REVIEW OF UPW BASICS

Example: \hat{x} -polarized UPW traveling in + \hat{z} direction

HOW DO WAVES CONVEY POWER, ENERGY?

Recall: \overline{E} [V/m] • \overline{J} [A/m²] = P_d [W/m³] But $\overline{E} \perp \overline{H}$ Manipulate Ampere's law to get $\overline{E} \bullet \overline{J}$ $\overline{E} \cdot (\nabla \times \overline{H} = \overline{J} + \frac{\partial \overline{D}}{\partial t})$ For symmetry, compute $\overline{H} \cdot (\nabla \times \overline{E} = -\frac{\partial \overline{B}}{\partial t})$

$$\underbrace{\overline{H} \cdot \left(\nabla \times \overline{E} \right) - \overline{E} \cdot \left(\nabla \times \overline{H} \right)}_{\text{Vector Identity}} = -\overline{H} \cdot \left(\frac{\partial \overline{B}}{\partial t} \right) - \overline{E} \cdot \left(\overline{J} + \cdot \frac{\partial \overline{D}}{\partial t} \right)$$

$$\nabla \cdot \left(\overline{E} \times \overline{H} \right) = -\overline{H} \cdot \frac{\partial \overline{B}}{\partial t} - \overline{E} \cdot \overline{J} - \overline{E} \cdot \frac{\partial \overline{D}}{\partial t} \quad (W/m^3)$$

This is Poynting's Theorem

What does it mean?

POYNTING THEOREM

INTEGRAL POYNTING THEOREM

Use:
$$\oint_{S} \overline{A} \cdot \hat{n} da = \int_{V} \nabla \cdot \overline{A} dv$$

Gauss's Theorem (not Gauss's Law)

Therefore:

The Poynting vector $\triangleq \overline{S} = \overline{E} \times \overline{H}$ gives both the magnitude of the power density (intensity) and the direction of its flow.

UNIFORM PLANE WAVE EXAMPLE

$$\overline{\mathbf{S}} = \hat{\mathbf{z}} \frac{\mathbf{E}_{0}^{2}}{\eta_{0}} \cos^{2}(\omega \mathbf{t} - \mathbf{kz}) \Rightarrow \left\langle \overline{\mathbf{S}} \right\rangle = \hat{\mathbf{z}} \frac{1}{2} \frac{\mathbf{E}_{0}^{2}}{\eta_{0}} = \mathbf{I}(\theta, \phi, \mathbf{r}) \ [w/m^{2}]$$

The time average $\langle \overline{S}(r,\theta,\phi) \rangle$ is "intensity" [W/m²]

COMPLEX NOTATION – POYNTING VECTOR

Defining a meaningful \underline{S} and relating it to \overline{S} is not obvious. Let's work backwards to find the time average $\langle \overline{S} \rangle$ and then \underline{S}

$$\begin{split} \overline{S}(t) &= \overline{E} \times \overline{H} = \operatorname{Re}\left[\underline{\overline{E}} \cdot e^{j\omega t}\right] \times \operatorname{Re}\left[\underline{\overline{H}} \cdot e^{j\omega t}\right] \\ &= \overline{[\overline{E}_{r}\cos(\omega t) - \overline{E}_{i}\sin(\omega t)]} \times \overline{[\overline{H}_{r}\cos(\omega t) - \overline{H}_{i}\sin(\omega t)]} \\ \Rightarrow \langle \overline{S}(t) \rangle &= \frac{1}{2} \left[\left(\overline{E}_{r} \times \overline{H}_{r} \right) + \left(\overline{E}_{i} \times \overline{H}_{i} \right) \right] \\ &= \frac{1}{2} \operatorname{Re}\left(\overline{E} \times \overline{H}^{*} \right) \quad \left[= \frac{1}{2} \operatorname{Re}\left\{ (E_{r} + jE_{i}) \times (H_{r} - jH_{i}) \right\} \right] \\ &= \overline{S} \text{ (by definition} \end{split}$$
Thus, we can define
$$\begin{cases} \langle \overline{S} \rangle = \frac{1}{2} \operatorname{Re}\left(\overline{E} \times \overline{H}^{*} \right) \\ &\leq \overline{S} \rangle = \overline{E} \times \overline{H}^{*} \end{cases} \text{ and } \quad \underline{\overline{S}} = \overline{E} \times \overline{H}^{*} \end{cases}$$

$$\operatorname{Recall:} \overline{E} = \overline{E}_{r} + j\overline{E}_{i} \qquad \overline{H} = \overline{H}_{r} + j\overline{H}_{i} \qquad e^{j\omega t} = \cos\omega t + j\sin\omega t$$

UPW REFLECTED BY PERFECT CONDUCTOR

 $\overline{\mathsf{E}} = \hat{\mathsf{x}}\mathsf{E}_{+}\cos(\omega\mathsf{t} - \mathsf{k}\mathsf{z}) + \hat{\mathsf{x}}\mathsf{E}_{-}\cos(\omega\mathsf{t} + \mathsf{k}\mathsf{z})$

= 0 at z = 0 (perfect conductor)

Forward plus reflected wave

 \Rightarrow E₋ = -E₊ (Solving for unknown reflection)

 $\Rightarrow \overline{E} = \hat{x}2E_{+} \sin \omega t \cdot \sin kz \quad \underline{Standing waves}, \text{ oscillate without moving}$ (recall: $\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$)

STANDING WAVE EXAMPLE - CONTINUED

MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.