REVIEW OF UPW BASICS

Example : \hat{x}-polarized UPW traveling in $+\hat{z}$ direction

$$
\begin{aligned}
& \overline{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos (\omega \mathrm{t}-\mathrm{kz}) \\
& \mathrm{H}=\hat{\mathrm{y}} \frac{\mathrm{E}_{\mathrm{o}}}{\eta_{0}} \cos (\omega \mathrm{t}-\mathrm{kz})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}(z)=\hat{\mathrm{x}} \mathrm{E} \mathrm{e}^{-\mathrm{j} k z} \\
& \mathrm{H}(\mathrm{z})=\hat{\mathrm{E}} \frac{\underline{E}_{0}}{\eta_{0}} e^{-j k z}
\end{aligned}
$$

$\mathrm{E} \times \mathrm{H}: \hat{z}$ direction of propagation
$\mathrm{c}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad \omega(\mathrm{rads} / \mathrm{s})=2 \pi \mathrm{f} \quad \mathrm{k}(\mathrm{rads} / \mathrm{m})=\frac{2 \pi}{\lambda}=\frac{\omega}{\mathrm{c}} \quad \eta_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$

HOW DO WAVES CONVEY POWER, ENERGY?

Recall: $\overline{\mathrm{E}}[\mathrm{V} / \mathrm{m}] \cdot \overline{\mathrm{J}}\left[\mathrm{A} / \mathrm{m}^{2}\right]=\mathrm{P}_{\mathrm{d}}\left[\mathrm{W} / \mathrm{m}^{3}\right] \quad$ But $\overline{\mathrm{E}} \perp \overline{\mathrm{H}}$ Manipulate Ampere's law to get $\overline{\mathrm{E}} \cdot \overline{\mathrm{J}}$
$\overline{\mathrm{E}} \cdot\left(\nabla \times \overline{\mathrm{H}}=\overline{\mathrm{J}}+\frac{\partial \overline{\mathrm{D}}}{\partial \mathrm{t}}\right)$ For symmetry, compute $\overline{\mathrm{H}} \cdot\left(\nabla \times \overline{\mathrm{E}}=-\frac{\partial \overline{\mathrm{B}}}{\partial \mathrm{t}}\right)$

This is Poynting's Theorem
What does it mean?

POYNTING THEOREM

$$
\begin{gathered}
\text { Poynting's Theorem: } \nabla \cdot(\overline{\mathrm{E}} \times \overline{\mathrm{H}})=-\overline{\mathrm{H}} \cdot \frac{\partial \overline{\mathrm{~B}}}{\partial \mathrm{t}}-\overline{\mathrm{E}} \cdot \frac{\partial \overline{\mathrm{D}}}{\partial \mathrm{t}}-\overline{\mathrm{E}} \cdot \overline{\mathrm{~J}} \\
\square \quad \overline{\mathrm{~B}}=\mu \overline{\mathrm{H}} \quad \overline{\mathrm{D}}=\varepsilon \overline{\mathrm{E}}
\end{gathered}
$$

$$
\nabla \cdot \underbrace{\nabla \cdot \overline{\mathrm{E}} \times \overline{\mathrm{H}})}_{\begin{array}{c}
\text { Poynting } \\
\text { vector, } \\
\overline{\mathrm{S}}\left[\mathrm{~W} / \mathrm{m}^{2}\right]
\end{array}}=-\frac{\mathrm{d}}{\begin{array}{c}
\text { Stored magnetic } \\
\text { energy density, } \\
\mathrm{W}_{\mathrm{m}}
\end{array}}\left(\begin{array}{c}
\begin{array}{c}
\text { Stored electric } \\
\text { energy density, } \\
\mathrm{W}_{\mathrm{e}}
\end{array}
\end{array}\right.
$$

Energy is conserved! Note: $\frac{d}{d t}\left(\frac{1}{2} \mu|\bar{H}|^{2}\right)=\mu|\bar{H}| \frac{d|\bar{H}|}{d t}=\bar{H} \cdot \frac{d \bar{B}}{d t}$
Poynting Vector $\overline{\mathrm{S}}=\overline{\mathrm{E}} \times \overline{\mathrm{H}}\left(\mathrm{W} / \mathrm{m}^{2}\right)\left(\frac{\text { volts }}{\mathrm{m}} \cdot \frac{\mathrm{amps}}{\mathrm{m}}=\frac{\text { watts }}{\mathrm{m}^{2}}\right) \stackrel{\overline{\mathrm{E}}}{\mathrm{H}} \quad \overline{\mathrm{S}}$

INTEGRAL POYNTING THEOREM

Use: $\oint_{S} \bar{A} \cdot \hat{n} d a=\int_{V} \nabla \cdot \bar{A} d v$
Gauss's Theorem (not Gauss's Law)
Therefore:

$$
\oint_{S}(\overline{\mathrm{E}} \times \overline{\mathrm{H}}) \cdot \hat{\mathrm{n}} \mathrm{da}=\int_{\mathrm{V}} \nabla \cdot(\overline{\mathrm{E}} \times \overline{\mathrm{H}}) \mathrm{dv}
$$

$$
=\int_{\mathrm{V}}\left[-\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{1}{2} \mu|\overline{\mathrm{H}}|^{2}\right)-\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{1}{2} \varepsilon|\overline{\mathrm{E}}|^{2}\right)-(\overline{\mathrm{E}} \cdot \overline{\mathrm{~J}})\right] \mathrm{dv}
$$

$\oint_{S}(\overline{\mathrm{E}} \times \overline{\mathrm{H}}) \cdot \hat{n} d a=-\int_{V} \frac{d}{d t}\left(\frac{1}{2} \varepsilon|\overline{\mathrm{E}}|^{2}+\frac{1}{2} \mu|\bar{H}|^{2}\right) d v-\int_{V} \overline{\mathrm{E}} \cdot \overline{\mathrm{J}} d v$
Power emerging $=$ released stored energy - dissipation [W]
The Poynting vector $\triangleq \overline{\mathrm{S}}=\overline{\mathrm{E}} \times \overline{\mathrm{H}}$ gives both the magnitude of the power density (intensity) and the direction of its flow.

UNIFORM PLANE WAVE EXAMPLE

$$
\begin{array}{ll}
\overline{\mathrm{E}}=\hat{\mathrm{x}} \mathrm{E}_{\mathrm{o}} \cos (\omega \mathrm{t}-\mathrm{kz}) & \mathrm{W}_{\mathrm{e}}=\frac{1}{2} \varepsilon_{\mathrm{o}} \mathrm{E}_{\mathrm{o}}^{2} \cos ^{2}(\omega \mathrm{t}-\mathrm{kz}) \\
\overline{\mathrm{H}}=\hat{\mathrm{y}}\left(\frac{\mathrm{E}_{\mathrm{o}}}{\eta_{\mathrm{o}}}\right) \cos (\omega \mathrm{t}-\mathrm{kz}) & \mathrm{W}_{\mathrm{m}}=\frac{1}{2} \frac{\mu_{0}}{\eta_{0}^{2}} \mathrm{E}_{\mathrm{o}}^{2} \cos ^{2}(\omega \mathrm{t}-\mathrm{kz}) \\
\overline{\mathrm{S}}(\mathrm{t})=\overline{\mathrm{E}} \times \overline{\mathrm{H}}=\hat{\mathrm{z}}\left(\frac{\mathrm{E}_{\mathrm{o}}^{2}}{\eta_{\mathrm{o}}}\right) \cos ^{2}(\omega \mathrm{t}-\mathrm{kz}) \quad\left(\mathrm{W} / \mathrm{m}^{2}\right) \\
\overline{\mathrm{S}}=\hat{\mathrm{z}} \frac{\mathrm{E}_{\mathrm{o}}^{2}}{\eta_{0}} \cos ^{2}(\omega \mathrm{t}-\mathrm{kz}) \Rightarrow\langle\overline{\mathrm{S}}\rangle=\hat{\mathrm{z}} \frac{1}{2} \frac{\mathrm{E}_{\mathrm{o}}^{2}}{\eta_{\mathrm{o}}}=\mathrm{I}(\theta, \phi, \mathrm{r})\left[\mathrm{w} / \mathrm{m}^{2}\right]
\end{array}
$$

The time average $\left\langle\overline{\mathrm{S}}(\mathrm{r}, \theta, \phi\rangle\right.$ is "intensity" $\left[\mathrm{W} / \mathrm{m}^{2}\right]$

COMPLEX NOTATION - POYNTING VECTOR

Defining a meaningful $\overline{\mathrm{S}}$ and relating it to $\overline{\mathrm{S}}$ is not obvious.
Let's work backwards to find the time average $\langle\overline{\mathrm{S}}\rangle$ and then $\overline{\mathrm{S}}$

$$
\begin{aligned}
& \begin{aligned}
\overline{\mathrm{S}}(\mathrm{t}) & =\overline{\overline{\mathrm{E}}} \times \overline{\mathrm{H}}=\operatorname{Re}[\begin{array}{l}
{\left[\overline{\mathrm{E}} \cdot \mathrm{e}^{\mathrm{j} \omega t}\right]}
\end{array} \times \operatorname{Re} \underbrace{\left[\overline{\mathrm{H}} \cdot \mathrm{e}^{\mathrm{j} \omega \mathrm{t}}\right]} \\
& =\overbrace{\left[\overline{\mathrm{E}}_{\mathrm{r}} \cos (\omega \mathrm{t})-\overline{\bar{E}}_{\mathrm{i}} \sin (\omega \mathrm{t})\right]} \times\left[\mathrm{\bar{H}}_{\mathrm{r}} \cos (\omega \mathrm{t})-\overline{\mathrm{H}}_{\mathrm{i}} \sin (\omega \mathrm{t})\right]
\end{aligned} \\
& \Rightarrow\langle\overline{\mathrm{S}}(\mathrm{t})\rangle=\frac{1}{2}\left[\left(\overline{\mathrm{E}}_{\mathrm{r}} \times \underline{\underline{H}}_{\mathrm{r}}\right)+\left(\overline{\underline{E}}_{i} \times \overline{\mathrm{H}}_{\mathrm{i}}\right)\right] \\
& =\frac{1}{2} R_{e} \underbrace{\left(\underline{\bar{E}} \times \bar{H}^{*}\right)}_{\underline{\underline{S}} \text { (by definition }}\left[=\frac{1}{2} R_{e}\left\{\left(E_{\mathrm{E}}+j \mathrm{E}_{\mathrm{i}}\right) \times\left(\mathrm{H}_{\mathrm{r}}-j \mathrm{H}_{\mathrm{i}}\right)\right\}\right]
\end{aligned}
$$

Thus, we can define $\langle\overline{\mathrm{S}}\rangle=\frac{1}{2} \operatorname{Re}\left(\underline{\underline{\mathrm{E}}} \times \underline{\overline{\bar{H}}}^{*}\right)$ and $\underline{\overline{\mathrm{S}}}=\underline{\overline{\mathrm{E}}} \times \underline{\overline{\mathrm{H}}}^{*}$
Recall: $\underline{\underline{E}}=\bar{E}_{r}+j \bar{E}_{i} \quad \overline{\mathrm{H}}=\overline{\mathrm{H}}_{\mathrm{r}}+\mathrm{j} \overline{\mathrm{H}}_{\mathrm{i}} \quad \mathrm{e}^{\mathrm{j} \omega \mathrm{t}}=\cos \omega \mathrm{t}+\mathrm{j} \sin \omega \mathrm{t}$

UPW REFLECTED BY PERFECT CONDUCTOR

$$
\left.\begin{array}{rl}
\overline{\mathrm{E}} & =\hat{\mathrm{x}} \mathrm{E}_{+} \cos (\omega \mathrm{t}-\mathrm{kz})+\hat{\mathrm{x}} \mathrm{E}_{-} \cos (\omega t+\mathrm{kz}) \\
& =0 \text { at } \mathrm{z}=0 \text { (perfect conductor) }
\end{array}\right\} \begin{gathered}
\text { Forward plus } \\
\text { reflected wave }
\end{gathered}
$$

$\Rightarrow E_{-}=-E_{+}$(Solving for unknown reflection)
$\Rightarrow \quad \bar{E}=\hat{x} 2 E_{+} \sin \omega t \cdot \operatorname{sinkz} \quad$ Standing waves, oscillate without moving (recall: $\cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \cdot \sin \frac{\alpha-\beta}{2}$)
$\mathrm{W}_{\mathrm{e}}\left[\mathrm{J} / \mathrm{m}^{3}\right]=2 \varepsilon \mathrm{E}^{2} \sin ^{2} \omega \mathrm{t} \sin ^{2} \mathrm{kz}$
$\mathrm{E}=0$ every half cycle ($\omega \mathrm{t}=0$, π, etc.)
(Where does the energy go?)

STANDING WAVE EXAMPLE - CONTINUED

(It's in the H field!) $\quad \overline{\mathrm{E}}=\hat{\mathrm{x}}\left[\mathrm{E}_{+} \cos (\omega \mathrm{t}-\mathrm{kz})+\mathrm{E}_{-} \cos (\omega \mathrm{t}+\mathrm{kz})\right]$

$$
\mathrm{W}_{\mathrm{m}}\left[\mathrm{~J} / \mathrm{m}^{3}\right]=\frac{1}{2} \mu_{\mathrm{o}}\left(\frac{2 \mathrm{E}_{+}}{\eta_{\mathrm{o}}}\right)^{2} \cos ^{2} \omega t \cos ^{2} \mathrm{kz}=2 \varepsilon \mathrm{E}_{+}^{2} \cos ^{2} \omega t \cos ^{2} \mathrm{kz}
$$

$$
=0 \text { when } \omega \mathrm{t}=\pi / 2,3 \pi / 2 \text {, etc.) }
$$

$$
\overline{\mathrm{S}}=\overline{\mathrm{E}} \times \overline{\mathrm{H}}=\hat{\mathrm{z}} 4 \frac{\mathrm{E}_{+}^{2}}{\eta_{\mathrm{o}}} \cos \omega \mathrm{t} \sin \omega \mathrm{t} \cdot \operatorname{coskz\operatorname {sin}kz}
$$

$$
=\hat{z} \frac{E_{+}^{2}}{\eta_{0}} \cdot \sin 2 k z \cdot \sin 2 \omega t
$$

$$
\Rightarrow\langle\overline{\mathrm{S}}\rangle=0=\frac{1}{2} \operatorname{Re}\left(\underline{\overline{\mathrm{E}}} \times \underline{\bar{H}}^{*}\right)
$$

$$
\begin{aligned}
& \bar{H}=\hat{y}\left[\frac{E_{+}}{\eta_{0}} \cos (\omega t-k z)-\theta \frac{E_{-}}{\eta_{0}} y \cos (\omega t+k z)\right] \\
& E_{-}=-E_{+} \Rightarrow \bar{H}=\hat{y} \frac{2 \mathrm{E}_{+}}{\eta_{\mathrm{o}}} \cos \omega \mathrm{t} \cdot \cos \mathrm{kz}
\end{aligned}
$$

MIT OpenCourseWare
|http://ocw.mit.edu

6.013 Electromagnetics and Applications

Spring 2009

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

