred, a vector derivation of the law of cosines (Fig. 1.13). This law may
also be derived from the triangle formed by the point of C and its line of shortest
distance from the line along A, which has the length B sin θ , whereas the
projection of B onto A has length B cos θ. Applying the Pythagorean theorem
to this triangle with a right angle formed by the point of C, A + B · Â and the
shortest distance B sin θ gives

C2 = (A + B · Â)2 + (B sin θ)2 = A2 + B2(cos2 θ + sin2 θ) + 2AB cos θ.

SUMMARY In this section, we defined the dot product as an algebraic generalization of
the geometric concept of projection of vectors (their coordinates). We used
it for geometrical purposes, such as finding the shortest distance of a point
from a line or the cosine theorem for triangles. The geometrical meaning of
the scalar product allowed us to go back and forth between the algebraic
definition of a straight line as a linear equation and the parameterization of
its general point r(t) as a linear function of time and similar steps for planes
in three dimensions. We began differentiation of vectors as a tool for drawing
tangents to orbits of particles, and this important step represents the start of
vector analysis enlarging vector algebra.
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The dot product, given by Eq. (1.11), may be generalized in two ways.
The space need not be restricted to three dimensions. In n-dimensional space,
Eq. (1.11) applies with the sum running from 1 to n; n may be infinity, with the
sum then a convergent infinite series (see Section 5.2). The other generalization
extends the concept of vector to embrace functions. The function analog of a
dot or inner product is discussed in Section 9.4.

EXERCISES

1.2.1 A car is moving northward with a constant speed of 50 mph for 5 min,
and then makes a 45◦ turn to the east and continues at 55 mph for 1 min.
What is the average acceleration of the car?

1.2.2 A particle in an orbit is located at the point r (drawn from the origin) that
terminates at and specifies the point in space (x, y, z). Find the surface
swept out by the tip of r and draw it using graphical software if
(a) (r − a) · a = 0,
(b) (r − a) · r = 0.

The vector a is a constant (in magnitude and direction).

1.2.3 Develop a condition when two forces are parallel, with and without using
their Cartesian coordinates.

1.2.4 The Newtonian equations of motion of two particles are

m1v̇1 = Fi
1 + Fe

1, m2v̇2 = Fi
2 + Fe

2,

where mi are their masses, vi are their velocities, and the superscripts
on the forces denote internal and external forces. What is the total force
and the total external force? Write Newton’s third law for the forces.
Define the center of mass and derive its equation of motion. Define the
relative coordinate vector of the particles and derive the relevant equa-
tion of motion. Plot a typical case at some time instant using graphical
software.
Note. The resultant of all forces acting on particle 1, whose origin lies
outside the system, is called external force Fe

1; the force arising from the
interaction of particle 2 with particle 1 is called the internal force Fi

1 so
that Fi

1 = −Fi
2.

1.2.5 If |A|, |B| are the magnitudes of the vectors A, B, show that −|A||B| ≤
A · B ≤ |A||B|.

1.3 Vector or Cross Product

A second form of vector multiplication employs the sine of the included angle
(denoted by θ) instead of the cosine and is called cross product. The cross
product generates a vector from two vectors, in contrast with the dot product,
which produces a scalar. Applications of the cross product in analytic geometry
and mechanics are also discussed in this section. For instance, the orbital
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Figure 1.14

Angular Momentum

angular momentum of a particle shown at the point of the distance vector in
Fig. 1.14 is defined as

Angular momentum = radius arm · linear momentum

= distance · linear momentum · sin θ. (1.26)

For convenience in treating problems relating to quantities such as angular
momentum, torque, angular velocity, and area, we define the vector or cross
product as

C = A × B, (1.27)

with the magnitude (but not necessarily the dimensions of length)

C = AB sin θ. (1.28)

Unlike the preceding case of the scalar product, C is now a vector, and we
assign it a direction perpendicular to the plane of A and B such that A, B, and
C form a right-handed system. If we curl the fingers of the right hand from
the point of A to B, then the extended thumb will point in the direction of
A × B, and these three vectors form a right-handed system. With this choice
of direction, we have

A × B = −B × A, anticommutation. (1.29)

In general, the cross product of two collinear vectors is zero so that

x̂ × x̂ = ŷ × ŷ = ẑ × ẑ = 0, (1.30)

whereas
x̂ × ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ,

ŷ × x̂ = −ẑ, ẑ × ŷ = −x̂, x̂ × ẑ = −ŷ.
(1.31)

Among the examples of the cross product in mathematical physics are the
relation between linear momentum p and angular momentum L (defining
angular momentum),

L = r × p (1.32)
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Parallelogram
Representation of
the Vector Product

and the relation between linear velocity v and angular velocity ω,

v = ω × r. (1.33)

Vectors v and p describe properties of the particle or physical system. How-
ever, the position vector r is determined by the choice of the origin of the
coordinates. This means that ω and L depend on the choice of the origin.

The familiar magnetic induction B occurs in the vector product force
equation called Lorentz force

FM = qv × B (SI units), (1.34)

where v is the velocity of the electric charge q, and FM is the resulting magnetic
force on the moving charge. The cross product has an important geometrical
interpretation that we shall use in subsequent sections. In the parallelogram
(Fig. 1.15) defined by A and B, B sin θ is the height if A is taken as the length
of the base. Then |A × B| = AB sin θ is the area of the parallelogram. As a
vector, A×B is the area of the parallelogram defined by A and B, with the area
vector normal to the plane of the parallelogram. This means that area (with its
orientation in space) is treated as a vector.

An alternate definition of the vector product can be derived from the special
case of the coordinate unit vectors in Eqs. (1.30) and (1.31) in conjunction with
the linearity of the cross product in both vector arguments, in analogy with
Eqs. (1.9) and (1.10) for the dot product,

A × (B + C) = A × B + A × C, (1.35)

(A + B) × C = A × C + B × C, (1.36)

A × (yB) = yA × B = (yA) × B, (1.37)
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where y is a number, a scalar. Using the decomposition of A and B into their
Cartesian components according to Eq. (1.5), we find

A × B ≡ C = (Cx, Cy, Cz) = (Axx̂ + Ayŷ + Azẑ) × (Bxx̂ + Byŷ + Bzẑ)

= (AxBy − AyBx)x̂ × ŷ + (AxBz − AzBx)x̂ × ẑ

+(AyBz − AzBy)ŷ × ẑ,

upon applying Eqs. (1.35) and (1.37) and substituting Eqs. (1.30) and (1.31) so
that the Cartesian components of A × B become

Cx = AyBz − AzBy, Cy = AzBx − AxBz, Cz = AxBy − AyBx, (1.38)

or

Ci = Aj Bk − Ak Bj , i, j, k all different, (1.39)

and with cyclic permutation of the indices i, j, and k or x → y → z → x in
Eq. (1.38). The vector product C may be represented by a determinant4

C =

∣∣∣∣∣∣∣
x̂ ŷ ẑ

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣ (1.40)

which, according to the expansion Eq. (3.11) of the determinant along the top
row, is a shorthand form of the vector product

C = x̂(AyBz − AzBy) + ŷ(AzBx − AxBz) + ẑ(AxBy − AyBx).

If Eqs. (1.27) and (1.28) are called a geometric definition of the vector product,
then Eq. (1.38) is an algebraic definition.

To show the equivalence of Eqs. (1.27) and (1.28) and the component defi-
nition Eq. (1.38), let us form A · C and B · C using Eq. (1.38). We have

A · C = A · (A × B)

= Ax(AyBz − AzBy) + Ay(AzBx − AxBz) + Az(AxBy − AyBx)

= 0. (1.41)

Similarly,

B · C = B · (A × B) = 0. (1.42)

Equations (1.41) and (1.42) show that C is perpendicular to both A and B and
therefore perpendicular to the plane they determine. The positive direction is
determined by considering special cases, such as the unit vectors x̂ × ŷ = ẑ.

4Determinants are discussed in detail in Section 3.1.
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The magnitude is obtained from

(A × B) · (A × B) = A2 B2 − (A · B)2

= A2 B2 − A2 B2 cos2 θ

= A2 B2 sin2 θ , (1.43)

which implies Eq. (1.28). The first step in Eq. (1.43) may be verified by expand-
ing out in component form using Eq. (1.38) for A×B and Eq. (1.11) for the dot
product. From Eqs. (1.41)–(1.43), we see the equivalence of Eqs. (1.28) and
(1.38), the two definitions of vector product.

EXAMPLE 1.3.1 Shortest Distance between Two Rockets in Free Flight Considering
Example 1.2.2 as a similar but simpler case, we remember that the shortest
distance between a point and a line is measured along the normal from the
line through the point. Therefore, we expect that the shortest distance between
two lines is normal to both tangent vectors of the straight lines. Establishing
this fact will be our first and most important step. The second step involves the
projection of a vector between two points, one on each line, onto that normal
to both lines. However, we also need to locate the points where the normal
starts and ends. This problem we address first.

Let us take the first line from Example 1.2.2, namely r = r1 + t1v1 with
time variable t1 and tangent vector v1 = r2 − r1 = (1, 2, 3) that goes through
the points r1 = (1, 1, 1) and r2 = (2, 3, 4) and is shown in Fig. 1.16, along
with the second line r = r3 + t2v2 with time variable t2 that goes through
the points r3 = (5, 2, 1) and r4 = (4, 1, 2), and so has the tangent vector
r4 − r3 = (−1, −1, 1) = v2 and the parameterization

x = 5 − t2, y = 2 − t2, z = 1 + t2.

r = r3 + v2t2

r = r 1 +
 v 1t 1

r3
r02

r01

r 1

d

Figure 1.16

Shortest Distance
Between Two
Straight Lines That
Do Not Intersect
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In order to find the end points r0k of this shortest distance we minimize the
distances squared (r − r0k)2 to obtain the conditions

0 = d

dt1
(r − r02)2 = d

dt1
(r1 − r02 + t1v1)2 = 2v1 · (r1 − r02 + t1v1),

0 = d

dt2
(r − r01)2 = 2v2 · (r3 − r01 + t2v2). (1.44)

We can solve for t1 = −v1 · (r1 − r02)/v2
1 and t2 = −v2 · (r3 − r01)/v2

2 and
then plug these parameter values into the line coordinates to find the points
r0k and d = |r01 − r02|. This is straightforward but tedious. Alternatively, we
can exploit the geometric meaning of Eq. (1.44) that the distance vector d =
r1 + t1v1 − r02 = −(r3 + t2v2 − r01) is perpendicular to both tangent vectors
vk as shown in Fig. 1.16. Thus, the distance vector d is along the normal unit
vector

n = v1 × v2

|v1 × v2| = 1√
3
√

14

∣∣∣∣∣∣
x̂ ŷ ẑ

+1 +2 3
−1 −1 1

∣∣∣∣∣∣ = 1√
42

(5x̂ − 4ŷ + ẑ) = 1√
42

(5, −4, 1),

the cross product of both tangent vectors. We get the distance d by projecting
the distance vector between two points r1, r3, one on each line, onto that
normal n—that is, d = (r3 − r1) · n = 1√

42
(4, 1, 0) · (5, −4, 1) = 20−4+0√

42
= 16√

42
.

This example generalizes to the shortest distance between two orbits by
examining the shortest distance beween their tangent lines. In this form, there
are many applications in mechanics, space travel, and satellite orbits. ■

EXAMPLE 1.3.2 Medians of a Triangle Meet in the Center Let us consider Example 1.1.3
and Fig. 1.6 again, but now without using the 2:1 ratio of the segments from the
center to the end points of each median. We put the origin of the coordinate
system in one corner of the triangle, as shown in Fig. 1.17, so that the median
from the origin will be given by the vector m3 = (a1 + a2)/2. The medians

a1
1
2

a2

c

a2
1
2 a1+ a21

2

0 a1

(
(

Figure 1.17

Medians of a
Triangle Meet in the
Center
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from the triangle corners a1 and a2 intersect at a point we call the center that
is given by the vector c from the origin. We want to show that m3 and c are
parallel (and therefore collinear), indicating that the center will also lie on the
median from the origin.

From Fig. 1.17, we see that the vector c−a1 from the corner a1 to the center
will be parallel to 1

2 a2 − a1; similarly, c − a2 will be collinear with 1
2 a1 − a2. We

write these conditions as follows:

(c − a1) ×
(

1
2

a2 − a1

)
= 0, (c − a2) ×

(
1
2

a1 − a2

)
= 0.

Expanding, and using the fact that a1 × a1 = 0 = a2 × a2, we find

c × 1
2

a2 − c × a1 − 1
2

(a1 × a2) = 0, c × 1
2

a1 − c × a2 − 1
2

(a2 × a1) = 0.

Adding these equations, the last terms on the left-hand sides cancel, and the
other terms combine to yield

−1
2

c × (a1 + a2) = 0,

proving that c and m3 are parallel.
The center of mass (see Example 1.1.3) will be at the point 1

3 (a1 + a2) and
is therefore on the median from the origin. By symmetry it must be on the
other medians as well, confirming both that they meet at a point and that the
distance from the triangle corner to the intersection is two-thirds of the total
length of the median. ■

SUMMARY If we define a vector as an ordered triplet of numbers (or functions) as in
Section 1.2, then there is no problem identifying the cross product as a vector.
The cross product operation maps the two triples A and B into a third triple
C, which by definition is a vector. In Section 2.6, we shall see that the cross
product also transforms like a vector.

The cross product combines two vectors antisymmetrically and involves
the sine of the angle between the vectors, in contrast to their symmetric
combination in the scalar product involving the cosine of their angle, and
it unifies the angular momentum and velocity of mechanics with the area con-
cept of geometry. The vector nature of the cross product is peculiar to three-
dimensional space, but it can naturally be generalized to higher dimensions.
The cross product occurs in many applications such as conditions for parallel
forces or other vectors and the shortest distance between lines or curves more
generally.

We now have two ways of multiplying vectors; a third form is discussed
in Chapter 2. However, what about division by a vector? The ratio B/A is not
uniquely specified (see Exercise 3.2.21) unless A and B are also required to be
parallel. Hence, division of one vector by another is meaningless.
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EXERCISES

1.3.1 Prove the law of cosines starting from A2 = (B − C)2, where A, B,
and C are the vectors collinear with the sides of a triangle. Plot the
triangle and describe the theorem in words. State the analog of the law
of cosines on the unit sphere (Fig. 1.18), if A, B, and C go from the
origin to the corners of the triangle.

1.3.2 A coin with a mass of 2 g rolls on a horizontal plane at a constant
velocity of 5 cm/sec. What is its kinetic energy?
Hint. Show that the radius of the coin drops out.

1.3.3 Starting with C = A + B, show that C × C = 0 leads to

A × B = −B × A.

1.3.4 Show that
(a) (A − B) · (A + B) = A2 − B2,
(b) (A − B) × (A + B) = 2A × B.

The distributive laws needed here,

A · (B + C) = A · B + A · C

and

A × (B + C) = A × B + A × C,

may be verified by expansion in Cartesian components.

1.3.5 If P = x̂Px + ŷPy and Q = x̂Qx + ŷQy are any two nonparallel (also
non-antiparallel) vectors in the xy-plane, show that P × Q is in the
z-direction.

z

B

y

x

A

C

Figure 1.18

Spherical Triangle
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Law of Sines

1.3.6 Prove that (A × B) · (A × B) = A2B2 − (A · B)2. Write the identity
appropriately and describe it in geometric language. Make a plot for a
typical case using graphical software.

1.3.7 Using the vectors

P = x̂ cos θ + ŷ sin θ ,

Q = x̂ cos ϕ − ŷ sin ϕ,

R = x̂ cos ϕ + ŷ sin ϕ,

prove the familiar trigonometric identities

sin(θ + ϕ) = sin θ cos ϕ + cos θ sin ϕ,

cos(θ + ϕ) = cos θ cos ϕ − sin θ sin ϕ.

1.3.8 If four vectors a, b, c, and d all lie in the same plane, show that

(a × b) × (c × d) = 0.

If graphical software is available, plot all vectors for a specific numerical
case.
Hint. Consider the directions of the cross product vectors.

1.3.9 Derive the law of sines (Fig. 1.19):

sin α

|A| = sin β

|B| = sin γ

|C| .

1.3.10 A proton of mass m, charge +e, and (asymptotic) momentum p =
mv is incident on a nucleus of charge +Ze at an impact parameter b.

Determine its distance of closest approach.



1.4 Triple Scalar Product and Triple Vector Product 29

Hint. Consider only the Coulomb repulsion and classical mechanics,
not the strong interaction and quantum mechanics.

1.3.11 Expand a vector x in components parallel to three linearly independent
vectors a, b, c.

ANS. (a × b · c)x = (x × b · c)a + (a × x · c)b + (a × b · x)c.

1.3.12 Let F be a force vector drawn from the coordinate vector r. If r′ goes
from the origin to another point on the line through the point of r with
tangent vector given by the force, show that the torque r′ ×F = r×F—
that is, the torque about the origin due to the force stays the same.

1.3.13 A car drives in a horizontal circular track of radius R (to its center of
mass). Find the speed at which it will overturn, if h is the height of its
center of mass and d the distance between its left and right wheels.
Hint. Find the speed at which there is no vertical force on the inner
wheels. (The mass of the car drops out.)

1.3.14 A force F = (3, 2, 4) acts at the point (1, 4, 2). Find the torque about
the origin. Plot the vectors using graphical software.

1.3.15 Generalize the cross product to n-dimensional space (n = 2, 4, 5, . . .)
and give a geometrical interpretation of your construction. Give realis-
tic examples in four- and higher dimensional spaces.

1.3.16 A jet plane flies due south over the north pole with a constant speed
of 500 mph. Determine the angle between a plumb line hanging freely
in the plane and the radius vector from the center of the earth to the
plane above the north pole.
Hint. Assume that the earth’s angular velocity is 2π radians in 24 hr,
which is a good approximation. Why?

1.4 Triple Scalar Product and Triple Vector Product

Triple Scalar Product

Sections 1.2 and 1.3 discussed the two types of vector multiplication. However,
there are combinations of three vectors, A · (B × C) and A × (B × C), that
occur with sufficient frequency in mechanics, electrodynamics, and analytic
geometry to deserve further attention. The combination

A · (B × C) (1.45)

is known as the triple scalar product. B × C yields a vector that, dotted into
A, gives a scalar. We note that (A · B) × C represents a scalar crossed into
a vector, an operation that is not defined. Hence, if we agree to exclude this
undefined interpretation, the parentheses may be omitted and the triple scalar
product written as A · B × C.
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Using Eq. (1.38) for the cross product and Eq. (1.11) for the dot product,
we obtain

A · B × C = Ax(ByCz − BzCy) + Ay(BzCx − BxCz) + Az(BxCy − ByCx)

= B · C × A = C · A × B = −A · C × B

= −C · B × A = −B · A × C. (1.46)

The high degree of symmetry present in the component expansion should be
noted. Every term contains the factors Ai, Bj , and Ck. If i, j, and k are in cyclic
order (x, y, z), the sign is positive. If the order is anticyclic, the sign is negative.
Furthermore, the dot and the cross may be interchanged:

A · B × C = A × B · C. (1.47)

A convenient representation of the component expansion of Eq. (1.46) is pro-
vided by the determinant

A · B × C =
∣∣∣∣∣∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ , (1.48)

which follows from Eq. (1.38) by dotting B×C into A. The rules for interchang-
ing rows and columns of a determinant5 provide an immediate verification of
the permutations listed in Eq. (1.46), whereas the symmetry of A, B, and C in
the determinant form suggests the relation given in Eq. (1.46). The triple prod-
ucts discussed in Section 1.3, which showed that A × B was perpendicular to
both A and B, were special cases of the general result [Eq. (1.46)].

The triple scalar product has a direct geometrical interpretation in
which the three vectors A, B, and C are interpreted as defining a paral-

lelepiped (Fig. 1.20):

|B × C| = BC sin θ = area of parallelogram base. (1.49)

5See Section 3.1 for a detailed discussion of the properties of determinants.
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The direction, of course, is normal to the base. Dotting A into this means
multiplying the base area by the projection of A onto the normal, or base
times height. Therefore,

A · B × C = volume of parallelepiped defined by A, B, and C. (1.50)

Note that A · B × C may sometimes be negative. This is not a problem, and its
proper interpretation is provided in Chapter 2.

EXAMPLE 1.4.1 A Parallelepiped For

A = x̂ + 2ŷ − ẑ, B = ŷ + ẑ, C = x̂ − ŷ,

A · B × C =

∣∣∣∣∣∣∣
1 2 −1

0 1 1

1 −1 0

∣∣∣∣∣∣∣ = 4.

This is the volume of the parallelepiped defined by A, B, and C. ■

Recall that we already encountered a triple scalar product, namely the
distance d ∼ (r3 − r1) · (v1 × v2) between two straight lines in Example 1.3.1.

Triple Vector Product

The second triple product of interest is A×(B×C), which is a vector. Here, the
parentheses must be retained, as is seen from a special case (x̂ × x̂) × ŷ = 0,
whereas x̂× (x̂× ŷ) = x̂× ẑ = −ŷ. Let us start with an example that illustrates
a key property of the triple product.

EXAMPLE 1.4.2 A Triple Vector Product By using the three vectors given in Example 1.4.1,
we obtain

B × C =

∣∣∣∣∣∣∣
x̂ ŷ ẑ

0 1 1

1 −1 0

∣∣∣∣∣∣∣ = x̂ + ŷ − ẑ

and

A × (B × C) =

∣∣∣∣∣∣∣
x̂ ŷ ẑ

1 2 −1

1 1 −1

∣∣∣∣∣∣∣ = −x̂ − ẑ = −(ŷ + ẑ) − (x̂ − ŷ). ■

By rewriting the result in the last line as a linear combination of B and C, we
notice that, taking a geometric approach, the triple product vector is perpen-
dicular to A and to B × C. The plane spanned by B and C is perpendicular to
B × C, so the triple product lies in this plane (Fig. 1.21):

A × (B × C) = uB + vC, (1.51)

where u and v are numbers. Multiplying Eq. (1.51) by A gives zero for the left-
hand side so that uA · B + vA · C = 0. Hence, u = wA · C and v = −wA · B for
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a suitable number w. Substituting these values into Eq. (1.50) gives

A × (B × C) = w[B (A · C) − C (A · B)]. (1.52)

Equation (1.51), with w = 1, which we now prove, is known as the BAC–

CAB rule. Since Eq. (1.52) is linear in A, B, and C , w is independent of these
magnitudes. That is, we only need to show that w = 1 for unit vectors Â, B̂,
Ĉ. Let us denote B̂ · Ĉ = cos α, Ĉ · Â = cos β, Â · B̂ = cos γ , and square Eq.
(1.52) to obtain

[Â × (B̂ × Ĉ)]2 = Â2(B̂ × Ĉ)2 − [Â · (B̂ × Ĉ)]2

= 1 − cos2 α − [Â · (B̂ × Ĉ)]2

= w2[(Â · Ĉ)2 + (Â · B̂)2 − 2Â · B̂ Â · Ĉ B̂ · Ĉ]

= w2(cos2 β + cos2 γ − 2 cos α cos β cos γ ), (1.53)

using (Â × B̂)2 = Â2B̂2 − (Â · B̂)2 repeatedly. Consequently, the (squared)
volume spanned by Â, B̂, Ĉ that occurs in Eq. (1.53) can be written as

[Â · (B̂ × Ĉ)]2 = 1 − cos2 α − w2(cos2 β + cos2 γ − 2 cos α cos β cos γ ).

Here, we must have w2 = 1 because this volume is symmetric in α, β, γ .
That is, w = ±1 and is independent of Â, B̂, Ĉ. Again using the special case
x̂ × (x̂ × ŷ) = −ŷ in Eq. (1.51) finally gives w = 1.
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An alternate and easier algebraic derivation using the Levi-Civita εijk of
Chapter 2 is the topic of Exercise 2.9.8.

Note that because vectors are independent of the coordinates, a vector
equation is independent of the particular coordinate system. The coordinate
system only determines the components. If the vector equation can be es-
tablished in Cartesian coordinates, it is established and valid in any of the
coordinate systems, as will be shown in Chapter 2. Thus, Eq. (1.52) may be
verified by a direct though not very elegant method of expanding into Cartesian
components (see Exercise 1.4.1).

Other, more complicated, products may be simplified by using these forms
of the triple scalar and triple vector products.

SUMMARY We have developed the geometric meaning of the triple scalar product as a
volume spanned by three vectors and exhibited its component form that is
directly related to a determinant whose entries are the Cartesian components
of the vectors.

The main property of the triple vector product is its decomposition ex-
pressed in the BAC–CAB rule. It plays a role in electrodynamics, a vector field
theory in which cross products abound.

EXERCISES

1.4.1 Verify the expansion of the triple vector product

A × (B × C) = B(A · C) − C(A · B)

by direct expansion in Cartesian coordinates.

1.4.2 Show that the first step in Eq. (1.43),

(A × B) · (A × B) = A2 B2 − (A · B)2,

is consistent with the BAC–C AB rule for a triple vector product.

1.4.3 The orbital angular momentum L of a particle is given by L = r ×
p = mr × v, where p is the linear momentum. With linear and angular
velocity related by v = ω × r, show that

L = mr2[ω − r̂(r̂ · ω)],

where r̂ is a unit vector in the r direction. For r ·ω = 0, this reduces to
L = Iω, with the moment of inertia I given by mr2.

1.4.4 The kinetic energy of a single particle is given by T = 1
2 mv2. For rota-

tional motion this becomes 1
2 m(ω × r)2. Show that

T = 1
2

m[r2ω2 − (r · ω)2].

For r · ω = 0, this reduces to T = 1
2 Iω2, with the moment of inertia I

given by mr2.
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1.4.5 Show that

a × (b × c) + b × (c × a) + c × (a × b) = 0.6

1.4.6 A vector A is decomposed into a radial vector Ar and a tangential vector
At. If r̂ is a unit vector in the radial direction, show that
(a) Ar = r̂(A · r̂) and
(b) At = −r̂ × (r̂ × A).

1.4.7 Prove that a necessary and sufficient condition for the three (nonvan-
ishing) vectors A, B, and C to be coplanar is the vanishing of the triple
scalar product

A · B × C = 0.

1.4.8 Vector D is a linear combination of three noncoplanar (and nonorthog-
onal) vectors:

D = aA + bB + cC.

Show that the coefficients are given by a ratio of triple scalar products,

a = D · B × C

A · B × C
, and so on.

If symbolic software is available, evaluate numerically the triple scalar
products and coefficients for a typical case.

1.4.9 Show that

(A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C).

1.4.10 Show that

(A × B) × (C × D) = (A · B × D)C − (A · B × C)D.

1.4.11 Given

a′ = b × c

a · b × c
, b′ = c × a

a · b × c
, c′ = a × b

a · b × c
,

and a · b × c = 0, show that
(a) x′ · y′ = 0 (if x = y) and x′ · y′ = 1 (if x = y), for (x, y = a, b, c),
(b) a′ · b′ × c′ = (a · b × c)−1,
(c) a = b′ × c′

a′ · b′ × c′ .

1.4.12 If x′ · y′ = 0 if x = y and x′ · y′ = 1 if x = y, for (x, y = a, b, c), prove
that

a′ = b × c

a · b × c
.

(This is the converse of Problem 1.4.11.)

6This is Jacobi’s identity for vector products.
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1.4.13 Show that any vector V may be expressed in terms of the reciprocal
vectors a′, b′, c′ (of Problem 1.4.11) by

V = (V · a) a′ + (V · b) b′ + (V · c) c′.

1.4.14 An electric charge q1 moving with velocity v1 produces a magnetic
induction B given by

B = µ0

4π
q1

v1 × r̂

r2
(SI units),

where r̂ points from q1 to the point at which B is measured (Biot and
Savart’s law).
(a) Show that the magnetic force on a second charge q2, velocity v2, is

given by the triple vector product

F2 = µ0

4π

q1q2

r2
v2 × (v1 × r̂).

(b) Write out the corresponding magnetic force F1 that q2 exerts on q1.
Define your unit radial vector. How do F1 and F2 compare?

(c) Calculate F1 and F2 for the case of q1 and q2 moving along parallel
trajectories side by side.

ANS.

(b) F1 = − µ0

4π

q1q2

r2
v1 × (v2 × r̂).

(c) F1 = µ0

4π

q1q2

r2
v2r̂ = −F2.

1.5 Gradient, ∇

Partial Derivatives

In this section, we deal with derivatives of functions of several variables that
will lead us to the concept of directional derivative or gradient operator, which
is of central importance in mechanics, electrodynamics, and engineering.

We can view a function z = ϕ(x, y) of two variables geometrically as a
surface over the xy-plane in three-dimensional Euclidean space because for
each point (x, y) we find the z value from ϕ. For a fixed value y then, z =
ϕ(x, y) ≡ f (x) is a function of x only, viz. a curve on the intersection of the
surface with the xz-plane going through y. The slope of this curve,

df

dx
≡ ∂ϕ(x, y)

∂x
= lim

h→0

ϕ(x + h, y) − ϕ(x, y)
h

, (1.54)

is the partial derivative of ϕ with respect to x defined with the understand-
ing that the other variable y is held fixed. It is useful for drawing tangents
and locating a maximum or minimum on the curve where the slope is zero.
The partial derivative ∂ϕ/∂y is similarly defined holding x fixed (i.e., it is
the slope of the surface in the y-direction), and so on for the higher partial
derivatives.
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EXAMPLE 1.5.1 Error Estimate Error estimates usually involve many partial derivatives.
Let us calculate the moment of inertia of a rectangular slab of metal of length
a = 10 ± 1 cm, width b = 15 ± 2 cm, and height c = 5 ± 1 cm about an axis
through its center of gravity and perpendicular to the area ab and estimate the
error. The uniform density is ρ = 5±0.1 g/cm3. The moment of inertia is given
by

I = ρ

∫
(x2 + y2) dτ = ρc

(∫ a/2

−a/2
x2 dx

∫ b/2

−b/2
dy +

∫ a/2

−a/2
dx

∫ b/2

−b/2
y2 dy

)

= ρc

3
2
(

b

(
a

2

)3

+ a

(
b

2

)3)
= ρabc

12
(a2 + b2) (1.55)

= 1
2

56(4 + 9) g cm2 = 10.15625 × 10−3 kg m2,

where dτ = cdxdy has been used.
The corresponding error in I derives from the errors in all variables, each

being weighted by the corresponding partial derivative,

(	I)2 =
(

∂ I

∂ρ

)2

(	ρ)2 +
(

∂ I

∂a

)2

(	a)2 +
(

∂ I

∂b

)2

(	b)2 +
(

∂ I

∂c

)2

(	c)2,

where 	x is the error in the variable x, that is, 	a = 1 cm, etc. The partial
derivatives

∂ I

∂ρ
= abc

12
(a2 + b2),

∂ I

∂a
= ρbc

12
(3a2 + b2),

∂ I

∂b
= ρac

12
(a2 + 3b2),

∂ I

∂c
= ρab

12
(a2 + b2) (1.56)

are obtained from Eq. (1.55). Substituting the numerical values of all parame-
ters, we get

∂ I

∂ρ
	ρ = 0.203125 × 10−3 kg m2,

∂ I

∂a
	a = 1.640625 × 10−3 kg m2,

∂ I

∂b
	b = 3.2291667 × 10−3 kg m2,

∂ I

∂c
	c = 2.03125 × 10−3 kg m2.

Squaring and summing up, we find 	I = 4.1577 × 10−3 kg m2. This error of
more than 40% of the value I is much higher than the largest error 	c ∼ 20%
of the variables on which I depends and shows how errors in several variables
can add up. Thus, all decimals except the first one can be dropped safely. ■

EXAMPLE 1.5.2 Partials of a Plane Let us now take a plane F(r) = n · r − d = 0 that cuts
the coordinate axes at x = 1, y = 2, z = 3 so that nx = d, 2ny = d, 3nz = d.

Because the normal n2 = 1, we have the constraint d2(1 + 1
4 + 1

9 ) = 1 so that
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d = 6/7. Hence, the partial derivatives

∂F

∂x
= nx = 6/7,

∂F

∂y
= ny = 3/7,

∂F

∂z
= nz = 2/7

are the components of a vector n (the normal) for our plane 6x + 3y+ 2z = 6.

This suggests the partial derivatives of any function F are a vector. ■

To provide more motivation for the vector nature of the partial derivatives, we
now introduce the total variation of a function F(x, y),

dF = ∂F

∂x
dx + ∂F

∂y
dy. (1.57)

It consists of independent variations in the x- and y-directions. We write dF as
a sum of two increments, one purely in the x- and the other in the y-direction,

dF(x, y) ≡ F(x + dx, y + dy) − F(x, y) = [F(x + dx, y + dy) − F(x, y + dy)]

+ [F(x, y + dy) − F(x, y)] = ∂F

∂x
dx + ∂F

∂y
dy,

by adding and subtracting F(x, y + dy). The mean value theorem (i.e., conti-
nuity of F) tells us that here ∂F/∂x, ∂F/∂y are evaluated at some point ξ , η

between x and x + dx, y and y + dy, respectively. As dx → 0 and dy → 0,
ξ → x and η → y. This result generalizes to three and higher dimensions. For
example, for a function ϕ of three variables,

dϕ(x, y, z) ≡ [ϕ(x + dx, y + dy, z + dz) − ϕ(x, y + dy, z + dz)]

+ [ϕ(x, y + dy, z + dz) − ϕ(x, y, z + dz)]

+ [ϕ(x, y, z + dz) − ϕ(x, y, z)]

= ∂ϕ

∂x
dx + ∂ϕ

∂y
dy + ∂ϕ

∂z
dz. (1.58)

Note that if F is a scalar function, dF is also a scalar and the form of Eq. (1.57)
suggests an interpretation as a scalar product of the coordinate displacement
vector dr = (dx, dy) with the partial derivatives of F ; the same holds for dϕ

in three dimensions. These observations pave the way for the gradient in the
next section.

As an application of the total variation, we consider the slope of an im-
plicitly defined curve F(x, y) = 0, a general theorem that we postponed in
Section 1.3. Because also dF = 0 on the curve, we find the slope of the curve

dy

dx
= −

∂F

∂x

∂F

∂y

(1.59)

from Eq. (1.57). Compare this result with ẏ/ẋ for the slope of a curve defined
in terms of two functions x(t), y(t) of time t in Section 1.2.

Often, we are confronted with more difficult problems of finding a slope
given some constraint. A case in point is the next example.
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EXAMPLE 1.5.3 Extremum under a Constraint Find the points of shortest (or longest)
distance from the origin on the curve G(x, y) ≡ x2 + xy + y2 − 1 = 0.

From analytic geometry we know that the points on such a quadratic form
with center at the origin (there are no terms linear in x or y that would shift the
center) represent a conic section. But which kind? To answer this question,
note that (x + y)2 = x2 + 2xy + y2 ≥ 0 implies that xy ≥ −(x2 + y2)/2 so
that the quadratic form is positive definite, that is, G(x, y) + 1 ≥ 0, and G

must therefore be an ellipse (Fig. 1.22). Hence, our problem is equivalent to
finding the orientation of its principal axes (see Section 3.5 for the alternative
matrix diagonalization method). The square of the distance from the origin is
defined by the function F(x, y) = x2 + y2, subject to the constraint that the
point (x, y) lie on the ellipse defined by G. The constraint G defines y = y(x).
Therefore, we look for the solutions of

0 = dF(x, y(x))
dx

= 2x + 2y
dy

dx
.

Differentiating G, we find

y′ = −2x + y

2y + x
from 2x + y + xy′ + 2yy′ = 0,

0.5

0.5

y

x
−0.5 1−1 0 0

−0.5

−1

1

Figure 1.22

The Ellipse
x2 + xy + y2 = 1
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which we substitute into our min/max condition dF/dx = 0. This yields

x(2y + x) = y(2x + y), or y = ±x.

Substituting x = y into G gives the solutions x = ±1/
√

3, while x = −y

yields the points x = ±1 on the ellipse. Substituting x = 1 into G gives y = 0
and y = −1, while x = −1 yields y = 0 and y = 1. Although the points
(x, y) = (1, 0), (−1, 0) lie on the ellipse, their distance (= 1) from the origin
is neither shortest nor longest. However, the points (1, −1), (−1, 1) have the
longest distance (= √

2) and define the line x + y = 0 through the origin (at
135◦) as a principal axis. The points (1/

√
3, 1/

√
3), (−1/

√
3, −1/

√
3) define the

line at 45◦ through the origin as the second principal axis that is orthogonal to
the first axis.

It is also instructive to apply the slope formula (1.59) at the intersection
points of the principal axes and the ellipse, that is, ( 1√

3
, 1√

3
), (1, −1). The partial

derivatives there are given by Gx ≡ ∂G

∂x
= 2x + y = 3√

3
= √

3 and 2 − 1 = 1,
respectively, Gy ≡ ∂G

∂y
= 2y + x = 3√

3
= √

3 and −2 + 1 = −1, so that
the slopes become −Gx/Gy = −

√
3√
3

= −1 equal to that of the principal
axis x + y = 0, and −1/(−1) = 1 equal to that of the other principal axis
x − y = 0. ■

Although this problem was straightforward to solve, there is the more ele-
gant Lagrange multiplier method for finding a maximum or minimum of a
function F(x, y) subject to a constraint G(x, y) = 0.

Introducing a Lagrange multiplier λ helps us avoid the direct (and often
messy algebraic) solution for x and y as follows. Because we look for the
solution of

dF = ∂F

∂x
dx + ∂F

∂y
dy = 0, dG = ∂G

∂x
dx + ∂G

∂y
dy = 0, (1.60)

we can solve for the slope dy/dx from one equation and substitute that solution
into the other one. Equivalently, we use the function F +λG of three variables
x, y, λ, and solve

d(F + λG) =
(

∂F

∂x
+ λ

∂G

∂x

)
dx +

(
∂F

∂y
+ λ

∂G

∂y

)
dy + ∂(F + λG)

∂λ
dλ = 0

by choosing λ to satisfy ∂F

∂y
+ λ∂G

∂y
= 0, for example, and then eliminating

the last term by the constraint G = 0 (note that F does not depend on λ) so
that ∂F

∂x
+ λ∂G

∂x
= 0 follows. Including the constraint, we now have three equa-

tions for three unknowns x, y, λ, where the slope λ is not usually needed.

EXAMPLE 1.5.4 Lagrange Multiplier Method Let us illustrate the method by solving
Example 1.5.3 again, this time using the Lagrange multiplier method. The x
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and y partial derivative equations of the Lagrange multiplier method are given
by

∂F

∂x
+ λ

∂G

∂x
≡ 2x + λ(2x + y) = 0,

∂F

∂y
+ λ

∂G

∂y
≡ 2y + λ(2y + x) = 0.

We find for the ratio ξ ≡ y/x = −2(λ + 1)/λ and ξ = −λ/2(1 + λ), that is,
ξ = 1/ξ , or ξ = ±1, so that the principal axes are along the lines x + y = 0
and x − y = 0 through the origin. Substituting these solutions into the conic
section G yields x = 1/

√
3 = y and x = 1 = −y, respectively. Contrast this

simple, yet sophisticated approach with our previous lengthy solution. ■

Biographical Data

Lagrange, Joseph Louis comte de. Lagrange, a French mathematician
and physicist, was born in Torino to a wealthy French-Italian family in 1736
and died in Paris in 1813. While in school, an essay on calculus by the English
astronomer Halley sparked his enthusiasm for mathematics. In 1755, he
became a professor in Torino. In 1766, he succeeded L. Euler (who moved to
St. Petersburg to serve Catherine the Great) as director of the mathematics–
physics section of the Prussian Academy of Sciences in Berlin. In 1786, he
left Berlin for Paris after the death of king Frederick the Great. He was the
founder of analytical mechanics. His famous book, Mécanique Analytique,
contains not a single geometric figure.

Gradient as a Vector Operator

The total variation dF(x, y) in Eq. (1.57) looks like a scalar product of the
incremental length vector dr = (dx, dy) with a vector ( ∂F

∂x
, ∂F

∂y
) of partial deriva-

tives in two dimensions, that is, the change of F depends on the direction in
which we go. For example, F could be a wave function in quantum mechanics
or describe a temperature distribution in space. When we are at the peak value,
the height will fall off at different rates in different directions, just like a ski
slope: One side might be for beginners, whereas another has only expert runs.
When we generalize this to a function ϕ(x, y, z) of three variables, we obtain
Eq. (1.58),

dϕ = ∂ϕ

∂x
dx + ∂ϕ

∂y
dy + ∂ϕ

∂z
dz, (1.61)

for the total change in the scalar function ϕ consisting of additive contribu-
tions of each coordinate change corresponding to a change in position

dr = x̂ dx + ŷ dy + ẑ dz, (1.62)

the increment of length dr. Algebraically, dϕ in Eq. (1.58) is a scalar product of
the change in position dr and the directional change of ϕ. Now we are ready
to recognize the three-dimensional partial derivative as a vector, which leads
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us to the concept of gradient. A convenient notation is

∇ ≡
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
= x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
, (1.63)

∇ϕ = x̂
∂ϕ

∂x
+ ŷ

∂ϕ

∂y
+ ẑ

∂ϕ

∂z
, (1.64)

so that ∇ (del) is a vector that differentiates (scalar) functions. As such, it
is a vector operator. All the relations for ∇ can be derived from the hybrid
nature of del in terms of both the partial derivatives and its vector nature.

The gradient of a scalar is extremely important in physics and engineering
in expressing the relation between a force field and a potential field

force F = −∇( potential V ), (1.65)

which holds for both gravitational and electrostatic fields, among others. Note
that the minus sign in Eq. (1.65) results in water flowing downhill rather than
uphill. If a force can be described as in Eq. (1.65) by a single function V (r)
everywhere, we call the scalar function V its potential. Because the force
is the directional derivative of the potential, we can find the potential, if it
exists, by integrating the force along a suitable path. Because the total variation
dV = ∇V · dr = −F · dr is the work done against the force along the path dr,
we recognize the physical meaning of the potential (difference) as work and
energy. Moreover, in a sum of path increments the intermediate points cancel,

[V (r + dr1 + dr2) − V (r + dr1)] + [V (r + dr1) − V (r)]

= V (r + dr2 + dr1) − V (r),

so that the integrated work along some path from an initial point ri to a final
point r is given by the potential difference V (r) − V (ri) at the end points of
the path. Therefore, such forces are especially simple and well behaved: They
are called conservative. When there is loss of energy due to friction along
the path or some other dissipation, the work will depend on the path and such
forces cannot be conservative: No potential exists. We discuss conservative
forces in more detail in Section 1.12.

EXAMPLE 1.5.5 The Gradient of a Function of r Because we often deal with central

forces in physics and engineering, we start with the gradient of the radial
distance r =

√
x2 + y2 + z2. From r as a function of x, y, z,

∂r

∂x
= ∂(x2 + y2 + z2)1/2

∂x
= x

(x2 + y2 + z2)1/2
= x

r
,

etc. Now we can calculate the more general gradient of a spherically symmetric
potential f (r) of a central force law so that

∇ f (r) = x̂
∂ f (r)
∂x

+ ŷ
∂ f (r)
∂y

+ ẑ
∂ f (r)
∂z

, (1.66)
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where f (r) depends on x through the dependence of r on x. Therefore7,

∂ f (r)
∂x

= df (r)
dr

· ∂r

∂x
.

Therefore,

∂ f (r)
∂x

= df (r)
dr

· x

r
. (1.67)

Permuting coordinates (x → y, y → z, z → x) to obtain the y and z deriva-
tives, we get

∇ f (r) = (x̂x + ŷy + ẑz)
1
r

df

dr
= r

r

df

dr
= r̂

df

dr
, (1.68)

where r̂ is a unit vector (r/r) in the positive radial direction. The gradient of
a function of r is a vector in the (positive or negative) radial direction. ■

A Geometrical Interpretation

Example 1.5.2 illustrates the geometric meaning of the gradient of a plane: It
is its normal vector. This is a special case of the general geometric meaning of
the gradient of an implicitly defined surface ϕ(r) = const. Consider P and Q

to be two points on a surface ϕ(x, y, z) = C , a constant. If ϕ is a potential, the
surface is an equipotential surface. These points are chosen so that Q is a
distance dr from P . Then, moving from P to Q, the change in ϕ(x, y, z), given
by Eq. (1.58) that is now written in vector notation, must be

dϕ = (∇ϕ) · dr = 0 (1.69)

since we stay on the surface ϕ(x, y, z) = C. This shows that ∇ϕ is perpen-
dicular to dr. Since dr may have any direction from P as long as it stays

in the surface ϕ = const., the point Q being restricted to the surface but
having arbitrary direction, ∇ϕ is seen as normal to the surface ϕ = const.
(Fig. 1.23).

If we now permit dr to take us from one surface ϕ = C1 to an adjacent
surface ϕ = C2 (Fig. 1.24),

dϕ = C1 − C2 = 	C = (∇ϕ) · dr. (1.70)

For a given dϕ, |dr| is a minimum when it is chosen parallel to ∇ϕ (cos θ = 1);
for a given |dr|, the change in the scalar function ϕ is maximized by choosing
dr parallel to ∇ϕ. This identifies ∇ϕ as a vector having the direction of

the maximum space rate of change of ϕ, an identification that will be useful
in Chapter 2 when we consider non-Cartesian coordinate systems.

7This is a special case of the chain rule generalized to partial derivatives:

∂ f (r, θ , ϕ)
∂x

= ∂ f

∂r

∂r

∂x
+ ∂ f

∂θ

∂θ

∂x
+ ∂ f

∂ϕ

∂ϕ

∂x
,

where ∂ f/∂θ = ∂ f/∂ϕ = 0, ∂ f/∂r → df/dr.
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SUMMARY We have constructed the gradient operator as a vector of derivatives. The total
variation of a function is the dot product of its gradient with the coordinate
displacement vector. A conservative force is the (negative) gradient of a scalar
called its potential.

EXERCISES

1.5.1 The dependence of the free fall acceleration g on geographical latitude
φ at sea level is given by g = g0(1+0.0053 sin2 φ). What is the southward
displacement near φ = 30◦ that changes g by 1 part in 108?

1.5.2 Given a vector r12 = x̂(x1 −x2)+ ŷ(y1 − y2)+ ẑ(z1 −z2), show that ∇1r12

(gradient with respect to x1, y1, and z1, of the magnitude r12) is a unit
vector in the direction of r12. Note that a central force and a potential
may depend on r12.
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1.5.3 If a vector function F depends on both space coordinates (x, y, z) and
time t, show that

dF = (dr · ∇)F + ∂F

∂t
dt.

1.5.4 Show that ∇(uv) = v∇u+ u∇v, where u and v are differentiable scalar
functions of x, y, and z (product rule).
(a) Show that a necessary and sufficient condition that u(x, y, z) and

v(x, y, z) are related by some function f (u, v) = 0 is that (∇u) ×
(∇v) = 0. Describe this geometrically. If graphical software is avail-
able, plot a typical case.

(b) If u = u(x, y) and v = v(x, y), show that the condition
(∇u) × (∇v) = 0 leads to the two-dimensional Jacobian

J

(
u, v

x, y

)
=

∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣ = ∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
= 0.

The functions u and v are assumed differentiable.

1.6 Divergence, ∇

In Section 1.5, ∇ was defined as a vector operator. Now, paying careful at-
tention to both its vector and its differential properties, we let it operate on a
vector. First, as a vector we dot it into a second vector to obtain

∇ · V = ∂Vx

∂x
+ ∂Vy

∂y
+ ∂Vz

∂z
, (1.71)

known as the divergence of V, which we expect to be a scalar.

EXAMPLE 1.6.1 Divergence of a Central Force Field From Eq. (1.71) we obtain for the
coordinate vector with radial outward flow

∇ · r = ∂x

∂x
+ ∂y

∂y
+ ∂z

∂z
= 3. (1.72)

Because the gravitational (or electric) force of a mass (or charge) at the
origin is proportional to r with a radial 1/r3 dependence, we also consider the
more general and important case of the divergence of a central force field

∇ · r f (r) = ∂

∂x
[x f (r)] + ∂

∂y
[y f (r)] + ∂

∂z
[z f (r)]

= f (r)∇ · r + x
∂ f

∂x
+ y

∂ f

∂y
+ z

∂ f

∂z
= 3 f (r) + df

dr
r · ∇r

= 3 f (r) + x2

r

df

dr
+ y2

r

df

dr
+ z2

r

df

dr
= 3 f (r) + r

df

dr
, (1.73)
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using the product and chain rules of differentiation in conjunction with
Example 1.5.5 and Eq. (1.71). In particular, if f (r) = rn−1,

∇ · rrn−1 = ∇ · (r̂rn) = 3rn−1 + (n − 1)rn−1 = (n + 2)rn−1. (1.74)

This divergence vanishes for n = −2, except at r = 0 (where r̂/r2 is singular).
This is relevant for the Coulomb potential

V (r) = A0 = − q

4πε0r

with the electric field

E = −∇V = q r̂

4πε0r
2
.

Using Eq. (1.74) we obtain the divergence ∇ · E = 0 (except at r = 0, where
the derivatives are undefined). ■

A Physical Interpretation

To develop an understanding of the physical significance of the divergence,
consider ∇ · (ρv), with v(x, y, z), the velocity of a compressible fluid, and
ρ(x, y, z), its density at point (x, y, z). If we consider a small volume dx dydz

(Fig. 1.25), the fluid flowing into this volume per unit time (positive x-direction)
through the face EFGH is (rate of flow in)EFGH = ρvx|x=0 dydz. The compo-
nents of the flow ρvy and ρvz tangential to this face contribute nothing to the
flow through this face. The rate of flow out (still positive x-direction) through
face ABCD is ρvx|x=dx dydz. To compare these flows and to find the net flow
out, we add the change of ρvx in the x-direction for an increment dx that

z

x

y

G
H

F

dx
dyA

dz

C

E

D

B

Figure 1.25

Differential
Rectangular
Parallelepiped (in
the First or Positive
Octant)



46 Chapter 1 Vector Analysis

is given by its partial derivative (i.e., expand this last result in a Maclaurin
series).8 This yields

(rate of flow out)ABCD = ρvx|x=dx dydz

=
[
ρvx + ∂

∂x
(ρvx) dx

]
x=0

dydz.

Here, the derivative term is a first correction term allowing for the possibil-
ity of nonuniform density or velocity or both.9 The zero-order term ρvx|x=0
(corresponding to uniform flow) cancels out:

Net rate of flow out|x = ∂

∂x
(ρvx) dx dydz.

Equivalently, we can arrive at this result by

lim
	x→0

ρvx (	x, 0, 0) − ρvx (0, 0, 0)
	x

≡ ∂ [ρvx (x, y, z)]
∂x

∣∣∣∣
(0,0,0)

.

Now the x-axis is not entitled to any preferred treatment. The preceding result
for the two faces perpendicular to the x-axis must hold for the two faces per-
pendicular to the y-axis, with x replaced by y and the corresponding changes
for y and z: y → z, z → x. This is a cyclic permutation of the coordinates. A
further cyclic permutation yields the result for the remaining two faces of our
parallelepiped. Adding the net rate of flow out for all three pairs of surfaces of
our volume element, we have

Net flow out
(per unit time)

=
[

∂

∂x
(ρvx) + ∂

∂y
(ρvy) + ∂

∂z
(ρvz)

]
dx dydz

= ∇ · (ρv) dx dydz. (1.75)

Therefore, the net flow of our compressible fluid out of the volume element
dx dydz per unit volume per unit time is ∇·(ρv). Hence the name divergence.
A direct application is in the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0, (1.76)

which states that a net flow out of the volume results in a decreased density
inside the volume. Note that in Eq. (1.76), ρ is considered to be a possible
function of time as well as of space: ρ(x, y, z, t). The divergence appears in a
wide variety of physical problems, ranging from a probability current density
in quantum mechanics to neutron leakage in a nuclear reactor.

8A Maclaurin expansion for a single variable is given by Eq. (5.75) in Section 5.6. Here, we have the
increment x of Eq. (5.75) replaced by dx. We show a partial derivative with respect to x because
ρvx may also depend on y and z.
9Strictly speaking, ρvx is averaged over face EFGH and the expression ρvx + (∂/∂x)(ρvx) dx is
similarly averaged over face ABCD. Using an arbitrarily small differential volume, we find that the
averages reduce to the values employed here.
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The combination ∇ · ( f V), in which f is a scalar function and V a vector
function, may be written as

∇ · ( f V) = ∂

∂x
( f Vx) + ∂

∂y
( f Vy) + ∂

∂z
( f Vz)

= ∂ f

∂x
Vx + f

∂Vx

∂x
+ ∂ f

∂y
Vy + f

∂Vy

∂y
+ ∂ f

∂z
Vz + f

∂Vz

∂z

= (∇ f ) · V + f ∇ · V, (1.77)

which is what we would expect for the derivative of a product. Notice that ∇
as a differential operator differentiates both f and V; as a vector it is dotted
into V (in each term).

SUMMARY The divergence of a vector field is constructed as the dot product of the gradient
with the vector field, and it locally measures its spatial outflow. In this sense,
the continuity equation captures the essence of the divergence: the temporal
change of the density balances the spatial outflow of the current density.

EXERCISES

1.6.1 For a particle moving in a circular orbit r = x̂r cos ωt + ŷr sin ωt,
(a) evaluate r × ṙ.

(b) Show that r̈ + ω2r = 0.
The radius r and the angular velocity ω are constant.

ANS. (a) ẑωr2. Note: ṙ = dr/dt, r̈ = d2r/dt2.

1.6.2 Show, by differentiating components, that
(a) d

dt
(A · B) = dA

dt
· B + A · dB

dt
,

(b) d

dt
(A × B) = dA

dt
× B + A × dB

dt
,

in the same way as the derivative of the product of two scalar
functions.

1.7 Curl, ∇×

Another possible application of the vector ∇ is to cross it into a vector field
called its curl, which we discuss in this section along with its physical inter-
pretation and applications. We obtain

∇ × V = x̂

(
∂

∂y
Vz − ∂

∂z
Vy

)
+ ŷ

(
∂

∂z
Vx − ∂

∂x
Vz

)
+ ẑ

(
∂

∂x
Vy − ∂

∂y
Vx

)

=

∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

Vx Vy Vz

∣∣∣∣∣∣∣ , (1.78)
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which is called the curl of V. In expanding this determinant we must consider
the derivative nature of ∇. Specifically, V × ∇ is meaningless unless it acts on
a function or a vector. Then it is certainly not equal, in general, to −∇ × V.10

In the case of Eq. (1.78) , the determinant must be expanded from the top

down so that we get the derivatives as shown in the middle of Eq. (1.78). If ∇
is crossed into the product of a scalar and a vector, we can show

∇ × ( f V)|x =
[

∂

∂y
( f Vz) − ∂

∂z
( f Vy)

]

=
(

f
∂Vz

∂y
+ ∂ f

∂y
Vz − f

∂Vy

∂z
− ∂ f

∂z
Vy

)
= f ∇ × V|x + (∇ f ) × V|x . (1.79)

If we permute the coordinates x → y, y → z, z → x to pick up the y-
component and then permute them a second time to pick up the z-component,

∇ × ( f V) = f ∇ × V + (∇ f ) × V, (1.80)

which is the vector product analog of Eq. (1.77). Again, as a differential opera-
tor, ∇ differentiates both f and V. As a vector, it is crossed into V (in each term).

EXAMPLE 1.7.1 Vector Potential of a Constant B Field From electrodynamics we know
that ∇ · B = 0, which has the general solution B = ∇ × A, where A(r) is
called the vector potential (of the magnetic induction) because ∇ · (∇× A) =
(∇ × ∇) · A ≡ 0 as a triple scalar product with two identical vectors. This last
identity will not change if we add the gradient of some scalar function to the
vector potential, which is therefore not unique.

In our case, we want to show that a vector potential is A = 1
2 (B × r).

Using the BAC–CAB rule in conjunction with Eq. (1.72), we find that

2∇ × A = ∇ × (B × r) = (∇ · r)B − (B · ∇)r = 3B − B = 2B,

where we indicate by the ordering of the scalar product of the second term
that the gradient still acts on the coordinate vector. ■

EXAMPLE 1.7.2 Curl of a Central Force As in Example 1.6.1, let us start with the curl of
the coordinate vector

∇ × r =

∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

x y z

∣∣∣∣∣∣∣ = 0. (1.81)

10Note that for the quantum mechanical angular momentum operator, L = −i(r × ∇), we find
that L × L = iL. See Sections 4.3 and 4.4 for more details.
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Algebraically, this comes about because each Cartesian coordinate is indepen-
dent of the other two.

Now we are ready to calculate the curl of a central force ∇× r f (r), where
we expect zero for the same reason. By Eq. (1.80),

∇ × r f (r) = f (r)∇ × r + [∇ f (r)] × r. (1.82)

Second, using ∇ f (r) = r̂(df/dr) (Example 1.5.5), we obtain

∇ × r f (r) = df

dr
r̂ × r = 0. (1.83)

This vector product vanishes because r = r̂r and r̂ × r̂ = 0.

This central force case is important in potential theory of classical mechan-
ics and engineering (see Section 1.12). ■

To develop a better understanding of the physical significance of the curl,
we consider the circulation of fluid around a differential loop in the xy-plane
(Fig. 1.26).

Although the circulation is technically given by a vector line integral∫
V · dλ, we can set up the equivalent scalar integrals here. Let us take the

circulation to be

Circulation1234 =
∫

1
Vx(x, y) dλx +

∫
2

Vy(x, y) dλy

+
∫

3
Vx(x, y) dλx +

∫
4

Vy(x, y) dλy. (1.84)

The numbers 1–4 refer to the numbered line segments in Fig. 1.26. In the first
integral dλx = +dx but in the third integral dλx = −dx because the third line
segment is traversed in the negative x-direction. Similarly, dλy = +dy for the

x0, y0 + dy 3

x0, y0 (x0 + dx, y0)1

4 2

x0 + dx, y0 + dy
y

x

Figure 1.26

Circulation Around
a Differential Loop
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second integral and−dy for the fourth. Next, the integrands are referred to the
point (x0, y0) with a Taylor expansion,11 taking into account the displacement
of line segment 3 from 1 and 2 from 4. For our differential line segments, this
leads to

Circulation1234 = Vx(x0, y0) dx +
[

Vy (x0, y0) + ∂Vy

∂x
dx

]
dy

+
[

Vx (x0, y0) + ∂Vx

∂y
dy

]
(−dx) + Vy (x0, y0) (−dy)

=
(

∂Vy

∂x
− ∂Vx

∂y

)
dx dy. (1.85)

Dividing by dx dy, we have

Circulation per unit area = ∇ × V|z . (1.86)

This is an infinitesimal case of Stokes’s theorem in Section 1.11. The circula-
tion12 about our differential area in the xy-plane is given by the z-component of
∇×V. In principle, the curl ∇×V at (x0, y0) could be determined by inserting a
(differential) paddle wheel into the moving fluid at point (x0, y0). The rotation
of the little paddle wheel would be a measure of the curl and its axis along the
direction of ∇ × V, which is perpendicular to the plane of circulation.

In light of this connection of the curl with the concept of circulation, we now
understand intuitively the vanishing curl of a central force in Example 1.7.2
because r flows radially outward from the origin with no rotation, and any
scalar f (r) will not affect this situation. When

∇ × V = 0, (1.87)

V is labeled irrotational. The most important physical examples of irrota-
tional vectors are the gravitational and electrostatic forces. In each case,

V = C
r̂

r2
= C

r

r3
, (1.88)

where C is a constant and r̂ is the unit vector in the outward radial direction.
For the gravitational case, we have C = −Gm1m2, given by Newton’s law of
universal gravitation. If C = q1q2/(4πε0), we have Coulomb’s law of electro-
statics (SI units). The force V given in Eq. (1.88) may be shown to be irrotational
by direct expansion into Cartesian components as we did in Example 1.7.2
[Eq. (1.83)].

In Section 1.15 of Arfken and Weber’s Mathematical Methods for Physicists

(5th ed.), it is shown that a vector field may be resolved into an irrotational
part and a solenoidal part (subject to conditions at infinity).

11Vy(x0 + dx, y0) = Vy(x0, y0) + ( ∂Vy

∂x
)x0 y0 dx + · · · . The higher order terms will drop out in the

limit as dx → 0.
12In fluid dynamics, ∇ × V is called the vorticity.
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For waves in an elastic medium, if the displacement u is irrotational,
∇ × u = 0, plane waves (or spherical waves at large distances) become lon-
gitudinal. If u is solenoidal, ∇ · u = 0, then the waves become transverse. A
seismic disturbance will produce a displacement that may be resolved into a
solenoidal part and an irrotational part. The irrotational part yields the longi-
tudinal P (primary) earthquake waves. The solenoidal part gives rise to the
slower transverse S (secondary) waves.

Using the gradient, divergence, curl, and the BAC–CAB rule, we may con-
struct or verify a large number of useful vector identities. For verification,
complete expansion into Cartesian components is always a possibility. Some-
times if we use insight instead of routine shuffling of Cartesian components,
the verification process can be shortened drastically.

Remember that ∇ is a vector operator, a hybrid object satisfying two sets
of rules: vector rules and partial differentiation rules, including differentiation
of a product.

EXAMPLE 1.7.3 Gradient of a Dot Product Verify that

∇(A · B) = (B · ∇)A + (A · ∇)B + B × (∇ × A) + A × (∇ × B). (1.89)

This particular example hinges on the recognition that ∇(A · B) is the type
of term that appears in the BAC–CAB expansion of a triple vector product
[Eq. (1.52)]. For instance,

A × (∇ × B) = ∇(A · B) − (A · ∇)B,

with the ∇ differentiating only B, not A. From the commutativity of factors in
a scalar product we may interchange A and B and write

B × (∇ × A) = ∇(A · B) − (B · ∇)A,

now with ∇ differentiating only A, not B. Adding these two equations, we ob-
tain ∇ differentiating the product A · B and the identity [Eq. (1.89)]. This
identity is used frequently in electromagnetic theory. Exercise 1.7.9 is an
illustration. ■

SUMMARY The curl is constructed as the cross product of the gradient and a vector field,
and it measures the local rotational flow or circulation of the vector field.
When the curl of a force field is zero, then the force is labeled conservative
and derives from the gradient of a scalar, its potential. In Chapter 6, we shall see
that an analytic function of a complex variable describes a two-dimensional
irrotational fluid flow.

EXERCISES

1.7.1 Show that u × v is solenoidal if u and v are each irrotational. Start by
formulating the problem in terms of mathematical equations.

1.7.2 If A is irrotational, show that A × r is solenoidal.
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1.7.3 A rigid body is rotating with constant angular velocityω. Show that the
linear velocity v is solenoidal.

1.7.4 If a vector function f(x, y, z) is not irrotational but the product of f and
a scalar function g(x, y, z) is irrotational, show that

f · ∇ × f = 0.

1.7.5 Verify the vector identity

∇ × (A × B) = (B · ∇)A − (A · ∇)B − B(∇ · A) + A(∇ · B).

Describe in words what causes the last two terms to appear in the
identity beyond the BAC–CAB rule. If symbolic software is available,
test the Cartesian components for a typical case, such as A = L, B =
r/r3.

1.7.6 As an alternative to the vector identity of Example 1.7.5, show that

∇(A · B) = (A × ∇) × B + (B × ∇) × A + A(∇ · B) + B(∇ · A).

1.7.7 Verify the identity

A × (∇ × A) = 1
2
∇(A2) − (A · ∇)A.

Test this identity for a typical vector field, such as A ∼ r or r/r3.

1.7.8 If A and B are constant vectors, show that

∇(A · B × r) = A × B.

1.7.9 A distribution of electric currents creates a constant magnetic moment
m. The force on m in an external magnetic induction B is given by

F = ∇ × (B × m).

Show that

F = ∇(m · B).

Note. Assuming no time dependence of the fields, Maxwell’s equations
yield ∇ × B = 0. Also, ∇ · B = 0.

1.7.10 An electric dipole of moment p is located at the origin. The dipole
creates an electric potential at r given by

ψ(r) = p · r

4πε0r
3
.

Find the electric field E = −∇ψ at r.

1.7.11 The vector potential A of a magnetic dipole, dipole moment m, is given
by A(r) = (µ0/4π)(m × r/r3). Show that the magnetic induction B =
∇ × A is given by

B = µ0

4π

3r̂(r̂ · m) − m

r3
.
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1.7.12 Classically, orbital angular momentum is given by L = r × p, where p

is the linear momentum. To go from classical mechanics to quantum
mechanics, replace p by the operator −i∇ (Section 14.6). Show that
the quantum mechanical angular momentum operator has Cartesian
components

Lx = −i

(
y

∂

∂z
− z

∂

∂y

)

Ly = −i

(
z

∂

∂x
− x

∂

∂z

)

Lz = −i

(
x

∂

∂y
− y

∂

∂x

)

(in units of h̄).

1.7.13 Using the angular momentum operators previously given, show that
they satisfy commutation relations of the form

[Lx, Ly] ≡ LxLy − LyLx = iLz

and, hence,

L × L = iL.

These commutation relations will be taken later as the defining rela-
tions of an angular momentum operator—see Exercise 3.2.15 and the
following one and Chapter 4.

1.7.14 With the commutator bracket notation [Lx, Ly] = LxLy − LyLx, the
angular momentum vector L satisfies [Lx, Ly] = iLz, etc., or L × L = iL.
If two other vectors a and b commute with each other and with L, that
is, [a, b] = [a, L] = [b, L] = 0, show that

[a · L, b · L] = i(a × b) · L.

This vector version of the angular momentum commutation relations
is an alternative to that given in Exercise 1.7.13.

1.7.15 Prove ∇ · (a × b) = b · (∇ × a) − a · (∇ × b). Explain in words why
the identity is valid.
Hint. Treat as a triple scalar product.

1.8 Successive Applications of ∇

We have now defined gradient, divergence, and curl to obtain vector, scalar, and
vector quantities, respectively. Letting ∇ operate on each of these quantities,
we obtain

(a) ∇ · ∇ϕ (b) ∇ × ∇ϕ (c) ∇∇ · V

(d) ∇ · ∇ × V (e) ∇ × (∇ × V).
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All five expressions involve second derivatives and all five appear in the second-
order differential equations of mathematical physics, particularly in electro-
magnetic theory.

The first expression, ∇ · ∇ϕ, the divergence of the gradient, is called the
Laplacian of ϕ. We have

∇ · ∇ϕ =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
·
(

x̂
∂ϕ

∂x
+ ŷ

∂ϕ

∂y
+ ẑ

∂ϕ

∂z

)

= ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
. (1.90)

When ϕ is the electrostatic potential, in a charge-free region we have

∇ · ∇ϕ = 0, (1.91)

which is Laplace’s equation of electrostatics. Often, the combination ∇ · ∇ is
written ∇2, or 	 in the European literature.

Biographical Data

Laplace, Pierre Simon. Laplace, a French mathematician, physicist, and
astronomer, was born in Beaumont-en-Auge in 1749 and died in Paris in 1827.
He developed perturbation theory for the solar system, published a monu-
mental treatise Celestial Mechanics, and applied mathematics to artillery.
He made contributions of fundamental importance to hydrodynamics, dif-
ferential equations and probability, the propagation of sound, and surface
tension in liquids. To Napoleon’s remark missing “God” in his treatise, he
replied “I had no need for that hypothesis.” He generally disliked giving
credit to others.

EXAMPLE 1.8.1 Laplacian of a Radial Function Calculate∇·∇g(r). Referring to Examples
1.5.5 and 1.6.1,

∇ · ∇g(r) = ∇ · r̂
dg

dr
= 2

r

dg

dr
+ d2g

dr2
,

replacing f (r) in Example 1.6.1 by 1/r · dg/dr. If g(r) = rn, this reduces to

∇ · ∇rn = n(n + 1)rn−2.

This vanishes for n = 0 [g(r) = constant] and for n = −1; that is, g(r) = 1/r

is a solution of Laplace’s equation, ∇2g(r) = 0. This is for r = 0. At the origin
there is a singularity. ■

Expression (b) may be written as

∇ × ∇ϕ =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

∂ϕ

∂x

∂ϕ

∂y

∂ϕ

∂z

∣∣∣∣∣∣∣ .
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By expanding the determinant, we obtain

∇ × ∇ϕ = x̂

(
∂2ϕ

∂y∂z
− ∂2ϕ

∂z∂y

)
+ ŷ

(
∂2ϕ

∂z∂x
− ∂2ϕ

∂x ∂z

)

+ ẑ

(
∂2ϕ

∂x ∂y
− ∂2ϕ

∂y∂x

)
= 0, (1.92)

assuming that the order of partial differentiation may be interchanged. This
is true as long as these second partial derivatives of ϕ are continuous func-
tions. Then, from Eq. (1.92), the curl of a gradient is identically zero. All gra-
dients, therefore, are irrotational. Note that the zero in Eq. (1.92) comes as a
mathematical identity, independent of any physics. The zero in Eq. (1.91) is a
consequence of physics.

Expression (d) is a triple scalar product that may be written as

∇ · ∇ × V =

∣∣∣∣∣∣∣∣

∂
∂x

∂
∂y

∂
∂z

∂
∂x

∂
∂y

∂
∂z

Vx Vy Vz

∣∣∣∣∣∣∣∣
. (1.93)

Again, assuming continuity so that the order of differentiation is immaterial,
we obtain

∇ · ∇ × V = 0. (1.94)

The divergence of a curl vanishes or all curls are solenoidal.
One of the most important cases of a vanishing divergence of a vector is

∇ · B = 0, (1.95)

where B is the magnetic induction, and Eq. (1.95) appears as one of Maxwell’s
equations. When a vector is solenoidal, it may be written as the curl of another
vector known as its vector potential, B = ∇ × A. This form solves one of
the four vector equations that make up Maxwell’s field equations of electrody-
namics. Because a vector field may be determined from its curl and divergence
(Helmholtz’s theorem), solving Maxwell’s (often called Oersted’s) equation in-
volving the curl of B determines A and thereby B. Similar considerations apply
to the other pair of Maxwell’s equations involving the divergence and curl of
E and make plausible the fact that there are precisely four vector equations as
part of Maxwell’s equations.

The two remaining expressions satisfy a relation

∇ × (∇ × V) = ∇(∇ · V) − (∇ · ∇)V. (1.96)

This decomposition of the Laplacian ∇ · ∇ into a longitudinal part (the gradi-
ent) and a transverse part (the curl term) follows from Eq. (1.52), the BAC–CAB

rule, which we rewrite so that C appears at the extreme right of each term. The
term (∇·∇)V was not included in our list, but it appears in the Navier–Stokes’s
equation and may be defined by Eq. (1.96). In words, this is the Laplacian (a
scalar operator) acting on a vector, so it is a vector with three components in
three-dimensional space. ■
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EXAMPLE 1.8.2 Electromagnetic Wave Equations One important application of this vec-
tor relation [Eq. (1.96)] is in the derivation of the electromagnetic wave equa-
tion. In vacuum Maxwell’s equations become

∇ · B = 0, (1.97a)

∇ · E = 0, (1.97b)

∇ × B = ε0µ0
∂E

∂t
= 1

c2

∂E

∂t
, (1.97c)

∇ × E = −∂B

∂t
, (1.97d)

where E is the electric field, B the magnetic induction, ε0 the electric permit-
tivity, and µ0 the magnetic permeability (SI units), so that ε0µ0 = 1/c2, where
c is the velocity of light. This relation has important consequences. Because
ε0, µ0 can be measured in any frame, the velocity of light is the same in any
frame.

Suppose we eliminate B from Eqs. (1.97c) and (1.97d). We may do this by
taking the curl of both sides of Eq. (1.97d) and the time derivative of both sides
of Eq. (1.97c). Since the space and time derivatives commute,

∂

∂t
∇ × B = ∇ × ∂B

∂t
,

and we obtain

∇ × (∇ × E) = − 1
c2

∂2E

∂t2
.

Application of Eqs. (1.96) and (1.97b) yields

(∇ · ∇)E = 1
c2

∂2E

∂t2
, (1.98)

the electromagnetic vector wave equation. Again, if E is expressed in
Cartesian coordinates, Eq. (1.98) separates into three scalar wave equations,
each involving a scalar Laplacian.

When external electric charge and current densities are kept as driving
terms in Maxwell’s equations, similar wave equations are valid for the electric
potential and the vector potential. To show this, we solve Eq. (1.97a) by writing
B = ∇×A as a curl of the vector potential. This expression is substituted into
Faraday’s induction law in differential form [Eq. (1.97d)] to yield ∇×(E+ ∂A

∂t
) =

0. The vanishing curl implies that E + ∂A

∂t
is a gradient and therefore can be

written as −∇ϕ, where ϕ(r, t) is defined as the (nonstatic) electric potential.
These results

B = ∇ × A, E = −∇ϕ − ∂A

∂t
(1.99)

for the B and E fields solve the homogeneous Maxwell’s equations.
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We now show that the inhomogeneous Maxwell’s equations,

Gauss’s law: ∇ · E = ρ/ε0;

Oersted’s law: ∇ × B − 1
c2

∂E

∂t
= µ0J (1.100)

in differential form lead to wave equations for the potentials ϕ and A, provided
that ∇ · A is determined by the constraint 1

c2
∂ϕ

∂t
+ ∇ · A = 0. This choice of

fixing the divergence of the vector potential is called the Lorentz gauge and
serves to uncouple the partial differential equations of both potentials. This
gauge constraint is not a restriction; it has no physical effect.

Substituting our electric field solution into Gauss’s law yields

ρ

ε0
= ∇ · E = −∇2ϕ − ∂

∂t
∇ · A = −∇2ϕ + 1

c2

∂2ϕ

∂t2
,

the wave equation for the electric potential. In the last step, we used the Lorentz
gauge to replace the divergence of the vector potential by the time derivative
of the electric potential and thus decouple ϕ from A.

Finally, we substitute B = ∇ × A into Oersted’s law and use Eq. (1.96),
which expands ∇2 in terms of a longitudinal (the gradient term) and a trans-
verse component (the curl term). This yields

µ0J + 1
c2

∂E

∂t
= ∇ × (∇ × A) = ∇(∇ · A) − ∇2A = µ0J − 1

c2

(
∇∂ϕ

∂t
+ ∂2A

∂t2

)
,

where we have used the electric field solution [Eq. (1.99)] in the last step. Now
we see that the Lorentz gauge condition eliminates the gradient terms so that
the wave equation

1
c2

∂2A

∂t2
− ∇2A = µ0J

for the vector potential remains.
Finally, looking back at Oersted’s law, taking the divergence of Eq. (1.100),

dropping ∇ · (∇ × B) = 0 and substituting Gauss’s law for ∇ · E = ρ/ε0, we
find µ0∇ · J = − 1

ε0c2
∂ρ

∂t
, where ε0µ0 = 1/c2, that is, the continuity equation for

the current density. This step justifies the inclusion of Maxwell’s displacement
current in the generalization of Oersted’s law to nonstationary situations. ■

EXERCISES

1.8.1 Verify Eq. (1.96)

∇ × (∇ × V) = ∇(∇ · V) − (∇ · ∇)V

by direct expansion in Cartesian coordinates. If symbolic software is
available, check the identity for typical fields, such as V = r, r/r3,
a · rb, a × r.
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1.8.2 Show that the identity

∇ × (∇ × V) = ∇(∇ · V) − (∇ · ∇)V

follows from the BAC–CAB rule for a triple vector product. Justify any
alteration of the order of factors in the BAC and CAB terms.

1.8.3 Prove that ∇ × (ϕ∇ϕ) = 0.

1.8.4 Prove that (∇u) × (∇v) is solenoidal, where u and v are differentiable
scalar functions. Start by formulating the problem as a mathematical
equation.

1.8.5 ϕ is a scalar satisfying Laplace’s equation, ∇2ϕ = 0. Show that ∇ϕ is
both solenoidal and irrotational.

1.8.6 With ψ a scalar function, show that

(r × ∇) · (r × ∇)ψ = r2∇2ψ − r2 ∂2ψ

∂r2
− 2r

∂ψ

∂r
.

(This can actually be shown more easily in spherical polar coordinates;
see Section 2.5.)

1.8.7 In the Pauli theory of the electron one encounters the expression

(p − eA) × (p − eA)ψ,

where ψ is a scalar function. A is the magnetic vector potential related
to the magnetic induction B by B = ∇ × A. Given that p = −i∇, show
that this expression reduces to ieBψ . Show that this leads to the orbital
g-factor gL = 1 upon writing the magnetic moment as µ = gLL in units
of Bohr magnetons. See also Example 1.7.1.

1.8.8 Show that any solution of the equation

∇ × ∇ × A − k2A = 0

automatically satisfies the vector Helmholtz equation

∇2A + k2A = 0

and the solenoidal condition

∇ · A = 0.

Hint. Let ∇· operate on the first equation.

1.9 Vector Integration

The next step after differentiating vectors is to integrate them. Let us start with
line integrals and then proceed to surface and volume integrals. In each case,
the method of attack will be to reduce the vector integral to one-dimensional
integrals over a coordinate interval.
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Line Integrals

Using an increment of length dr = x̂ dx + ŷ dy+ ẑ dz, we often encounter the
line integral ∫

C

V · dr, (1.101)

in which the integral is over some contour C that may be open (with starting
point and ending point separated) or closed (forming a loop) instead of an
interval of the x-axis. The Riemann integral is defined by subdividing the curve
into ever smaller segments whose number grows indefinitely. The form [Eq.
(1.101)] is exactly the same as that encountered when we calculate the work
done by a force that varies along the path

W =
∫

F · dr =
∫

Fx(x, y, z) dx+
∫

Fy(x, y, z) dy+
∫

Fz(x, y, z) dz,

(1.102)

that is, a sum of conventional integrals over intervals of one variable each.
In this expression, F is the force exerted on a particle. In general, such inte-
grals depend on the path except for conservative forces, whose treatment we
postpone to Section 1.12.

EXAMPLE 1.9.1 Path-Dependent Work The force exerted on a body is F = −x̂y + ŷx. The
problem is to calculate the work done going from the origin to the point (1, 1),

W =
∫ 1,1

0,0
F · dr =

∫ 1,1

0,0
(−ydx + x dy). (1.103)

Separating the two integrals, we obtain

W = −
∫ 1

0
ydx +

∫ 1

0
x dy. (1.104)

The first integral cannot be evaluated until we specify the values of y as x

ranges from 0 to 1. Likewise, the second integral requires x as a function of y.
Consider first the path shown in Fig. 1.27. Then

W = −
∫ 1

0
0 dx +

∫ 1

0
1 dy = 1 (1.105)

because y = 0 along the first segment of the path and x = 1 along the second.
If we select the path [x = 0, 0 ≤ y ≤ 1] and [0 ≤ x ≤ 1, y = 1], then
Eq. (1.103) gives W = −1. For this force, the work done depends on the choice
of path. ■

EXAMPLE 1.9.2 Line Integral for Work Find the work done going around a unit circle
clockwise from 0 to −π shown in Fig. 1.28 in the xy-plane doing work against
a force field given by

F = −x̂y

x2 + y2
+ ŷx

x2 + y2
.
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(1, 0)

y

x

(1, 1)

Figure 1.27

A Path of
Integration

(1, 0)(−1, 0)

(0, −1)

(0, 1)

Figure 1.28

Circular and Square
Integration Paths

Let us parameterize the circle C as x = cos ϕ, y = sin ϕ with the polar angle
ϕ so that dx = − sin ϕdϕ, dy = cos ϕdϕ. Then the force can be written as
F = −x̂ sin ϕ + ŷ cos ϕ. The work becomes

−
∫

C

xdy − ydx

x2 + y2
=

∫ −π

0
(− sin2 ϕ − cos2 ϕ) dϕ = π.
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Here we spend energy. If we integrate anticlockwise from ϕ = 0 to π we find
the value −π because we are riding with the force. The work is path dependent,
which is consistent with the physical interpretation that F · dr ∼ xdy − ydx =
Lz is proportional to the z-component of orbital angular momentum (involving
circulation, as discussed in Section 1.7).

If we integrate along the square through the points (±1, 0), (0, −1) sur-
rounding the circle, we find for the clockwise lower half square path of Fig.
1.28

−
∫

F · dr = −
∫ −1

0
Fy dy|x=1 −

∫ −1

1
Fx dx|y=−1 −

∫ 0

−1
Fy dy|x=−1

=
∫ 1

0

dy

1 + y2
+

∫ 1

−1

dx

x2 + (−1)2
+

∫ 0

−1

dy

(−1)2 + y2

= arctan(1) + arctan(1) − arctan(−1) − arctan(−1)

= 4 · π

4
= π,

which is consistent with the circular path.
For the circular paths we used the x = cos ϕ, y = sin ϕ parameterization,

whereas for the square shape we used the standard definitions y = f (x) or
x = g(y) of a curve, that is, y = −1 = const. and x = ±1 = const. We could
have used the implicit definition F(x, y) ≡ x2 + y2 − 1 = 0 of the circle. Then
the total variation

dF = ∂F

∂x
dx + ∂F

∂y
dy = 2x dx + 2ydy ≡ 0

so that

dy = −x dx/y with y = −
√

1 − x2

on our half circle. The work becomes

−
∫

C

x dy − ydx

x2 + y2
=

∫ (
x2

y
+ y

)
dx =

∫
dx

y
=

∫ −1

1

dx

−√
1 − x2

= arcsin 1 − arcsin(−1) = 2 · π

2
= π,

in agreement with our previous results. ■

EXAMPLE 1.9.3 Gravitational Potential If a force can be described by a scalar function VG

as F = −∇VG(r) [Eq. (1.65)], everywhere we call VG its potential in mechanics
and engineering. Because the total variation dVG = ∇VG · dr = −FG · dr is
the work done against the force along the path dr, the integrated work along
any path from the initial point r0 to the final point r is given by a line integral∫ r

r0
dVG = VG(r) − VG(r0), the potential difference between the end points of
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the path. Thus, to find the scalar potential for the gravitational force on a unit
mass m1,

FG = −Gm1m2r̂

r2
= −kr̂

r2
, radially inward (1.106)

we integrate from infinity, where VG is zero into position r. We obtain

VG(r) − VG(∞) = −
∫ r

∞
FG · dr = +

∫ ∞

r

FG · dr. (1.107)

By use of FG = −Fapplied, the potential is the work done in bringing the unit
mass in from infinity. (We can define only the potential difference. Here, we
arbitrarily assign infinity to be a zero of potential.) Since FG is radial, we obtain
a contribution to VG only when dr is radial or

VG(r) = −
∫ ∞

r

k dr

r2
= −k

r
= −Gm1m2

r
. (1.108)

The negative sign reflects the attractive nature of gravity. ■

Surface Integrals

Surface integrals appear in the same forms as line integrals, the element of
area also being a vector, dσ.13 Often this area element is written n dA, where
n is a unit (normal) vector to indicate the positive direction.14 There are two
conventions for choosing the positive direction. First, if the surface is a closed
surface, we agree to take the outward normal as positive. Second, if the surface
is an open surface, the positive normal depends on the direction in which the
perimeter of the open surface is traversed. If the right-hand fingers are curled
in the direction of travel around the perimeter, the positive normal is indicated
by the thumb of the right hand. As an illustration, a circle in the xy-plane
(Fig. 1.29) mapped out from x to y to −x to −y and back to x will have its
positive normal parallel to the positive z-axis (for the right-handed coordinate
system).

Analogous to the line integrals, Eq. (1.101), surface integrals may appear
in the form ∫

V · dσ. (1.109)

This surface integral
∫

V · dσ may be interpreted as a flow or flux through
the given surface. This is really what we did in Section 1.6 to understand the
significance of the concept of divergence. Note that both physically and from
the dot product the tangential components of the velocity contribute nothing
to the flow through the surface.

13Recall that in Section 1.3 the area (of a parallelogram) is represented by a cross product vector.
14Although n always has unit length, its direction may well be a function of position.
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x

z

n

y

Figure 1.29

Right-Hand Rule for
the Positive Normal

1

y = x2

0
x

y

Figure 1.30

The Parabola
y = x2 for
0 ≤ y ≤ 1 Rotated
About the y-Axis

EXAMPLE 1.9.4 Moment of Inertia Let us determine the moment of inertia Iy of a segment
of the parabola y = x2 cut off by the line y = 1 and rotated about the y-axis
(Fig. 1.30). We find

Iy = 2µ

∫ 1

x=0

∫ 1

y=x 2
x2 dx dy = 2µ

∫ 1

0
(1 − x2)x2dx = 2µ

(
x3

3
− x5

5

)∣∣∣∣
1

0
= 4µ

15
.

The factor of 2 originates in the reflection symmetry of x → −x, and µ is the
constant mass density. ■
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A surface in three-dimensional space may be explicitly given as z = f (x, y)
or by the coordinate functions of its points

x = x(u, v), y = y(u, v), z = z(u, v)

in terms of two parameters u, v or in implicit form F(x, y, z) = 0. The explicit
form is a special case

F(x, y, z) ≡ z − f (x, y)

of the general implicit definition of a surface. We find the area dA = dx dy/nz

over the projection dx dy of the surface onto the xy-plane for the latter case.
Here, nz = cos γ is the z-component of the normal unit vector n at r on the
surface so that γ is the angle of dA with the xy-plane. Thus, when we project
dA to the xy-plane, we get dAcos γ = dx dy, which proves this useful formula
for measuring the area of a curved surface. From the gradient properties
we also know that n = ∇ f/

√
∇ f 2.

EXAMPLE 1.9.5 A Surface Integral Here we apply the general formula for surface integrals
to find the area on z = xy = f (x, y) cut out by the unit circle in the xy-plane
shown in Fig. 1.31. We start from

∂ f

∂x
= ∂z

∂x
= y,

∂ f

∂y
= ∂z

∂y
= x,

∂ f

∂z
= ∂z

∂z
= 1,

which we substitute into

nz = 1/

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

for the normal to yield the area

A =
∫ x=1

x=−1

∫ y=√
1−x 2

y=−√
1−x 2

√
1 + x2 + y2 dx dy.

z

y

x

E = xy

Figure 1.31

The Surface z = xy
Above and Below the
Unit Circle
x2 + y2 = 1
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For the circular geometry plane polar coordinates r, ϕ are more appropri-
ate, where the radial integral is evaluated by substituting u = 1 + r2 in

A =
∫ 1

0

√
1 + r2r dr

∫ 2π

0
dϕ = π

∫ √
udu = 2π

3

∣∣(1 + r2)3/2
∣∣1
0 = 2π

3
(2

√
2 − 1).

■

More examples of line and surface integrals are provided in Chapter 2.

Volume Integrals

Volume integrals are simpler because the volume element dτ is a scalar
quantity.15 We have∫

v

V dτ = x̂

∫
v

Vx dτ + ŷ

∫
v

Vy dτ + ẑ

∫
v

Vz dτ, (1.110)

again reducing the vector integral to a vector sum of scalar integrals.
If the vector

V = Vρ(ρ , ϕ, z)ρ̂+ Vϕ(ρ , ϕ, z)ϕ̂+ Vz(ρ , ϕ, z)ẑ

and its components are given in cylindrical coordinates x = ρ cos ϕ, y =
ρ sin ϕ with volume element dτ = ρ dρ dϕ dz, the volume integral∫

v

V dτ = ẑ

∫
v

Vz dτ +
∫ ∫ ∫

(Vρ ρ̂+ Vϕϕ̂)ρ dρ dϕ dz

involves integrals over the varying unit vectors of the polar coordinates. To
reduce them to scalar integrals, we need to expand the polar coordinate unit
vectors in Cartesian unit vectors as follows. Dividing the plane coordinates by
ρ , we find

ρ̂ = 1
ρ

(x, y) = (cos ϕ, sin ϕ) = x̂ cos ϕ + ŷ sin ϕ.

Differentiating ρ̂2 = 1, we see from 0 = dρ̂2

dϕ
= 2ρ̂ · dρ̂

dϕ
that

dρ̂

dϕ
= −x̂ sin ϕ + ŷ cos ϕ = ϕ̂

is perpendicular to ρ̂ and a unit vector; therefore, it is equal to ϕ̂. Substituting
these expressions into the second integral yields the final result∫

v

V dτ = ẑ

∫
v

Vz dτ + x̂

∫ ∫ ∫
[Vρ cos ϕ − Vϕ sin ϕ]ρ dρ dϕ dz

+ ŷ

∫ ∫ ∫
[Vρ sin ϕ + Vϕ cos ϕ]ρ dρ dϕ dz. (1.111)

The terms in brackets are the Cartesian components Vx, Vy expressed in plane
polar coordinates.

15Frequently, the symbols d3r and d3x are used to denote a volume element in coordinate (xyz or
x1x2x3) space.
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In spherical polar coordinates, all of the unit vectors depend on the coor-
dinates, none can be pulled out of the integrals, and all have to be expanded in
Cartesian unit vectors. This task of rewriting Eq. (1.110) is left as an exercise.

EXAMPLE 1.9.6 Volume of Rotated Gaussian Rotate the Gaussian y = exp(−x2) about the
z-axis leading to z = exp(−x2 − y2). Then the volume in the polar (cylindrical)
coordinates appropriate for the geometry is given by

V =
∫ ∞

r=0

∫ 2π

ϕ=0

∫ e−r2

z=0
r dr dϕ dz = 2π

∫ ∞

0
re−r2

dr = π

∫ ∞

0
e−udu = π,

upon substituting exp(−x2 −y2) = exp(−r2), dx dy = r dr dϕ, u = r2, and
du = 2rdr. ■

Integral Definitions of Gradient, Divergence, and Curl

One interesting and significant application of our surface and volume integrals
is their use in developing alternate definitions of our differential relations. We
find

∇ϕ = lim∫
dτ→0

∫
ϕ dσ∫
dτ

, (1.112)

∇ · V = lim∫
dτ→0

∫
V · dσ∫

dτ
, (1.113)

∇ × V = lim∫
dτ→0

∫
dσ × V∫

dτ
. (1.114)

In these three equations,
∫

dτ is the volume of a small region of space and
dσ is the vector area element of this volume. The identification of Eq. (1.113)
as the divergence of V was carried out in Section 1.6. Here, we show that
Eq. (1.112) is consistent with our earlier definition of ∇ϕ [Eq. (1.64)]. For
simplicity, we choose dτ to be the differential volume dx dydz (Fig. 1.32). This

x
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B

y

z

Figure 1.32

Differential
Rectangular
Parallelepiped
(Origin at Center)
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time, we place the origin at the geometric center of our volume element. The
area integral leads to six integrals, one for each of the six faces. Remembering
that dσ is outward, dσ · x̂ = − |dσ| for surface EFHG, and + |dσ| for surface
ABDC, we have∫

ϕ dσ = −x̂

∫
EFHG

(
ϕ − ∂ϕ

∂x

dx

2

)
dydz + x̂

∫
ABDC

(
ϕ + ∂ϕ

∂x

dx

2

)
dydz

−ŷ

∫
AEGC

(
ϕ − ∂ϕ

∂y

dy

2

)
dx dz + ŷ

∫
BFHD

(
ϕ + ∂ϕ

∂y

dy

2

)
dx dz

−ẑ

∫
ABFE

(
ϕ − ∂ϕ

∂z

dz

2

)
dx dy + ẑ

∫
CDHG

(
ϕ + ∂ϕ

∂z

dz

2

)
dx dy.

Using the first two terms of a Maclaurin expansion, we evaluate each integrand
at the origin with a correction included to correct for the displacement (±dx/2,
etc.) of the center of the face from the origin. Having chosen the total volume
to be of differential size (

∫
dτ = dx dydz), we drop the integral signs on the

right and obtain ∫
ϕ dσ =

(
x̂

∂ϕ

∂x
+ ŷ

∂ϕ

∂y
+ ẑ

∂ϕ

∂z

)
dx dydz. (1.115)

Dividing by ∫
dτ = dx dydz,

we verify Eq. (1.112).
This verification has been oversimplified in ignoring other correction terms

beyond the first derivatives. These additional terms, which are introduced in
Section 5.6 when the Taylor expansion is developed, vanish in the limit∫

dτ → 0 (dx → 0, dy → 0, dz → 0).

This, of course, is the reason for specifying in Eqs. (1.112)–(1.114) that this
limit be taken. Verification of Eq. (1.114) follows these same lines, using a
differential volume dτ = dx dydz.

EXERCISES

1.9.1 Find the potential for the electric field generated by a charge q at the
origin. Normalize the potential to zero at spatial infinity.

1.9.2 Determine the gravitational field of the earth taken to be spherical and of
uniform mass density. Punch out a concentric spherical cavity and show
that the field is zero inside it. Show that the field is constant if the cavity
is not concentric.
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1.9.3 Evaluate

1
3

∫
s

r · dσ

over the unit cube defined by the point (0, 0, 0) and the unit intercepts
on the positive x-, y-, and z-axes. Note that (a) r · dσ is zero for three of
the surfaces, and (b) each of the three remaining surfaces contributes
the same amount to the integral.

1.9.4 Show by expansion of the surface integral that

lim∫
dτ→0

∫
s
dσ × V∫

dτ
= ∇ × V.

Hint. Choose the volume to be a differential volume, dx dydz.

1.10 Gauss’s Theorem

Here, we derive a useful relation between a surface integral of a vector and
the volume integral of the divergence of that vector. Let us assume that the
vector V and its first derivatives are continuous over the simply connected
region (without holes) of interest. Then, Gauss’s theorem states that∫

S

V · dσ =
∫

V

∇ · V dτ. (1.116a)

In words, the surface integral of a vector over a closed surface equals the
volume integral of the divergence of that vector integrated over the volume
enclosed by the surface.

Imagine that volume V is subdivided into an arbitrarily large number of
tiny (differential) parallelepipeds. For each parallelepiped,∑

six surfaces

V · dσ = ∇ · V dτ (1.116b)

from the analysis of Section 1.6, Eq. (1.75), with ρv replaced by V. The sum-
mation is over the six faces of the parallelepiped. Summing over all paral-
lelepipeds, we find that the V·dσ terms cancel (pairwise) for all interior faces;
only the contributions of the exterior surfaces survive (Fig. 1.33). Analogous
to the definition of a Riemann integral as the limit of a sum, we take the limit as
the number of parallelepipeds approaches infinity (→ ∞) and the dimensions
of each approach zero (→ 0):∑

exterior surfaces

V ·↓ dσ =
∑

volumes

∇ ·↓ V dτ

∫
S

V · dσ =
∫

V

∇ · V dτ.

The result is Eq. (1.116a), Gauss’s theorem.
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Figure 1.33

Exact Cancellation
of V · dσ’s on
Interior Surfaces.
No Cancellation on
the Exterior Surface

From a physical standpoint, Eq. (1.75) has established ∇ · V as the net
outflow of field per unit volume. The volume integral then gives the total net
outflow. However, the surface integral

∫
V · dσ is just another way of expressing

this same quantity, which is the equality, Gauss’s theorem.

Biographical Data

Gauss, Carl Friedrich. Gauss, a German mathematician, physicist, and
astronomer, was born in Brunswick in 1777 and died in Göttingen in 1855.
He was an infant prodigy in mathematics whose education was directed and
financed by the Duke of Brunswick. As a teenager, he proved that regular
n-polygons can be constructed in Euclidean geometry provided n is a Fer-
mat prime number such as 3, 5, 17, and 257, a major advance in geometry
since antiquity. This feat convinced him to stay in mathematics and give up
the study of foreign languages. For his Ph.D., he proved the fundamental
theorem of algebra, avoiding the then controversial complex numbers he
had used to discover it. In his famous treatise Disquisitiones Arithmetica

on number theory, he first proved the quadratic reciprocity theorem and
originated the terse style and rigor of mathematical proofs as a series of
logical steps, discarding any trace of the original heuristic ideas used in the
discovery and checks of examples. Not surprisingly, he hated teaching. He
is considered by many as the greatest mathematician of all times and was
the last to provide major contributions to all then existing branches of math-
ematics. As the founder of differential geometry, he developed the intrinsic
properties of surfaces, such as curvature, which later motivated B. Riemann
to develop the geometry of metric spaces, the mathematical foundation
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of Einstein’s General Relativity. In astronomy (for the orbit of the asteroid
Ceres), he developed the method of least squares for fitting curves to data.
In physics, he developed potential theory, and the unit of the magnetic in-
duction is named after him in honor of his measurements and development
of units in physics.

Green’s Theorem

A frequently useful corollary of Gauss’s theorem is a relation known as Green’s
theorem. If u and v are two scalar functions, we have the identities

∇ · (u∇v) = u∇ · ∇v + (∇u) · (∇v), (1.117)

∇ · (v ∇u) = v∇ · ∇u + (∇v) · (∇u), (1.118)

which follow from the product rule of differentiation. Subtracting Eq. (1.118)
from Eq. (1.117), integrating over a volume (u, v, and their derivatives, assumed
continuous), and applying Eq. (1.116a) (Gauss’s theorem), we obtain∫

V

(u∇ · ∇v − v∇ · ∇u) dτ =
∫

S

(u∇v − v∇u) · dσ. (1.119)

This is Green’s theorem, which states that the antisymmetric Laplacian of
a pair of functions integrated over a simply connected volume (no holes) is
equivalent to the antisymmetric gradient of the pair integrated over the bound-
ing surface. An alternate form of Green’s theorem derived from Eq. (1.117)
alone is ∫

S

u∇v · dσ =
∫

V

u∇ · ∇v dτ +
∫

V

∇u · ∇v dτ. (1.120)

Finally, Gauss’s theorem may also be extended to tensors (see Section 2.11).

Biographical Data

Green, George. Green, an English mathematician, was born in Nottingham
in 1793 and died near Nottingham in 1841. He studied Laplace’s papers in
Cambridge and developed potential theory in electrodynamics.

EXERCISES

1.10.1 If B = ∇ × A, show that ∫
S

B · dσ = 0

for any closed surface S. State this in words. If symbolic software is
available, check this for a typical vector potential and specific surfaces,
such as a sphere or cube.

1.10.2 Over some volume V , let ψ be a solution of Laplace’s equation (with the
derivatives appearing there continuous). Prove that the integral over



1.10 Gauss’s Theorem 71

any closed surface in V of the normal derivative of ψ (∂ψ/∂n, or ∇ψ ·n)
will be zero.

1.10.3 In analogy to the integral definition of gradient, divergence, and curl of
Section 1.10, show that

∇2ϕ = lim∫
dτ→0

∫
∇ϕ · dσ∫

dτ
.

1.10.4 The electric displacement vector D satisfies the Maxwell equation
∇ · D = ρ , where ρ is the charge density (per unit volume). At the
boundary between two media there is a surface charge density σ (per
unit area). Show that a boundary condition for D is

(D2 − D1) · n = σ,

where n is a unit vector normal to the surface and out of medium 1.
Hint. Consider a thin pillbox as shown in Fig. 1.34.

medium 2

medium 1

n

Figure 1.34

Pillbox

1.10.5 From Eq. (1.77) and Example 1.6.1, with V the electric field E and f

the electrostatic potential ϕ, show that∫
ρϕ dτ = ε0

∫
E2 dτ.

This corresponds to a three-dimensional integration by parts.
Hint. E = −∇ϕ, ∇ ·E = ρ/ε0. You may assume that ϕ vanishes at large
r at least as fast as r−1.

1.10.6 The creation of a localized system of steady electric currents (current
density J) and magnetic fields may be shown to require an amount of
work

W = 1
2

∫
H · B dτ.

Transform this into

W = 1
2

∫
J · A dτ,

where A is the magnetic vector potential, ∇ × A = B.
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Hint. In Maxwell’s equations, take the displacement current term
∂D/∂t = 0 and explain why using Ohm’s law. If the fields and cur-
rents are localized, a bounding surface may be taken far enough out
so that the integrals of the fields and currents over the surface yield
zero.

1.11 Stokes’s Theorem

Gauss’s theorem relates the volume integral of a derivative of a function to an
integral of the function over the closed surface bounding the volume. Here, we
consider an analogous relation between the surface integral of a derivative of
a function and the line integral of the function, the path of integration being
the perimeter bounding the surface.

Let us take the surface and subdivide it into a network of arbitrarily small
rectangles. In Section 1.7, we showed that the circulation about such a differ-
ential rectangle (in the xy -plane) is ∇ × V|z dx dy. From Eq. (1.85) applied to
one differential rectangle,

∑
four sides

V · dλ = ∇ × V · dσ. (1.121)

We sum over all the little rectangles as in the definition of a Riemann in-
tegral. The surface contributions [right-hand side of Eq. (1.121)] are added
together. The line integrals [left-hand side of Eq. (1.121)] of all interior line
segments cancel identically. Only the line integral around the perimeter sur-
vives (Fig. 1.35). Taking the usual limit as the number of rectangles approaches

dλ

Figure 1.35

Exact Cancellation
on Interior Paths;
No Cancellation on
the Exterior Path
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infinity while dx → 0, dy → 0, we have∑
exterior line

V · dλ =
∑

rectangles

∇ × V · dσ

segments

↓ ↓∮
V · dλ =

∫
S

∇ × V · dσ. (1.122)

This is Stokes’s theorem. The surface integral on the right is over the surface
bounded by the perimeter or contour for the line integral on the left. The
direction of the vector representing the area is out of the paper plane toward
the reader if the direction of traversal around the contour for the line integral
is in the positive mathematical sense as shown in Fig. 1.35.

This demonstration of Stokes’s theorem is limited by the fact that we used
a Maclaurin expansion of V(x, y, z) in establishing Eq. (1.85) in Section 1.7.
Actually, we need only demand that the curl of V(x, y, z) exists and that it be
integrable over the surface. Stokes’s theorem obviously applies to an open,
simply connected surface. It is possible to consider a closed surface as a lim-
iting case of an open surface with the opening (and therefore the perimeter)
shrinking to zero. This is the point of Exercise 1.11.4.

As a special case of Stokes’s theorem, consider the curl of a two-dimensional
vector field V = (V1(x, y), V2(x, y), 0). The curl ∇ × V = (0, 0, ∂V2

∂x
− ∂V1

∂y
) so∫

S

∇ × V · ẑ dx dy =
∫

S

(
∂V2

∂x
− ∂V1

∂y

)
dx dy =

∫
C

V · dr =
∫

C

(V1dx + V2dy),

where the curve C is the boundary of the simply connected surface S that is
integrated in the positive mathematical sense (anticlockwise). This relation is
sometimes also called Green’s theorem. In Chapter 6, we shall use it to prove
Cauchy’s theorem for analytic functions.

EXAMPLE 1.11.1 Area as a Line Integral For the two-dimensional Stokes’s theorem, we first
choose V = xŷ, which gives the area S = ∫

S
dx dy = ∫

C
x dy, and for V = (yx̂)

we get similarly S = ∫
S

dx dy = − ∫
C

ydx. Adding both results gives the area

S = 1
2

∫
C

(x dy − ydx). ■

We can use Stokes’s theorem to derive Oersted’s and Faraday’s laws from
two of Maxwell’s equations and vice versa, thus recognizing that the former
are an integrated form of the latter.

EXAMPLE 1.11.2 Oersted’s and Faraday’s Laws Consider the magnetic field generated by a
long wire that carries a stationary current I (Fig. 1.36). Starting from Maxwell’s
differential law ∇ × H = J [Eq. (1.97c); with Maxwell’s displacement current
∂D/∂t = 0 for a stationary current case by Ohm’s law], we integrate over a
closed area S perpendicular to and surrounding the wire and apply Stokes’s
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H
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∂ S

S

Figure 1.36

Oersted’s Law for a
Long Wire Carrying
a Current

S

E

B

∂ S

Figure 1.37

Faraday’s Induction
Law Across a
Magnetic Induction
Field

theorem to get

I =
∫

S

J · dσ =
∫

S

(∇ × H) · dσ =
∮

∂S

H · dr,

which is Oersted’s law. Here, the line integral is along ∂S, the closed curve
surrounding the cross section area S.

Similarly, we can integrate Maxwell’s equation for ∇ × E [Eq. (1.97d)] to
yield Faraday’s induction law. Imagine moving a closed loop (∂S) of wire (of
area S) across a magnetic induction field B (Fig. 1.37). At a fixed moment of
time we integrate Maxwell’s equation and use Stokes’s theorem, yielding∫

∂S

E · dr =
∫

S

(∇ × E) · dσ = − d

dt

∫
S

B · dσ = −d�

dt
,

which is Faraday’s law. The line integral on the left-hand side represents the
voltage induced in the wire loop, whereas the right-hand side is the change
with time of the magnetic flux � through the moving surface S of the wire. ■

SUMMARY Both Stokes’s and Gauss’s theorems are of tremendous importance in a wide
variety of problems involving vector calculus in electrodynamics, where they
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allow us to derive the local form of Maxwell’s differential equations from the
global (integral) form of the experimental laws. An indication of their power
and versatility may be obtained from the exercises in Sections 1.10 and 1.11
and the development of potential theory in Section 1.12.

Biographical Data

Stokes, Sir George Gabriel. Stokes, a British mathematician and physi-
cist, was born in Skreen, Ireland, in 1819 and died in Cambridge in 1903. Son
of a clergyman, his talent for mathematics was already evident in school. In
1849, he became Lucasian professor at Cambridge, the chair Isaac Newton
once held and currently held by S. Hawking. In 1885, he became president of
the Royal Society. He is known for the theory of viscous fluids, with practical
applications to the motion of ships in water. He demonstrated his vision by
hailing Joule’s work early on and recognizing X-rays as electromagnetic radi-
ation. He received the Rumford and Copley medals of the Royal Society and
served as a member of Parliament for Cambridge University in 1887–1892.

EXERCISES

1.11.1 The calculation of the magnetic moment of a current loop leads to the
line integral ∮

r × dr.

(a) Integrate around the perimeter of a current loop (in the xy-plane)
and show that the scalar magnitude of this line integral is twice the
area of the enclosed surface.

(b) The perimeter of an ellipse is described by r = x̂a cos θ + ŷb sin θ .
From part (a), show that the area of the ellipse is πab.

1.11.2 In steady state, the magnetic field H satisfies the Maxwell equation
∇ × H = J, where J is the current density (per square meter). At
the boundary between two media there is a surface current density K

(perimeter). Show that a boundary condition on H is

n × (H2 − H1) = K,

where n is a unit vector normal to the surface and out of medium 1.
Hint. Consider a narrow loop perpendicular to the interface as shown
in Fig. 1.38.

medium 2

medium 1

n

Figure 1.38

Loop Contour
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1.11.3 A magnetic induction B is generated by electric current in a ring of
radius R. Show that the magnitude of the vector potential A (B =
∇ × A) at the ring is

|A| = �

2π R
,

where � is the total magnetic flux passing through the ring.
Note. A is tangential to the ring.

1.11.4 Prove that ∫
S

∇ × V · dσ = 0

if S is a closed surface.

1.11.5 Prove that ∮
u∇v · dλ = −

∮
v∇u · dλ.

1.11.6 Prove that ∮
u∇v · dλ =

∫
S

(∇u) × (∇v) · dσ.

1.12 Potential Theory

Scalar Potential

This section formulates the conditions under which a force field F is con-
servative. From a mathematical standpoint, it is a practice session of typical
applications of Gauss’s and Stokes’s theorems in physics.

If a force in a given simply connected region of space V (i.e., no holes in
it) can be expressed as the negative gradient of a scalar function ϕ,

F = −∇ϕ, (1.123)

we call ϕ a scalar potential that describes the force by one function instead of
three, which is a significant simplification. A scalar potential is only determined
up to an additive constant, which can be used to adjust its value at infinity
(usually zero) or at some other point. The force F appearing as the negative
gradient of a single-valued scalar potential is labeled a conservative force. We
want to know when a scalar potential function exists. To answer this question,
we establish two other relations as equivalent to Eq. (1.123):

∇ × F = 0 (1.124)

and ∮
F · dr = 0, (1.125)
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for every closed path in our simply connected region V . We proceed to show
that each of these three equations implies the other two. Let us start with

F = −∇ϕ. (1.126)

Then

∇ × F = −∇ × ∇ϕ = 0 (1.127)

by Eq. (1.92) , or Eq. (1.123) implies Eq. (1.124). Turning to the line integral,
we have ∮

F · dr = −
∮

∇ϕ · dr = −
∮

dϕ (1.128)

using Eq. (1.58). Now dϕ integrates to give ϕ. Because we have specified a
closed loop, the end points coincide and we get zero for every closed path in
our region S for which Eq. (1.123) holds. It is important to note the restriction
that the potential be single-valued and that Eq. (1.123) hold for all points in
S. This derivation may also apply to a scalar magnetic potential as long as no
net current is encircled. As soon as we choose a path in space that encircles a
net current, the scalar magnetic potential ceases to be single-valued and our
analysis no longer applies because V is no longer simply connected.

Continuing this demonstration of equivalence, let us assume that Eq. (1.125)
holds. If

∮
F · dr = 0 for all paths in S, the value of the integral joining two

distinct points A and B is independent of the path (Fig. 1.39). Our premise is
that ∮

ACBDA

F · dr = 0. (1.129)

Therefore, ∮
ACB

F · dr = −
∫

BDA

F · dr =
∫

ADB

F · dr, (1.130)

B

D

A

C

Figure 1.39

Possible Paths for
Doing Work
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reversing the sign by reversing the direction of integration. Physically, this
means that the work done in going from A to B is independent of the path and
that the work done in going around a closed path is zero. This is the reason
for labeling such a force conservative: Energy is conserved.

With the result shown in Eq. (1.130), we have the work done dependent
only on the end points A and B. That is,

Work done by force =
∫ B

A

F · dr = ϕ(A) − ϕ(B). (1.131)

Equation (1.131) defines a scalar potential (strictly speaking, the difference
in potential between points A and B) and provides a means of calculating the
potential. If point B is taken as a variable such as (x, y, z), then differentiation
with respect to x, y, and z will recover Eq. (1.123).

The choice of sign on the right-hand side is arbitrary. The choice here is
made to achieve agreement with Eq. (1.123) and to ensure that water will run
downhill rather than uphill. For points A and B separated by a length dr, Eq.
(1.131) becomes

F · dr = −dϕ = −∇ϕ · dr. (1.132)

This may be rewritten

(F + ∇ϕ) · dr = 0, (1.133)

and since dr = 0 is arbitrary, Eq. (1.126) must follow. If∮
F · dr = 0, (1.134)

we may obtain Eq. (1.123) by using Stokes’s theorem [Eq. (1.122)]:∮
F · dr =

∫
∇ × F · dσ. (1.135)

If we take the path of integration to be the perimeter of an arbitrary differential
area dσ, the integrand in the surface integral must vanish. Hence, Eq. (1.125)
implies Eq. (1.123).

Finally, if ∇ × F = 0, we need only reverse our statement of Stokes’s
theorem [Eq. (1.135)] to derive Eq. (1.125). Then, by Eqs. (1.131)–(1.133) the
initial statement F = −∇ϕ is derived. The triple equivalence is illustrated in
Fig. 1.40.

SUMMARY A single-valued scalar potential function ϕ exists if and only if F is irrotational
so that the work done around every closed loop is zero. The gravitational
and electrostatic force fields given by Eq. (1.88) are irrotational and there-
fore conservative. Gravitational and electrostatic scalar potentials exist. Now,
by calculating the work done [Eq. (1.131)], we proceed to determine three
potentials (Fig. 1.41).
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∇ × F = 0 (1.124)

F = –∇j   (1.123)

∫ F . dr = 0 (1.125)

Figure 1.40

Equivalent
Formulations of a
Conservative Force

j

j
SHO

r

j
C

j
G

Figure 1.41

Potential Energy
Versus Distance
(Gravitational,
Centrifugal, and
Simple Harmonic
Oscillator)

EXAMPLE 1.12.1 Centrifugal Potential Calculate the scalar potential for the centrifugal

force per unit mass, FC = ω2r, radially outward. Physically, the centrifugal
force is what you feel when on a merry-go-round. Proceeding as in Example
1.9.3, but integrating from the origin outward and taking ϕC(0) = 0, we have

ϕC(r) = −
∫ r

0
FC · dr = −ω2r2

2
.

If we reverse signs, taking FSHO = −kr, we obtain ϕSHO = 1
2 kr2, the simple

harmonic oscillator potential.
The gravitational, centrifugal, and simple harmonic oscillator potentials

are shown in Fig. 1.41. Clearly, the simple harmonic oscillator yields stability
and describes a restoring force. The centrifugal potential describes an unstable
situation. ■
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SUMMARY When a vector B is solenoidal, a vector potential A exists such that B = ∇×A.
A is undetermined to within an additive gradient of a scalar function. This is
similar to the arbitrary zero of a potential, due to an additive constant of the
scalar potential.

In many problems, the magnetic vector potential A will be obtained from
the current distribution that produces the magnetic induction B. This means
solving Poisson’s (vector) equation (see Exercise 1.13.4).

EXERCISES

1.12.1 The usual problem in classical mechanics is to calculate the motion of
a particle given the potential. For a uniform density (ρ0), nonrotating
massive sphere, Gauss’s law (Section 1.10) leads to a gravitational force
on a unit mass m0 at a point r0 produced by the attraction of the mass
at r ≤ r0. The mass at r > r0 contributes nothing to the force.
(a) Show that F/m0 = −(4πGρ0/3)r, 0 ≤ r ≤ a, where a is the radius

of the sphere.
(b) Find the corresponding gravitational potential, 0 ≤ r ≤ a.

(c) Imagine a vertical hole running completely through the center of
the earth and out to the far side. Neglecting the rotation of the earth
and assuming a uniform density ρ0 = 5.5 g/cm3, calculate the nature
of the motion of a particle dropped into the hole. What is its period?
Note. F ∝ r is actually a very poor approximation. Because of
varying density, the approximation F = constant, along the outer
half of a radial line, and F ∝ r, along the inner half, is much closer.

1.12.2 The origin of the Cartesian coordinates is at the earth’s center. The moon
is on the z-axis, a fixed distance R away (center-to-center distance). The
tidal force exerted by the moon on a particle at the earth’s surface (point
x, y, z) is given by

Fx = −GMm
x

R3
, Fy = −GMm

y

R3
, Fz = +2GMm

z

R3
.

Find the potential that yields this tidal force.

ANS. −GMm

R3

(
z2 − 1

2
x2 − 1

2
y2

)

In terms of the Legendre polynomials of
Chapter 11, this becomes

−GMm

R3
r2 P2 (cos θ) .

1.12.3 Vector B is formed by the product of two gradients

B = (∇u) × (∇v),

where u and v are scalar functions.
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(a) Show that B is solenoidal.
(b) Show that

A = 1
2

(u∇v − v ∇u)

is a vector potential for B in that

B = ∇ × A.

1.12.4 The magnetic induction B is related to the magnetic vector potential A

by B = ∇ × A. By Stokes’s theorem,

∫
B · dσ =

∮
A · dr.

Show that each side of this equation is invariant under the gauge trans-

formation, A → A + ∇�, where � is an arbitrary scalar function.
Note. Take the function � to be single-valued.

1.12.5 With E as the electric field and A as the magnetic vector potential, show
that [E + ∂A/∂t] is irrotational and that we may therefore write

E = −∇ϕ − ∂A

∂t
.

1.12.6 The total force on a charge q moving with velocity v is

F = q(E + v × B).

Using the scalar and vector potentials, show that

F = q

[
−∇ϕ − dA

dt
+ ∇(A · v)

]
.

Note that we now have a total time derivative of A in place of the partial
derivative of Exercise 1.12.5.

1.12.7 A planet of mass m moves on a circular orbit of radius r around a star
in an attractive gravitational potential V = krn. Find the conditions on
the exponent n for the orbit to be stable.
Note. You can set k = −GmM, where M is the mass of the star, and
use classical mechanics. Einstein’s General Relativity gives n = −1,
whereas in Newton’s gravitation the Kepler laws are needed in addition
to determining that n = −1.
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Figure 1.42

Gauss’s Law

1.13 Gauss’s Law and Poisson’s Equation

Gauss’s Law

Consider a point electric charge q at the origin of our coordinate system. This
produces an electric field E16 given by

E = q r̂

4πε0r
2
. (1.136)

We now derive Gauss’s law, which states that the surface integral in Fig. 1.42
is q/ε0 if the closed surface S includes the origin (where q is located) and zero

16The electric field E is defined as the force per unit charge on a small stationary test charge qt :
E = F/qt . From Coulomb’s law, the force on qt due to q is F = (qqt/4πε0)(r̂/r2). When we divide
by qt , Eq. (1.136) follows.
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Exclusion of the
Origin

if the surface does not include the origin. The surface S is any closed surface;
it need not be spherical.

Using Gauss’s theorem [Eq. (1.116a)] (and neglecting the scale factor
q/4πε0), we obtain ∫

S

r̂ · dσ

r2
=

∫
V

∇ ·
(

r̂

r2

)
dτ = 0 (1.137)

by Example 1.6.1, provided the surface S does not include the origin, where
the integrands are not defined. This proves the second part of Gauss’s law.

The first part, in which the surface S must include the origin, may be han-
dled by surrounding the origin with a small sphere S ′ of radius δ (Fig. 1.43).
So that there will be no question as to what is inside and what is outside,
imagine the volume outside the outer surface S and the volume inside surface
S ′(r < δ) connected by a small hole. This joins surfaces S and S ′, combining
them into one single, simply connected closed surface. Because the radius
of the imaginary hole may be made vanishingly small, there is no additional
contribution to the surface integral. The inner surface is deliberately chosen
to be spherical so that we will be able to integrate over it. Gauss’s theorem
now applies to the volume between S and S ′ without any difficulty. We have∫

S

r̂ · dσ

r2
+

∫
S ′

r̂ · dσ′

δ2
= 0. (1.138)

We may evaluate the second integral for dσ′ = −r̂δ2 d�, in which d� is an
element of solid angle. The minus sign appears because we agreed in Section
1.9 to have the positive normal r̂′ outward from the volume. In this case, the
outward r̂′ is in the negative radial direction, r̂′ = −r̂. By integrating over all
angles, we have ∫

S ′

r̂ · dσ′

δ2
= −

∫
S ′

r̂ · r̂δ2d�

δ2
= −4π, (1.139)
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independent of the radius δ. With the constants from Eq. (1.136), this results
in ∫

S

E · dσ = q

4πε0
4π = q

ε0
, (1.140)

completing the proof of Gauss’s law. Notice that although the surface S may
be spherical, it need not be spherical.

Going a bit further, we consider a distributed charge so that

q =
∫

V

ρ dτ. (1.141)

Equation (1.140) still applies, with q now interpreted as the total distributed
charge enclosed by surface S:∫

S

E · dσ =
∫

V

ρ

ε0
dτ. (1.142)

Using Gauss’s theorem, we have∫
V

∇ · E dτ =
∫

V

ρ

ε0
dτ. (1.143)

Since our volume is completely arbitrary, the integrands must be equal or

∇ · E = ρ

ε0
, (1.144)

one of Maxwell’s equations. If we reverse the argument, Gauss’s law follows
immediately from Maxwell’s equation by integration.

Poisson’s Equation

Replacing E by −∇ϕ, Eq. (1.144) becomes

∇ · ∇ϕ = − ρ

ε0
, (1.145)

which is Poisson’s equation. We know a solution,

ϕ(r) = 1
4πε0

∫
ρ(r′)dτ ′

|r − r′| ,

from generalizing a sum of Coulomb potentials for discrete charges in electro-
statics to a continuous charge distribution.

For the condition ρ = 0 this reduces to an even more famous equation, the
Laplace equation.

∇ · ∇ϕ = 0. (1.146)

We encounter Laplace’s equation frequently in discussing various curved coor-
dinate systems (Chapter 2) and the special functions of mathematical physics
that appear as its solutions in Chapter 11.

From direct comparison of the Coulomb electrostatic force law and
Newton’s law of universal gravitation,

FE = 1
4πε0

q1q2

r2
r̂, FG = −G

m1m2

r2
r̂.
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All of the potential theory of this section therefore applies equally well to
gravitational potentials. For example, the gravitational Poisson equation is

∇ · ∇ϕ = +4πGρ , (1.147)

with ρ now a mass density.

Biographical Data

Poisson, Siméon Denis. Poisson, a French mathematician, was born in
Pithiviers, France in 1781 and died in Paris in 1840. He studied mathemat-
ics at the Ecole Polytechnique under Laplace and Lagrange, whom he so
impressed with his talent that he became professor there in 1802. He con-
tributed to their celestial mechanics, Fourier’s heat theory, and probability
theory, among others.

EXERCISES

1.13.1 Develop Gauss’s law for the two-dimensional case in which

ϕ = −q
ln ρ

2πε0
, E = −∇ϕ = q

ρ̂

2πε0ρ
,

where q is the charge at the origin or the line charge per unit length if the
two-dimensional system is a unit thickness slice of a three-dimensional
(circular cylindrical) system. The variable ρ is measured radially out-
ward from the line charge. ρ̂ is the corresponding unit vector (see
Section 2.2). If graphical software is available, draw the potential and
field for the q/2πε0 = 1 case.

1.13.2 (a) Show that Gauss’s law follows from Maxwell’s equation

∇ · E = ρ

ε0

by integrating over a closed surface. Here, ρ is the charge density.
(b) Assuming that the electric field of a point charge q is spherically

symmetric, show that Gauss’s law implies the Coulomb inverse
square expression

E = q r̂

4πε0r
2
.

1.13.3 Show that the value of the electrostatic potential ϕ at any point P is
equal to the average of the potential over any spherical surface centered
on P . There are no electric charges on or within the sphere.
Hint. Use Green’s theorem [Eq. (1.119)], with u−1 = r, the distance
from P , and v = ϕ.

1.13.4 Using Maxwell’s equations, show that for a system (steady current) the
magnetic vector potential A satisfies a vector Poisson equation

∇2A = −µJ,

provided we require ∇ · A = 0 in Coulomb gauge.
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1.14 Dirac Delta Function

From Example 1.6.1 and the development of Gauss’s law in Section 1.13,∫
∇ · ∇

(
1
r

)
dτ = −

∫
∇ ·

(
r̂

r2

)
dτ =

{−4π

0
, (1.148)

depending on whether the integration includes the origin r = 0 or not. This
result may be conveniently expressed by introducing the Dirac delta function,

∇2
(

1
r

)
= −4πδ (r) = −4πδ(x)δ(y)δ(z). (1.149)

This Dirac delta function is defined by its assigned properties

δ (x) = 0, x = 0 (1.150)

f (0) =
∫ ∞

−∞
f (x) δ(x) dx, (1.151)

where f (x) is any well-behaved function and the integration includes the ori-
gin. As a special case of Eq. (1.151),∫ ∞

−∞
δ(x) dx = 1. (1.152)

From Eq. (1.151), δ(x) must be an infinitely high, infinitely thin spike at x = 0,
as in the description of an impulsive force or the charge density for a point
charge.17 The problem is that no such function exists in the usual sense
of function. However, the crucial property in Eq. (1.151) can be developed
rigorously as the limit of a sequence of functions, a distribution. For example,
the delta function may be approximated by the sequences of functions in n for
n → ∞ [Eqs. (1.153)–(1.156) and Figs. 1.44–1.47]:

δn(x) =




0, x < − 1
2n

n, − 1
2n

< x < 1
2n

0, x > 1
2n

(1.153)

δn(x) = n√
π

exp(−n2x2) (1.154)

δn(x) = n

π
· 1

1 + n2x2
(1.155)

δn(x) = sin nx

πx
= 1

2π

∫ n

−n

eixt dt. (1.156)

17The delta function is frequently invoked to describe very short-range forces such as nuclear
forces. It also appears in the normalization of continuum wave functions of quantum mechanics.
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x

y = dn(x)

Figure 1.44

δ Sequence Function
Eq. (1.153)

x

n

p
e-n2x2

Figure 1.45

δ Sequence Function
Eq. (1.154)

EXAMPLE 1.14.1 Let us evaluate
∫ π

−π
cos xδ(x)dx = cos 0 = 1 using the sequence of Eq. (1.153).

We find∫ 1/2n

−1/2n

ncos x dx = nsin x|1/2n

−1/2n = n

(
sin

(
1

2n

)
− sin

(
− 1

2n

))

= 2nsin
1

2n
= 2n

(
1

2n
+ O(1/n3)

)
→ 1 for n → ∞.
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δ Sequence Function
Eq. (1.155)

x

sin nx
p x

Figure 1.47

δ Sequence Function
Eq. (1.156)

Notice how the integration limits change in the first step. Similarly,∫ π

−π
sin xδ(x) · dx = sin 0 = 0. We could have used Eq. (1.155) instead,

n

π

∫ π

−π

cos x dx

1 + n2x2
= n

π

∫ π

−π

1 − x2/2 + · · ·
1 + n2x2

dx = n

π

∫ π

−π

dx

1 + n2x2

= 1
π

∫ nπ

−nπ

dy

1 + y2
= 1

π
[arctan(nπ) − arctan(−nπ)]

= 2
π

arctan(nπ) → 2
π

π

2
= 1, for n → ∞,
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by keeping just the first term of the power expansion of cos x. Again, we could
have changed the integration limits to ±π/n in the first step for all terms with
positive powers of x because the denominator is so large, except close to x = 0
for large n. This explains why the higher order terms of the cos x power series
do not contribute. ■

These approximations have varying degrees of usefulness. Equation (1.153)
is useful in providing a simple derivation of the integral property [Eq. (1.151)].
Equation (1.154) is convenient to differentiate. Its derivatives lead to the
Hermite polynomials. Equation (1.156) is particularly useful in Fourier analysis
and in its applications to quantum mechanics. In the theory of Fourier series,
Eq. (1.156) often appears (modified) as the Dirichlet kernel:

δn(x) = 1
2π

sin[(n + 1
2 )x]

sin(1
2 x)

. (1.157)

In using these approximations in Eq. (1.151) and later, we assume that f (x) is
integrable—it offers no problems at large x.

For most physical purposes such approximations are quite adequate. From
a mathematical standpoint, the situation is still unsatisfactory: The limits

lim
n→∞ δn (x)

do not exist.
A way out of this difficulty is provided by the theory of distributions. Rec-

ognizing that Eq. (1.151) is the fundamental property, we focus our attention
on it rather than on δ(x). Equations (1.153)–(1.156) , with n = 1, 2, 3, . . . , may
be interpreted as sequences of normalized functions:∫ ∞

−∞
δn(x) dx = 1. (1.158)

The sequence of integrals has the limit

lim
n→∞

∫ ∞

−∞
δn(x) f (x) dx = f (0). (1.159)

Note that Eq. (1.158) is the limit of a sequence of integrals. Again, the limit of
δn(x), n → ∞, does not exist. [The limits for all four forms of δn(x) diverge at
x = 0.]

We may treat δ(x) consistently in the form∫ ∞

−∞
δ(x) f (x) dx = lim

n→∞

∫ ∞

−∞
δn(x) f (x) dx. (1.160)

δ(x) is labeled a distribution (not a function) defined by the sequences δn(x) as
indicated in Eq. (1.158). We might emphasize that the integral on the left-hand
side of Eq. (1.160) is not a Riemann integral.18 It is a limit.

18It can be treated as a Stieltjes integral if desired. δ(x) dx is replaced by du(x), where u(x) is the
Heaviside step function.



90 Chapter 1 Vector Analysis

This distribution δ(x) is only one of an infinity of possible distributions, but
it is the one we are interested in because of Eq. (1.151).

From these sequences of functions, we see that Dirac’s delta function must
be even in x, δ(−x) = δ(x).

Let us now consider a detailed application of the Dirac delta function to a
single charge and illustrate the singularity of the electric field at the origin.

EXAMPLE 1.14.2 Total Charge inside a Sphere Consider the total electric flux
∮

E · dσ out
of a sphere of radius R around the origin surrounding n charges e j located at
the points r j with rj < R (i.e., inside the sphere). The electric field strength
E = −∇ϕ(r), where the potential

ϕ =
n∑

j=1

e j

|r − r j| =
∫

ρ(r′)
|r − r′|d

3r′

is the sum of the Coulomb potentials generated by each charge and the total
charge density is ρ(r) = ∑

j e jδ(r − r j). The delta function is used here as an
abbreviation of a pointlike density. Now we use Gauss’s theorem for∮

E · dσ = −
∮

∇ϕ · dσ = −
∫

∇2ϕdτ =
∫

ρ(r)
ε0

dτ =
∑

j e j

ε0

in conjunction with the differential form of Gauss’s law ∇ · E = −ρ/ε0 and∑
j e j

∫
δ(r − r j)dτ = ∑

j e j. ■

The integral property [Eq. (1.151)] is useful in cases in which the argument
of the delta function is a function g(x) with simple zeros on the real axis,
which leads to the rules

δ(ax) = 1
a

δ(x), a > 0, (1.161)

δ(g(x)) =
∑

a,
g(a)=0,
g′(a) =0

δ(x − a)
|g′(a)| . (1.162)

To obtain Eq. (1.161) we change the integration variable in∫ ∞

−∞
f (x)δ(ax)dx = 1

a

∫ ∞

−∞
f

(
y

a

)
δ(y)dy = 1

a
f (0)

and apply Eq. (1.151). To prove Eq. (1.162) , we decompose the integral∫ ∞

−∞
f (x)δ(g(x))dx =

∑
a

∫ a+ε

a−ε

f (x)δ((x − a)g′(a))dx (1.163)

into a sum of integrals over small intervals containing the first-order zeros
of g(x). In these intervals, g(x) ≈ g(a) + (x − a)g′(a) = (x − a)g′(a). Using
Eq. (1.161) on the right-hand side of Eq. (1.163), we obtain the integral of
Eq. (1.162).
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EXAMPLE 1.14.3 Evaluate I ≡
∫ ∞
−∞ f(x)δ(x2 − 2)dx Because the zeros of the argument of

the delta function, x2 = 2, are x = ±√
2, we can write the integral as a sum of

two contributions:

I =
∫ √

2+ε

√
2−ε

δ(x −
√

2)
f (x)dx

d(x 2−2)
dx

|x=√
2

dx +
∫ −√

2+ε

−√
2−ε

δ(x +
√

2)
f (x)dx

d(x 2−2)
dx

|x=−√
2

=
∫ √

2+ε

√
2−ε

δ(x −
√

2)
f (x)dx

2
√

2
+

∫ −√
2+ε

−√
2−ε

δ(x +
√

2)
f (x)dx

2
√

2

= f (
√

2) + f (−√
2)

2
√

2
. ■

This example is good training for the following one.

EXAMPLE 1.14.4 Phase Space In the scattering theory of relativistic particles using Feynman
diagrams, we encounter the following integral over energy of the scattered
particle (we set the velocity of light c = 1):

∫
d4 pδ(p2 − m2) f (p) ≡

∫
d3 p

∫
dp0δ

(
p2

0 − p2 − m2) f (p)

=
∫

E>0

d3 pf (E, p)

2
√

m2 + p2
−

∫
E<0

d3 pf (E, p)

2
√

m2 + p2
,

where we have used Eq. (1.162) at the zeros E = ±
√

m2 + p2 of the argument
of the delta function. The physical meaning of δ(p2 −m2) is that the particle of
mass mand four-momentum pµ = (p0, p) is on its mass shell because p2 = m2

is equivalent to E = ±
√

m2 + p2. Thus, the on-mass-shell volume element in
momentum space is the Lorentz invariant d3 p

2E
, in contrast to the nonrelativistic

d3 p of momentum space. The fact that a negative energy occurs is a peculiarity
of relativistic kinematics that is related to the antiparticle. ■

Using integration by parts we can also define the derivative δ′(x) of the
Dirac delta function by the relation

∫ ∞

−∞
f (x)δ′(x − x′) dx = −

∫ ∞

−∞
f ′(x)δ(x − x′) dx = − f ′(x′). (1.164)

It should be understood that our Dirac delta function has significance only
as part of an integrand. Thus, the Dirac delta function is often regarded as a
linear operator: δ(x − x0) operates on f (x) and yields f (x0):

L(x0) f (x) ≡
∫ ∞

−∞
δ(x − x0) f (x) dx = f (x0). (1.165)
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It may also be classified as a linear mapping or simply as a generalized function.
Shifting our singularity to the point x = x′, we write the Dirac delta function
as δ(x − x′). Equation (1.151) becomes∫ ∞

−∞
f (x)δ(x − x′) dx = f (x′). (1.166)

As a description of a singularity at x = x′, the Dirac delta function may be
written as δ(x − x′) or as δ(x′ − x). Expanding to three dimensions and using
spherical polar coordinates, we obtain

f (0) =
∫ 2π

0

∫ π

0

∫ ∞

0
f (r)δ (r)r2 dr sin θ dθ dϕ

=
∫ ∫ ∫ ∞

−∞
f (x, y, z)δ (x) δ (y) δ (z) dx dydz,

∫ ∞

0

δ(r)
r2

r2dr

∫ 1

−1
δ(cos θ) d cos θ

∫ 2π

0
δ(ϕ) dϕ = 1, (1.167)

where each one-dimensional integral is equal to unity. This corresponds to a
singularity (or source) at the origin. Again, if our source is at r = r1, Eq. (1.167)
generalizes to∫ ∫ ∫

f (r2)δ (r2 − r1)r2
2 dr2 sin θ2 dθ2 dϕ2 = f (r1), (1.168)

where∫ ∞

0

δ(r2 − r1)

r2
2

r2
2 dr2

∫ 1

−1
δ(cos θ2 − cos θ1)d cos θ2

∫ 2π

0
δ(ϕ2 − ϕ1)dϕ2 = 1.

SUMMARY We use δ (x) frequently and call it the Dirac delta function—for historical
reasons.19 Remember that it is not really a function. It is essentially a short-
hand notation, defined implicitly as the limit of integrals in a sequence, δn (x),
according to Eq. (1.160).

Biographical Data

Dirac, Paul Adrien Maurice. Dirac, an English physicist, was born in
Bristol in 1902 and died in Bristol in 1984. He obtained a degree in electrical
engineering at Bristol and obtained his Ph.D. in mathematical physics in 1926
at Cambridge. By 1932, he was Lucasian professor, like Stokes, the chair
Newton once held. In the 1920s, he advanced quantum mechanics, became
one of the founders of quantum field theory, and, in 1928, discovered his
relativistic equation for the electron that predicted antiparticles for which
he was awarded the Nobel prize in 1933.

19Dirac introduced the delta function to quantum mechanics. Actually, the delta function can
be traced back to Kirchhoff, 1882. For further details, see M. Jammer (1966). The Conceptual

Development of Quantum Mechanics, p. 301. McGraw-Hill, New York.
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EXERCISES

1.14.1 Let

δn (x) =




0, x < − 1
2n

n, − 1
2n

< x < 1
2n

,

0, 1
2n

< x.

Show that

lim
n→∞

∫ ∞

−∞
f (x)δn(x) dx = f (0),

assuming that f (x) is continuous at x = 0.

1.14.2 Verify that the sequence δn(x), based on the function

δn(x) =
{

0, x < 0,
ne−nx x > 0,

is a delta sequence [satisfying Eq. (1.159)]. Note that the singularity is
at +0, the positive side of the origin.
Hint. Replace the upper limit (∞) by c/n, where c is large but finite,
and use the mean value theorem of integral calculus.

1.14.3 For

δn(x) = n

π
· 1

1 + n2x2
,

[Eq. (1.155)], show that ∫ ∞

−∞
δn(x) dx = 1.

1.14.4 Demonstrate that δn = sin nx/πx is a delta distribution by showing
that

lim
n→∞

∫ ∞

−∞
f (x)

sin nx

πx
dx = f (0).

Assume that f (x) is continuous at x = 0 and vanishes as x → ±∞.
Hint. Replace x by y/n and take lim n → ∞ before integrating.

1.14.5 Fejer’s method of summing series is associated with the function

δn (t) = 1
2πn

[
sin(nt/2)
sin(t/2)

]2

.

Show that δn(t) is a delta distribution in the sense that

lim
n→∞

1
2πn

∫ ∞

−∞
f (t)

[
sin(nt/2)
sin(t/2)

]2

dt = f (0).

1.14.6 Using the Gaussian delta sequence (δn), Eq. (1.154), show that

x
d

dx
δ (x) = −δ (x) ,

treating δ (x) and its derivative as in Eq. (1.151).
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1.14.7 Show that ∫ ∞

−∞
δ′(x) f (x) dx = − f ′(0).

Assume that f ′(x) is continuous at x = 0.

1.14.8 Prove that

δ( f (x)) =
∣∣∣∣df (x)

dx

∣∣∣∣
−1

δ(x − x0),

where x0 is chosen so that f (x0) = 0 with df/dx = 0; that is, f (x)
has a simple zero at x0.
Hint. Use δ( f ) df = δ(x) dx after explaining why this holds.

1.14.9 Show that in spherical polar coordinates (r, cos θ , ϕ) the delta function
δ(r1 − r2) becomes

1

r2
1

δ(r1 − r2)δ(cos θ1 − cos θ2)δ(ϕ1 − ϕ2).

1.14.10 For the finite interval (−π, π) expand the Dirac delta function δ(x− t)
in a series of sines and cosines: sin nx, cos nx, n = 0, 1, 2, . . . . Note
that although these functions are orthogonal, they are not normalized
to unity.

1.14.11 In the interval (−π, π), δn (x) = n√
π

exp(−n2x2).
(a) Expand δn(x) as a Fourier cosine series.
(b) Show that your Fourier series agrees with a Fourier expansion of

δ(x) in the limit as n → ∞.
(c) Confirm the delta function nature of your Fourier series by show-

ing that for any f (x) that is finite in the interval [−π, π ] and con-
tinuous at x = 0,∫ π

−π

f (x)[Fourier expansion of δ∞(x)] dx = f (0).

1.14.12 (a) Expand δn(x) = n√
π

exp(−n2x2) in the interval (−∞, ∞) as a
Fourier integral.

(b) Expand δn(x) = nexp(−nx) as a Laplace transform.

1.14.13 We may define a sequence

δn(x) =
{

n, |x| < 1/2n,
0, |x| > 1/2n.

[Eq. (1.153)]. Express δn(x) as a Fourier integral (via the Fourier in-
tegral theorem, inverse transform, etc.). Finally, show that we may
write

δ(x) = lim
n→∞ δn(x) = 1

2π

∫ ∞

−∞
e−ikx dk.
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1.14.14 Using the sequence

δn(x) = n√
π

exp(−n2x2),

show that

δ(x) = 1
2π

∫ ∞

−∞
e−ikx dk.

Note. Remember that δ(x) is defined in terms of its behavior as part
of an integrand, especially Eq. (1.159).

1.14.15 Derive sine and cosine representations of δ(t − x).

ANS.
2
π

∫ ∞

0
sin ωt sin ωx dω,

2
π

∫ ∞

0
cos ωt cos ωx dω.
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