


DISCOVERING WAVELETS 



This page intentionally left blank



DISCOVERING WAVELETS 

Edward Aboufadel and Steven Schlicker 

A Wiley-Interscience Publication 

JOHN WILEY & SONS, INC. 

New York · Chichester · Weinheim · Brisbane · Singapore · Toronto 



This text is printed on acid-free paper. © 

Copynght © 1999 by John Wiley & Sons, Inc. All rights reserved. 

Published simultaneously in Canada 

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any 
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, 
except as permitted under Section 107 or 108 of the 1976 United States Copynght Act, without 
either the prior written permission of the Publisher, or authorization through payment of the 
appropriate per-copy fee to the Copynght Clearance Center, 222 Rosewood Drive, Danvers, MA 
01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be 
addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, 
NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM. 

For ordering and customer service, call 1-800-CALL-WILEY. 

Library of Congress Cataloging in Publication Data: 

Aboufadel, Edward, 1965-
Discovering wavelets / Edward Aboufadel and Steven Schlicker. 

p. cm. 
Includes bibliographical references. 
ISBN 0-471-33193-7 (alk. paper) 

I. Wavelets (Mathematics). I. Schlicker, Steven, 1958-
II. Title. 
QA403.3.A34 1999 
515'.2433—dc21 99-31029 

CIP 

10 9 8 7 6 5 4 3 2 



Preface 

For the past several years, reflecting the excitement and creativity surrounding 
the subject of wavelets, articles about wavelets have appeared in professional 
publications [4, 17, 20, 23, 24, 22, 26, 33, 35, 41], on the World Wide Web 
[10, 39. 27]. and in mainstream magazines and newspapers [9, 31]. Much of this 
enthusiasm foi wavelets comes fiom known and from potential applications. 
Foi example, wavelets have found use in image processing, in the icstoiat ion 
of rccoi dings, and in seismology [3. 9, 23, 24, 30] 

Many books are available on wavelets [10, 19, 21 , 25, 30, 42], but most 
arc written at such a level tha t only research mathemat ic ians can read them. 
The puipose of this book is to make wavelets accessible t o anyone with a 
backgiound in basic linear algcbia (for example, g iaduate and undergraduate 
students), and to serve as an introduction for the nonspecialist T h e level of 
the applications and the format of this book make it an excellent textbook 
for an intiodiictory course on wavelets or as a supplement to a first oi sec-
ond < ouisc in linear algebra or numerical analysis. Potential readers would be 
intrigued bv the discussion of the Wavelet/Scalar Quantizat ion Standard, cur-
lcntly used bv the Federal Bureau of Investigation to compress, t ransmit , and 
stoic images of fingerprints [3]. In Biitain, Scotland Yard also uses wavelets 
foi the same puipose [4]. 

The projc< ts that arc contained within this book allow real applications 
to IK* iii( oi porated into the mathematics curriculum. This fits well with the 
< unen t t iend of infusing mathematics courses with applications; an approach 
which is summarized well by Avncr Friedman and John Lavcry in their s tate-
ment about an industrial mathematics program -

ν 
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"(this approach provides] students an immense oppoitunity foi greater 
and deeper contributions in all areas of the natural and social sciences, 
engineering and technology." [15] 

The practice of either basing a mathematics course on applications [1] or in-
fusing a course with applications has been seen primarily in calculus courses. 
However, this enthusiasm for real applications has not been as obvious in 
our upper-level mathematics courses, such as linear algebra, abstract alge-
bra, or number theory, which are taken primarily by mathematics majors. 
Many of these majors intend to be teachers, and applications such as wavelets 
can provide breadth to the curriculum. As stated in a recent report of the 
Mathematical Association of America: 

"it is vitally important that [prospective math teacheis'] undei graduate 
expeiience provide a bioad view of the discipline, [since] for the many 
students who may never make professional use of mathematics, depth 
through breadth offeis a strong base for appieciating the tiue power 
and scope of the mathematical sciences." [32] 

The major benefit of this book is tha t it presents basic and advanced con-
cepts of wavelets in a way tha t is accessible to anyone with only a basic 
knowledge of linear algebra. The discussion of wavelets begins with an idea 
of Gil Strang [33] to represent the Haar wavelets as vectors in R n , and is 
driven by the desire to introduce readers to how the FBI is compressing fin-
gerprint images. Chapter 1 introduces the basic concepts of wavelet theory 
in a concrete setting: the Haar wavelets along with the problem of digitizing 
fingerprints. The rest of the book builds on this material. To fully under-
stand the concepts in this chaptet , a leader need only have an understanding 
of basic linear algebra ideas matr ix multiplication, adding and multiplying 
vectors by scalars, linear independence and dependence. 

Chapter 2 builds on the ideas presented in chapter 1, developing more 
of the theory of wavelets along with function spaces. Readers get a bet ter 
sense of how one might deduce the ideas presented in chapter 1. To fully 
understand the material in this chapter, a reader needs more sophisticated 
mathematics, such as inner product spaces and projections. The necessary 
background material from linear algebra tha t a reader needs to know to fully 
understand the discussion of wavelets in this book is contained in appendix 
A. 

Chapter 3 features more advanced topics such as filteis, multiresolution 
analysis, Daubechies wavelets, and further applications. These topics are all 
introduced by comparison to the material developed with the Haai wavelets 
in chapters 1 and 2. These topics would be of interest to anyone who desires 
to read some of the more technical books or papers on wavelets, or to anyone 
seeking a s tar t ing point for research projects. There are some new concepts in-
troduced in this chapter (e.g. density, fixed-point algorithms, and L2 spaces). 
They are discussed in enough detail to allow the reader to undei s tand these 
concepts and how they relate to wavelets, but not in so much detail tha t these 
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ancillary topics distract from the major topic of wavelets. For example, the 
Fourier transform does not appear until the final section of chapter 3. 

Chapter 4 contains projects that could be used in linear algebra courses. 
Along with these projects, some of the problems introduce advanced topics 
that could be used as s tar t ing points for research by undergraduates . There 
are also appendices that review linear algebra topics and present Maple com-
mands tha t are useful for some of the problems. 

These notes originated in courses (Linear Algebra II) t ha t the authors 
taught during summers 1996 and 1997 at Grand Valley S ta te University in 
Allendale, Michigan. Students in each of these courses had previously com-
pleted Linear Algebra I, wheie they learned to solve systems of linear equa-
tions, were introduced to matrix and vector operations, and encountered for 
the first t ime the fundamental ideas of spanning sets, linear independence and 
dependence, bases, and dimension. The topics for the second semester course 
were grouped around two major themes: linear transformations and orthogo-
nal projections. In the 1996 course, about one of every five class meetings was 
set aside to learn about wavelets, and the material in these notes was timed to 
coincide with the flow of topics m the rest of the course. (For example, using 
orthogonal projections to approximate functions with wavelets was done as 
we studied orthogonal projections in inner product spaces.) Along with the 
information presented in these notes, various articles [2, 3, 9, 16, 23, 22, 31] 
were distributed to s tudents as required readings. 

In the 1997 course, groups of s tudents submit ted writ ten reports based on 
a subset of the problems in chapters 1 and 2. In addition, each group created 
a gray-scale image in a 16-by-16 giid of pixels using a program, Pixel Images, 
wiitten by Schlickcr. Each gioup processed, compressed, and decompressed 
their image using Haar wavelets and entropy coding. A modified version of 
this activity is included in chapter 4. 

While we initially introduced wavelets into the second semester linear al-
gebra course, many of the tools and concepts can fit equally well in a first 
semester linear algebra course In the last two years we have used various 
approaches in both scmesteis of lmeai algebra to expose our s tudents to this 
valuable and exciting aiea of mathematics. In all of these courses, the stu-
dents have expressed that thev appreciated seeing a connection between what 
thev were learning in college and what thev saw happening in the world. 

A note on how to use this book To learn mathematics it is important, to 
become conversant with the terminology and to actually work some problems. 
Throughout this book, key terms and phrases arc highlighted m italics. For 
pedagogical purposes, we have included some terminology tha t is not s tan-
daid in the literatuie- the phrase daught.ei wavelets in chapter 1 is used to 
describe the functions that, arc obtained from dilations and translat ions of the 
mothei wavelet, son wavelets in chapter 2 describes the functions tha t are ob-
tained from dilations and translations of the father wavelet or scaling function, 
and image box in chapter 2 icfeis to any figure that contains projections and 
residuals of an original image after processing with wavelets. We feel these 
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terms provide appropriately descriptive labels and use them without hesita-
tion. The problems posed in this text arc distributed throughout the reading 
rather than at the end of each chapter. This is important because completing 
the problems is vital to learning about wavelets. In fact, it is necessary to 
solve those problems marked with bold numbers t o completely understand 
the text. Also, a computer algebia system is necessary to complete some 
problems, and hints and an appendix are provided for those readers who have 
access to Maple. Answers to selected problems arc provided in an appendix. 
Pixel Images and Maple worksheets arc available at our web site: 

w w w . g v s u . e d u / m a t h s t a t / w a v e l e t s . h t m 

Edward Aboufadel 
Steven Schlicker 

Allendale, Michigan 

Julu, 1999 
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1 
Wavelets, Fingerprints, 

and Image Processing 

1.1 P R O B L E M S O F T H E D I G I T A L A G E 

With the advent of the Digital Age, many opportunit ies have arisen for the 
collection, analysis, and dissemination of information. Dealing with such mas-
sive amounts of da ta presents difficulties. All of this digital information must 
he stored and be retrievable in an efficient mannci . One appioach to deal 
with these problems is to use wavelets. For example, the FBI fingcrpiint files 
contain over 25 million cauls , each of which contains 10 lolled fingerprint im-
pressions Each card produces about 10 megabytes of da ta . To store all of 
these caids would rcqunc some 250 terabytes of space. Wi thout some sort of 
compression of the da ta , the size of this da tabase would make soit ing, stor-
ing, and searching nearlv impossible. To deal with this problem, the FBI 
has adopted s tandards for fingcrpiint digitization using a wavelet compres-
sion s tandaid [3, 4, 7]. With wavelets, a compression ratio of about 20:1 is 
obtained. 

Another common problem piesented by electronic information is noise. 
Noise is ext ianeous iufoimation in a signal tha t can be introduced in the 
collection and transmission of da ta t lnough a variety of means. Wavelets can 
be used to filter out noise via the computat ion of averaging and detailing co-
efficients. The detailing coefficients indicate the location of the details in the 
original da t a set. If some details arc vciy small in relation to others, eliminat-
ing them may not substantially alter the original da t a sot [11, 16]. Figure 1.1 
illustrates a nucleai magnetic- tcsonancc (NMR) signal befoie and after denois-
ing. Observe that the denoisod da ta still demonstrates all of the impor tant 

1 
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NMR Spectrum 

300 «0 MO KB 1000 

Wavelet Shiin kage De-No lsing 

1200 

300 «0 (00 (00 1000 1200 

Fig. 1.1 "Befoie" and "after" illustiations of a nuclear magnetic resonance signal. (Images 

courtesy of David Donoho, Stanford University, NMR data couitesy Andrew Maudsley, VA Med-

ical Center, San Francisco) Image copied from [16] 

details. Similar ideas may be used to restore damaged video, photographs, or 
recordings. 

Other applications of wavelets have cmcigcd in seismology, astronomy, and 
radiology [19, 24]. It is with these varied applications in mind tha t we embark 
on our study of wavelets and their uses. 

Problems . 

1. This book contains an extensive bibliography. Search the references, 
or find some of your own, to find two other applications of wavelets. 
Explain the problem to which wavelets arc applied as best you can. Be 
sure to cite your source(s). 

1.2 D I G I T I Z I N G F I N G E R P R I N T I M A G E S 

As mentioned earlier, the United States Federal Bureau of Investigation (FBI) 
has collected the fingerprints of over 25 million people [3, 4, 7], The first s tep 
in the wavelet compression process is to digitize each fingerprint image. There 
are two important ideas about digitization to understand here: intensity levels 
and resolution. In image processing, it is common to think of 256 different 



DIGITIZING FINGERPRINT IMAGES 3 

Fig. 1.2 The gray scale, with intensity ranging from 255 down to 0 

Fig. 1.3 Pixels coloied in scales of gray which aie multiples of 10 

intensity levels, or scales, of gray, ranging from 0 (black) to 255 (white) as 
in figure 1.2. Each of these gray scales can be represented by an 8-bit binary 
number (e.g. 10101010 corresponds to the intensity level 170). A digital image 
can be cieated by taking a small grid of squares (called pixels) and coloring 
each pixel with some shade of gray as sec in figure 1.3. T h e resolution of 
this grid is a measure of how many pixels are used per square inch. For 
fingei pi nits, the FBI uses a 500 dots per inch (or dpi) resolution, where the 
sides of each pixel measure 1/500th of an inch, so there are 250,000 pixels per 
square inch. (Tvpically, laser printers have a resolution of 300 or 600 dpi.) 
So, to digitize an image of one square inch a t 500 dpi, a total of 8x250,000, 
or 2 million bits of storage space is needed. 

Since 8 bits is the same as 1 byte, storing one square inch of image would 
rcquiic 250 kilobytes, roughly one-sixth of the memory on a typical floppy disk. 
Each fingerprint requires approximately 1.5 square inches, so the ten separate 
prints of a person would use nearly 4 megabytes, or about 3 floppy disks. 
However, the situation is really worse than this. Due to other prints taken by 
the FBI. such as simultaneous impressions of both hands, a fingerprint card 
for one peison uses 10 megabytes of data . One of the reasons this is a problem 
is that , using a modem that t ransmits da ta at 56000 bits per second, it would 
take around a half an hour to send one caid over a phone line. 

The FBI could simplify the process by using a 1-bit scale ( the pixel is 
either black oi white), but they have found that "[8-bit] gray-scale images 
have a moie 'na tura l ' appearance to human viewers . . . and allow a higher 
level of subjective discrimination by fingerprint examiners" [3]. For instance, 
the locations of sweat pores on the finger are legally admissible points of 
identification, and using an 8-bit scale permits the examiners to bet ter see 
the pores [4] Thus, the FBI faces the problem of too much information, and 
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they need a way to process the da ta in particular, to compress it so tha t 

the storage and transmission of fingerprint images can be done quickly 

Problems 

2. How much da ta (in megabytes) is generated by digitizing a 3 inch by 5 
inch black-and-white photograph using 8-bit grayscale at 500 dpi? 

3. To digitize a color picture requires 24 bits per pixel (8 bits for red, 8 
for green, and 8 for blue), combined to make 16,777,216 different colors. 
How much da t a (in megabytes) is generated by digitizing a 3 inch by 5 
inch color photograph using 24-bit colors a t 500 dpi? 

1.3 S I G N A L S 

In many situations we acquire da ta from measuring some phenomenon at 
various points. For example, the digitized information from fingerprints is 
such a collection of data , with each row of pixels considered as a separate gioup 
of data. Other examples of da ta collection include polling a small group of 
people on an issue to serve as a representation of the views of an entire group 
or measuring the results of an experiment at various times while it is running. 
We call this process of gathering da ta sampling. The information collected 
from sampling can be formed into strings of numbers called .iigriaLs. We will 
represent signals as column vectors in R". For example, [12,2, —5,15] T is such 
a signal (which, for instance, could result from measuring the temper, a turc in 
Fahrenheit every 3 hours during a cold evening). (Note, the column vector 
[ 1 2 , 2 , - 5 , 1 5 ] T or v T denotes the t ianspose of v.) This signal is a vectoi in 
R 4 and can be represented as a linear combination of basis vectors for R 4 . 
(Appendix A includes a review of the basics of linear algebra.) 

Problems _ 

4. Let 

5 2 = 

1 0 0 0 
0 1 0 0 
0 0 1 » 0 
0 0 0 1 

4 

be the standard basis for R 4 . Express the signal [ 1 2 , 2 , - 5 , 1 5 ] T as a 
linear combination of the elements of 5 2 -
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5. Let 

B2 = 

1 1 1 0 
1 1 - 1 0 
1 » - 1 1 

0 1 
1 - 1 0 - 1 

Show that Bi is a basis for R 4 . Express the signal [12,2, - 5 , 1 5 ] T as a 
lineai combination of the basis elements from B^. 

Consider again the digitized da t a from a fingerprint. An image of one 
square inch using 500 dpi will yield 500 signals, where each signal is a vector 
in K o 0 ° Due to the 8-bit grayscale, these signals contain integers between 0 
and 255 

What is it about wavelets that made them a natural choice to solve the 
problem of processing da ta from fingerprint images? Wavelets are useful when 
the signals being considered have parts where the da t a is relatively constant , 
while the changes between these constant par ts are relatively large [16]. Fin-
gerpiints fit this description in that there are places where the intensity level is 
about constant, such as the white spaces between the ridges of the print or the 
udges themselves, while the transition from a white space to a ridge involves 
a significant drop in intensity level (typically fiom 240 to 40). Later, we will 
see how the wavelet decomposition can filter da ta by averaging and detailing. 
Aveiaging is effective for areas of an image of relatively constant intensity, 
while detailing is effective in dealing with a sudden change of intensity. 

1.4 T H E H A A R W A V E L E T F A M I L Y 

Wavelets are gioupcd into families, with names such as the Mexican Hat 
wavelets or the Shannon wavelets [21. 42]. All of these families have a number 
of common c haraeteristics. The simplest one in which to see these characteris-
tics cleailv is the Haar family of wavelets. (The first mention of these wavelets 
appealed in an appendix to the thesis of A Haai in 1909 [18], although the 
woid wavelet was not coined until the 1980s.). While Haar wavelets are not re-
allv used m the applications discussed above, thev will be used in the first two 
chapteis of this text to demonst ia te the fundamental ideas behind wavelets. 
Othei wavelet families appeal in subsequent chapteis . 

As will be the c ase with all families of wavelets described in this text , the 
Haai family is defined by two wavelets, a father wavelet and a mother wavelet. 
These 1 wavelets are represented by φ and ι", icspectively. The father wavelet 
is usually refoned to in the literature as the scaling function. The Haar father 
wavelet is defined by 

1. i f 0 < r < l 

0. otherwise. 
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Problems. 

6. Use a Computer Algebra System (CAS) (for example, Maple, Mathcad, 
or Mathemattca), to plot φ. 

Maple H i n t : To define φ in Maple we can use the piecewise command 

> p h i :» t -> p i e c e w i s e ( 0 < - t and t < l , l , t < 0 o r t > - l , 0 ) ; 

The Haar mother wavelet is defined by 

1, if 0 < < < i 

- 1 , i f O < i < l 

[ 0 , otherwise. 

Note that the father and mother wavelets are related in the following way: 

φ(ή = φ(2ί) - φ(2ί - I). (1.1) 

As suggested by the terminology, if there is a father wavelet, a mother 
wavelet, and a family of wavelets, then there ought to be children. The 
following two wavelets are the first generation of daughters: 

Φι,ο(ή = Φ(21) φΙΛ{ΐ) = φ{2ΐ-\). 

(The sons will be introduced in chapter 2.) Although the daughters appear 
to be derived only from the mother, from (1.1) we can sec that they can also 
be defined in terms of the father wavelet, namely by 

l M « ) = 0(4Jt) - φ(4ί - 1) 1>ltl(t) = φ(4ΐ. - 2) - φ(4ί - 3). 

Problems 

7. Use a CAS to define and plot φ, φι,ο, and V-Ί,ι· 

The graphs generated in problems 6 and 7 give a sense of why the term 
wavelet is used, for the graphs look like square waves. (Wavelet literally 
means "small wave", and comes fiom the French term ondelette.) These 
Haar wavelets have one particularly desirable property: they are 0 everywhere 
except on a small interval. (Chapter 3 shows why this is important .) If a 
function is 0 everywhere outside of a closed, bounded interval, the function 

This father wavelet is also known as the characteristic function of the unit 

interval. 
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has compact support, (closed and bounded intervals are said to be compact ) . 
If a function has compact support , the smallest closed interval on which the 
function has nonzero values is called the support of the function. 

Problems _ 

8. Are the Haar wavelets continuous? Are their first derivatives continu-
ous? Explain. 

W h a t is the connection between the Haar wavelets and linear algebra? As 
a s tar t ing point, a one-to-one correspondence between the wavelets φ, φ, ψχβ 
and ψ\Λ and vectors in R 4 can be defined as follows [33]: 

Y ' 1 " " 1 " " 0 ' 
1 1 

01,0 «-» 
- 1 

V-Ί,ι <-* 
0 

1 ψ *-* - 1 01,0 «-» 0 V-Ί,ι <-* 1 
1 - 1 0 - 1 

T h e correspondence becomes clear by looking at the graphs of these wavelets. 
For example, the graph of ψι^ is shown in figure 1.4. (Note tha t Maple con-
nects the pieces of the function with vertical segments. Although these vertical 
segments are not par t of the graph, they are included here to make the result-
ing graph look more like a wave.) The first entry (0) of the vector associated 

1 

08 

0.6 

0.4 

02 

0 

•02 

-04 

-06 

0 2 04 , oe 0.8 

Fig. 1.4 The wavelet ψι t 
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to V-Ί,ι is the value of the wavelet on the interval [0, \), the second entry (0) 
is the value on the wavelet on the interval [£, j), the third entry (1) is the 
value of V ' I . I on [^, | ) and the final component (-1) is the value Ι /Ί,Ι assumes 
on [ | , 1). There is a similar correspondence for each of the wavelets. 

In fact, this correspondence can be extended to all functions which are 
"constant on quarters." To demonstrate this, let us define the set Vj to consist 
of all functions which are piecewise constant on the intervals [0, | ) , [5,5) , 
[ i»f)» [?»*)> a n c * a r c z e r o o u t s ' d e of the interval [0,1). Then we have the 
following correspondence between V2 and R 4 : 

a, 

b, 

f(t) = { c, 

d, 

0, 

if 0 < t < \ 

if \ < t < i 

if f < t < 1 
otherwise 

This correspondence uniquely identifies a given clement in V2 with an ele-
ment in R 4 . This means that the correspondence defines a function from V2 
to R 4 , that no two elements in V% are identified with the same vector in R 4 

(so the function is one-to-one or is an injection), and that each element in R 4 

corresponds to a function in V<i ( the function is onto or is a surjection) 

Note that these vectors are not the wavelets, but rather that there is a 
correspondence between the wavelets and the vectors. 

Problems 

9. Sketch the graph of the function tha t corresponds to the following vector-
[ 2 , - 3 , 5 , 7 ] T . 

In a similar fashion, let us define V\ to be the set of functions which are 
piecewise constant on the intervals [0, \) and [5,1), and are zero outside of 
the interval [0, 1), and Vo to be composed of functions which are constant on 
[0,1) and zero outside that interval. Then there rs a one-to-one correspondence 
between V] and R 2 , and between Vo and R, as well. 

These ideas can be extended to other generations of wavelets and similar 
one-to-one correspondences. For example, the second generation of daughters 
is made up of the following four wavelets: 

V>2.o(0 = V'(4*) 

V'2 , 2(0 = V>(4* - 2) 

W ) = W - i ) 
V'2, 3 (<) = 1>(4t - 3). 
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Those four daughteis are constant on eighths". In general, the n t h gener-
ation of daughters will have 2" wavelets defined by 

»·„.*(') = tc-(2"f-fr) . 0 < *· < 2" - 1. (1.2) 

Observe that members of this generation will be constant orr intervals of 
length 2"<" + 1 >. 

P r o b l e m s 

10. Sketch the graphs of the second generation of wavelet daughters . 

11. Use a CAS to plot some of the functions φ„,κ • 

Maple H i n t : To define the functions 02.*. use a loop and define φ 
as a function. (Refer to how φ was defined earlier in problem 6.) The 
following loop will then define each I/'2.A

 a f i a n expression. 

> η := 2 ; 

> f o r k from 0 t o 2 * n - l do 
> p s i . n . k := p s i ( 2 " n * t - k ) : 
> od: 

Be careful about the difference between functions and expressions in 
Maple. In order to change the expression p s i . n . k to the function 
p s i . n . k , use the following command. 

> p s i . n . k := u n a p p l y i p s i . n . k , t ) : 

This leads naturally to more sets of functions arrd more correspondences. 
The set V3 contains the functions which arc "constant on eighths", in the 
sense that each function in V3 is constant on [θ, | ) , [ | , ~ ) . and so on. There 
is a correspondence between V3 and R 8 , where entries in a vector will be the 
values of a function on [(), ^ ) , [^, £ ) , etc. 

P r o b l e m s 

12. In general, how would V„ be defined? On what length intervals arc the 
functions 111 Vn constant? For what value of 111 will V„ coirespond to 
R m ? 

1.5 P R O C E S S I N G S I G N A L S 

A key rdea irr the study of wavelets is tha t functions tha t belong to V2 can be 
written as linear combinations of the father and mothei wavelets and the first 
geneiation of daughteis . Foi example, consider the function / defined by 
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( - 5 , if 0 < ί < ^ 

- 1 , i f i < « < £ 

f(t) if i < t < f 

11, if } < t < 1 
0, otherwise 

- 5 
- 1 
1 
11 

Are there unique coefficients XI,X2,XZ,XA 3 0 T N A T 

/ ( t ) = χχφ{ί) + x2rp(t) + i 3 ^ i , o ( 0 + ΧΑΦΙ,ΛΦ (1.3) 

This question can be rephrased in terms of elementary linear algebra. Using 
our identification of Vfc with R 4 we can write (1.3) in the form 

- 5 1 1 1 0 
- 1 1 1 

+ Xz 
- 1 

+ X4 
0 

1 1 + X2 - 1 
+ Xz 

0 + X4 1 
11 1 - 1 0 - 1 

Equivalently, if we define 

1 1 1 0 
1 1 - 1 0 
1 - 1 0 1 
1 - 1 0 - 1 

and b = 

- 5 
- 1 
1 

11 

then the question becomes: does A^x. = b have a unique solution? Since 
the vectors corresponding to the wavelets φ, φ, φι,ο, and Vi.i are linearly 
independent (in fact, these vectors are identified with the basis B2 for R 4 ) , 
the answer to both questions is "yes". The linear independence of these 
vectors makes A2 an invertible matrix; in particular: 

0.25 0.25 0.25 0 . 2 5 ' 
0.25 0.25 - 0 . 2 5 - 0 . 2 5 
0.5 - 0 . 5 0 0 
0 0 0.5 - 0 . 5 

and χ = A2 *b : 

1.5 ' 
- 4 . 5 
- 2 
- 5 

The vector b, or f(t), forms the signal, and the numbers 1.5, - 4 . 5 , —2, and 
- 5 , obtained from the solution of A2X. = b, are called wavelet coefficients. The 
act of solving A2X = b is called decomposing a signal into wavelet coefficients, 
and is a critical step in the processing of da ta with Haar wavelets. The reverse 
process is called recomposmg a signal from its wavelet coefficients. In this case, 
vector χ is known and used to find vector b. For recomposing, simply perform 
the multiplication A^x.. The matrix A2 is called the Haar wavelet matrix for 
n = 2 . 
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Problems 

13. (a) Decompose the following signals into wavelet coefficients. Then 
recompose the signal from wavelet coefficients: 

(i) [ 3 , 7 , - 4 , - 6 ] T (it) [ 1 4 , 4 4 , - 2 5 , - 2 5 ] T . 

(b) Suppose τ.\, x2, £ 3 , and T 4 are the wavelet coefficients for the signal 
[3,7, - 4 , — 6]T computed in (a). Plot the expression 

Χ.\Φ + Χ2Φ + ·τ3ν-Ί,ο + Χ*ΦΙ,Ι· 

What do you get? 

Since B2 is a basis for R 4 , a unique solution to (1.3) is obtained for every 
/ in V2. This gives the following theorem. 

Theorem. Every function in V2 can be written uniquely as a linear combi-
nation of Φ, Φ,ΦΙ.Ο, and · 

In fact, V2 is a vector space under pointwise addition and the s tandard 
scalar multiplication of functions. 

Problems 

14. Wha t is the zero vector of V2'
}. Wha t is the dimension of V 2 ? Explain 

why it is correct to say tha t the family of wavelets 

B2 = {Φ,Φ,ΦΙ,Ο,ΦΙ,Ι} 

is a basis of V2. Note carefully tha t the same label is used for this basis 
B2 as was used for the basis of R 4 defined in problem 5. This use of the 
same label for two different bases may be confusing a t first. However, 
there is an identification between the elements of the two bases, so this 
use of notation is reasonable. It should be clear from the context exactly 
which basis we mean. 

15. For each n, the set V„ may also be considered a vector space. W h a t is 
the dimension of V3? Find a basis B3 for V3 using father, mother, and 
daughter wavelets. (See the note about labeling in problem 14.) Create 
the corresponding matrix .A3. 

16. (a) Decompose the following signals obtained from functions in V3 into 
wavelet coefficients: 

i. [ 3 , 7 , - 4 , - 6 , 1 4 , 4 4 , - 2 5 , - 2 5 ] r 
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ii. [250,250,240,220,15 ,5 ,5 ,4] T 

(b) Select one of the signals from (a). Let x\,r,2, • •• ,xs he the wavelet 

coefficients for the signal computed in par t (a) . Plot 

*\<t>(t) + X2i>{t) + X3^i,o(t) + x**i,i{t) + 
X5i>2fi(t) + X6lfa,l(t) + *7ll>2,2(t) + *8^2.3(0· 

What do you get? 

(<•) Recompose both signals in (a) from their wavelet coefficients. 

17. Wha t is the dimension of V„? Find a basis Bn for V„ using father, 
mother, and daughter wavelets. (Sec the note about labeling in problem 
14.) W h a t is the size of the matr ix An'i For which m is the space Vn 

isomorphic to the vector space R m ? 

1.6 T H R E S H O L D I N G A N D C O M P R E S S I O N O F D A T A 

How does the use of wavelets save space in storing and transmitt ing da ta? 
When sending da ta electronically, each bit costs time and money As a result, 
current research is being conducted into how a given amount of information 
can be stored and transmitted in as few bits as possible. As will bo shown, for 
certain signals many of the wavelet coefficients are close to or equal to zero. 
Through a method called thresholding [27], these coefficients may be modified 
so that the sequence of wavelet coefficients contains long strings of O's These 
long strings can be stored or sent electronically in much less space through a 
type of compression known as entropy coding. 

In many situatiorrs, some of the information collected about an object tells 
very little about it. For example, consider the signal obtained from sampling 
the function / defined by /(<) = s in(20i)( ln( i)) 2 at 32 evenly spaced points 
in [0,1]. (Note; tha t the sampling is on [0,1] is independent of the fact tha t 
the support of the Haar wavelets is also [0,1] All we are doing is creating a 
signal with 32 entries. The interval itself is irrelevant.) A Maple plot of the 
graph of / is shown in figure 1.5. If / is sampled at 32 points and plotted by 
connecting the points irr sequence, figure 1.6 results. 

This function exhibits more variation in its values close to / = 0 than near 
I — 1. To have enough da ta to represent the essence of this function, it is 
more important to capture this variation near t = 0 than the lack of variation 
near t — 1. How can this be accomplished? 

By separating the data into 4 vectors (signals), each with 8 entries, the 
data can be decomposed into wavelet coefficients using the matrix A3 from 
problem 15. (Separating the signal like this is artificial, but it does allow 
processing with a smaller matrix.) The resulting vectors of wavelet coefficients 
are (entries rounded to the nearest thousandths) 
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[2.086,3.478,1.597,0.620, -0.134,1.380,0.829, -0 .168] , 

[0.186, - 0 .058 , -0.642,0.360, -0 .470 , -0.133,0.177,0.145], 

[-0.062, - 0 .158 , -0 .126,0.016, - 0 . 0 2 6 , -0 .079 , -0.018,0.026], and 

[-0.008, -0 .007,0 .007, -0 .002,0 .014, - 0 . 0 0 5 , -0 .003 ,0 ] . 

Note tha t there are many wavelet coefficients tha t are quite small compared 
to others. In one sense, each coefficient indicates the extent of the "detail" 
about the whole picture tha t is contained by tha t particular piece of informa-
tion. One can reasonably expect tha t little information will be lost if these 
small "detail" coefficients are ignored. 

One way to ignore the small coefficients is through hard thresholding or 
keep or kill. In hard thresholding a tolerance, λ, is selected. Any wavelet 
coefficient whose absolute value falls below tha t tolerance is set to 0 with 
the aim to introduce lots of 0s (which can be compressed) without losing 
significant detail. There is no easy way to choose λ, though clearly with a 
larger threshold more coefficients arc changed, introducing more error into 
the process. 

To examine the effects of thresholding, let's process the coefficients in our 
example using a tolerance of 0.05. Each coefficient whose absolute value is less 
than 0.05 is replaced with 0. Recomposing a signal from these new coefficients 
gives us a string of 32 function values similar to the original signal. Figure 
1.7 plots both the rccomposcd da t a and the original da ta . Note tha t there 
are two graphs plotted here. However, the graphs are so close it is nearly 
impossible to tell them apart . 

Another way to ignore da t a is by soft thresholding. Again set a tolerance 
λ. If an entry is less than λ in absolute value, set tha t entry equal to 0. In 
addition, all other entries d arc replaced with 

s i g n ( d ) | | d | - A | . 

We can think of soft thresholding as performing a translation of the signal 
toward zero by the amount λ. 

A third method is called quantile thresholding. Select, a pciccntage ρ of 
entries to be eliminated, and then set the smallest (in absolute value) ρ percent 
of the entries to zero. 

Problems 

18. Choose a function / different from the example used above. In selecting 
your function, be sine to consider the ciitcria discussed in this sec-
tion. Sample, process, perform hard thresholding, and then reprocess 
the .sampled da ta to compare with the original. 

(a) Explain why you chose the function you did. 
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Fig. 1.7 Graphs of the onginal signal and the recomposed signal after haid thresholding with 
a tolerance of A = 0 05 

(b) Sample your function at 32 cvcnlv spaced points to obtain a signal, 
s. of length 32. 

(c) Break s into signals of length 8 and compute the wavelet coefficients 
using the wavelet matr ix A3. 

(d) Use hard thresholding to introduce strings of zeros into your pro-
cessed signal. Reprocess the resulting signal Experiment with dif-
fer eixt threshold levels and consider the number of zeros obtained 
in vour processed signal after thresholding compared with the ac-
curacy of the reconstructed signal. 

(e) Decide on a "best" threshold level. Explain why you feel your 
threshold level is "best". Be explicit about how you processed 
your data . Include all details! 

19. Using the same signal s as in problem 18, repeat the processing using 
A2- (You will again need to break s into signals of smaller length. How 
long should these signals be if we use A2 to process them?) 

20. Using the same signal s as in problem 18, repeat the processing using 

21 Compare the results of problems 18 to 20 Which processing seems to 
give the "best" results? Explain why. 
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22. Read some of the referenced material or search the Internet and find 
information on lossless and lossy compression Explain the difference 
between the two. 

The use of wavelets and thresholding serves to process the original signal, 
but , to this point, no actual compression of da ta has occurred. One method 
used to compress da ta is Huffman entropy coding. In this method, an integer 
sequence q is changed into a (hopefully) shorter sequence e, with the numbers 
in e being 8-bit integers (i.e., between 0 and 255). The entropy coding table 
(table 1.1) shows how the conversion is made. Numbers 1 through 100, 105, 
and 106 are used to code strings of zeroes, while 101 through 104 and 107 
through 254 code the non-zero integers in q. 

The codes 101 through 106 are used for larger numbers or longer zero 
sequences. The idea is to use two or three numbers for coding, the first being 
a flag to signal tha t a large number or long zero sequence is coming. For 
example, a string of 115 zeroes would be coded by "105 115", and the number 
200 would be coded as "101 200". To code a number larger than 256 and 
less than 65,536, we first divide the number by 256. Since 65,536 = 256 2 , the 
quotient must be less than 256, and the remainder must be as well. In this 
way we can code these numbers with two 8-bit ones. For example, to code 
10000, we first divide the number by 256 to get 39 with a remainder of 16. 
Then the coding would be "103 39 16". There is no provrsion for assigning a 
symbol to a number whose absolute value is greater than 65,535 

To illustrate, consider the srgnal [210,11,0,0,0, -55 ,4250 , - 5 0 0 0 ] T . The 
first entry is coded as 101 210. The second is assigned the code 191 and the 
sixth is stored as 124. The third through fifth entries form a string of zeros 
that is coded as 3. Since 

4250 = 16 x 256 + 154 and - 5000 = - (19 χ 256 + 136), 

these entries are coded as "103 16 154" and "104 19 136" respectively. The 
new signal is [101,210,191,3,124,103,16,154,104,19,136] T . Given that we 
began with a short signal, we should not expect to achieve any significant 
compression in this example. With long signals, however, like those arising 
from fingerprint images, the amount of space saved in this manner can be 
quite impressive. 

Problems 

23. Use entropy coding to compress the signal q into another sigrral e, where 

q = [-70, - 4 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 3 4 , 2 0 0 1 , 4 6 , - 3 4 9 8 8 , 0 , 0 , 0 , 0 , 0 ] T . 
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Coding in 
e 

Value in q 

1 string of one zero 

2 string of two zeroes 

3 string of three zeroes 

100 string of 100 zeroes 

101 number between 75 and 255, the exact number is next 

102 number between —255 and - 7 4 , the absolute value of the exact 
number is next 

103 number between 256 and 65535, the exact number is next 
( t ransmit ted as two 8-bit integers) 

104 number between —65535 and —256, the absolute value of the exact 
number (as two 8-bit integers) is next 

105 string of zeroes between 101 and 255 zeroes, exact number is next 

106 string of zeroes between 256 and 65535 zeroes, exact number is 
next (as two 8-bit integers) 

107 - 7 3 

108 - 7 2 
109 - 7 1 

179 - 1 

180 not used, use 1 instead 

181 1 

253 73 

254 74 

Table 1.1 Entiupy Coding Table 
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Entropy coding is used to code information more efficiently [36]. A coding 
table, such as the one in table 1.1, is designed so tha t the numbers tha t one 
expects would appear most often in q need the least amount of space in e. 
Table 1.1 was designed based on the assumption tha t q will mostly be made 
up of integers between - 7 3 and 74, and strings of up to 100 zcioes. Although 
integers smaller than - 7 3 and larger than 74 could appear, along with strings 
of more than 100 zeroes, they won't appear often, so the codes tha t need two 
numbers are reserved for those situations. This is similar to Morse code where 
the letters tha t appear most often in English words, such as Ε, Τ , I, A, and 
Ν are represented by only one or two symbols, while less used letters, such as 
X, Z, and Q, take four symbols. 

1.7 T H E F B I W A V E L E T / S C A L A R Q U A N T I Z A T I O N S T A N D A R D 

The FBI has utilized wavelets to compress the digitized fingerprint images 
discussed in section 1.2. The method used by the FBI is iefeired to as the 
wavelet/scalar quantization (WSQ) standard, and is part of the Integrated 
Automated Fingerprint Identification System. According to the FBI: 

"The Fedeial Bureau of Investigation's (FBI's) Integrated Automated 
Fingerpiint Identification System (IAFIS) is being developed to sus-
tain the FBI's mission to provide identification services to the nation's 
law enforcement community and to organizations where ciiminal back-
ground histories a t e a ciitical factor in consideiation for employment 
The IAFIS will serve the FBI well into the twenty-fhst centuty and 
represents a quantum leap in communications, computing, and data 
stoiage and retrieval technologies." [3] 

The basic steps used to compress fingerprints by the FBI are: 

1. Digitize the source image into a signal s (a string of numbers). 

2. Decompose the signal into a sequence of wavelet coefficients w. 

3. Use thresholding to modify the wavelet coefficients fiom w to another 
sequence w'. 

4. Use quantization to convert w' to a sequence q. 

5. Apply entropy coding to compress q into sequence e. 

The following example will demonstrate how this process works. The first 
s tep to compress fingerprints was discussed in section 1.2. Suppose we have 
a signal 

s = [146,134,140,140,45,41,44,2] T . 

One special characteristic of this sequence is tha t it contains subsequences 
with entries whose values are close to each other and it exhibits big jumps in 
values in other places, which makes it ideal for an application of wavelets. 
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Using the ideas from section 1 5, decompose the signal into wavelet coeffi-
cients using the Haar wavelets. Since the signal has length 8, use A3 to solve 
the linear system Ax = b to obtain the solution 

w = [86 .5 ,53 .5 ,0 ,10 ,6 ,0 ,2 ,21] T . 

The third s tep is to apply thresholding, as described in section 1.6, to 
modify w. This is often thought of as filtering out some of the "noise" in the 
signal. Apply quantile thresholding with ρ = 35 ( to insure 35% of the signal 
consists of 0s), to obtain 

w' = [86 .5 ,53 .5 ,0 ,10 ,6 ,0 ,0 ,21] T . 

If hard thresholding with λ = 11 is applied instead, the result is 

w' = [86 .5 .53 .5 ,0 ,0 ,0 ,0 ,0 ,21 ] T . 

T h e fourth s tep in the pioccss is quantization, a procedure which changes 
the sequence of floating-point numbers w' to a sequence of integers q. For our 
work, each integer ζ must satisfy - 6 5 5 3 5 < ζ < 65535. T h e simplest form 
of quantization is to simplv round to the nearest integer. Another possibility 
is to multiply each number in w' by some constant k and then apply round-
ing. More sophisticated quantization methods are also available, including the 
method used by the FBI [3] Quantization is called lossy because it introduces 
error into the process, since the conveision from w' to q is not a one-to-one 
function. (Note that thresholding is also lossy.) 

Returning to our example, let's use hard thresholding with λ = 11 followed 
by simple quantization with k = 2. The resulting sequence is 

q = [ 1 7 3 , 1 0 7 , 0 , 0 , 0 , 0 , 0 , 4 2 ] r . 

Applying entropy coding to q. we see tha t 173 is coded as "101 173", 107 
becomes "101 107", and 42 changes to "222". The string of five zeroes is 
converted to " 5 " . So, our final code is 

e = [101,173,101,107,5 ,222] T . 

In this example e is 25% shorter than our original signal s, yielding a com-
pression ratio of 4:3. After compression, every number in e can be converted 
to an 8-bit binary number. This last string, e, contains information tha t can 
be used to create a signal that is very close to our original signal s but can 
be stored in less space 

Although the process used by the FBI is more complicated than what was 
just described, the basic idea is the same. One significant diffeienec is tha t 
the FBI pioccsses a mat i ix of data from an image rather than from the onc-
dimensional signal s As a result, the FBI uses a wavelet family tha t has 
two fathei and two mother wavelets These symmetric bioithogonal uiavelets, 
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Fig. 1.8 An FBI-digitized left thumb fingerpiint The image on the left ia the ouginal the one 

on the right ts teconstructed from a 26 1 comptession (Courtesy of Chris Bnslawn, Los Alamos 

National Laboratoiy). 

which were developed by Cohen, Daubcchics, and Fcauveau [4], arc beyond 
the scope of this book. (The inteiestcd reader is referred to [10], p. 259.) 

For the process used by the FBI, each compressed image carries a tag 
with the compression rate for tha t image. The IAFIS is designed to allow 
for images to be compressed by WSQ at different compression rates. This 
is useful since an image of a "pinkie" will likely contain more white space 
(and consequently more zeros m the signal) than a thumb print image. This 
adaptive compression enables a typical little finger print to be preserved a t a 
highcu compression rate than a thumb print 

The effectiveness of the algorithm jus t discussed can be seen through an 
example. Figure 1.8 shows an FBI-digitized left thumb fingerprint and the 
result of a 26:1 compression of this thumbprint . The small details such as 
ridge endings and ridge textures are preserved. This image can be retrieved 
by anonymous F T P at 

f t p : / / f t p . c 3 . l a n l . g o v / p u b / W S Q / p r i n t _ d a t a / 

P r o b l e m s 

24. Consider the function / defined by / ( / ) = e^^K 

(a) Sample / at 16 uniformly spaced points on [0,2]. Construct a signal 
from this data. (Note tha t we arc sampling on [0,2] even though 
oiu wavelets arc defined only on [0,1]. Explain why this does not 
pose a problem.) 

(b) Piocess the da ta with Haar wavelets to obtain wavelet coefficients. 
Choose your own matr ix A, when processing. You may want to 
experiment with different values of i. 

(c) Select a thresholding method and a threshold level and eliminate 
some of the processed data . Again, experiment with different 



THE FBI WAVELET/SCALAR QUANTIZATION STANDARD 21 

threshold levels to achieve a reasonably accurate reconstruction 
of the original signal. 

(d) Compress the da ta using steps 1 through 5 discussed in this section. 
Discuss the amount of compicssion achieved versus the quality of 
the graph reconstructed from the compressed data . 

(c) Decide on a ' 'best" level of compression and explain why you feel 
your chosen level is the best you can achieve. 
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2 
Wavelets and Orthogonal 

Decompositions 

2.1 A L E G O W O R L D 

In chapter 1, wavelets and their applications were introduced, as were the 
vector spaces V„ of functions with compact support of [0,1] which are constant 
on intervals of length 2~" . For each V*„, there is a basis, B„, made up of 
Haar wavelets. Now we are prepared for a more in-depth investigation of the 
mathematics that drives wavelet theory. 

Problems 

1. A good way to "get your hands dirty*' at t ins point is to get a box of 
Legos building blocks. (Sec [8] for an irrtriguing article about these toys.) 
Create, as accurately as you can. the graphs of the following functions 
on the interval [0,1]. 

(a) / , («) = sin(f) 

0>) / 2 ( 0 = < 2 

(<·) Mt) = e< 
(d) h(t) = Vt 

This activity gives vou a sense of what it means to approximate contin-
uous functions with piecewise constant functions. 

23 
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Problem 1 illustrates an important idea that will be encountered in this 
chapter. The spaces Vn contain only a few continuous functions. However, 
when we look at the functions in these spaces for larger and larger values of 
n, we see some functions that appear to be almost continuous. In fact, many 
of these functions begin to look like ones that arc produced by a graphing 
calculator. By using functions in these spaces V„, we will be able to approxi-
mate continuous functions much like our calculators do, but with even bet ter 
accuracy. To make these ideas more concrete, let 's examine the spaces Vn in 
more detail. 

Before discussing the notion of approximating one function by another, the 
idea of "distance" between functions needs to be defined. This is done in 
V n using an inner product. For any two functions / and g in V„, the inner 
product of / and g is defined as 

</,.?> = f f(t)9(t)dt. (2.1) 

Using this inner product, length and distance can be defined. In particular, 
the length or norm of a function / in Vn is 

\\f\\=^UJ)==]]j\f(t))2 dt 

and the distance between functions / and g is defined to be 

\\f-9\\ = ]jj\f(t)-g(t))2dt. 

(For more information about inner products, see appendix A.) 

Problems 

2. Compute the following innei products: 

(a) (t,0(i)> 

(b) (0 l l O ( i ) ,0 i , i (<)> 

3. Compute the following norms: 

(a) ||^i.o(OII 

(b) ||V2,iWII 

4. Prove or disprove: φ and Vi.o arc orthogonal in V2 using the inner 
product (2.1). (Recall tha t two vectors u and ν in an inner product 
space are orthogonal if (u, v) = 0.) 

5. We saw in chapter 1 that {0,0 ,01,0 ,01,1} i« a basis for V 2. Prove tha t 
this basis is an orthogonal basis, but not an orthonormal basis. (Recall 
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Conclude that every function / in V„ is also in L 2 ( [0 ,1] ) . 

8 . Prove tha t , for every n , V„ is a sub-space of L 2 ( [0 ,1]) . 

Since L 2 ([0,1]) , along with each V„, is an inner product space, all of the 
facts tha t are known about inner product spaces can be applied. One partic-
ularly important result is the following-

T h e O r t h o g o n a l D e c o m p o s i t i o n T h e o r e m . If W is a finite-dimensional 
subspace of an inner product space V, then any ν £ V can be writ ten uniquely 
as ν = w + wj_, where w £ W and Wj_ £ Wx. (This theorem can be 
represented by V = W φ ν ν χ . ) 

This theorem is used in the following way: suppose we have an inner prod-
uct space V and a subspace W with an orthogonal basis {wj., w 2 , . . . , }. 
Further, suppose tha t ν € V Then w, as described rn the Orthogonal De-
composition Theorem, is the vector 

( v . w , ) ( v , w 2 ) (V,WK) ^ > ( v , w , ) 

(Wi.Wi) <W 2 ,W 2) Wi,Wi ^ (W«,Wi) 

that two vectors u and ν in an inner product space are orthonormal if 
they are orthogonal and ||u|| = ||v|| = 1.) 

Due to the inner product on V„, this vector space is referred to as an inner 
product space Another example of an inner product space t ha t uses the inner 
product (2.1) is L 2 ((0,1]) . This is the vector space of all functions 

/ : [ 0 , 1 ] - . R 

such that 

11/11 = ]p/fw)2 d t 

is finite. 

P r o b l e m s 

6 Prove that r 1 / 4 £ Z, 2([0,1]) and that r 1 ' 2 £ L2([0,1]). 

7. In chapter 1 we made the connection between a function / in Vn and a 
signal or vector s in R m , where rn = 2" . Let s be a vector in R m , and 
/ the corresponding function in V„. Show tha t 
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To find w i , simply compute w i = w — v . The vector w is called the 
orthogonal projection of ν onto W. The vector w x is called the residual. 
(Note: when this theorem is used in this text, sometimes V is L 2 ( [0 ,1]) and 
sometimes is it is one of the wavelet spaces V„.) 

Problems _ 

9. Determine the orthogonal projection of h(t) = t onto V2, using the basis 
B2. Label your result f(t), sketch a graph of /(it) , and sketch a graph 
of the residual, h(t) — f(t). 

As shall be shown, creating functions with Legos is analogous to dividing 
a function into two pieces —• one (the orthogonal projection) tha t belongs to 
some wavelet space Vn and another (the residual) that belongs to V n

x and 
then discarding the second piece. 

2.2 T H E W A V E L E T S O N S 

In chapter 1, vectors in R m were identified with functions in V n , where η = 2 m . 
This identification led to using the same notation for the corresponding bases 

1 1 1 0 
1 1 - 1 0 
1 - 1 0 1 
1 - 1 0 - 1 

for I 4 and 

B2 = {^,0,01 ,0 ,01.1} 

for V2. We will continue with this use of notation. It should be clear from the 
context, however, which basis is meant. 

As was proved in problem 5 of this chapter, B2 is an orthogonal basis for V2. 
This basis consists of the father and mother wavelets, and the two daughteis 
of the first generation. The next two sections will demonstrate how this basis 
arises from the Orthogonal Decomposition Theorem. 

There is another basis of wavelets tha t is natural to consider. Recall tha t 
in chapter 1, S2 was defined to be the s tandard basis for R 4 (see problem 4, 
chapter 1). There must be a basis for V2 consisting of functions corresponding 
to these standard unit vectors. This basis is called S2 as well. It is not difficult 
to sec that this S2 contains the functions (62,0,02,1,02,2, and 02,3 defined by 

02,θ(Ο = 0 ( 2 2 i ) 02.2(0 = 0 ( 2 2 i - 2) 

02,1 ( 0 = 0 ( 2 2 ί - 1) 02,3(0 = 0 (2 2 * - 3). 

You will investigate these basis functions in the next pioblems. 
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Problems 

10. Verify the identifications between the two bases S 2 as defined irr the 
preceding paragraph. 

11. Use a CAS to plot the four functions irr 5 2 · Explain how their graphs 
are related to the graph of φ. 

12. Write φ as a linear combination of the elements of the basis S2-

13. Graph the linear combination 

202.0 — 302,r + 1702,2 + 3002,3· 

Using the family analogy, these functions, 0 2 ,o , 02,r, 02,2,02,3, are called the 
wavelet, .sons. In particular, these functions corrtained in 5 2 are the second 
generation of sons. Now, there are two different bases for the wavelet space 
V2. a basis of parents arrd daughters, and a basis of sons. 

As rn chapter 1, further generations can be defined by replacing the power 
of 2 with n. In general, for each positive integer η we define, 

0„.n(<) = 0 ( 2 " < - f c ) 

for 0 < k < 2" - 1. Note the similarity to the definition of Vn,*(<) i" (1-2). 
For a given n, we will let S„ denote the set of 2" functions {Φη,ι.}2,^1 As 
was seen for 5 2 , it is t rue tha t tha t S„ forms a basis for the inner product 
space V„. The subsequent problems continue to explore the wavelet sons. 

Problems 

14. Plot some of the functions . 

Maple H i n t : As in chapter 1, a loop may be used to define φη,ι.- Here 
is an example for η = 2: 

> a := 2 ; 
> f o r k from 0 t o 2~n- l do 
> p h i . n . k := p h i ( 2 " n * t - k ) : 
> od: 

15. (a) Write φ as a linear combination of the elements of Si. 

(b) Write each of the elements of Si as linear combinations of the 

elements of S2-

(c) Conclude from (a) arid (b) that 

o(t) = φ(2ή + φ{2ί - 1). 
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(Note: This is a specific example of an important property of the 
father wavelet, namely tha t tj>(t) satisfies a dilation equation, which 
is an equation of the form 

0 0 0 = f; c^(2t-k). 

fc=—oo 

In the case of the Haar wavelets, CQ = ci = 1, and all other coef-
ficients arc 0. This equation will be investigated further when we 
study other wavelet families in chapter 3.) 

16. For every function in 53, determine the vector in K 8 tha t corresponds 
to it. 

17. Write 02,o as a linear combination of the elements of 53. 

18. Write a short essay on the following s tatement: "The functions in Sn 

form a basis for the vector space of all piccewise constant functions on 
[0,1] tha t have possible breaks a t the points 

2 " n , 2 · 2 - n , 3 · 2 _ n , . . . , ( 2 n - 1) · 2~" . " 

19. Recall tha t wc can view a string of da ta as a piecewisc constant function 
obtained by partitioning [0,1] into 2" subintervals, where 2" represents 
the number of sample points. Suppose wc collect the following data : 
[10, 13, 21, 55, 3, 12, 4, 18]. 

(a) Explain how this da ta may be used to define a piccewise constant 
function / on [0,1]. 

(b) Express / as a linear combination of suitable functions <δ„,ι. 

(c) Plot this linear combination to verify tha t it coiresponds to / . 

20. Prove or disprove: for each n, S„ is an orthogonal basis for Vn. 

21. Graph <F>(2t — k) for three values of k other than 0 and 1. How are these 
graphs diffcient from the graphs of the sons and daughters wc have seen 
so far? 

2.3 S I B L I N G R I V A L R Y : T W O B A S E S F O R VN 

An important observation to make a t this point is, given the vector, space Vn 

with natural basis Sn, foi any integer η > 0, the collection of innci product 
spaces {Vn} forms a nested sequence of subspaccs. Tha t is, 

V0 C Vr C V2 C · (2.2) 
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This sequence is pa i t of what is called a multiresoluhon analysis, which will 
be studied in gicater detail m chapter 3. 

Problems 

22. Explain why V, C V,, if t < j . 

23. Which of the problems m section 2.2 demonsta te the s t ructure described 
by (2.2)? 

There is an important connection between orthogonality and the wavelet 
daughters. In the problems and discussion which follow, we will investigate 
how the space Vi can be viewed in terms of Vo and then see how the basis 
D2, which was introduced somewhat arbitrarily in chapter 1. arises from the 
s tandard basis. 

Since Vo is a subspace of Vi. the Orthogonal Decomposition Theorem can 
be used to write each function Λ e Vi as h = f + g, where / € Vo and g € V 0

X , 
that is. 

Vx = V0®Vf. (2.3) 

As an example, the projection of φ\ ο € Si onto Vo is 

(01.0, Φ) , 1 , 
—rr-Φ = ο 0 ' (Φ, φ) 2 

as given bv the Orthogonal Decomposition Theorem. The graph of this pro-
jection is shown in figure 2 1 

The residual in this case, namely the projection onto VQ-, is the difference 

The graph of the residual is shown in figure 2.2. 

Problems 

24. (a) Determine the projection of φ\Λ, the other element of S i , onto Vo. 
Sketch the result. 

(b) Calculate the residual foi φΧΛ and sketch the result. 

(c) Write each of the elements of Si (which arc in Vj) as a sum of a 

function in V*o and a function in VQ-. 
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Fig. 2.2 Residual of Φι,ο onto Vo 
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Note tha t Vj has dimension 2, and that V 0 has dimension 1. By (2.3), VQ-
must be one-dimensional. Further, the residuals of both φι$ and φ\^\ are 
scalar multiples of φ. This shows that {φ} is a basis for VQ

X and arises, via 
orthogonality, from the basis Si Note that φ is, in fact, an element of Vi and 
is orthogonal to everything in Vo. 

As a result, we have another basis for Vi. Since So = {φ} is a basis for Vo 
and Co = {Φ} is a basis for VQ-, it follows from the Orthogonal Decomposition 
Theorem that 

Bx = S 0 U C 0 = {Φ,Φ) 

is a basis for Vj. 

Problems 

2 5 . Prove tha t Cx = { 0 U | Φχχ (ί) = φ{2ί -k),k = 0 ,1} is a basis for Vf. 
Use the basis B\ = So U CQ for Vi to create a new basis for Vi- Where 
have we seen this basis before? 

Since the set 5 2 of wavelet sons in V2 corresponds to the s tandard basis 
of R 4 , it might seem tha t these wavelets are the "best" with which to work. 
As we have seen, though, the basis 5 2 just reads off the constant values of 
functions in Vj. This does not help us compress the information contained 
in these functions. However, the Orthogonal Decomposition Theorem shows 
that the familiar basis B2 = {φ,Φ,Φι,ο,Φι,ι} arises quite natural ly from 5 2 
(sec problem 25). 

This construction can be repeated foi any value of n. Since V n is a subspace 
of V „ + i , it follows tha t V n + i = V„ φ V / . As in problem 25, we can create a 
basis C„ of V„ x by 

C„ = {ΦηΛ I Φη.Κ it) = Φ(2"Ι, - k), k = 0 , 1 , . . . , 2" - 1}. 

Proceeding inductively, and using the basis B„ of V n , it follows tha t 

B n + 1 = BNUCV 

is a basis for V „ + i . In general, 

V„ = V n _ j φ V ^ , 

= ( V r , _ 2 ® V n

J L 2 ) ® V „ L _ 1 

= Vo Θ V 0

X Θ Θ - • · Φ V x _ i · (2.4) 

This explains how the basis B„ is constructed from the "standard" basis 5 „ . 
As shown in chapter 1, the basis B„ is the one tha t supplies the wavelet 
coefficients. 
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Problems 

26. List the functions in B3 and B4. (Note: Recall problems 15 and 17 in 

chapter 1.) 

27. Write 0 2 i o as a linear combination of the elements of B3. 

28. Explain the connection between problem 27 and (2.2). 

29. As we have just seen, the basis B2 for V2 arises through the decompo-
sition V 2 = Vo φ V 0

X θ Vi~. Compute the inner products of all pairs of 
basis elements in B 2 . Wha t kind of a basis is β 2 ? Why could this be 
useful? Explain. 

Any function in V„ can now be cxpicssed in two ways. If we favor the sons, 
then elements of V„ may be writ ten as linear combinations of the functions 
in S„. If, instead, we prefer to use the parents and daughters, then the result 
tha t 

Vn = Vo Θ V 0

X φ V ^ Θ · · · Θ V x _ ! 

enables us to express functions in V„ as linear combinations of the functions 
in Bn. W h a t has been gairred from this sibling rivalry? 

2.4 A V E R A G I N G A N D D I F F E R E N C I N G 

Par t of what results from the work in the previous section is a bet ter under-
standing of the meaning of wavelet coefficients. In chapter 1, these coefficients 
arose from the solution to the lirrear equation Ax = b. In this section, we 
will view these coefficients irr tcrrrrs of averages and differences, which will 
set the stage for a later discussion of filters. The following problems serve to 
introduce this approach. 

Problems 

30. The signal [50 ,16,14,28] T represents a piecewise constant function in 
V2 tha t can be written as 

ν = 5O02.o + 1602,i + 1 4 0 2 > 2 + 2802,3· 

Define another elerrrerrt of V 2 by 

u = 330i.o + 210i,i + 17V>i,o - Ή>\,\· 

Use each of the approaches below to show tha t ν = u. 
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Method 1: Recall that V2 = V\ φ and that { 0 i . o , 0 i , i } is a basis for 
V\. In addition, remember that in pioblem 25, we saw tha t {01,0,01,1} 
is a basis for ν χ . 

(a) Use the Orthogonal Decomposition Theorem to find the projection 
of 7' onto V\. 

(b) Hence, find vectors v\ € Vi and v\x € so tha t ν = υχ + v\±. 

(c) Note the coefficients of i'i and νχ± in terms of the bases for Vi and 
V~xX that were given. 

Method 2: View all of the vectors in this problem as elements of R 4 . 
Make sure you understand why 

S2 = {02.0, 02.1, </>2.2, 02,3} 

and 

D = {01.0, 01,1, 01,0, 0 1 , l } 

each correspond to a basis for R 4 . Wi th respect to S2, the coefficients 
of ν arc [50, 1G, 14, 28]. Use a change-of-basis matr ix to find coefficients 
for ν in terms of the basis D. Wha t vector results? 

31. Comment on the connection between the two methods in problem 30. 

Note that something interesting happens in problem 30. T h e first coeffi-
cient (33) in υ is the average of the first two coefficients (50 and 16) in v. The 
second coefficient (21) m u is the average of the second pair of coefficients (14 
and 28) in «·. T h e third coefficient (17) in ν is the difference between 50 and 
33 and the fourth coefficient (—7) in u is the difference between 14 and 21. 

Problems 

32. Using cithei method from the picvious problem, express 

33<2>i,o + 2101,1 

in V~x as a linear combination of φ = 0o.o and 0 = 0o.o in Vo Θ V 0

X . Does 
the same avciaging and differencing pat tern hold? 

33. Explain why ν fiom problem 30 may also be written as 

27co + 6 0 + 170i,o - 7 0 1 , 1 

in ν ό Φ ^ φ ν , 1 . 
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Note tha t in the final decomposition, 270+6Ψ + 17ψι,ο -7V"i,i, the first co-
efficient is the overall average of the coefficients of the original linear combina-
tion 5O02,o +1602, ι +140 2 ,2+2802 ,3 , and the other coefficients are determined 
by computing the differences between successive averages and certain coeffi-
cients (and perhaps by dividing by 2). The process of finding these differences 
is also known as detailing. 

The problems above demonstrate a general principle of wavelets. A mem-
ber υ of Vn+i can be written as a linear combination of the vectors in the 
standard basis. The projection of υ onto V*„ has new coefficients which are 
averages of original coefficients, while the coefficients of the residual of the 
projection are differences of the original coefficients. Repeating this process 
yields averages of the averages, and differences of the averages, and ultimately, 
the wavelet coefficients are created from this combination of averaging and dif-
ferencing [26]. 

The coefficients in 270-l-6V'-t-17V"i,o-7^i,i arc the wavelet coefficients of the 
original string because they are the coefficients of υ with respect to the basis 
Ζ?2· This time, though, they arise from various applications of averaging and 
differencing, rather than as entries in a column vector. This has important 
implications when considering an application such as image processing. If 
a certain area of a picture has constant intensity, computing differences (01 
differences of averages) will result in lots of zeros. As seen in chapter 1, this 
leads to effective da ta compression. Further, by thinking of wavelet coefficients 
in this way, we can develop other ways to s tudy and compute them. Filters 
are one such approach which will be discussed in chapter 3. 

Prnhlpmc 

34. Find a matrix M\ so tha t M4 

"50" '27' 
16 6 
14 17 
28 - 7 

by thinking of the process 

of averaging and differencing. The following steps will guide you. 

(a) The first transformation converted ν in problem 30 to «. If we 
represent a generic vector υ by ν = «102,0 +"202 ,1 + "302,2 + "402,3t 
then what would be the formula for u in terms of the ι>,? 

(b) W h a t would be the formula for the final decomposition (from prob-
lem 33) in terms of the υ,? 

(c) Use these results to create M4. How is M4 related to A2 from 
chapter 1? 

35. Let ν € V2 be given by 

V = 1002,0 - 1202,1 + 7 0 2 , 2 + 1902,3· 

Find wavelet coefficients so tha t 

V = Χχφ + Χϊψ + Χίψχη + Χ^ψΐΛ 
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is in 

For each of the four coefficients, explain how the averaging or differenc-
ing of the four numbers 10, - 1 2 , 7, 19 leads to the coefficent. 

36. Write a paragraph explaining how Λ/ 4 can be understood as a change-
of-basis matrix. 

37. Data is often stored in groups of 8. As in the previous problems, find a 
matrix MG tha t will perform the operations of averaging and differencing 
on an 8 by 1 column matrix. How is AIS related to A3 from chapter 1? 

38. Use M% to find the wavelet coefficients for the signal 

[ 80 ,48 ,4 ,36 ,28 ,64 ,6 ,50 ] r . 

2.5 P R O J E C T I N G F U N C T I O N S O N T O W A V E L E T S P A C E S 

In this section, the ideas of Legos, orthogonal projections, and averaging and 
differencing are combined to create some interesting graphs. A good way 
to see these concepts together is t lnough the following problem: given tha t 
the function h defined by h{f) = 8t is in L 2 ([0,1]) , and V 2 is a subspace of 
L 2 ([0,1]) , determine the orthogonal projection of h onto V2 using the basis 
B2. How are the wavelet coefficients computed in this problem related to hi 

The Orthogonal Decomposition Theorem shows tha t the projection of the 
function h.(t.) = 8t onto V2 is found by 

77—ΓΓ0 + 77—770 + T, ;—\ V'i 0 + ΤΙ ; — r V ; i , 1 = 4c6 - 20 - V i ,0 - 0i, 1 · 
(Φ,φ) t > , V ) ( 0 1 , 0 , 0 i , o ) ( 0 1 1 , 0 1 . l ) 

The graph of h and its projection onto V2 are shown in figure 2.3. 
An important point to recognize hcie is that the projection of h can be 

viewed as the signal obtained from sampling h at the midpoints of the quarter 
intervals (as discussed in section 1.6). The projection of h is identified with 
the signal 

'V 
, 8 , [»(.)·*(§)·*(!) = [1 ,3 ,5 ,7] . 

The wavelet coefficients of this projection, namely 4, —2, — 1 , and — 1 , arise 
from processing this signal as discussed in chapter 1. Recall the process: av-
erage the components of the signal in pairs, compute differences, then repeat. 
From this perspective, we can see tha t projecting onto the spaces V„ brings 
us back to the averaging and differencing we saw earlier. 
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02 04 , 06 0 8 

Fig. 2.3 Graphs of 8t and the projection of 8f onto Vj 

Problems 

39. Determine and graph the residual g(t) = h(t.) — f(t) for ft(t) = 8t. 

40. Develop formulas for the wavelet coefficients of the projection of 
h(t) = 8t onto V 2 in terms of the average or difference of values of ft. 

From the previous example, we see that , while ft lives in "the world of 
L 2 ([0,1]) ," its orthogonal projection / lives in "the Lego world," and tha t 
wavelet coefficients arise when the orthogonal projection is computed from 
averaging and differencing certain values of ft. In the following exercises, we 
explore cases where ft is nonlinear. 

Problems _ 

41. Using the wavelets bases ΒΙ, B3, and BI, determine and graph the 
projections of the following functions on Vj, V3, and V4. 

(a) sin(<) 

(b) t* 

(c) e' 

(d) Vi. 
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(Note' vou may wish to numerically approximate some of your integrals 
to save time ) Wha t happens to the projections as you move from V2 

to V3. and then to V 4 ? 

42. Compare your results from 41(a) with sampling the sine function. At 
what points is this function being "sampled"? Develop formulas for 
the wavelet coefficients tha t you determined in terms of the average or 
difference of certain values of sin(f) 

43. Write a short essay comparing your work in this section to one other ap-
plication of orthogonal projections (e.g. Fourier series, regression lines). 

2.6 F U N C T I O N P R O C E S S I N G A N D I M A G E B O X E S 

In many books and articles about wavelets, pictures such as those in figure 
2.4 are displayed In this section, we will lcain how these pictures are created. 

We begin by returning to the example from chapter 1 of processing da t a 
sampled from a function. Recall tha t the function / ( . τ ) = s in (20 i ) ( l r ix ) 2 was 
sampled at 32 evenly spaced points, generating the following da t a (rounded 
to the nearest thousandths) . 

[7.028.7.300.5.346.2.588,0.057, -1 .602 , -2 .180 , - 1 . 8 4 3 , - 0 . 9 8 4 , 
-0.045,0.636,0.902,0.782,0.427,0.029, - 0 . 2 6 1 , - 0 . 3 7 3 , - 0 . 3 2 0 , 
- 0 . 1 7 3 . - 0 . 015 ,0 094,0.130.0.106,0.054,0.005, - 0 .022 , - 0 . 0 2 7 , 
- 0 . 0 1 7 . - 0 000.0 .0 ,0] . 

This graph of the da ta is shown in figure 2.5. 

Fig. 2 4 An image of a house, and an image box (Image couitesy of Summus, Ltd ) 
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Fig 2.5 A plot of the data. 

In this section, the data is t reated as one long string which connects the 
da t a points with line segments. To process this signal, we proceed in a fashion 
similar t o the problems in section 2.4. The first s tep is to create averages 
( the coefficients of the projection of the signal onto V 4 ) , and differences ( the 
coefficients of the corresponding residual). This process yields 16 averages 
and 16 differences, which form one new signal: 

[7.161,3.967, -0 .772 , - 2 . 0 1 1 , -0.515,0.769,0.604, -0 .116 , -0 .347 , 
-0.094,0.112,0.080, -0 .009 , -0 .022 , -0 .003 ,0 , 

-0.134,1.380,0.830, -0 .168 , -0 .470 , -0.133,0.177,0.145, -0 .026 , 
-0 .079 , -0.018,0.026,0.0136, - 0 . 0 0 5 , -0 .003 ,0 ] . 

Graphing this da ta obtained from the first round of processing yields the 
graph in figure 2.6. We will call a figure tha t contains projections and residuals 
of an original image an image box. Examine this image box carefully. Note 
tha t the left half of the figure, created from the projection onto V 4 , is a rough 
copy of the original data in half scale (see figure 2.5). The right half ( the 
residual) shows how far the processed da t a is from the original. 

The next step is to compute averages and differences on only the first half of 
the new data , leaving the residual alone. This projects the new signal ( the first 
half of the da ta obtained after the first round of averaging and differencing) 
onto V 3 φ V3

X. The resulting signal is: 



FUNCTION PROCESSING AND IMAGE BOXES 39 

[5.564, -1.392,0.127,0.244, -0 .220,0 .096, - 0 . 0 1 5 , - 0 .002 , 

1.597,0.620, -0 .642,0 .360, -0 .126,0.016,0.007, -0 .002 , 

-0.134,1.380,0.830, -0 .168 , -0 .470 , -0 .133,0.177,0.145, - 0 . 0 2 6 , 
-0 .079 , -0.018,0.026,0.0136, - 0 . 0 0 5 , -0 .003 ,0 ] . 

Plott ing this da ta viclds the image box in figuie 2.7. Observe t ha t the 
first quarter of this second-stage da t a contains a copy of the original da t a 
on a reduced scale. The projection onto V3 appears to be the original graph 
compressed horizontally by a factor of 4. The second quar ter ( the residual 
from the second round of processing, which is in V3

L) keeps track of how far 
the projection onto V3 is from the processed da ta from the first stage. The last 
half of the da ta ( the projection onto V 4

X ) retains information about how far 
the processed figure from the first stage is from the original. We can continue 
this processing on finer and finer scales until we run out of things to process, 
yielding a final image box which is a graph of the signal containing the wavelet 
coefficients. 

This example demonstrates how, as a signal is processed, imperfect copies 
of the original sigrral are made, along with other numbers which keep track of 
how far the copies are from the original signal. 

Fig. 2.6 An image box, showing the projetions of the signal onto V4 and Vj-. 
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6 l 

- 2 J 

Fig. 2.7 An image box, containing the projections onto V3, V 3

X , and V4 

Problems 

44. Select a function in L2[0,1], built from combining at least two transcen-
dental functions, and create an image box similar to figure 2.7. 

45. Acquire a real signal whose length is a power of 2. (Some possiblities: 
use a Calculator-Based Laboratory to measure motion or temperature; 
stock market data; population trends.) Create an image box similar to 
figure 2.7 for that, signal. 

The image box in figure 2.4 is created in a similar way; the difference being 
that images arc two-dimensional, whereas signals are one-dimensional. Be-
cause of this difference, we must employ a "trick" (Daubechies' word, see [10]) 
in order to use the Haai wavelets to process the image: we must, think of the 
image as a matrix of numbeis .7, rather than a one-dimensional signal s. 
Suppose that J is a 32-l>y-32 matrix. 

Begin by treating each of the rows as a separate signal of length 32 (in 
other words, as an element of V5), and process these rows as before. 1 This 

' in part 4 of the image compression project in section 4 2, the directions state to process 
the columns of J first Processing the columns is easier to do than processing the rows, 
from the point of view of applying matiix algebra to the study of wavelets. However, when 
image boxes are presented in the literature, they are generated from processing the rows 
fust 
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4h 

4* 

Fig. 2.8 Creating an image box. 

results m two new 32-by-16' matrices .//, and J9, where each row of J/, is from 
V4 and each row of JG is from (See figure 2.8. T h e use of the subscripts 
ft and G will be clarified in chapter 3 ) 

Now focus on the columns of.//,, each of which can be thought of as a signal 
of length 32 (i.e., in V5). Process the columns. This gives two new 16-by-16 
matrices JHH and JHG. whcie each column of JHH is from V 4 and each column 
of JHG is fiom V41. In the same manner, piocess the columns of JG to create 
JGH aiKl JGG. 

What has been done is to decompose the original image, the 32-by-32 
niati ix. into foui smaller images, each which is 16-by-16. So, the four images 
in figure 2.4 are a decomposition of the original image in figure 2.4. This 
piocess. which is often referred to as a TWO-DIMENSIONAL WAVELET TRANSFORM,, 

may their be repeated with the smaller matr ix (image) JHH-
This is only one possible appioach to processing two-dimensional images. 

The FBI uses another method of applying a more elaborate family of wavelets 
which has two father wavelets and two mother wavelets [3, 10]. 

2.7 A S U M M A R Y O F T W O A P P R O A C H E S T O W A V E L E T S 

To conclude this chapter, let 's compare the methods thus far developed for 
finding wavelet coefficients using Haai wavelets from chapte is 1 and 2. Con-
sider again the example from chapter 1 where / is the function defined by 
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' - 5 , if 0 < t < \ 

- 1 , I F J < T < J 

/(«) = < 1, if ^ < < < f 

11, i f f < t < l 

0, otherwise. 
ν 

We found unique coefficients ( the wavelet coefficients) so tha t 

FIT) = X^IT) + Χ2ΨΨ) + X34lfi(T) + »4^1.l(0 

by using matr ix algebra. We identified V2 with R 4 , defined the matr ix A2, 
and introduced vectors χ and b, to write the previous equation in the form 
A2x = b. Since A2 is an invertible matrix, unique wavelet coefficients were 
obtained by multiplying b by A2 1 . In particular, we get 

In chapter 2, we used the Orthogonal Decomposition Theorem to project 
/ onto the space V2 generated by the functions φ,ψ,Ψι,ο, and t/Ί,ι· Although 
the development was in terms of subspaces of L 2 ([0,1]) , we were ultimately 
required, in the case where / € V2, to find a matr ix M 4 tha t performs the 
averaging and differencing that, generates the wavelet coefficients. This matr ix 
M 4 turned out to be 

We found the wavelet coefficients x , via χ = M4b. The process can be 
reversed through b = A2x, since the matr ix M4 is the inverse of A2. Even 
in the case where / ^ V2, we saw how the wavelet coefficients arc based on 
averaging and differencing. 

This gives us two perspectives on the same problem. In the first chapter, 
the focus is on solving a linear system to get coefficients in terms of a given 
basis. In the second chapter, the focus is to use orthogonality to create tha t 
basis and to investigate the projections of functions onto a sequence of inner 
product spaces. For the Haar wavelets, the approach we take depends on 
the function / , and whether we decide to work in the space L 2 ([0,1]) or the 
space R n for a suitable n. It is not the case, however, tha t we can exploit 
this duality when working with other wavelets. Almost all othei work with 
wavelets takes place in the space L 2 ( R ) . 

χ = 

1.5 
- 4 . 5 
- 2 
- 5 

0.25 
0.25 
0.5 
0 

0.25 
0.25 
- 0 . 5 

0 

0.25 
- 0 . 2 5 

0 
0.5 

0.25 
- 0 . 2 5 

0 
- 0 . 5 



3 
Multiresolutions, 

Cascades, and Filters 

3.1 E X T E N D I N G T H E H A A R W A V E L E T S T O T H E R E A L L I N E 

In our work so far, we have considered functions only on the interval [0,1] 
This is not the most convenient setting for signals. In this chapter , we broaden 
our perspective to develop wavelets as functions denned on all of R. This will 
give us the freedom to manipulate signals tha t arise from functions tha t are 
defined anvwhcre on R. 

To work in this broader setting, we will need to extend the definitions of the 
Haar spac es V„ introduced earlier. For example, the space Vo will become the 
set of piccewise constant functions with compact support t ha t have possible 
breaks at integei values. A basis for V*o will then be {φ(ί — k) : k € Z} 

Of com sc. it will not be enough to extend the definition of only Vo- We 
will redefine each of the spaces V„ to contain piccewise constant functions, de-
fined on all of R. with compact support. The space Vj will consist of functions 
having compact support with possible breaks a t rational points with denom-
inatois of 2 ( r e . the integers and the points midway between the integers). 
Similarly. Vi will contain all functions with possible breaks a t rational points 
with denominators of 4 = 2 2 (i.e., the integers, the points midway between 
the integers, and the points one quarter of the way between the integers) In 
general, functions in V„ are piecewise constant having compact suppor t with 
possible breaks at rational points of the form ψ-, for any integer τη. 

From this point of view we can also allow η to be negative. In tha t case, 
V„ will contain piecewise constant functions having compact suppor t with 

43 
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possible jumps a t points of the form RN χ 2~" . Note that for negative n, the 
breaks in these functions will be farther apa i t rather than closer together. 

In chapter 2 we defined bases for each of the spaces Vn. Wi th those bases 
in mind, it is not hard to find spanning sets for the extended V„. The old 
V2 on [0,1] had {φ{2ί),φ{2ΐ. - 1)} as a basis. This basis extends naturally to 
give us a spanning set {φ{2ί - k) : k e Z } for the new V2. In the same way, 
the set {</>(2"t - k) : k. € Z } is a spanning set for the new V„. An important 
observation to make is that each function in oui spanning set is simply a 
shifted version of the wavelets defined in chapter 2. 

From this point on in the text , unless otherwise specified, any reference to 
the space V n will refer to this new, extended version of V„. Further, as in 
chapter 2, we will use the notation </>η,*(ί) = </>(2nt — k). 

As we modify the spaces Vn, we will also need to alter the inner product. 
Recall tha t the inner product we have been using is 

IF, 9)= f F(t)g{t)dt. 
Jo 

Since the wavelets in chapter 2 had values of 0 outside of the interval [0,1], the 
restriction of the inner product to the interval [0,1] is unnecessary. In fact, 
for any functions f,g in the old space V„, 

</,.9> = Γ f(t)g(t)dt= Γ f(t)g(t)dt. 
JO . / - C O 

In this new perspective, where we consider functions defined on all of R, 
we require a corresponding inner product , which is 

</,.?) = Γ F(t)g{t)dt. (3.1) 
j—00 

When using this new inner product , it will be necessary to restrict ourselves 
to functions with finite norms. T h e set L2[R) is the collection of functions 
/ : R -> R such tha t 

11/11 H / J > * = ( / ~ / ( 0 2 * ) * < 0 0 . 

This is also why we insisted tha t the spaces V„ contain only functions with 
compact suppoit . Without tha t condition, the new V n would not be a sub-
space of L 2 ( R ) . 

Observe that all of the old functions and from chapter 2, as well 
as any finite signal when viewed as a piecewise constant function, are elements 
of Z, 2(R). This suggests that L 2 ( R ) is a more general setting in which to s tudy 
wavelets. 
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Problems, 

1. Find two continuous functions that belong to L2(R) and two tha t do 
not. W h a t must be t ine about l i i n r _ o o / ( 0 and liiiif—oo / (*) if / is a 
continuous function in Z/ 2(R)? Explain. 

2. (a) Provide an example to show tha t V2 is not a subset of L 2 ( R ) if we 
don' t include the condition that the functions m V2 have compact 
support . 

(b) Show tha t , for any η > 2, Vn is not a subset of L 2 ( R ) if wc don ' t 
include the condition tha t the functions in V„ have compact sup-
port . 

3. A function in L 2 ( R ) is said to be normalized if the norm of the function 
is 1. 

(a) Find two functions in L 2 ( R ) that are normalized. 

Ί , if 0 < * < 1 

(b) Let / be the function defined by f(t) = <-l, if - 1 < t < 0 

0, otherwise. 

Show tha t / is in L 2 ( R ) and calculate the norm of / . Show tha t 
is a normalized function in L 2 ( R ) . 

3.2 O T H E R E L E M E N T A R Y W A V E L E T F A M I L I E S 

The Haai wavelets satisfy certain properties tha t are pait icularly impor tant , 
as will be shown later. Each function <t>(2"t — k), n,k ε Ζ has compact suppor t 
and is discontinuous on the ical line Further, (φ(2"ΐ),Φ(2ηΐ, — k)) = 0 for 
everv 77 and ever ν nonzero A\ and (<t>(t). <j>(t)} = 1. These properties should 
be verified bv the readei. The lattei piopcrty shows that the noun of φ is 1 
and hence Φ is normalized. 

In chapter 2, it was shown that all of the other wavelets could be obtained 
bv combining scalings and translations of the father wavelet φ. For this reason, 
φ is referred to as the Haar scaling function. 

Problems _ 

4. Use the definition of the iiuiei product to piovc that. ||c6(/;/r — k)\\ = 

for any IN — 2" , η € Ζ. and anv nitcgei k. 
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5. For each of the examples of wavelets just mentioned, determine the 
graphs of φη<\, for your own choices of η and k. 

6. Find a wavelet family different from those just mentioned. Be sure to 
cite your source. For the family you find, plot the graphs of φι$ and 

7. Determine whether the quadrat ic Battle-Lemarie scaling function is a 
normalized scaling function. 

Problems 

01,1· 

2 3 4 

Hat Scaling Function: φ(ί) 
t, 
2-t, 

0 < li < 1 

l<t<2 

otherwise 

While the Haar wavelets are the simplest wavelets to understand and work 
with, there are many other wavelet families. As was the case with the Haar 
wavelets, each family is generated by a father wavelet or scaling function φ. 
Examples of such families are the hat wavelets, the quadratic Battle-Lemane 
wavelets, and the Shannon wavelets (see neaiby figures). Note tha t each of 
these functions belongs to L 2 ( R ) [10, 42). (The spaces V„ that correspond 
to these respective wavelet families will be different than the Haar spaces. 
In particular, the compact support requirement is not necessary, as will be 
discussed in the next section.) 
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It is tempting to define the mother wavelet for each wavelet family by 
(1.1). However, the actual relationship between mother and father wavelets 
is unique to each family (not unlike real life!) and (1:1) only applies to the 
Haar family. This relationship will be explored later in this chapter. 

Another wavelet family worthy of mention is the Mexican hat family (also 
called the Maar wavelets), which have been used in the study of underwater 
acoustics [14]. This family is different than the others encountered so far in 
tha t there is no simple form for the scaling function. There is, however, a 

in (1.1): 
ψ(1) = φ(2ί)-φ(21-1). 

Mexican Hat Mother Wavelet: tf>(t) = (1 - * 2 ) e ( ~ ' 3 / 2 ) 

At this point, other observations about these sealing functions should be 

noted. 

• The Shannon scaling function is smooth. This means tha t the function 
and all of its derivatives exist and are continuous. 

• Unlike the Haar scaling function, the Shannon function does not have 
compact support . The two other scaling functions do have compact sup-
port, and both are continuous. (In fact, the quadrat ic Battle-Lemarie 
scaling function has a continuous derivative.) 

• For the hat and the quadrat ic Battle-Lemarie scaling functions, there 
exist integers k, such tha t (<t>(t), φ{ί-k)) φ 0. The fact tha t each of these 
scaling functions is not orthogonal to all of its translates is a problem. 
We will discuss why in the next section. 

Recall the relationship between the Haar father and mother wavelets, given 
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simple representation of the mother wavelet. Later in the text , it will be 
shown that the wavelet family can be generated from either the father or 
mother. 

It is important to note that in most wavelet families, there is no simple 
foim of either the father or mother. Instead, wavelets are defined by certain 
properties, and then approximated, as will be demonstrated in section 3.6. 

Problems 

8. Find a value of k so tha t (</>(<). <t>(t — k)) φ 0 for each of the hat and the 
quadrat ic Battle-Lcmaric examples 

9. A twice differentiablc function whose second derivative is continuous 
is said to be a C 2 function Is the quadrat ic Batt le-Lemarie scaling 
function a C 2 function 7 Is its first derivative continuous? 

10 Normalize the Mexican hat mother wavelet. 

11 For the normalized Mexican hat family, determine graphs of 

rl>n.k{t) = V ' ( 2 " t - A ) 

for vour own choices of η and k. 

3.3 M U L T I R E S O L U T I O N A N A L Y S I S 

It has been shown tha t wavelets arc genciated from a "parent" (father or 
mother) by sailings (contractions) and translations (horizontal shifts). When 
wavelets in V„ are used for negative values of n , signals can be analyzed on a 
large scale (over large intervals). By c hoosing positive values for n, signals can 
be isolated on a small scale (or intcival) The beauty and power of wavelets 
is tha t , since there is an infinite collection of wavelets with which to analyze 
a signal, both of these tasks can be performed simultaneously 

We used the Haai wavelets in the picvious chapters for their simplicity, 
a property that makes them ideal foi demonstrat ing concepts. However, the 
Haar wavelets are not used m practice because they lack some important 
propcities. Wavelets that a ie typically used m applications are constructed 
to satisfy cei tam criteria. The standard approach is to first build a mul-
triesolutwri analysis (MRA) and then construct the wavelet family with the 
desired cnte i ia fiom the MRA. In this section we discuss the concept of a 
multiicsolution analysis. 

Befote an MRA can be defined, it will be helpful to discuss some additional 
properties of wavelets. The Haar wavelets will again illustrate these ideas. 
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How does this apply to wavelets? In sections 2.4 and 2.5, we discussed the 
projection of functions onto wavelet spaces. Figures 3.1, 3.2, and 3.3 show the 
graph of the sine function on [0,1] and the projections of this function onto the 
Haar spaces Vi, V4, and Ve- Notice tha t this function can be approximated as 
closely as we like by functions in V„ simply by choosing η as large as needed. 

12. Let f(t) = sin(i) on [0,1]. Determine the projections of / onto the spaces 
Vi, V4, and Ve- Compute the distance between / and its projection in 
each case using the integral norm (3.2). (Note: see problem 41 from 
chapter 2). 

(3.2) 

Problems 

The first property is called the density property. Density is a property 
tha t measures how intermingled the elements of one set arc with another. 
For example, consider the rational numbers as a subset of the real num-
bers. For any real number, it is possible to find rational numbers arbitrarily 
close to tha t real number. In the example of the number e, the sequence 
{2,2.7,2.71,2.718,2.7182, . . .} , obtained by truncating the decimal represen-
tat ion of e after each successive place, converges to e. In the same manner, a 
sequence of rational numbers t ha t converges to any given real number always 
exists. 

Another way to think about this is the following. Suppose there is a mag-
nifier that can zoom in at any desired resolution to look a t the real line. 
Wherever it zooms, no mat ter the magnification, there will always be both 
rational numbers and irrational numbers. 

In general, a subset Β of a set A is dense in A if any given clement in A can 
be approximated as closely as we like by an element in B. The example above 
demonstrates how the set of rational numbers Q is dense in R. An alternative 
characterization is tha t Β is dense in A if, given any element a £ A, a sequence 
{&„} in Β can be found that converges to a. 

This idea can also be applied to function spaces. Recall tha t L 2 ( R ) is 
an inner product space with the inner product (3.1). In this setting, the 
distance between functions is measuied by the norm of their differences. So 
the distance between the functions / and g in L 2 ( R ) , denoted d(f,g), is given 
by 
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02 04 , 06 08 1 

Fig. 3.1 Piojection of sin(/) onto V2 

Fig. 3 2 Proiection of sin(r) onto V4 
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Fig. 3.3 Projection of sin(t) onto Ve 

In order to approximate any function in L2(R) as closely as we like by 
functions in the Haar spaces V n , wc need to have access to wavelets ψ„£ in 
V„ for arbitrarily large n. Rather than examine V„ for each η to determine the 
precision of an approximation, it is useful to consider the space V = U n e Z 
An element in V, then, is a function tha t is piecewise constant on intervals 
of the form [^r , ?pr] for some ro € Ζ and a,b € Z. In particular, V contains 
all the Haar wavelets. As the example with f{t) = sin(i) suggests, given any 
/ € L2(R), a sequence of functions (one in each Vn) can be constructed that 
converges to / . This means that V = Unez ^ " ' s dense Z, 2(R). 

Problems 

13. This exercise will lead to the following theorem: For the Haar wavelets, 
the set Vi is not dense in L2(R). 

First note that if V2 is dense in L 2 ( R ) , then for every function / € L 2 ( R ) 
and every f > 0, there exists a function g € V2 so that | | /(f) —.9(011 < f -

(a) Let / be the function defined by 

/(,.)= i 2 ' i f 0 < i < 5 
1 0 otherwise. 

and let f = §. Find a function g € V2 so that | | / (0 - .9(011 < f -
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(b) Explain why you cannot find such a function g if f = 2. 

(c) Write the negation of the definition of density. 

(d) Prove the theorem. 

14. Prove tha t for Haar wavelets, the set V 3 is not dense in L2(R). 

Now consider the set / = Πηεζ R-ccall tha t V,, consists of the functions 
that arc piecewise constant on intervals of the form [^r , . As η increases, 
the lengths of the intervals on which a function in V„ is constant approach zero. 
It follows tha t a function in / must be piecewise constant on every interval. 
The only functions tha t have this property are the constant functions, and 
the only constant function in L2(R) is the 0 function. This shows tha t 

/= η vn = {o}. 

Whenever we have a nested sequence 

· • · C V-i C V 0 C Vi C V 2 C · • • 

of sets satisfying f l n g z ^ " = i ^ ) ' t n e collection {V n } is said to have the 
separation property. 

P r o b l e m s , , 

15. Verify tha t the only constant function in L2(R) is the zero function. 
Hint: Remember problem 1 of this chapter 

Next, let us examine how functions in the various sets V n are related. 
Observe that if / € V„, then / is piecewise constant on intcivals of length 
2 _ n . It follows that f(2t) will be piecewise constant on intervals of length 
2-(n + i) T h i s m p a n s t h a t y ( 2 / ) i s i n v„+1. Siunlaily, / (£) € V n _ j and, by 
induction. / ( 2 _ n f ) e V 0. Conversely, if / (2—"at) € V 0 , then / must be in V„. 

We can use these general piopeit ies of the Haar wavelets to construct 
similar sequences of spaces that will contain other families of wavelets. This 
leads to the idea of a multiiesolution analysis. 

D e f i n i t i o n : A rnultiresolution analysis (MRA) [10, 35] is a nested sequence 

· · • C V_i C Vo C Vi C V 2 C · · · 

of subspaces of L 2(!R) with a scaling function φ such tha t 

!· U„&V» is dense in L 2 ( R ) , 



54 MULTIRESOLUTIONS, CASCADES. AND FILTERS 

2· ru z v; = { o } , 
3. f(t) € V„ if and only if / ( 2 " n ) 6 V 0 , and 

4. {0(t - fc)}fcez is an orthonormal basis for Vo-

Note tha t the fourth property makes it impossible for either the hat or the 
quadratic Battle-Lemarie scaling functions to form a multiresolution analysis. 1 

Sometimes, though, a scaling function needs to merely be normalized in order 
to obtain a multiresolution analysis. 

For most wavelets used in practice, there is no simple formula for the 
scaling function. Instead, a critical property of each scaling function follows 
from condition (4). Since {<j>(t — k)} is an orthonormal basis for Vo, the set 
{0(2t - k)} is an orthogonal basis for V\. The fact that {φ{2ί — k)} is a basis 
for V*i means φ(ΐ.) G Vo C V\ can be written in the form 2 

*(«) = Σ < * * ( 2 ί - * ) , (3.3) 
k 

for some constants c^. This equation is called a dilation equation and is 
crucial in the theory of wavelets. (In some books and articles, it is referred 
to as a refinement equation or two-scale difference equation.) The constants 
{c/t} are the refinement coefficients. T h e fact that a scaling function satisfies 
a dilation equation is a consequence of a multiresolution analysis. It will be 
shown tha t this equation provides enough information that we can proceed 
without knowing a specific formula for φ. 

The dilation equation for the Haar wavelets 

0(ΐί) = 0(2ί) + 0 ( 2 ί - 1 ) (3.4) 

was described in chapter 2. In this case, q> and c\ are 1 and the rest of the 
refinement coefficients arc 0. 

Problems . 

16. Given a multiresolution analysis with scaling function φ, show tha t 
{φ{2ί — k)} is an orthogonal basis for V\. 

For the next three problems, assume that with a multiresolution analysis 
every scaling function satisfies a dilation equation. Prove the following 
about refinement coefficients: 

'There is a weaker version of multnesolution analysis, where condition (4) is replaced with 
a "Riesz basis" condition For moie information, see [10] 
2 Note that this could be an infinite sum and theie aie issues of conveigence to be consideted. 
However, we will deal mainly with situations where a finite numbei of the cjt are nonzeio, 
and hence convergence is not a pioblem (We will not deal with the general case) This 
will allow us to interchange the ordei of sums and integrals when necessary 
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17. ck = 2(<?(t).<p(2t-k)). 

Hint. Use the Orthogonal Decomposition Theorem. 

18. Parsevafs formula: E t l - o o c l = 2 

Hint: Use the fact tha t (0(0 ,0(0) = (£k c*tf(2< - k), Er c f c0(2* - *)) 

19. For every integer j , except zero, Σ Γ Ι - c o r * c * - 2 j = ° · 
Hint: Use (3.3) to write a dilation equation for 0(£ -j). 

3.4 T H E H A A R S C A L I N G F U N C T I O N R E D I S C O V E R E D 

As mentioned in the previous section, when working with a multiresolution 
analysis wc often don' t have a simple formula for the scaling function. In 
these situations, however, we usually do know the refinement coefficients. 
Next, we will considei how such information enables us to determine some 
characteristics of the scaling function. 

One of the standard techniques to deal with problems like this is a nu-
merical one known as the cascade algorithm [10]. This algoii thm will provide 
approximations to the scaling function and is an example of a fixed-point 
method. 

A fixed point of a function / is a value a such tha t f(a) = a. A simple 
example of a fixed point method follows, which shows how to determine the 
fixed point of the cosine function. Let f(t) = cos(0- To find a solution 
to the equation cos(/) = t, s tar t with a guess, in, of a fixed point. Let 
f\ = f(to) — cos(f 0 ) . then compute another number f2 = / ( i i ) = cos( i i ) , 
and continue. In this way, construct a sequence 

{r 0 ,fl = /(Ό), <2 = /(*l ) , · · . , <n+l = / («„ ) . · • · } 

tha t will converge to the fixed point of the cosine function. This process will 
work for functions / that satisfy certain conditions. 

Problems 

20. Use the algorithm to deteiinine, to six decimal places of accuracy, the 
solution of 

t = cos(0-

21. Use the algorithm to determine, to five decimal places of accuracy, the 
solution of 

t = 1 + erf. 

22 Explain what happens when you apply the algorithm to a t t emp t to 
deteiinine the solution of 

f = 3.7r(l - (!) + 0.2. 
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The cascade algorithm is a fixed-point method, except tha t instead of gen-
erating a sequence of numbers, it creates a sequence of functions. When given 
refinement coefficients, this algorithm creates a sequence of functions {/i} so 
tha t , for every value of t, / , ( i ) -» 0( t ) as i -* oo. Recall tha t φ satisfies the 
dilation equation (3.3). If we let F be the function tha t assigns the expression 

i,(7)W = E c » ^ 2 i - n ) 
η 

to any function 7, then we can consider φ as a fixed point of F\ This process 
will be illustrated using the Haar dilation equation (3.4). 

Begin with a guess, fo(t), of the graph of φ(1) (imagining for a moment 
tha t we don ' t know the Haar scaling function). Every scaling function tha t 
we have seen so far has a maximum near t = 0 and tends to get smaller as we 
move away from tha t maximum. So, a good first guess for /o(t) could be the 
normalized tent function, 

/ o ( 0 = < 

1 + 1 , if - 1 < t < 0 

1 - t, if 0 < t < 1 

0, otherwise. 

Problems 

2 3 . Graph f0(t). 

There is an al ternate way to define /n(£) tha t illuminates how the cascade 
algorithm works. Think of creating fo(t) as a three-step process reminiscent 
of the trapezoid rule from calculus. First , divide the ί-axis into subintervals 
with breaks at each integer. Second, give the function a value at each of the 
integers. In this case, it is zero at every integer except at 0, where the function 
is equal to 1. Finally, rrse linear segments to connect the function values on 
the integers. For the current /o we use 1 -M on the interval from 1 to 0, 1 — t 
on the interval from 0 to 1, and zero everywhere else. The resulting function 
is called a linear spline. 

Problems _ 

2 4 . Use a CAS to graph /n(i) in the following way. First, define a list of 
coordinates, based on the values of /o a t the integers. (You do not 
need all of the irrtegers. Focus on the interval [-1,4].) Then, plot these 
points, connecting them with lines. 

How is this function different than the other two? 
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Maple H i n t : Using the s t y l e = l i n e option with the p l o t command 
will draw straight lines between the points. 

We now use fo(t) to create a new and better approximation fx (t). (Daubechies 
calls this step "cranking the machine".) From (3.4) and the fact tha t fx = F(fo), 
it follows that 

/ i O O = /o(2i) + / o ( 2 r - l ) . 

From here, use a three step process: update, extend, and connect to more 
fully define fx. First, find the value of fx on the integers. For example, 

= /o(2) + / o ( l ) = 0 + 0 = 0. 

Repeating this for each integer shows tha t fx, like /o , is equal to zero on all 
of the integers except 0, where it is equal to 1. Not terribly impressive yet, 
but this is just the first step. 

Now that we have values for fx at the integers, extend the function to the 
points halfway between the integers. For example, 

/ i ( j ) = / o ( l ) + /o(0) = 0 + 1 = 1. 

Calculations like this one show that fx is zero a t the odd multiples of ^ with 
the single exception tha t fx{%) = 1. Finally, complete the definition of fx by 
using linear segments t o connect the function values on the integers and the 
halves, as was done with fo 

Problems 

2 5 . Graph fx using the method of exercise 24. 

Now that fx has been determined, we can then "crank the machine" again 
to determine f2. This time, first update the values on the set 

{..., - ι , - Ι , ο , I, i, . . . } , 

and then extend to the odd multiples of \ . Finally, connect the function 
values on all of the multiples of \ . 

Problems 

26 . Find f2 and sketch its graph. Note ' .iat each graph tha t you have been 
generating looks more and more like the Haar scaling function with 
which we are familiar. 
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27. "Cranking the machine" one s tep at a t ime is t ime consuming and tire-
some. Create a CAS worksheet with loops tha t will perform the cascade 
algorithm and plot the graph of fs. How similar are fs and the Haar 
scaling function? 

Maple H i n t : One can use either the symbolic or numeric power of 
Maple to generate fs- To force Maple to use floating-point arithmetic, 
rather than symbolic algebra, use a decimal point when defining the 
refinement coefficients. For example, 

> c [ 0 ] : - 1 . 0 ; 

Here is one way to create a loop (in Maple) to perform this pointwise 
algorithm. Begin with the refinement coefficients. Here, we use the 
Haar coefficients 

> c [ 0 ] : - 1 . 0 ; > c [ l ] : = 1 . 0 ; 

Label the i t h approximation of φ as f [ i ] . We will plot these approxima-
tions on the interval [—1,4]. Remember, a t each step in the algorithm, 

f [ i + l ] ( t ) - c [ 0 ] * f [ i ] ( 2 * t ) + c [ l ] * f [ i ] ( 2 * t - l ) . 

Note tha t to define an approximation on [—1,4], we need values for the 
prior approximation from —3 to 8. First define f [0] at integer points 
from —3 to 8. 

> f o r i from - 3 t o 8 do f [ 0 ] ( i ) : = 0 . : od: f [ 0 ] ( 0 ) : « 1 . : 

To plot this approximation we construct a list of points, called p o i n t s [ 0 ] , 
and connect them with line segments. 

> p o i n t s [ 0 ] : = [ [ t , f [ 0 ] ( t ) ] $ t — 1 . . 4 ] ; 
> p l o t ( p o i n t s [ 0 ] , s t y l e = l i n e ) ; 

The following loop generates successive pointwise approximations to the 
scaling function φ. The first approximation is defined on the halves. 
The second on the quarters, and so on. All of these approximations are 
restricted to [—1,4]. 

> f o r j from 1 t o 8 do d e l t a k := 2 " ( - j ) : 
> f o r k from 0 t o 1 1 / d e l t a k do 
> x : = - 3 + k * d e l t a k : 
> i f - K = x and x<=4 t h e n 
> f [ j ] ( x ) := c [ 0 ] * f [ j - l ] ( 2 * x ) + c [ l ] * f [ j - l ] ( 2 * x - l ) : 



THE HAAR SCALING FUNCTION REDISCOVERED 59 

> e l s e f [ j ] ( x ) : = 0 : f i : 
> o d : 

> p o i n t s [ j ] := [ [ t * 2 " O j ) , f [ j ] ( t * 2 ~ ( - j ) ) ] $ t = - l * 2 " j . . 4 * 2 " j ] : 
> o d : 

Now p o i n t s [ j ] is the j t h approximation. T h e successive approxima-
tions can be animated in Maple; the p l o t s package is needed to do 
this. 

> w i t h ( p l o t s ) : 
> f o r j from 0 t o 8 do 
> m y p l o t [ j ] : = p l o t ( p o i n t s [ j ] , t = - 1 . . 4 , s t y l e = l i n e , a x e s = b o x ) : 
> od: 
> d i s p l a y ( s e q d n y p l o t [ i ] , i = 0 . . 8 ) , i n s e q u e n c e = t r u e ) ; 

28. After how many iterations does it make sense to s top "cranking the 
machine"? Justify your answer. 

Many of the examples of wavelet families from section 3.2 have simple 
refinement coefficients [38]. The scaling function for the hat wavelet satisfies 
the dilation equation 

0 ( 0 = £ 0 ( 2 0 + 0(2< - 1) + ^0 (2 r - 2), 

while the quadrat ic Battle-Lcniarie scaling function satisfies 

0 ( 0 = ^ 0 ( 2 0 + \<t>{* - 1) + j 0 ( 2 f - 2) + ^0 (2* - 3). (3.5) 

Problems 

29. Modify your CAS worksheet from problem 27 to approximate the hat 
wavelet scaling function. 

30 Modify your CAS worksheet to approximate the quadrat ic Batt le-Lemarie 
wavelet scaling function. (Note: the support of this scaling function is 
[0,3].) 

31. The cubic Battle-Lemarie wavelet scaling function satisfies the dilation 
equation 

0 ( 0 = ^ 0 ( 2 0 + \φ{Κ - 1) + \<t>{2t - 2) + ^ 0 ( 2 * - 3) + ^ 0 ( 2 i - 4) . 
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Modify your CAS worksheet to approximate the cubic Battle-Lemarie 
wavelet scaling function. (Note: the support of this scaling function is 
[0,4]·) 

32. Determine which, if any, of the functions in problems 29 through 31 are 
normalized. 

33. Modify your CAS worksheet to begin with the function /n defined by 

' 2 ( l + t ) , if —1 < * < 0 

fo(t) = < 2 ( 1 - 0 , if 0 < * < 1 

0, otherwise. 

(Note tha t this / 0 is twice the tent function and is not normalized.) How 
does this change affect your results in problems 29 through 31? W h a t 
conjecture can you draw about the cascade algorithm and normaliza-
tion? Can you prove your conjecture? 

Both Battle-Lemarie wavelet scaling functions arc examples of what are 
called bell-shaped splines, or simply £?-splines. A spline is a function where 
several polynomials, defined on different sub-intervals, arc joined together to 
create a continuous function. For example, the quadratic Battle-Lemarie scal-
ing function is created by joining three different quadratic functions together, 
along with the zero function. A project featuring β-splincs can be found in 
chapter 4. 

Problems 

34. (a) Explain why the hat scaling function could be called the "Lin-
ear Battle-Lemarie scaling function." Wha t about the Haar scaling 
function? 

(b) The space C consists of all functions whose qth derivative is contin-
uous. For each of the four scaling functions (Haar, hat , quadratic 
Battle-Lemarie, cubic Battle-Lemarie), determine the value of q so 
that it is collect to say tha t the function is a C function. Wha t 
is the pattern? 

35. (a) Show that the function 

0 ( 0 = 

( ψ , if - 3 < ί < 0 

ϊψ-, if 0 < / < 3 

0, otherwise 

is a solution to the dilation equation 

0 ( 0 ±φ(2ΐ - 3) + 0 ( 2 0 + \φ{21 + 3). 
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(b) Modify your CAS worksheet to explore what happens when you 
t ry to solve this dilation equation [12]. Explain what happens and 
the relationship t o problem 22 of this chapter. 

36. Star t with a function different than the tent function, and use the cas-
cade algorithm to t ry t o create the quadratic: Batt le-Lemarie wavelet 
scaling function. Wha t is the result? A function, / , t ha t leads to some 
neat pictures is 

f(t) = 
\ \ , if —1 < * < 1 

10, otherwise. 

Another approach to find the scaling function 0 , introduced by Strang, 
uses matrices [34]. For example, suppose wc star t with the dilation equation 
for the quadrat ic Battle-Lemarie scaling function (3.5) and assume t ha t the 
support of <p(t) is 0 < / < 3 and 0(0) = 0 = 0(3) . Subst i tut ing t = 1 and 
t = 2 into (3.5), gives us the following two equations: 

0(1) = \φ(2) + i j t f ( l ) 

0(2) = -Αφ{2) + Itf(l). 

These equations can be viewed in matr ix form as χ = Lx , where 

and L = χ = 
0(1) 
0(2) 

3/4 1/4 
1/4 3 /4 

Any solution χ of this linear equation will be an eigenvector of L with 
eigenvalue 1. In this case it turns out that 0(1) = 0(2) . After choosing an 
arbi trary value for 0(1) , and hence 0(2) , wc can then use the dilation equation 
to determine the values of φ on the halves, quarters, etc., in a fashion similar 
to the cascade algorithm. Finally, all values a ic multiplied by an appropr ia te 
constant so tha t the norm of φ is 1. 

Problems 

37. Apply Strang's approach to the dilation equation for the cubic Bat t le-
Lemarie scaling function to determine the relationship between the func-
tion values at 1, 2. arrd 3. 
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Let Pn(f) denote the projection of / onto V„. Since Vn+i = V„ θ V 1 , it 
follows tha t , for the Haar wavelets, one can write 

The theory of multiresolution analyses states tha t whenever we have an 
MRA, there is always a function φ tha t generates an orthonormal wavelet 
basis 

of L 2 ( R ) so that (3.6) holds for any / 6 L 2 ( R ) . (How this arises from the 
Orthogonal Decomposition Theorem was demonstrated in Chapter 2.) The 
factor of 2 - f c / 2 tha t appears in Vn,A.(0 normalizes these functions. 

How do we relate φ to the scaling function φΊ Given an MRA with scaling 
function φ, there is a dilation equation 

Note that since φ is a solution of this equation, so is any scalar multiple of φ. 
This means tha t φ may be normalized (just multiply by a suitable constant) . 
In other words, it can be assumed tha t 

(3.6) 

0(«) = Σ < * Φ ( 2 ί - * ) . 

— CO 

3.5 R E L A T I O N S H I P S B E T W E E N T H E M O T H E R 

A N D F A T H E R W A V E L E T S 

In the previous chapters we worked with wavelets, il>n,k, t h a t were generated 
from the mother wavelet φ. Recall tha t Vn,* (*) = Φ (2 n £ - k) for k from 0 to 
2 n — 1. However, in many instances we know the father wavelet, or scaling 
function, but do not have a specific formula for the mother wavelet. In (1.1) 
we saw how the Haar mother wavelet could be written in terms of the scaling 
function. In this section we will see that this is true in general, provided we 
have a multiresolution analysis. This will enable us to work with wavelets, 
even if all we have is a scaling function. 

Assume tha t we have a multiresolution analysis with a scaling function 
(father wavelet). In chapter 2, we computed the wavelet coefficients for the 
Haar wavelets by calculating the projections of signals onto the spaces Vn and 
V n

x . In fact, the Orthogonal Decomposition Theorem guarantees tha t each 
signal has a unique decomposition in Κι Φ V 1 . Specifically, the projection of 
a signal or function / G L 2 ( R ) onto V^- was given by 
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In addition, with an MRA, {<z>(f - k)}ksz is an orthonormal set. A straight-
foiward substi tution shows tha t {0(2f — k)} is also an orthogonal set. In other 
words. (<p(2t — k), 0 (2 / — m)) — 0 foi k φ m. T h e reader is encouraged to ver-
ify this fact in the problems that follow. 

The fact tha t {φ(2ί — k)} is orthogonal also implies tha t { 0 ( 2 i — k)} is a 
linearly independent set (problem 39). Note, however, tha t 

/•CO Ι ΓΟΟ 1 
(Φ(2Ι - k), 0(2t -k))= / 0 2(2< - *) A = i / φ\η) du = (3.7) 

. / —CO —CO 

so {0 (2 i — k)} is not an orthonormal set. 

To make computat ions easier, normalize the functions 0(2< — k) by mul-
tiplying each by V2. This gives a new dilation equation with normalized 
refinement coefficients Αι = ^ so tha t 

0 ( 0 = Σ <*Φ(* - *) = Σ Λ * ^ ( 2 « - *)· (3-8) 

Α Α 

Problems 

3 8 . Verify tha t (0(2< - k), 0 ( 2 ί - m)) = 0 for k φ πι. 
Hint: Use the substi tution u = 2t. 

39. Show tha t if {i'r,i>2. · • · ,v„} is an orthogonal set tha t does not con-
tain 0 in an inner product space V, then {vx,V2,• •. ,v„} is a linearly 
independent set. 

40. Show tha t £ f r h\ = 1. 

Hint: Use problem 18 of this chapter and the fact tha t c* = \/2Ai. from 
(3.8). 

Continuing with the problem of relating the mother wavelet to the father, 
recall tha t the mother Haar wavelet could be written in terms of the father 
wavelet by 

0 ( 0 = 0 ( 2 0 - 0 ( 2 f - 1). 

This equation can be writ ten in the more general form 

V-'(0 = £ f f A - v / 2 > ( 2 i - f c ) , 

A 

with go = g\ = — ̂ - and g, = 0 for all other i. In the Haar case the 

father wavelet has the foim 

0 ( 0 = Φ(20 + 0 (2* - 1). 
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Comparing this to (3.8), we find tha t ft0 = = ftj, and ft, = 0 for all other 
i. So, for the Haar wavelets, go = fti, <h = —fto, and gi = 0 for all other i. 

(Of course, we could have 30 = fto, 9\ = - A i , but we will see later why these 
particular assignments were chosen.) 

Let us assume, like with the Haar wavelets, tha t an MRA implies tha t ψ 

has the form 
ip(t) = Y,9kV2<t>(2t-k). 

k 

What does multiresolution theory tell us about the coefficients <?i ? 
Using (3.7) and problem 38 we obtain 

W),i>(t)) = {Thky/2<t>{2t - k),Y/9m^(2t - m ) \ 
\ k m I 

= Σ ft* ( ~ * ) · Σ 9 m ^ ( 2 t - m)\ 

k \ m I 

= Σ h k Σ Sm (v/20(2K - k), V2(f>(2t - m)) 

k m 

= Σ Λ *Λ» ( ^ ( 2 ί - * ) . ν ^ 0 ( 2 ί - m)) 

= Σ Λ * » ( ^ 2 ί - fc), >/2>(2t - Λ)) 

+ Σ Λ *3" · ( ^ ( 2 < - *). ν ^ 0 ( 2 ί - m)) 

= Σ 2 Λ * ^ · ( ^ 2 ί - *). - # 2 ί - *)> 

= Σ ' 1 * ^ · 

If we want the mother and father wavelets to be orthogonal (recall our 
discussion in chapter 2, where φ G Vo and φ G VoX), then the precceding 
string of equalities implies 

£ > . 9 A = 0 . (3.9) 

In addition, for k,m G Z, 

{φ(1 - k)Mt - m)> = (j£ fcV2>(2t - 2* - i), Σ ft vfy(2t ~ 2m - j ) ^ 

= Σ 2M> (0(2< - (i + 2fc)), 0(2f - fj + m))). 
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Note tha t all terms disappear except for those where i'. + 2k = j + 2m. So 

<0(i - k), t(t - m)) = £ 2 f f , 0 j (0(2* - q), 0(2< - q)) 

t+2A =}+2m=q 

= X)ff>5i-2(A-m)-

It is a straightforward exercise to show tha t {4>{t—fr)}i,gz is an orthonormal 
basis for V0

L. From this and the most recent chain of equalities we see tha t 

Σ ί θ , if k φ τη .„ „ Λ . 

, * * - » - > - ( ι , » . - „ . ( 3 - 1 0 ) 

There are many possible sequences {<?*} tha t satisfy (3.9) and (3.10). T h e 
values generally accepted for gu are given b y 3 

9 ι =(-\)lhl.L. (3.11) 

In this case, the mother wavelet is given by 

w) = Σ » -fr) = Σί-1)^!-* ̂ ί2* - *)· (3·12) 

Problems 

In this section wc began with a multiresolution analysis, assumed ψ could 
be wt it ten in the form t/'(0 = Σ * .9* \ /20(2Γ — fr), and ult imately airived a t 
(3.11). In the problems below, wc argue in the opposite direction. In other 
words, assume V' is denned by (3.12). 

41. Show tha t ψ is orthogonal to φ. (Hint: Arrive a t (3.9) and use (3.11) 
to see how to split the sum into two appropriate pieces.) 

42. (a) Show tha t {y.'(t — k)} is an orthonormal basis for VoX. 

(b) Show tha t (3.10) holds. (Hint: Compare problem 19.) 

43. For the Haar wavelets, show tha t £ t gi = 0. 

3AIthough we have attempted to avoid leferences to Fouiiei analysis throughout this book, 
the close relationship between Fouiiei analysis and wavelet theoiy makes that task lather 
challenging The relationship (3 11) is genet ally detived through Fouiier analysis using 
orthogonality There is a degiee of fieedom in defining these coefficients, and some authors 
use the definition gi, = ( — * / ΐ ι _ * . The details may be found in [10] and [30] 
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3.6 D A U B E C H I E S W A V E L E T S 

So far we have seen a variety of scaling functions. Of these, the Haar and 
Shannon scaling functions are, in a sense, at two extremes. The Haar father 
wavelet has compact support , but is discontinuous. On the other hand, the 
Shannon scaling function is smooth — all of its derivatives exist and are 
continuous - but its support is all of R. Since these wavelet families are at 
the far ends of the support and continuity spectra, neither is ideal for use in 
applications. Rather , some sort of compromise between compact support and 
smoothness is needed, and one was discovered by Ingrid Daubechies in 1987 

Daubechies sought a wavelet family that had compact support and some 
sort of smoothness. Starting with certain explicit requirements on the wavelets, 
she determined the appropriate refinement coefficients, and, using the cascade 
algorithm, developed a graph of a scaling function. Her discovery that one 
could actually find a scaling function, given the conditions she stated, was 
quite a feat, and was greeted with enthusiasm [19]. Daubechies actually de-
veloped a number of related wavelet families, and we will now consider one of 
the simpler examples. 

There are three requirements for the following example of Daubechies 
wavelets. The first condition is tha t the scaling function has compact support , 
in particular, tha t <f>(t) is zero outside of the interval 0 < t < 3. A consequence 
of this is tha t all the refinement coefficients are zero except en, c? and c$. 
Note that this implies φ[ί) = αοφ{2ί) + crf(2t - 1 ) 4 · c2<£(2i - 2) + r3</>(2i - 3). 
This requirement is called the compact support condition. 

44. Use the dilation equation (3.3) to prove tha t if φ{ί) is zero outside of 
the interval 0 < t < 3, then Cn = 0 if η is not 0, 1, 2, or 3. (Hint: using 
problem 17, see what happens when you use the following values of k: 
- 4 , —3, 6, and 7. Then, observe what happens when you substi tute the 
following values of t into the dilation equation: - 5 , 3.) 

The second requirement satisfied by this class of wavelets is the orthogo-
nality condition, which is at the heart of any multiresolution analysis. Simply 
stated, this condition requires tha t the scaling function be orthogonal to its 
translates. As seen in exercises 18 and 19, the orthogonality condition implies 
tha t cf = 2 and £ f e CfcCt_2m — 0 for any τη. When applied to this class 
of Daubechies wavelets we get 

[25]. 

Problems 

4 + 4 + 4 + 4 = 2 , (3.13) 

and, using m = 1, 

C0C2 + C1C3 = 0. (3.14) 
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Problems 

45. Why are other values of τη. not used in (3.14)? 

4 6 . It can be shown (through Fourier analysis) t ha t one consequence of a 
multiresolution analysis is tha t 

Use this fact and the dilation equation to prove tha t co + Cj +C2 + C3 = 2. 

The final condition on these Daubechics wavelets is called the regularity 
condition, and it is related to the smoothness of the scaling function. T h e 
basic idea is tha t the smoother the scaling function is, the bet ter the wavelet 
family can approximate polynomials. In this example, we want to ensure tha t 
all constant and linear polynomials can be writ ten as a linear combination of 
elements in {<p(t — k)} [10]. (This may need to be an infinite sum.) 

Two simple constant and linear functions are the functions 1 and t. Al-
though these functions are not members of L2(R), in a sense, the requirement 
above makes them "honorary members" of Vo. Then, using ideas from chapter 
2, these functions ought to be orthogonal to the mother wavelet φ. This leads 
to the following two equat ions 4 (often referred to as moment conditions): 

It is also said, under this condition, tha t the mother wavelet has vanishing 
moments. 

These moment conditions lead to two more equations tha t involve the re-
finement coefficients. Using the fact tha t the mother wavelet is defined in 
terms of the father wavelet and the refinement coefficients we obtain 

Keeping in mind tha t , foi the Daubechies refinement coefficients, only c.q, 
c.\, C2, and C3 arc nonzero, it follows tha t 

φ(ί) = -co0(2i!) + c,0(2r - 1) - c2c6(2i - 2) + c3</>(2i - 3). (3.15) 

The subsequent exercises will show how the moment conditions lead to the 
following two equations: 

-00 

00 
t/'W = ]0-l)*c,_,(o(2< - k). 

—00 

-Co + Ci - C 2 + ('3 = 0 

- c i + 2 c 2 - 3 c 3 = 0. 

(3.16) 

(3.17) 

A foimal derivation of these equations makes extensive use of Fourier analysis. 
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Problems. 

47. Derive equations (3.16) and (3.17) in the following fashion: 

(a) Show that , for any k, 

J—oo " J—oo 
dt. 

(Hint: Use an appropriate substitution.) 

(b) Show that , for any fc, 

/ *0(2i - k) it = j f φ(ή dt + j [ Γ0(ί) dt. 
J—oo " J—oo 4 7—CO 

(e) Use (a), the first moment condition, problem 46, and (3.15) to 
verify (3.16). 

(d) Use the second moment condition, problem 46, (3.15), (3.16), and 
(b) to prove (3.17) holds. 

48. The conditions (3.13), (3.14), (3.15), (3.16), and problem 46 give us five 
equations in four unknowns. Show that 

l + VZ 3 + v/3 3 - N / 3 l - \ / 3 
CO = , Ci = , C-2 = ; , C3 = 

is one solution to this system. 

Using the refinement coefficients from problem 48, we get the dilation equa-
tion 

« t ) = i±j ^ ( 2 i ) + 1±^Φ(*. -1) + 'ά-^-φ{2ί - 2) + 1-^φ(2ί - 3). 

The scaling function that arises from this dilation equation is rcferied to as 
D 4 , since there arc four refinement coefficients. 

Problems 

49. (a) Modify your CAS worksheet from the previous section to approx-
imate D4 via the cascade algorithm. Compare your result to the 
function on the cover of this book. 

(b) There arc two solutions tha t can be obtained in problem 48. Find 
the second one. Use the cascade algorithm to graph the scaling 
functions for this second set of refinement coefficients. How are the 
scaling functions related? Is it fair to say tha t the two solutions 
give "essentially" the same solution? Explain. 

50. For the D4 wavelets, show tha t .9* = 0 is satisfied. 
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5 1 . Use a CAS to draw au approximation of the graph of ψ of the Z?4 

wavelets. (Hint: Approximate φ as a function (a Maple routine is in-
cluded in the appendix) , then use (3 12)). 

It may seem surprising that Daubechies' three conditions would lead to such 
an odd-looking scaling function D 4 . Daubechies herself has said, "I guess we 
just have to live with the way they look" [40]. It is not difficult to see tha t 
D4 has compact support , but what about the other two conditions? 

Problems 

52. (Orthogonality) Use a CAS and some ideas from Riemann sum approxi-
mations to investigate numerically whether or not (Z? 4(i), J9 4 ( i — k)) = 0 
for three different nonzero values of k. In a similar vein, investigate 
whether or not (D 4 (<), D 4 ( i ) ) = 1. 

Although the regularity condition is difficult to observe, it turns out to 
be t rue that D4 is a continuous function, although it is not differentiable 
everywhere. Therefore, D4 belongs to C ° , but not C 1 . 

Problems 

53. Suppose we wish to invent a scaling function with the following proper-
ties. 

Compact support: the support of the scaling function is 0 < t < 1. 

Orthogonality: the identities from exercises 18 and 19 hold. 

Regularity: constant functions can be written as a linear combination 
of elements in {</>(f - k)}. 

Determine the refinement coefficients for this scaling function. Have wc 
seen this wavelet family before? 

54. Applv Strang's idea from section 3.4 to the dilation equation for D 4 to 
determine the iclationship between the function values a t 1 and 2. 

55. Although it is not a scaling function, the de Rharn function [12] is inter-
esting because it is a continuous function that is differentiable nowhere 
on R It satisfies the following dilation equation, which uses a coefficient 
of 3 rather than 2: 

R(t) = | / ? ( 3 r + 2) + ^7?(3ί + 1) + Λ(3γ) + i f l ( 3 t - 1) + | / ? (3 f - 2). 

Modify youi CAS worksheet from the previous section to create a graph 
of R using the cascade algorithm. 
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50. A variation on the derivation of the refinement coefficients for Z?4 is to 
not use the moment conditions [6]. This leads to three equations in four 
unknowns, so the solutions can be defined in terms of a parameter Θ. 

They are: 

co = hi - cos(0) + sin(0)) c, = ^ ( 1 + cos(0) + sin(0)) 

c 2 = 1(1 + < ; o s (0) - sin(0)) c 3 = i(l - cos(0) - sin(0)). 

Which angle θ gives the refinement coefficients for D4? Which angle 
θ gives you the refinement coefficients for the Haar wavelets? Choose 
a different value for θ and construct the scaling function that arises. 
Then, create an animation on a CAS tha t shows how φ will change as 
you vary Θ. 

We have seen some important ideas in this section. For the elementary 
Daubechies wavelets, the compact support , orthoganality, and regularity con-
ditions arc all tha t are needed to construct the scaling function to whatever 
accuracy we desire. From this we can approximate the mother wavelet and all 
children as well. This indicates tha t it is irot necessary to specifically know a 
formula for the scaling function in order to work with wavelets. Other wavelet 
families arc developed in this way. Sec chapter 4 for a project investigating 
the Daubechies scaling function De-

3.7 H I G H A N D L O W PASS F I L T E R S 

Now that we have seen more families of wavelets, including wavelets with rro 
simple algebraic- representation, we return to a discussion of how they nray 
be used to process signals. Given a multiresolution analysis, we can employ 
what is referred to as a "pyramidal" algorithm for processing. This algorithm 
depcrrds on two sequences, called filters. 

Recall frorrr section 3.5 tha t the father and mother Haar wavelets satisfy 
the. equations 0(/) = 0(2<) + 0(2i! - 1) and V>(/) = 0(2/) - 0(2/. - 1). More 
generally, for any wavelet family there will always be equations of the form 

0(f) = £ / n V 2 0 ( 2 i - f c ) and φ{1) = £ gk >/20(2t - k) (318) 

A i 

for the father arrd mother wavelets. 
The sequences {/?.*} and {g^} arisirrg frorrr these scaling equations rrrirst 

satisfy certain conditions, some of which have been explored rrr previous ex-
ercises. The most useful for our pirrposes is (3.11), which is again givcrr here 
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Remember that equation (3.11) allows us to construct the mother wavelet 
if we know the refinement coefficients and the scaling function. Even if wc 
don' t explicitly know the scaling function, the refinement coefficients and the 
cascade algorithm can be used to approximate φ and then ψ by (3.11) and 
(3.18) 

P r o b l e m s . 

57. Even though the hat scaling function does not define a family of orthog-
onal wavelets, draw the graph of ψ denned by (3.12). 

58. Repeat problem 57 for the quadratic Battle-Lemarie scaling function. 

59. Diaw an approximation to the graph of ψ, as defined by (3.12), for the 
cubic Battle-Lemarie wavelets. 

The sequences {/ι*.} and { t j * } that appear in (3.18) can be used to process 
signals and are typically called low pass and high pass filters, respectively. 0 

Let, 

S = [*0."l»-.-,*m-l] 

be a signal 6 of length 2" for some n. Recall t ha t this signal defines a function 
/ 6 V„ given i>y 

m-l 

f = Σ »Ι,Φν.ΙΤ· 

k=0 

The filters process signals by defining two operators Η and G tha t , when 
applied to a signal s produce two new signals, Hs and Gs , each half the 
length of s The A-th entries of the new signals Hs and Gs , denoted by (Hs)*. 
and (Gs)*.. respectively, are defined as 

2"-l 

(Hs)k = £ h^sj (3.19) 
7 = 0 

and 

2"-l 

( G s ) , = £ 97_2*-Α·^. (3.20) 
j=o 

While these operators arc defined for anv wavelet family, it is instructive 
to analvze them for the Haar wavelets. In this case ho = hi = ^ - and h, = 0 

5 It would seem that the jhigh pass filter should be {Λ.*.}, but that just isn't the case in the 
literature 
6 For ease of reading, we will not use the -'T" for transpose in this section. 
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for all other i. From (3.11), go = hi = gx = -ho = —̂ 5» a»d 9ι = 0 for 

all other i. So, if s = [1,2 ,3 , - 1 , 1 , - 4 , - 2 , 4 ] , then 

v/2 

Hs = [hoso + hi3\,hoS2 + /iiS3,/iu«4 + hiso,h0so + /11S7] = — [ 3 , 2 , - 3 , 2 ] 

and 

Gs = [goso + 9isi,g0s2 + gis3,goS4 + 9ι*5,9ο-% + 91S7] = — [ - 1 , 4 , 5 , - 6 ] . 

In general, apply these operators, using the Haar wavelets, to the signal 
s = [so, sx,..., sm-i] of length 2 n to obtain 

(Hs)0 = h0s0 + hi.ii = —(sQ + si) 

N/2 
( / / • S ) I = h0s2 + hi.s3 = — (.s2 + .s 3) 

and 

y/2 
(Hs)2„_1 = ho*2"-2 + hxs2n-l = — ( « 7 Π - 2 + * m - l ) 

V2 
{Gs)0 = g0s0 + gisi - — (.s0 - .s,) 

N/2 
( G s ) 1 = g0s2 + gis3 = — ( s 2 - «3) 

y/2 

(Gs)2n_1 = 50S2--2 + 9lS2"-l = — {sm-2 - s m _ i ) . 

This is, up to a scalar, exactly the averaging and differencing previously 
seen in processing with Haar wavelets. The only difference is tha t \ /2 appeals 
due to the fact tha t we are using normalized wavelets. 

It is important to note tha t , in the case of the Haar wavelets, when the 
operator Η is applied to s a new signal 

s 1 = [(Hs)0,(Hs)1,...,(Hs)2„_1] = — [so 4-*i ,*2 + s 3 , . . . , s m . 2 + sn,-i} 

of length 2 " - 1 results. This new signal is half the length of the original and its 
entries arc the coefficients of the projection of / onto V„_i. When we apply 
G to the signal s we get a new signal 

\ /2 
d 1 = [ ( ( 7 s ) 0 , ( G s ) 1 , . . . , ( G s ) 2 „ _ 1 ] = — [S0-«J . ,*2 - S 3 , - - - , * m - 2 - * m - l ] 
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whose components are the coefficients of / when projected onto x . In 
this way we can view Η and G as projections onto the subspaces V„_i and 
Vn

t_1. When the signals are concatenated ( [ s^d 1 ] ) , the function / has been 
decomposed as an clement of V„_i φ V^_1. 

To continue processing as in section 2.4, apply the operators Η and G 
to the new signal s 1 . Then s 2 = Hs1 = H2s is an element of V n _ 2 and 
d 2 = G s 1 = G(Hs) is in V^_2. Continue processing in this manner until 
signals of length 1 are obtained; then string together all the processed pieces. 

Returning to our example of s = [1 ,2 ,3 , —1,1 , - 4 , - 2 , 4 ] , recall t ha t 

s 1 = Hs= - ^ [ 3 , 2 , - 3 , 2 ] and d 1 = Gs = ^ [ - 1 , 4 , 5 , - 6 ] . 

The next s tep in the processing yields 

s 2 = Hs1 

d 2
 = G s 1 

(Note that s 2 is not a product of signals, but rather s 2 = H2s = H(Hs).) 
T h e original signal has now been transformed into 

[ β 2 , * ! 2 , * ! 1 ] = i [ 5 , - l , l , - 5 , - v ^ , 4 > / 5 , 5 v ^ , - 6 > / 5 ] . 

Finally, if Η and G aie applied to s 2 , the result is 

s 3 = tfs2 = ^ 2 and d 3 = G s 2 = ^ - 3 . 

This gives the decomposed version of our original signal, s, as 

s* = f y . d ' . d 2 , ^ ] = ^{2V2,3\/2,l,-5,-y/2AV2,5V2,-6\/2}. 

In general, the result of decomposing by the operators Η and G will look 

like 

s* = [ e ' . d " , . . . ^ 2 , ! ! 1 ] = [ / / m s , G / i m - 1 s , . . . , G i i 2 s , G / / s , G s ] . 

Note that this process depends only on knowing the filter coefficients {Λ*.} 
and {gi}. In particular, it is not necessary to know the scaling function or the 
mother wavelet. All the information is contained within the dilation equation 
which, as was stated eaihcr, lies at the heart of wavelet analysis. In essence, 
we can use wavelets without even knowing what wavelets are! 

This algorithm foi processing a signal via filters is called Mallat's pyramid 
algorithm [25]. The algorithm can be represented diagiamatically by 

= - [ 5 , - 1 ] and 

2 ( 1 , - 5 ] · 



74 MULTIRESOLUTIONS, CASCADES, AND FILTERS 

Once we know how to decompose a signal through filters, it is equally 
important to be able to rccompose the signal. Each of the operators Η and 
G has a so-called dual opcratoi , denoted H* and G* respectively These 
arc precisely the tools needed to reverse the pyramid algorithm. The dual 
operators are defined by 

( Z f V ) t = and «?»\ = Σ.9'-*>»γ 

Note the difference in the indices fiom the definitions of Η and G. 

An example is again instructive. Let 's apply these dual operators to our 
processed signals, s 1 = Hs = ^ [ 3 , 2 , - 3 , 2 ] and d 1 = Gs = - ^ [ - 1 , 4 , 5 , - G ] , 
to sec how they "undo" the processing. 

H*sl = [Λοβο> Λ ι*ο» Λ ο*},Λι«},Λοβ2 .Λι^,Λ 0 β3.Αι^] 

and 

ή {UK.! 

V 
( 3 , 3 , 2 , 2 , - 3 , - 3 , 2 , 2 ] 

= - [ 3 , 3 , 2 , 2 , - 3 , - 3 , 2 , 2 ] 

G ' d 1 = [ffo^o > .91 > 9od\, .91 d\, 90^2, 9i d\. 9od\ > .9i4] 

Τ ( χ ί - 1 * Μ , - 4 , 5 , - 5 , - 6 , 6 ] ^ 

i [ - l , l , 4 , - 4 , 5 , - 5 , - 6 , 6 ] . 

Adding the two signals yields 

r / V + G ' d 1 = [ 1 , 2 , 3 , - 1 , 1 , - 4 , - 2 , 4 ] = s. 

Thus we have reconstructed the original signal from the first step of the pro-
cessed signal. Note tha t H* and G* each pioduce signals tha t are twice the 
length of the input. 

To sec how the reconstruction process works in its entirety, consider the 
pioccssed signal 
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First, reconstruct s 2 from the pair [ s 3 , d 3 ] . 

[ s 3 ^ 3 ^ 2 ^ 1 ] - [ / f s 3 + G * d 3 , d 2 , d 1 ] 

- [ v / 2 , v/2] + ) , - ( — ) ] , - , 2 \ / 2 , —, -3V2 

ί - I I _* I _£ 2 ^ 2 ^ - 3 v / 2 
2 ' 2 ' 2 ' 2 ' 2 ' 2 ' 2 ' ' 2 ' 

= [ s 2 , d 2 , d 1 ] . 

Next, reconstruct s 1 from the pair [ s 2 , d 2 ] . 

[ s ^ . d 1 ] - . [ / i*s 2 + G * d 2 , d 1 ] 

A 5 . 5 _I _I, + A l _ 1 _ 5 5 _ ^ 2 ^ 5v/2 " 
2 l 2 ' 2 ' 2 ' 2 J 2 l 2 ' 2 ' 2 ' 2 J ' 2 ' V * 2 ' V 

Finally. rec:all that earlier wc saw how the original signal s is reconstructed 
from [ s ' . d 1 ] . Note that the reconstruction process involves applying the dual 
opcratois H* and G* successively until we get hack to the original signal. 

_ _ P r o b l e m s 

CO. If s = [.so, *>·)., . s m _i ] is a signal of length 2" for some n, show that , 

for the Haar wavelets 

H*(Hs) = i [(.s0 4- .s i) , (.s0 + . s , ) , . . . , (.s„,_ 2 + . s m _ i ) , ( s m _ 2 + s m _ i ) ] 

and 

G'[Ga) = -[(M0-sl)t{-80 + »l) 

(•Sm-2 - *m-l) , ( - * m - 2 + * m - l ) ] . 

61. Show that H'(Hs) + G*(Gs) = s for anv signal s of length 2" using the 
Haar wavelets. 

62. Write a paragraph explaining figuie 2.7 on page 40 in chapter 2 using 
the idea of filters presented m this section 
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s 

We must be careful when applying the processing and decomposing algo-
rithms. Orthogonality plays a critical role in the projections onto the sub-
spaces V„ and V"̂ 1-, so these algorithms won't perform in the same way if the 
wavelets used are not orthogonal. For example, we won't get the same kind of 
results if we t ry this with the hat wavelets. In addition, the operators defined 
by (3.19) and (3.20) are designed to process signals of infinite length. So even 
with orthogonal wavelets there may be incorrect recomposition of the com-
ponents at either end of a finite signal if the number of nonzero refinement 
coefficients used is different than two. This is called a boundary problem. One 
method for dealing with boundary problems, the periodic method, is discussed 
in problems 64 and 65. 

P r o b l e m s 

63. Find the filters {Λ*} and {g^} for the £>4 wavelets. 

64. (a) Verify tha t H*(Hs) 4- G*(Gs) returns the middle four components 
for a signal of length 8 rising the D$ wavelets. 

(b) One way of dealing with these boundary problems is to extend 
the signal beyond its boundaries, making the signal pci iodic. In 
other words, instead of working with a signal s of finite length, 
consider the signal [..., s, s, s , . . . ] of infinite length. Here, let s be 
a signal of length 8. Repeat (a) with the signal [s , s , s ] . Show that 
H*(Hs) + G*(Gs) returns s in the middle 8 components, using the 
D\ wavelets. This approach to dealing with boundary problems 
is called the periodic method. One problem with this approach is 
tha t we have extended the length of our signal. 

65. (a) To define filters to operate on a finite signal without extending the 
signal, we use the shift operator S on a signal s = [«o, »ι, • • •, sm]. 
Define S by 

S(s) = [ s i , . s 2 , . . . , s n , s 0 ] . 

Pick a signal, s, of length 8 and find Sk(s) for each integer k. 
Note that this will involve determining the inverse, S - 1 of the 
shift operator. 

Problem 61 shows that if we add H*(Hs) to G*{Gs) we get back our 
original signal. This is the last step in the reconstruction process which uses 
the same filter coefficients and can be represented diagramatically by 
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(b) To examine periodicity, consider the case of the D4 wavelets. The 
opciators Η and G arc defined by (3.19) and (3.20). Now define 
periodic operators, Hp arrd Gp, on a signal, s, in the following 
maimer: 

(Hlls)k=YthJ(S
2Hs))J and (Gps)k = £ > _ 2 ( S 2 ' - 2 ( s ) ) ; . 

j j 

Show tha t , in the case of the D4 wavelets, these operators Hp and 
G,, act on a signal of length 8 exactly as the filters Η and G acted 
on a signal when we extended it in both directions as in 64(b). 

(c) The dual operators of H,, and Gp can also be defined for the D4 
wavelets, but they are more complicated. Define 

( * ; · · ) ι = 

even 

and 

X ^ - a ^ S i - V ) ) , if*" 

£ , / > 5 - 2 j ( S ^ - V ) ) , if k is odd 

'EJ92-2j(s*-1(s*)) if k. is even 

Σ , Ρ β - ^ ^ - ν ) ) , if k is odd. 

Remcrrrbcr, when Hp and G* are used to recomposc our original 
signal, the signal s* in these formulas will be half the length of the 
original signal. Show that , for the D4 wavelets, 

H*p(Hps)+ G;(G ps) = s 

for any signal of length 8. For more details on this method or other 
schemes for dealing with boundary problems, see chapter 8 of [28]. 

3.8 M O R E P R O B L E M S O F T H E D I G I T A L A G E : C O M P A C T D I S C S 

There are two wavs of representing information: analog and digital. Ana-
log refers to information being presented continuously, while digital refers to 
da ta defined or sampled in steps. For example, in section 1.6, the graph of 
f(t) = sin(20r)(hi(f)) 2 (analog) was compared to an approximation obtained 
by sampling at 32 evenly spaced points (digital). T h e advantage of analog 
information is its ability to fully leprcscnt a continuous stream of information, 
whereas digital da ta is less affected by unwanted interference or noise. When 
it is copied, digital information can be reproduced exactly, whereas analog 
information is always degiaded. 
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Today, there is a need to be able to efficiently store sound, such as speech 
and music. Like images, sound can be digitized, and this is how such informa-
tion is stored on compact discs. The key mathematical tool for digitization 
of sound is the Shannon wavelets. In this section, some of the ideas tha t have 
been utilized to store music on compact discs are discussed. 

At a primitive level, sound is just a wave that is t ransmitted through a 
medium such as air. A simple sound, or pure tone, has the form of a sine 
wave. These waves are periodic they repeat themselves. The t ime it takes 
for a wave to repeat itself is called a cycle. 

Some waves have short cycles and others long ones, and the length of a 
wave's cycle is related to its pitch, or frequency. In general, sounds with short 
cycles have high frequency while long cycles correspond to lower frequencies. 
The frequency of a wave is often measured in units called Hertz (Hz), with 
1 Hz meaning one cycle per second. High-pitched sounds, such as a police 
whistle or piccolo, have a high frequency with thousands of Hcitz; low-pitched 
sounds, such as far-away thunder or a tuba, have a low frequency with only 
a few cycles per second. We hear vibrations between 20 and 20,000 Hz as 
sound. 

Another a t t r ibute of sound is loudness, which is determined by the ampli-
tude of the sound wave. Loud sounds concspond to waves with large am-
plitude; soft sounds correspond to waves with small amplitude. As a wave, 
sound can be thought of as a function s of t ime t, where s(t) measures the 
intensity of the sound, which is the displacement of the wave from the i-axis. 

Sound is a continuous phenomena. However, just as we did with the ex-
ample in section 1.6, a continuous sound can be sampled and converted to a 
digital signal. The ideas that were discussed in chapter 1 · sampling, t rans-
forming using wavelets, and quantization can be applied equally well to 
sound. 

66. Suppose we want to work with trigonometric functions with ficquency 
less than 10. Which of the following could we use? Why? 

Now let's sample a sound of frequency m cycles per second (m a power of 2), 
where sampling at j points produces a digital signal with j components. (To 
maintain consistency of the digital sound throughout the signal, it is important 
to sample uniformly from each cycle.) Fiist , choose a wavelet space Vn for 
some fixed value of n . If 2 " = m , then the sampling can be uniform across 
cycles; if 2" > m, then each component of the signal can be divided into 
2 or moie subcomponents with the same intensity until the signal contains 
2" components. However, if 2 n < m, then the sample would contain more 

Problems 

(a) sin(127ri) 

(c) cos(437ri!) 

(b) cos(3i) 

(d) sin(70<) 
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uifoi mat ion from some cycles than others and the signal would not represent 
the sound faithfully. (This is like trying to approximate a function tha t is 
defined on "sixteenths" with the Haar wavelets tha t are defined on "eighths.") 
So, in order to maintain the consistency of the signal, it is necessary to have 
2" > m The consequence is tha t if we s ta r t with a signal, we can choose 
whatever sufficiently large η we want in order to sample uniformly. However, 
if we fix 77, then we need to limit the frequency (number of cycles per second) 
of our sound. 

It is possible to use ideas from Fourier analysis to develop a general idea 
of limiting frequencies. As not all sounds are pure, they cannot be modeled 
by trigonometric functions, whose frequency is easily calculated (see problem 
66). Instead, an analog signal s(t) is called band-limited by frequency m if 

/

CO /'OO 

cos(of).s(f) dt = 0 and / sin(wr).s(r) dt = 0 
-co J—oo 

when |u>| > 2?Tm. 
Equivalently, s is band-limited by frequency m if 

s(t) dt, = Q 

when |ω| > 2 π 7 η . The function .s is called the Fourier transform of s. This 
is a complex-valued function, and many proofs of theorems about wavelets 
make use of it Another way to say tha t .s is band-limited is to say tha t i ts 
Fourici transform has compact support . 

Problems 

67. Prove tha t f(t) = sin(7i) 4-cos(5r) is band-limited, and determine the 
limit frequency m. 

68 Prove tha t the Haar scaling function <f>h is not band-limited by any 
frequency m. 

69. It can be proven that the Fourier transform of the Shannon scaling 
function φ„ defined by φ3(ί.) = , is a complex multiple of 0/,(< + ^ ) . 
Based on this fact, what can be concluded about the Shannon scaling 
function? 

The Shannon Sampling Theorem states tha t if .s(f) is barrd-limited by fre-
quency m, then 

, » / \ sin(7r(2777< - k)) , n ( M . 

« t ) = Z *\Lt-k)) • ( 3 · 2 1 ) 
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(For a proof of this theorem 7 , see [21].) Letting m = 2 n , (3.21) can be 

rewritten as 

« M = f > ( ^ W " + i i - * ) . < 3 - 2 2 ) 

—oo ^ ' 

This sampling theorem is very important . I t s tates tha t for a band-limited 
function s, there is a frequency « c , so tha t s is completely specified by its 
sampled values on any sampling interval of length less than The frequency 
« c is known as the Nyquist frequency. No information is lost if a signal is 
sampled a t the Nyquist frequency, and no additional information is gained by 
sampling faster than this rate. 

Problems 

70. Explain why this theorem is called a sampling theorem. 

71. If s(t) is band-limited by frequency 1, then which values of s(t) do we 
need to know in order to reconstruct the whole function s(t)? Which 
Shannon wavelet spaces would s(t) belong to? 

72. Determine the refinement coefficients for the dilation equation for the 
Shannon scaling function. 

73. Substi tute the Haar scaling function as s in (3.22), with η = 1. W h a t 
does your result tell you about the Haar scaling function? 

The next two problems suggest where wavelet analysis arises in this situa-
tion. If the sound signal s(t) is band-limited by 2 " - 1 , then it can be writ ten 
as a linear combination of {</>s(2

ni - k)}, the wavelet sons, which is sufficient 
for the scope of this text. 

Problems 

74. Prove this theorem: If s is band-limited by 2 n 1 , then s e V n , where Vn 

is the n t h Shannon wavelet space. 

75. Prove tha t s(t) — sin(4wf) is band-limited by frequency 2. Then deter-
mine the coefficients that make s a linear combination of the appropriate 
wavelets. 

7 This result was proved by Claude Shannon in the 1940's, long before the word wavelet was 
coined 
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The sampling rate of compact disc players is based on the mathemat ics 
described in this final section. The highest audible frequency is approximately 
18,000 cycles per second (which is approximately 2 1 4 *), so we can assume tha t 
any sounds tha t are digitized and stored on a compact disc, are band-limited 
by, say, 2 1 4 . So, for nearly all audible sounds, s(t) € V15, and, according to 
Shannon's Sampling Theorem, it, follows that 

Accordingly, if we sample the sound every 2 1 5 seconds, then we ought to 
be able to reproduce the sound exactly. In other words, a sampling frequency 
of 32768 cycles per second should be sufficient. In fact, compact disc players 
sample at 44100 cycles per second in order to cover all audible sounds, as well 
as some tha t are not audible. 

There is also a quantization and coding process t ha t takes place in the 
design of compact discs, similar to what was discussed in chapter 1. T h e 
function values of s(t) tha t are sampled are converted to sixteen-bit numbers 
through a mapping from the range of s(t) to the integers from 0 to 66535. 
This is done through a method called pulse code modulat ion (PCM) , which 
was invented in the 1940's. For more information on P C M , see [29]. 

76. Advanced books on wavelets make considerable use of the Fourier trans-
form. For instance, in [10], we read, 

Apply the Fourier transform to (3 8) in order to derive this equation 
from Daubechies' book. 

Problems 
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4 
Sample Projects 

4.1 I N T R O D U C T I O N : O V E R V I E W O F P R O J E C T S 

The projects in this chapter are for use by the reader or in a classroom. 
The project in section 4.2, Image Processing and Compression, can be 

completed bv s tudents in a first semester linear algebra class using material 
from chapter 1. The project involves creating, processing, and compressing 
an image using entropy coding. A Maple file to generate the 16-by-16 matr ix 
Aj needed for the processing is included in appendix B. Students who have 
studied inner product spaces, oithogonal decompositions, and chapter 2 could 
write code to process images in this way, or can use the inverse Μχβ of A4. 
This project uses two programs Pixel Images for constructing and viewing 
images and Maple for processing the d a t a 

The project in section 4.3, A Wavelet-Based Search Engine, also utilizes 
material from chapter 1, along with Pixel Images. In this project, wavelets 
aie used in order to define a '•distance" between images, which leads to the 
development of a search engine foi images. 

The iest of the projects arc based on material in chapter 3. B-Splines, in 
sec Hon 4.4, further explores the Battle-Lemarie wavelets as they are studied in 
a course in numerical analysis. Processing with the D4 Wavelets investigates 
how to use Daubechies wavelets to process images, extending the ideas of the 
first project. Finally, in Daubechies Wavelets with Six Refinement Coefficients, 
the reader is asked to create the D§ scaling function in a fashion similar to 
how the D4 scaling function was created in section 3.6. 
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4.2 L I N E A R A L G E B R A P R O J E C T : I M A G E P R O C E S S I N G A N D 

C O M P R E S S I O N 

If we want to digitally store an image, like a picture or a fingerprint, we could 
partition the image vertically and horizontally and record the color or shade 
a t each grid entry. The grid entries are considered as pixels. This gives us 
a matr ix X of colors or gray-scale, indexed by the horizontal and vertical 
positions of the pixels. Each row or column can be treated as a piecewise 
constant function. Then we can apply a 16-by-16 wavelet conversion matrix 
(Mi6 or Ai) to X to convert the columns to wavelet coefficients. After tha t , 
we can choose a tolerance and eliminate all entries below that tolerance to 
obtain a list of vectors that we then compress, using entropy coding (table 
1.1). Finally, we can convert the compressed da ta back to pixel shades by 
undoing the previous process In this project you will apply these ideas to an 
image tha t you will construct. 

Part 1: Creating an Image 

Use the program Pixel Images (this program can be downloaded from our 
web site www. gvsu . e d u / m a t h s t a t / w a v e l e t s . htm) to produce a gray-scale im-
age on a 16-by-16 grid. An example is given in figure 4.1. Save this image to 
the file image.txt. 

Part 2: Processing the Data 

Process the da ta using the appropriate method (matrices yl 4 and Μχβ, 
or inner products) . Save the processed da ta to a file named datal.txt. (A 
Maple routine to read from the da ta file datal.txt is included in section B.2 
in appendix B.) 

Take the processed matrix from the file datal.txt and convert it to one 
long vector by concatenating the rows. Apply thresholding (hard thresholding 
works well) to the da ta to obtain a new collection of data . Save this da ta to 
a file data2.txt. (A Maple routine for writing da ta to a file is included in 
appendix B.) Use entropy coding (section 1.7) to convert to a compressed 
string. Save this as compiess.txt. How much compression do you realize? Be 
sure to show all steps in the process. 

Part S: Reconstructing the Image 

Here you must 
(1) decompress the data from compress.txt into 256 wavelet coefficients, 
(2) recompose the sixteen vectors from the 256 wavelet coefficients, and 
(3) recreate the picture using Pixel Images. 
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Fig. 4.1 Flower image created with Pixel Images by students Flora Gonzalez, Jennifei 
Kortgohn, and Linda Lowden from MTH 327, summer 1997 at Grand Valley State Umveisity 

Turn in the files imaqe.txt, datal.txt, data2.txt, and cornpress.txt along 
with a picture of your original image and the image reconstructed from your 
compressed da ta . 

Take care m the construction of your original image; the image recon-
structed from your compressed da ta should strongly resemble the original 
image 

A report is required to accompany the files you submit . In your report you 
should include a discussion of all processes used in the project. Take special 
care when describing how you chose vour thresholding value. 

Pait J,: Two Sided Piocessmq (Optional) 

In the previous three parts of this project we converted only the c o l u m n s 
of arr rrrrage matrix X to wavelet coefficients. To introduce more zeros in 
our matr ix, we might also convert each r o w of our processed wavelet matr ix 
Y = AX to obtain their wavelet coefficients. 

Explain how you could use the same matr ix A to find the wavelet coeffi-
cients of the rows of Y How would you store this final matr ix? 

Once you've converted both the rows and columns of your original image 
matrix X. how would you reconvert to obtain the original image? 
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Use your example from part 1 to reduce both rows and columns. Apply 
thresholding to this processed matr ix and repeat par t 3. Does this introduce 
significantly more zeros in the process? If not, can you explain why? Do you 
think this "double" processing is worthwhile? Explain. 

Turn in the same three types of files as described in par t 3. Label these 
files however you like but be sure to explicitly identify which file is which. 

4.3 A W A V E L E T - B A S E D S E A R C H E N G I N E 

Search engines on the Internet are very useful for finding certain words on 
World Wide Web pages. However, search engines are not nearly as efficient 
a t locating images. In this project we will examine a way to use wavelets to 
design a search engine for images. The idea is motivated by the work of Wang, 
Wiederhold, Firchein, and Wei [43], and the writings of Stollnitz, DeRose, and 
Salesin [37]. 

For each image we can define a smaller feature vector, which contains much 
of the information from the original image. This is where wavelets come in, 
because wavelet coefficients can be used for tha t information. If we define 
a distance between these vectors, then the distance between images tha t are 
similar to each other will be relatively small. 

Problems _ 

1. Using Pixel Images, create a 16-by-16 grayscale image. 

Now, we will describe how to create the feature vector ν = [ν,], which will 
be in R 8 0 . The creation of this vector will require a number of transformations 
First , we will use Haar wavelets (from V4) to process the image (creating an 
two-dimensional image box), as described in section 2.6. This will yield a new 
16-by-16 matrix Μ = {m,,,} of wavelet coefficients. 

Problems 

2. Explain why the entries in the upper left 8-by-8 submatrix come from 
averaging. 

3. Why would these entries be a good proxy for the original image? 

Apply quantile thresholding to this 8-by-8 submatrix, leaving the 48 largest 
(in absolute value) coefficients. Label this new 8-by-8 matrix C = {c-ij}. 
These entries of C will be the first 64 entries in the feature vector, using the 
following rule: 

v = [ίΊ,1,'·Ί,2, · · · >f 1,8,'"2.1, · · · ,'-"2.8, · · ·,<•%!, • · · , c 8,8,"65,1'66» - · · ,"8θ] 
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For the last sixteen entries, wc aic going to use the diagonals of two of 
the subniatriccs of Λ/, in particular the upper-right. 8-by-8 submatr ix , and 
the lower-left 8-by-8 submatr ix . (These are the wavelet coefficients created 
by using a high-pass filter and a low-pass filter once.) For instance, 

''65 = ' "1 ,9 , "66 = "'-2.10, · · · , "72 = " ' 8 ,16 . 

while 

t'73 = ">9,1 > "74 = " Ί Ο 2> · · · , "80 = '"'16,8· 

By taking a sample of these wavelet coefficients, it is reasonable t o conclude 
that if two images have nearly identical feature vectors, then the images should 
be quite similar. 

Problems 

4. Create the feature vector for your image from Problem 1. 

How will we compare feature vectors from different, images? We will use a 
weighted distance between vectors. In general, for two vectors u and v , this 
would be defined by: 

64 80 

rf(u, ν ) = Σ wi I u, - vt I + ^ w2 I ii, - vt I 
7 = 1 t=65 

where w\ and w2 are weights tha t can be chosen arbitrarily. Wc are going to 
work under the reasonable assumption that irrrages tha t arc similar will have 
similar subniatriccs C, and use the other coefficients as "tic-breakers." So, it 
will be wise to use a value of w\ which is significantly larger than the value 
of w2. For instance, we can use wi = 1 and w2 = ^. 

Problems . 

5. Experiment by creating several images, some which are similar to others, 
and some which are quite different. Then compute their feature vectors 
and the distances between each pair of vectors. (For instance, foui 
images will lead to six different distance calculations.) Repor t on your 
results 

6. This project, is most interesting when seveial people part icipate, such 
as in a class. Compute the distance between your feature vector arrd 
several others. Discuss whethei the vectors which are "close" lead to 
images which are "close " 

7 Describe how a scaich engine could be designed for images. 
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4.4 B - S P L I N E S 

Interpolation is the problem of finding a function tha t fits given data . In 
particular, suppose we have the values of a function / a t η + 1 da ta points 
to, * ι, *2> · · ·, tn- (These points are also called nodes.) Wha t sort of function 
S can be created so that 

S(t0) = /(ίο), S(«0 = /(«l), · · ·, S(tn) = /(«„)? 

There are many possible answers to this question, one of which is called a 
bell-shaped spline, or B-sphne. 

The idea behind a spline is to define a polynomial on each interval [to, i i ] , 
[ίχ,^], etc., so tha t these polynomials share the values of / at the nodes, 
and other conditions hold so tha t a certain number of derivatives of the spline 
exist. An example of a spline is the quadratic Battle-Lemarie scaling function, 
introduced in chapter 3. This spline interpolates the four function values 

/ ( 0 ) = 0 , / ( l ) = i , / ( 2 ) = i , / ( 3 ) = 0, 

and its derivative is continuous. Notice that this function is "bell-shaped". 

Problems _ 

1. Verify that the derivative of the quadratic Battle-Lemarie scaling func-
tion is continuous, but the second derivative is not 

All splines satisfy three types of conditions: interpolation, regularity, and 
boundary. In this section, we will focus on the specific conditions required 
for a cubic J3-spline. Details about other splines can be found in various 
numerical analysis books [5]. 

A cubic β-spline S uses five equally-spaced nodes: <ο,Ί,ί2,<3,*4, but it 
only uses the value of the function / a t ίο,'2, and U. It is defined as a cubic 
polynomial on each of four subintervals [to, t i ] , [ίι,ί^], [*2,*3], and [ί3,ί 4]. So, 
to begin with, we have 16 unknown constants: 

'αο + αιίϊ + α 2 ί
2 + α 3 ί

3 , t0 < t < ίχ 

. _ \a4 + a5t + a 6 t 2 + a7t
3, h <t<t2 

o 8 + a9t. + a 1 0 r + a n t 3 , t2 < t < t 3 

, a 1 2 4-«13*+ α ΐ4 ί 2 + a i 5 i
3 , t3 < t < t 4 . 

To determine the values of these constants requires 16 equations. All of the 
equations turn out to be linear, so this problem can be solved using matrices. 

The interpolation condition requires tha t S share the function values of 
/ a t the three nodes just mentioned As a result, the following four linear 
equations must be satisfied: 
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«0 + fli'o + «2<ο + O3<o = f(fo) 

a 4 + a 5 r 2 + a 6 t 2 + a7l\ = f(t2) (4.1) 

a8 + a9t2 + amtl + a n t l = f{t2) (4.2) 

Oi2 + a 1 3 t 4 + a 1 4 i | 4- a 1 5 ^ = / ( < 4 ) . 

The regularity condition s tates tha t S, S' and 5 " must he continuous. Since 
S is made up of cubic polynomials, the only points where there might b e 
trouble arc the nodes fi , f2, and r 3 . Requiring that the separate pieces of S, S' 
and S" agree a t these nodes leads to eight more linear equations —• three each 
at ti and r 3 . but only two at t2 since (4.1) and (4.2) above guarantee t ha t S is 
continuous there. For example, at t\, there are the following three equations: 

no + a\h + 02*i + a3t\ = a 4 + a5ti + a 6 i 2 + a7t\ 

o,i + 2 a 2 t i + 3a3tl = a5 + 2a6tx + '3a7t
2 

2a2 + Ga3ti = 2a& 4- 607*1. 

Finally, the boundary conditions control what happens t o the B-spline 
at to and t 4 . Basically, to make the spline "bell-shaped", we want it to 
flatten out at these nodes, and we can cause this to happen by making the 
following requirements: S'{t0) = 5 ' ( t 4 ) = 0 and S"(t0) = S"(U) = 0. These 
requirements lead to four more linear equations, for a total of sixteen. 

Problems -

2. Determine the cubic B-spline tha t interpolates the following function 
values: / ( 3 ) = l , / ( 6 ) = 8 , / (9 ) = 1. Graph this spline. 

3. The cubic Battle-Lemarie scaling function is an example of a cubic B-
spline I ts suppoi t is 0 < / < 4, and it is known tha t φ(2) = | . We must 
also have that <z>(0) = φ(4) = 0 as well. Use these facts to determine 
the formulas for the cubic functions on the appiopriate subintervals tha t 
make up this scaling function. Graph this spline. 

4.5 P R O C E S S I N G W I T H T H E D4 W A V E L E T S 

In this project, we piocess an image constructed with the program Pixel Im-
ages, using the D 4 wavelets instead of the Haar wavelets. This project is 
similar to the Lineai Algcbia Project in section 4.2 and, when completed, the 
results should be compared to those obtained using the Haar wavelets. To 
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undertake this project, periodic schemes as discussed in section 3.7, problems 
64 and 65, must be completed. 

We begin with a gray-scale matr ix X indexed by the horizontal and vertical 
positions of the pixels. Treat each row or column as a piecewise constant 
function as discussed in chapter 1, then apply the Dt wavelets to each column 
of the matrix to obtain wavelet coefficients. 

To process using the Haar wavelets, we applied a 16-by-16 wavelet conver-
sion matrix (Mie or At) to X to convert the columns to wavelet coefficients 
(see chapters 1 and 2). To apply the Dt wavelets in a similar manner , we 
will need to construct the analogous matrices for these Daubachies wavelets. 
To construct a wavelet conversion matr ix similar to the ones used to process 
with Haar wavelets, we will need to connect the mat i ix approach to the filters 
approach taken with the Daubachies wavelets in section 3.7. One problem we 
will have in applying the Dt wavelets is tha t of inexact reconstruction on the 
boundaries of our signals. We can adapt using a periodic: scheme as discussed 
in section 3.7, problems 64 and 65. 

Part 1: Creating the Wavelet Conversion Matixr,. 

To produce a wavelet conversion matrix C which computes the wavelet 
coefficients CX from the image matr ix X, using the Dt wavelets, we need to 
determine how to completely process any 16-by-l signal. As we saw in chapter 
2, this is done in steps. 

Step 1. Apply the periodic filters for the £) 4 wavelets from problems 64 and 
65 in section 3.7 to a signal, s, of length 16. From this, construct a 
16-by-16 matrix C\ tha t performs the operatiorrs of both the low pass 
and high pass filters associated to the Dt wavelets. 

Step 2. Find the 16-by-16 matr ix Ci t ha t performs the operations of both the 
low pass and high pass filters associated to the Dt wavelets on the first 
half (the result of the low pass filter) of the processed signal from Step 
1. (To construct this matr ix yoir will agairr rrccd to apply the periodic 
filters, this time to a signal of length 8, convert the result to a matr ix 
format, therr extend to a 16-by-16 matrix that acts as the identity on 
the last 8 characters.) 

Step 3. Find the 16-by-16 matr ix C3 tha t perforrrrs the operations of both 
the low pass and high pass filters associated to the Dt wavelets on the 
first half (the result of the low pass filter) of the processed signal frorrr 
Step 2. 

Now combine these matrices C\, C2, and C3 to construct the wavelet con-
version matrix C. Use this matr ix to process the image matrix, X. 

To reverse the processing we need to invert the rrratrix C. Depending orr 
the CAS used arrd the processing speed of your computer, it might be faster to 
invert each of C\, C2, and C3 and then combine these irrverses appropriately. 
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Part 2: Creating an Imaqe. 

Use Pixel Images to produce a gray-scale image on a 16-by-16 grid or use 
the image produced in the Haar wavelets project. Repeat the remaining par t s 
of Project 1 using the £>4 wavelets. 

Part 3 (Optional)- Comparison of Haar Wavelets to D 4 Wavelets in Image 
Compression. 

Compare the compression ratios (or the number of zeros introduced into the 
processed matr ix after thresholding) to the quality of the recomposcd image 
using the Haar and D 4 wa%-clcts. Which seems to produce better compression 
while still maintaining the integrity of the original image? Did you expect 
this? Explain. 

4.6 D A U B E C H I E S W A V E L E T S W I T H 

SIX R E F I N E M E N T C O E F F I C I E N T S 

Your goal in this project is to create and work with De, the scaling function 
of Daubechies tha t has six refinement coefficients. Here arc the requirements 
for this scaling function 

1. Compact Support. The support of the scaling function is 0 < t < 5. 

2. Orthogonality The identities from section 3.3 hold. 

3. Regularity Constant, linear, and quadratic functions can be writ ten as 
linear combinations of elements in {<j>(t — k)}. 

Part. 1. Create the .scaling function. 

To create the scaling function, first determine the seven equations with six 
unknowns tha t arise fiom the condrtions above. Next, solve these equations 
numerically using Maple Then, make use of the cascade algorithm to generate 
De. You should notice that the g iaph of De is smoother than tha t of D 4 . 

Part 2. Create the mother wavelet. 

Now tha t the scaling function is created, you can cieate. a g iaph of the 
mother wavelet bv using the relationship between the two functions tha t is 
described rrr chaptei 3. 

Part H: Filtering with D$ 

Problem 64 in section 3 7 describes a way to use filters based on D4. Create 
the filters based on DQ and then create a signal s with length appropriate to 
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Ζ>6· Use the periodic method to decompose this signal with the filters. Then 
rccomposc from the wavelet coefficients. 

Part. 4: More Filtering with DQ (optional). 

Now apply the method of pioblcm 05 in section 3.7 to decompose the signal. 
Then, rccompose from the wavelet coefficients. 



Appendix A 
Vector Spaces and Inner 

Product Spaces 

A . l V E C T O R S P A C E S 

A signal is an ordered string of real numbers. The number of entries in the 
string is called the length, of the string. We can add two signals component-
wise and multiply a signal by any scalar simply by multiplying each component 
of the signal by that scalar. The collection of all signals of length η is denoted 
R". This set is closed under addition and multiplication by scalais By 
closed, wc mean that if we add two signals in R" or multiply a signal in R" by 
a ieal numbet . the icsult is another signal in R n . Other familiar and useful 
properties arc satisfied as well. For example, it does not mat te r in which oidcr 
signals aic added, addition is associative, multiplication by scalars distr ibutes 
over the addition of signals, and so on These opeiat ions of addit ion and 
multiplication bv scalais make R" into what is known as a vector space Heie 
is a formal definition. 

D e f i n i t i o n . A set V on which addition of elements and a multiplication by 
scalais (ieal numbcis) is defined is a vector space and the elements of V aic 
called vectors if 
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1. u 4- ν G V for all u , ν G V (V is closed under addition) 

2. u + ν = ν + u for all u , ν G V (addition in V is commutative) 

3. (u 4- v) 4- w = u 4- (v 4- w) for all u, v , w G V (addition is associative 

in V) 

4. There is an element 0 in V so tha t 0 4- ν = ν for all ν G V (V contains 
an additive identity, an clement tha t we label as 0) 

5. For each ν in V there is an clement - v in V so tha t ν 4- ( - ν ) = 0 (each 
element in V has an additive inverse in V) 

6. h e V for all ν G V, fc G R (V is closed under multiplication by scalars) 

7. (fc/)v = Jfc(Zv) for all ν G V, fc,Z G R (scalars may be placed anywhere 
in a product) 

8. (fc 4- l)v = fcv 4- Zv for all ν G V, fc,Z G R (multiplication of vectors by 
scalars distributes over addition of scalars in V) 

9. fc(u 4- v) = fcu 4- fcv for all u , ν G V, fc G R (multiplication by scalars 
distributes over addition of vectors in V) 

10. l v = ν for all ν G V. 

The collection R n of all signals of length η is a vector space, called n-
dimcnsional real space. The additive identity in this space is the signal whose 
components are all 0. The additive inverse of a signal [vi, v 2 , • • •, v„] is the 
signal [—vi, — v 2 , . . . , - v „ ] , (In chapters 1 and 2, we represent signals as 
column vectors. There is an obvious identification of a column vector with a 
row vector, which we exploit in this appendix.) 

The space R n is just one example of a vector space. Anothei is the collection 
of all m χ η matrices with ical entries under the s tandard addition and scalar 
multiplication of matrices. 

An important example tha t is relevant to the study of wavelets is the vector 
space of all real valued functions of a real variable. Let 

F = {/ : R -» R | / is a function}. 

We define addition and multiplication by scalars on F as follows: if / and g 
are elements of F and fc is a real number, then 

( / 4- g) is the function defined by ( / 4- g)(t) = f(t) + g{t) for all t G R 
fc/ is the function defined by (*/)'(*) = k(f(t)) for all t G R. 

It is not hard to show tha t F is a vector space under these operations. The 
additive identity is the zero function, namely the function ζ : R —» R defined 
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by z(t) = 0 foi all t £ R. The additive inverse of an clement / £ F is t he 
function - / defined by ( - / ) ( f ) = - ( / ( r ) ) for all t £ R. 

Problems _ 

1. Show that Ρ>· the set of all quadratic polynomials, is a vector space 
under the s tandaid addition and scalai multiplication of polynomials. 

2. Show that Λ/23. the collection of all 2-by-3 matrices with real entries, 
forms a vector space under the s tandard addition and scalar multipli-
cation of matrices. Explicitly identify the additive identity. Explicitly 
identify the additive inverse of each element. 

3. Let Vo be the set of all functions that arc constant on the interval [0,1). 
Prove tha t Vo is a vector space under the addition and scalar multipli-
cation of functions defined in F. 

A critical idea in working with vectors is whether or not a given vector can 
be expressed in te ims of other vectors. Consider the vectors [1,0] and [0,1] in 
R 2 . Wha t vectors mav be constructed from these two vectors, using only the 
opcratiorrs defined on the vector space? Since a vector space is closed under 
multiplication by scalais, all vectors of the form α[1,0] and 6[0,1] will be in 
R 2 for any real nuinbeis a and ft Vector spaces arc also closed under addit ion, 
hence each vector of the form o[l ,0] 4- ft[0,1] will also be in R 2 . Such a vector 
is called a linear combination of [1,0] and [0,1]. 

Moie generally, if we have any collection of vectors Vi, ν 2 , . . . , v „ in a vector 
space V. a vector of the form 

r>ivi + ο 2 ν 2 4- ... + a„vn, 

where 01,02 °n £ R. is called a linear combination of Vj,V2,... ,v„. 
Note that [a,b] = o[1.0] 4- ft[0,1] for any vector [a,ft] £ R 2 . So any vector in 
R 2 can be writ ten as a linear combination of [1,0] and [0,1]. We might say 
that the vectots [1,0] and [0,1] form a set of building blocks from which all 
the vectors in the space can be obtained through operations defined on the 
space. Such a set is called spanning set and wc say tha t the set {[1,0], [0,1]} 
spans R 2 and wn te span({[ l ,0] , [0,1]}) = R 2 . 

It is possible to get all the vectors in R 2 from sets other than {[1,0], [0,1]}. 
For example, [a.b] = 4- i 2 = * l [ l , - l ] , so {[1,1], [ 1 , - 1 ] } also spans 

R 2 . As yet another example, [0,6] = α[1,0] 4- ft[0,1] 4- 0[1,1], so the set 
{[1,0]. [0.1], [1.1]} spans R 2 as well. However, notice tha t the vector [1,1] 
is redundant. This shows that spanning sets can be larger than we need 
to generate the entire space. Given a spanning set, tha t contains redundant 
vectors, we mav remove all unnecessary vectors and arrive a t a smallest set 
that spans the space. A set will be a minimal spanning set when no vector 
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in the set can be written as a linear combination of the others. For example, 
in the set {[1,0], [0,1], [1,1]}, the vector [1,1] can be writ ten as [1,0] + [0,1]. 
So [1,1] is a linear combination of [1,0] and [0,1]. A set in which no vector 
can be written as a linear combination of the others is said to be a linearly 
independent set. 

Problems — 

4. Does the set { [2 , -1 ] , [ 1 , -1 ]} span R 2 ? Prove your answer. If not, 
what set does {[2, - 1 ] , [1, - 1 ] } span? Is the set {[2, - 1 ] , [1, - 1 ] } linearly 
independent? Explain. 

5. Does the set {[—1,1], [1, — 1]} span R 2 ? Prove your answer. If not, 
what set does { [ -1 ,1 ] , [1, - 1 ] } span? Is the set { [ - 1 , 1 ] , [1 , -1 ]} linearly 
independent? Explain. 

A central ideal in linear algebra is the following: 

T h e o r e m . Let V be a vector space tha t is spanned by a finite number of 
vectors. Then any two minimal spanning sets for V have the same number of 
elements. 

This theorem tells us tha t the number of elements in a minimal spanning 
set is a well defined characteristic of certain vector spaces. A vector space 
tha t is spanned by a finite number of elements is called a finite dimensional 
vector space. A minimal spanning set for a finite dimensional vector space 
is called a basis for the vector space, and the number of elements in a basis 
of a finite dimensional vector space is said to be the dimension of the vector 
space. A basis for a vector space is a linearly independent spanning set. It is 
not hard to see that {[1,0], [0,1]} is a minimal spanning set for R 2 , so R 2 is 
finite dimensional, has dimension 2, and {[1,0], [0,1]} is a basis for R 2 . Note 
tha t {[1,1], [1, - 1 ] } is also a basis for R 2 . 

P r o b l e m s 

6. Wha t is the dimension of R 3 ? Wha t is the dimension of R 4 ? Wha t is 
the dimension of R"? Explain. 

7. Find a basis for the vector space V\ of all functions constant on the 
intervals [0, \) and [ | , l ) . W h a t is the dimension of V\? 
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A.2 S U B S P A C E S 

There are signals of everv length. However, it is only the collection of signals 
of the same length that form a vector space (Why?) When working with 
signals of different lengths, wc can extend the shorter signal with zeros t o 
make it longer. For example, a signal of length 4, (such as [1, - 1 , 1, 0]), can 
be made into a signal of length 8 by tacking on four 0s at t he end ([1, — 1 , 1, 
0, 0, 0, 0, 0]). In this way we can identify R 4 with a subset of R 8 , namely the 
subset W = {[a,b,c,d,0,0,0,0] • a ,6 , c ,d € R } . Because R 4 is a vector space, 
W might be one as well. It is not difficult t o show tha t W indeed satisfies t h e 
defining properties of a vector space. Since W is a subset of a vector space 
( R 8 ) , some of the vector space properties are automatically inherited from R 8 . 
Specifically, properties 2, 3, 7, 8, 9, and 10, listed in the definition in section 
A. l , must be satisfied in W because they are satisfied in R 8 . As a result, to 
show W is a vector space, we onlv need to verify tha t propeit ies 1, 4, 5, and 6 
hold. This type of situation is encountered quite frequently. Since the subset 
W of R 8 is a vector space in its own right, W is called a subspace of R 8 . A 
formal definition now follows. 

D e f i n i t i o n . Let V be a vector space. A subset W of V is a subspace of V if 
W is a vector space using the addition and scalar multiplication from V. 

T h e discussion above hints at the following theorem 

T h e S u b s p a c e T h e o r e m . Let V be a vector space A subset W of V is a 
subspace of V if 

1. ν + w € W for all v , w € W, 

2. There is an clement 0 in W so tha t 0 + w = w for all w € W, and 

3. kw € W for all w € W, k e R. 

Subspaces arise in many settings. Two more examples follow. 
It is well-known that, the sum of two continuous functions is a continuous 

function, any scalar multiple of a continuous function is a continuous function, 
and the zero function is a continuous function. T h e subspace theorem proves 
that the set of all continuous functions from R to R is a subspace of F. T h e 
same is true of the set of all differentiable functions from R to R. 

Next, let U be the set of all functions from R to R tha t arc constant on the 
interval [0,1] If we add two such functions, the sum is again constant on [0,1] 
and if we multiply by anv scalar (including 0), the product is also constant 
on [0,1]. The set U is therefore a subspace of F. 

There are other examples of subspaces tha t arc especially relevant in the 
study of wavelets. One is the set VQ consisting of all functions from R to R 
that are constant on [0.1) and 0 everywhere else. This Vo is a subspace of U. 
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P r o b l e m s 

8. Let W = {[a,b,a + b]:a,be R } . Is W a subspace of R 3 ? Prove your 

answer. If W is a subspace of R 3 , find a basis for W. 

9. Let W = {[a,b,ab] :a,b€ R} . Is W a subspace of R? Prove your 
answer. If W is a subspace of R 3 , find a basis for W. 

10. Let Vi be the set of all functions constant on the intervals [0, \ ) , [£ , ^ ) , 

| ) , and [ | , 1) and zcio elsewhere. Is V2 a subspace of F ? Prove your 

answer. If Vi is a subspace of F, find a basis for Vi. 

A.3 I N N E R P R O D U C T S P A C E S 

Wc can think of signals in R n as points or vectors in η dimensional real space. 
As such, wc can find the distance from the origin to a signal, or the length of 
the vector in R™, via the distance formula. Tha t is, if s = [«i,-ii,• • • ,sn] is 
a signal in R n , the distance (or the Euclidean distance) from s to the origin, 
denoted | |s | | , is 

This distance is related to a pseudo-product in R n called the dot product. 
The dot product of two signals r = [ r i , r 2 , . . . , r „ ] and s = [ni,si,...,sn] in R n 

is defined by 

The dot product can be used to find angles between two vectors in R" . 
The standard formula, found in most multivariable calculus or linear algebra 
texts, tells us tha t the angle, Θ, between two nonzero vectors r and s is found 
through the equation 

Hell = „2 + ea + ... + ea. 

r · s = . s ,r i + . s 2 r 2 + · · · + snr„. 

Note tha t r · s is related to the distance described above by 

cos(f?) = 
r - s 

P r o b l e m s 

11. Use the dot product to find the angle between the vectors [1,0,1,1] and 
[0,1,1,1] in R 4 . 
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12. Use the clot product to find the angle between the vectors [1,0] and [0,1] 
in R 2 . Should vou have expected the result? Why? 

The dot product satisfies certain familiar piopcrties for any r ,s, and q in 

1. r · s = s - r for any r, s. 

2. (r + s) · q = r · q + s · q for any q, r, s. 

3. s s > 0 with equality if and only if s = 0. 

4. A-(r · s) = ( A T ) · s = Γ · (A-s) for any r and s, and any real number A;. 

The dot product, is not. the only "product" that satisfies these properties. 
For example, define (r. s) to be the maximum of all the quanti t ies | .s, — r, | 
for i from 1 to n. It is not difficult to show that this "product" satisfies the 
same properties as the dot product. 

It is also possible to have a "product" in vcctoi spaces other than R n . 
Consider the vcctoi space F[0,1] consisting of all real valued functions defined 
on the interval [0.1]. The set C[(),l] of all continuous functions in F[0,1] is a 
subspace of F[0,1] . For f.g in C[0.1], we define 

The basic* piopcrties of the definite integial from calculus show tha t this 
"product" also satisfies the same piopcrties as the dot, product . Any such rule 
is called an vnne.i product Heic is a formal definition. 

D e f i n i t i o n . Let V be a vcctoi space. An inner piodur.t. on V is a function 
that assigns to each pan of vectors u , ν in V a real i iumbei, denoted ( u , v ) , 
satisfying the following: 

1. ( u . v ) = (v. u) foi all u , v € V. 

2. (A-u,v) - A-(u,v) - (u,A-v) for all u , v € V and A- e R. 

3. (u + v , w) = (u. w ) + (v, w) for all u , v , w £ V. 

4 ( v . v ) > 0 foi all ν € V with equality if and only if ν = 0. 

If V is a vcctoi space on which an inner product. ( , ), is defined, the pan 
(V. ( , )) is called an uinei piodur.t. space. 

Just, as with the dot pioduct . we can define the "length" or noun of a 
vector in an iiinci product space and the angle between any two vectors in an 
inner pioduct space If u and ν aic vcctois in an inner p ioduct space, then 

( A . l ) 
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the length of the vector u is | |u|| = y ^ u . u ) , and the angle, Θ, between u and 

ν is given by 

For example, in the space C[0,1], 

A key idea in working with vectors in inner product spaces is the notion 
of orthogonality. Two vectors in an inner product space are orthogonal if the 
angle between the vectors is \ radians. This is a generalization of the concept 
of perpendicular vectors in R n . A consequence of the formula for the angle 
between two vectors is the following theorem. 

T h e o r e m . Two nonzero vectors u and ν in an inner product space are 

orthogonal if and only if (u, v ) = 0. 

13. The notion of the angle between functions in the inner product space 
C[0,1] differs from the idea of the angle between curves as we discuss 
it in calculus. When we graph functions in Euclidean space, we are 
concerned about orientation, or the direction in which we move as we 
travel along a curve. Let / and g be functions in C[0,1] defined by 
/(It) = t and g(t) = 1 - t. 

(a) Draw the graphs of these functions and find the angle between 
them in the plane. 

(b) As vectors in C[0,1] we no longer care what the graphs of the 
functions look like, we simply think of them as elements of a set. 
Now find the "angle" between the functions using the inner product 
(A. l ) . Do your results agree? 

14. (a) Which of the following pairs / , g are orthogonal in C[0,1]? Explain. 

(b) Define / , g S C[0,1) by /(«) = at + 1 and g{i) = bt-l. Using the 
inner product (A. l ) , find all values of α and b for which / arrd g 
are orthogonal. Draw graphs to illustrate. 

Problems 

i. f(t) = 2 + t, .9(0 = 1 - ' 

ii. / ( 0 = i 2 , 9 (0 = * - f 
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A.4 T H E O R T H O G O N A L D E C O M P O S I T I O N T H E O R E M 

The notion of orthogonality leads us to consider the notion of orthogonal 
subspaces. To illustrate, let I = {(α,Ο) : a 6 R} and .7 = {(0,6) : 6 e R } . 
Then I is the x-axis in the plane and J is the y-axis. It is not difficult to show 
tha t / and .7 arc subspaces of R 2 . If we take the dot product of the vector 
(a, 0) in 7 and the vector (0, b) in .7, we get (a, 0) · (0, 6) = aO + 06 = 0. This 
shows tha t every nonzero vector in 7 is orthogonal to every nonzero vector in 
.7. When this happens we say tha t I and .7 arc orthogonal subspaces in R 2 . 

More generally, let V be an inner product space and W a subspace of V. 
An important subspace of V related to W is the orthogonal complement of W 
in V. The orthogonal complement of W is the set 

WL = {v G V : ( v , w ) = 0 for all w e W}. 

Verifying tha t WL is in fact a subspace of V is simply a mat te r of applying 
the definition of W 1 and properties of inner products 

Examples: 

1. Let V = R 2 with the dot product as its inner product and 

W = { [ a , 0 ] : a e R } . 

Then Wx = {[0,6] : 6 € R } . 

2. Let V = C[0,1] with the integral inner product and W the set of all 

functions constant on [0,1]. Then / € Wx if f*cf(t)dt = 0 for any 

constant c. This will only happen if /„ l f(t)dt = 0. Thus 

Wx = {/ € C{0,1] : Γ f(t)dt = Q}. 
Jo 

An example of a function in Wx is / ( f ) = 1 - 2t. 

Orthogonality makes cci tain computat ions in inner product spaces straight-
forwaid. For example, suppose 7J = {v! ,V2 , . . . , v„} is a basis for an in-
ner p ioduct space in which distinct vectors arc oithogonal. In other words, 
(v,, Vj) = 0 if i Φ ]• Such a basis is called an orthogonal basis. Suppose we 
choose an clement ν e V. Since 7J is a basis for V, wc can write 

η 

V = GiVi + fr2V2 Η + Ο η ν η = rt,V, 
ι=1 

for some ieal numbers 01,0-2, · · ·,<>*· Then 

<v>v<> = ( Σ α ' ν ' · ν ' ) = Σ ° Λ ν ; > ν ' > = α < ( ν » ν ' > · 
\ ^ = ι / ,;=i 
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Thus, α< = fiy'^ for each i and 

V = τ rVi + rV2 + τ" η rV n — > -V, \Pi-i) 

( v 1 ( v i ) ( v 2 , v 2 ) < v n , v n ) ^ ( v - v . ) 

This tells us that to compute the coefficients of a given vector with respect 
to an orthogonal basis, we need only calculate 2n inner products, where η is 
the number of elements in the basis. 

Problems 

15. Let Β = {[1,0,1], [0,1,0], [ - 1 ,0 ,1 ]} . Show that Β is an orthogonal basis 
for R 3 . Find the coefficients of the vector [1,2,3] with respect to the basis 
B. 

The formula (A.2) can be simplified under certain conditions. If each of 
the vectors v, satisfies ||v,|| = \J(v„ v,) = 1 (or has norm equal to 1), then 
(A.2) becomes 

η 

ν = (v, vj)vi + (v, v 2 ) v 2 4- · · · + (v, v n ) v n = 5 1 (v, v t )v , . 
1=1 

An orthogonal basis that has the property tha t every basis vector has norm 
1 is called an orthonormal basis. Wi th an orthonormal basis, computat ions 
are quick and easy. 

An important question arises here. Is it always possible to find an orthogo-
nal basis for an inner product space? The answer is yes. There is a method by 
which an orthogonal basis for a finite dimensional inner product space can be 
constructed from any basis. This method is called the Gram—Schmidt process 
and can be found in most linear algebra texts. 

We can take the idea of orthogonality even further. Suppose V is a finite 
dimensional inner product space and W is a subspace of V. Now W will 
have a basis and from it we can construct an orthogonal basis for W, say 
Β = {wi, w 2 , . . . , w/t}. If ν G V, then there is a vector in W associated 
to v, namely 

(v ,Wi) (v.Wfc) ( v , w , ) . . „ , 

Of what use is this vector v^? Let 's look at an example. 
Let wj = [1,1,1], w 2 = [0 ,1 , - 1 ] , and Β = { w , , w 2 } . Then W = span(B) 

is a subspace of R 3 . Since Wi · w 2 = 0, Β is an orthogonal basis for W. Note 
that , since | | w i || = %Jvi\ • wi = \ / 3 and | | w 2 | | = ^ / w 2 · w 2 = \ / 2 , Β is not an 
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orthonormal basis for W. However, the set 

lllwiH'llwallJ I 

J 1 1_ 

l | w i | | ' | | w 2 | | 

is an orthonormal basis foi W. If ν = [3, —1,2], then (A.3) yields 

v s 
llwil 

4 1 17 

3 ' 6 ' 6 

Since v s is a linear combination of wi and w 2 , it follows tha t v g G W. If 
we let ζ = ν - V B , then a straightforward calculation shows t ha t (z, w) = 0 
for any w G W This shows tha t is in W while ν - v B is in Wx. Hence 
we are able to decompose the vector ν into a sum of a vector in W and a 
vector in Wx. A natural question to ask is, given any subspace W and vector 
v , can we decompose ν into such a sum? 

Problems 

16. Show tha t ( z .w) = 0 for any w G W , where ζ is defined as in the 
previous example. 

17. Let Β = {[0,0,1,1], [1,1,0,0], [ -1 ,1 ,1 , -1]} and let W = span( /J ) . Show 
that Β is an orthogonal basis for W and find ν β if ν = [2,-1,3,1] . Prove 
that ν — v g is in WL. 

18. Let Β — {ί, 3/ — 2} and let W = span( /J ) . Consider W t o be a subspace 
of the inner product space C[0,1] using the inner product (A . l ) . Show 
that Β is an orthogonal basis for W and find ge if g(t) = t 3 . Prove tha t 
.9 — 9b is in W x . 

The formula (A.3) will allow us to show tha t the decomposition of a vector 
as mentioned earlier always exist. T h e subsequent discussion will lead us 
to an important theorem that guarantees this result. We have seen tha t if 
Β = { w j , w 2 , . . . , w i } is an orthogonal basis for W and if ν G V, then 

The vector is called the projection of ν onto W. To show tha t ν — v s is 
a vector in Wx, we need to verify tha t (v — VJJ , w) = 0 for all w G W. To do 
so, let w G W. Then 

w = rt,wi + / ^ 2 w 2 + . . . + 0kwt. = ^ ftw, 
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for some real numbers βχ, β2, •. •, β ι.·. Keeping in mind tha t Β is an orthogonal 
basis, we have 

( v - v B , w ) = ( v , w ) - ( v B , w ) 

A-

3 = 1 

> 

A 

= ( v , w > - ] T # / ( v , w . > ) 
j = l 

A-

= <V,w) - {v^fljVfj) 

= < v , w ) - ( v , w ) 

= 0. 

Hence, we have shown that ν — v h is in W x . The vector defined by (A.3) 
is called the projection of ν onto W and the difference ν — ν Β is the projec-
tion of υ perpendicular (or orthogonal) to W. (The difference is also called 
the residual.) The general result is known as the Orthogonal Decomposition 
Theorem, which may be stated as follows: 

T h e O r t h o g o n a l D e c o m p o s i t i o n T h e o r e m . If W is a finite-dimensional 
subspace of an inner product space V, then any ν G V can be written uniquely 
as ν = w + ν ν χ , where w G W and W j . G Wx. 

We represent this theorem symbolically by writing V = W φ W x . Note 
tha t we have shown that if { w i , W 2 , . . . , w r * } is an orthogonal basis for W, 
then w , as described in the Orthogonal Decomposition Theorem, is found by 

( W l , W i ) ( w i , w * ) ^ ( w „ w , ) 
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and Wj_ = ν — w The only thing we have not yet verified is the uniqueness. 
This issue is addressed in the exercises. 

19. If V is an inner product space and W is a subspace of V, what is 
W Π W x ? Prove your answer. 

20. Prove the uniqueness portion of the Orthogonal Decomposition Theo-

Hint: Use the result from problem 19. 

21. Let V\ be the subspace of the inner product space F[0,1] (using the in-
tegral inner product) consisting of all functions constant on the intervals 
[0, 5) and [ £ , ! ) · Let φ and φ be defined by 

(a) Show that Β = {φ,φ} is an orthogonal basis for V\. Is Β an 
orthonormal basis? Explain. If not, construct an orthonormal 
basis for V\ from B. 

(b) Let / € F[0.1] be defined by / ( t ) = t2 + 1. Use the Orthogonal 
Decomposition Theorem to find /V, and fVl ±. Verify tha t 

Problems 

rem. 

and 

/ = / v , + / V -
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Appendix Β 
Maple Routines 

This appendix contains Maple routines for some of the problems and projects 
in the book. Maple commands arc indicated on the lines beginning with the 
> symbol. All Maple commands end with a colon (:) or a semi-colon (;). 

B . l M A T R I X G E N E R A T O R 

This loop will geneiatc the wavelet processing matrices, Μ = Mn and A = A^, 
for π = 2*, where k is specified in the second line of the algori thm below. 
During the process, matrices M.t arc created tha t can be used to perform 
the various steps in the processing stages as discussed in section 2.C. These 
matiiccs a ic responsible foi the images in figures 2.C and 2.7. Note tha t 
Mn1 — Αι.. 

> w i t h ( l i n a l g ) : 

> k : = 5 : n . 0 : = 2 " k : f o r t from 1 t o k do n . t : = » n . 0 / 2 " t : od: 

> f o r t from 0 t o k - 1 do M.t := m a t r i x ( n . 0 , n . 0 , p r o c ( i , j ) i f 
> ( i < = ( n . t / 2 ) and ( 2 * i - l ) < » j and j < - ( 2 * i ) ) t h e n ( 1 / 2 ) e l i f 
> ( i > ( n . t / 2 ) and i < = n . t and ( 2 * ( i - n . t / 2 ) - l ) < = j 
> and j < = ( 2 * ( i - n . t / 2 ) ) ) 
> t h e n ( l / 2 ) * ( - l ) - ( j + l ) 

107 
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> e l i f ( i > n . t and then 1 e l s e 0 f i end: 
> od: 
> M-.-M.O: A:=inverse(M.O): 
> f o r q from i t o k-1 do Μ := mult iply(M.q.M): 
> A : • m u l t i p l y ( A , i n v e r s e ( M . q ) ) : od: 

B.2 P R O C E S S I N G S A M P L E D D A T A 

We will need the l i n a l g and p l o t s packages. 

> w i t h ( l i n a l g ) : w i t h ( p l o t s ) : 

Since we convert the data to strings of length 8 foi processing, we need to 
input the 8-by-8 wavelet conversion matrix A8 and its inverse, A8inv. We can 
compute this as shown in the matrix generator routine. 

Before implementing the Maple routine below we must first compute A8 
and A8inv as discussed above. 

Now define the function to be sampled using Maple's function syntax. 

> f : - t -> s i n ( 2 0 * t ) * l n ( t ) ~ 2 ; 
> p l o t ( f ( t ) , t = 0 . . 1 ) ; 

Next sample the function at Ν (chosen here to be 32) evenly spaced points. 
The storage location data contains the function values at the Ν points, and 
p t s is a list of the data points for plotting purposes. 

> Ν 32; 
> data := [ s e q i e v a l f ( f ( i / N ) ) , i = l . . N ) ] : 
> p t s := [ s e q ( [ i / N , d a t a [ i ] ] . N ) ] : 

To plot the data points, use the p l o t command. 

> p l o t ( p t s , x = 0 . . l , c o l o r = b l u e ) ; 

Save the data plot in a variable data_plot to compare to processed data 
later. 

> d a t a _ p l o t : = p l o t ( p t s , x = 0 . . l , c o l o r = b l u e ) : 

Collect the data in groups of 8. 

> for i from 1 t o N/8 do 

> d a t a . i := m a t r i x ( 8 , 1 , ( r , s ) -> d a t a [ 8 * ( i - l ) + r ] ) ; od; 

Now we convert to wavelet coefficients by multiplying by the wavelet con-
version matrix A8. 
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> for i from 1 t o N/8 do w a v e _ d a t a . i : = m u l t i p l y ( A 8 , d a t a . i ) : od: 

Maple computes exact values when possible. The next loop uses the e v a l f 
command to convert to decimal form. 

> for i from 1 t o N/8 do w a v e _ d a t a . i : = m a p ( e v a l f , w a v e _ d a t a . i ) ; od; 

To process the da ta , set a tolerance to eliminate some da ta . Each d a t a 
entry whose absolute value is less than the tolerance level gets set to 0. 

> t o l e r a n c e := 0 . 0 5 ; 
> for i from 1 t o N/8 do f o r j from 1 t o 8 do i f 
> a b s ( w a v e _ d a t a . i [ j , 1 ] ) < t o l e r a n c e 

> then w a v e _ d a t a . i [ j , l ] : = 0 : f i : od: od: 

The next loop prints the processed da t a after keep or kill. 

> for i from 1 t o N/8 do e v a l m ( w a v e _ d a t a . i ) ; od ; 

To deprocess the processed da ta apply A8inv. 

> f o r i from 1 t o N/8 do newdata . i := m u l t i p l y ( A 8 i n v , w a v e _ d a t a . i ) : od: 

The reconstructed da ta after thresholding is stored in recon_data. 

> r e c o n . d a t a := [ s e q ( s e q ( n e w d a t a . i [ j , 1 ] , j = l . . 8 ) , i » l . . N / 8 ) ] : 

To plot, the reconstructed da ta is saved as new.pt s . 

> new_pts : - [ s e q ( [ i / N , r e c o n _ d a t a [ i ] ] , i = l . . N ) ] : 

The next commands plot the reconverted da t a points as newdata_plot and 
compare to the original da ta plot. 

> n e w d a t a _ p l o t : = p l o t ( n e w _ p t s , x = 0 . . l , c o l o r = r e d ) : 
> d i s p l a y ( { d a t a _ p l o t , n e w d a t a _ p l o t } ) ; 

B.3 P R O J E C T I O N S O N T O W A V E L E T S P A C E S 

F u s t define the father and mother wavelets. 

> phi := t -> p i e c e w i s e ( 0 <= t and t < 1 , 1, t < 0 or 1 <= t , 0 ) ; 
> p s i := t -> p i e c e w i s e ( 0 <= t and t < 1 / 2 , 1, 1/2 <= t 
> and t<= 1, - 1 , t < 0 or 1 < t , 0 ) ; 

Define the inner product on L 2 [0 ,1] , 

> i p := ( f , g ) -> i n t ( f * g , t = 0 . . 1 ) ; 
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Then define the general daughter wavelet. 

> p s i _ d t := ( t . j . k ) -> p s i ( 2 " j * t - k ) ; 

Now define a function to project onto wavelet space. 

> f t -> c o s ( 2 * P i * t ) ; 

> p l o t ( f ( t ) , t = 0 . . 1 ) ; 

Specify η to project onto V„. 

> η : - 4 ; 

Next define the wavelet sons. 

> f o r r from 0 t o n - 1 do f o r s from 0 t o 2 * r - l do 

> p s i . r . s : - p s i _ d t ( t , r , s ) ; od ; od; 

Since Bn is an orthogonal basis for V„, to find the wavelet coefficients a . r . s 
simply compute inner products. Then add the various projections together. 
The next loop does that . 

> p r o j := i p ( f ( t ) , p h i ( t ) ) * p h i ( t ) : 
> f o r r from 0 t o n - 1 do f o r s from 0 t o 2 * r - l do 
> a . r . s := i p ( f ( t ) , p s i . r . s ) / i p ( p s i . r . s . p s i . r . s ) ; 
> p r o j := p r o j + a . r . s * p s i . r . s ; od; od; 

Plot the graphs to compare. 

> p l o t ( { f ( t ) , p r o j } , t - 0 . . 1 ) ; 

B.4 T H E C A S C A D E A L G O R I T H M 

First enter the function to use as the start ing point for the procedure. Here, 
the tent function is used. (Note: the piecewise command assigns a function 
the value of 0 on any interval on which it has not been defined.) 

> f := t -> p i e c e w i s e ( - K « t and t < 0 , l + t , 0 < - t and t < l , l - t ) ; 

Set this function to the base step, f. 0. 

> f .O := f ( t ) : 

Enter the dilation coefficients in a vector c. In this loop the dilation coef-
ficients for the D 4 wavelet are used. 

> c : •= [ ( 1 + s q r t ( 3 ) ) / 4 , ( 3 + s q r t ( 3 ) ) / 4 , ( 3 - s q r t ( 3 ) ) / 4 , ( 1 - s q r t ( 3 ) ) / 4 ] ; 
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Then set bounds for the sum 

> c _ i n i t : = 0 : c _ f i n : = 3 : 

This loop performs the iterations, f3+l = T,c

c~J™t ctfj(2t - fc) a total of Ν 
times. 

> Ν := 3 : f o r j from 0 t o N-l do 
> f . ( j + l ) :» s u m ( c [ k + l ] * s u b s ( t = 2 * t - k , f . j ) , k = c _ i n i t . . c _ f i n ) : 

> od: 

To create an animation of the process, load the plots package. 

> w i t h ( p l o t s ) : 

The following loop constructs the graphs of the i terates created through 
the cascade algorithm. 

> for q from 0 t o 3 do p . q : = p l o t ( f . q , t = - l . . 4 ) : od: 

The next lines create a vector containing these plots and then displays 
them in sequence. 

> L := [ s e q ( p . s , s = 0 . . 3 ) ] : 
> d i s p l a y ( L , i n s e q u e n c e = t r u e ) ; 

B.5 P R O C E S S I N G A N I M A G E F R O M Pixel Images 

First create a grayscale image with the Pvxel Images program. Save this image 
as a file, image txt In Maple, load the l i n a l g package. 

> w i t h ( l i n a l g ) : 

Since we are working with a 16-bv-16 grayscale image, we next need to 
input the 16-by-16 wavelet conversion matrix A16 and its inverse, A16inv. 
Compute this matrix as shown in the mat i ix generator routine. 

The following lines import the image matr ix X from Pixel Images. If you 
saved your image matrix in the file image.txt, enter t ha t in fname. Otherwise, 
enter whatever name you gave to vour image matrix. You need to include 
the drive designation. If vou have your hie saved on a disk in the a: drive, 
youi file name will be ( a : \ i m a g e . t x t \ The ' needed here is the single back 
quotation mark. The space between the colon and the file name seems to be 
necessary on some systems. 

> fname := *a: \ i m a g e . t x t ' ; 
> X := m a t r i x ( 1 6 , 1 6 , ( i , j ) -> 0 ) : 
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> for i from 1 t o 16 do f o r j from 1 t o 16 do 
> X [ i , j ] :=fscanf (fname/'/.d*) [1] : od: od: f c lose( fname) : 
> evalm(X); 

The image da ta is processed by multiplying by A16. The processed da ta is 
saved in the matr ix Y. 

> Y := mul t ip ly (A16 ,X) ; 

Convert the entries to decimal form to make them easier to read. 

> Y := map(eval f ,Y) ; 

Now apply thresholding. Select a tolerance and eliminate those entries 
below the tolerance. The new da ta is saved in the matr ix Z. 

> t o l e r a n c e := 1; 
> Ζ : = m a t r i x ( 1 6 , 1 6 , ( i , j ) _ > i f a b s ( Y [ i , j ] ) < - t o l e r a n c e then 0 
> e l s e Y [ i , j ] f i ) ; 

Deproeess the da ta by multiplying by A16inv. The deprocessed da t a is 
saved in newZ. 

> newZ := mul t ip ly (A16 inv ,Z) ; 

Pixel Images requires tha t da ta be positive integers. Convert the processed 
da ta to absolute values and round to the nearest integer. 

> newZ :=» map(abs.newZ); 
> newZ : • map(round,newZ); 

Write the matr ix newZ to an ou tpu t file f _out so tha t the processed image 
can be viewed in Pixel Images. Again, include the drive designation. Then 
print this da ta to the named file. Pixel Images can then be used to compare 
the original picture to the processed picture. 

> f_out := x a : \ i m a g e 2 . t x t x ; 
> for i from 1 t o 16 do f o r j from 1 t o 16 do 
> f p r i n t f (f_out,7 .d\n\newZ[i , j ] ) : od: od: 
> f c l o s e ( f _ o u t ) : 



Appendix C 
Answers to Selected 

Problems 

Chapter 1 

2. A 3 inch by 5 inch black-and-white photograph in 8-bit grayscale a t 
500 dpi generates 3,750,000 bytes, or 3.75 MB of da ta . (The Insti-
tu te for Electrical and Electronics Engineers ( IEEE) has proposed the 
terminology "mebibyte" (MiB) to s tand for 2 2 0 bytes of da ta , since 
computers work in binary rather than base 10. A floppy disk actually 
contains 1.44 mebibyte of data. So, another acceptable answer would 
be 3.58 MiB. For more information about the proposed terminology, see 
h t t p : / / p h y s i c s . n i s t . g o v / c u u / U n i t s / b i n a r y . h t m l . ) 

3. A 3 inch by 5 inch color photograph using 24-bit colors a t 500 dpi 
generates 11,250,000 bvtcs, or 11.25 MB of da ta . (Or, 10.73 MiB.) 

4. If 
1 0 0 0 
0 1 

+ 3:3 
0 0 

*1 0 0 + 3:3 1 4-X4 0 
0 0 0 1 

then Xi — 12, r 2 = 2, .τ 3 = - 5 , and x 4 = 15. 
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5. In this case, the coefficients x i,X2 , x 3 , and .T4 are 6, 1, 5, and - 1 0 , 
respectively. 

12. The set V„ consists of functions tha t are piecewise constant on intervals 
of the form , *$r) for i from 0 to 2 n - 1. From this we can sec tha t 
Vn corresponds to R 2 . 

13. (a) (i) To write [3,7, - 4 , - 6 ] T as Χιφ{ΐ.)+Χ2Φ(ή+Χ3Φΐβ(ί)+Χ4φι,ι{ή 

we need x\ = 0, x2 — 5, X3 = - 2 , and x 4 = 1. 

(ii) In this case we obtain x\ = 2, x2 = 27, X3 = —15, and X4 = 0. 

16. (a) (i) The wavelet coefficents are 1, - 1 , 5, 27, - 2 , 1, - 1 5 , and 0. 

(ii) T h e wavelet coefficients are ψ-, ψ-, 10, ^- , 0, 10, 5, and \ . 

23. The signal e is given by 

e = [110,140,181,6 ,214,103,7 ,209,226,104,136,172,5] T . 

Chapter 2 

2. (a) The inner product (i, 0( t ) ) is \ . 

(b) The inner product (Φι,ο(ί),φ\,ι{ή) is 0. Note tha t this shows φ\$ 
and φι,ι arc orthogonal. 

3. (a) The norm HV'i.oWII is ^ . 

(b) T h e norm | |Va.i(0ll i s 5· 

9. The orthogonal projection of h(t) = t onto V2 is 

/(*) = \<t>-\*l>- £<Ai,o - glfa . i . 

12. As a linear combination of the elements of the basis 52, Φ is writ ten as 

Φ = 02,0 + 02,1 + 02,2 + 02,3· 

17. As a linear combination of the elements of the basis S3, 02,o is writ ten 
as 

02,0 = 03,0 + 03,1-

Compare this to the decomposition of 0 as a linear combination of the 
elements of the basis Si. 

24. (a) The projection of 0j,i onto Vo is \φ. 
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27. As a linear combination of the elements of the basis B3, φ2β is wri t ten 
as 

34. The matr ix Λ/4 is the inverse of A2. 

35. This is a two step piocess. In the first step, wc compute averages and 
differences to obtain [—1,13,11,-6] in Vi Θ Vf. We again calculate 
averages and differences on the signal in Vi to obtain .ri = 6, x2 — —7, 
X3 = 11, and x 4 = - 6 in Vo θ VQ- Θ V ^ . Note tha t x\ is t he average 
of all the entries in the signal. 

38. The wavelet coefficients are 39.5, 2.5, 22, 9, 16, - 1 6 , - 1 8 , and - 2 2 . 

41. (a) The projection of sin(i) onto V 2 is 

02.0 = T0+ -φ + -Ψΐ.0· 

(1 - cos( l ) )0(<) + ( - 2cos (5) + 1 + «* ( ! ) ) 

+ ( - 4 cos φ + 2 c o s + 2) V ' I . O W 

+ ^ 2 c o s + 2cos(l) - 4roe (I)) tfi.iW 

(b) T h e projection of t2 onto V2 is 

(c) The projection of e* onto V2 is 

( e - l ) 0 ( r ) + ( 2 x / i - l - β ) ψ ( ί ) 

+ (4 vVe - 2v/e - 2)ψι.ο(0 + {-2y/e -2e + 4 ^ e 3 ' ) ^ l l i ( i ) . 

(d) The projection of \/< onto V2 is 

Chapter 3 

3. (b) Since | | / | | = y/2, f is in L2{R). 

10. The norm of the Mexican hat mother wavelet is 
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12. The distance between / and its projection onto V2 is approximately 

0.001895. 

20. If we begin with ίο = 1, successive approximations will be t\ = 0.5403023059, 
t2 = 0.857553, h = 0.654289, etc. These approximations converge 
(slowly) to the solution 0.739085. 

21. Starting again with i 0 = 1 leads to t , = 1.36788, i 2 = 1.25465, etc. T h e 
sequence converges to 1.27846. 

37. The function values for the cubic Battlc-Lemari£ scaling function are 

0(2) = 40(1) = 40(3). 

67. The limit frequency is m = 

A p p e n d i x A 

4. The set does span R 2 . 

5. Since [-1,1] = - [ 1 , - 1 ] , these two vectors only span a line in R 2 . 

7. The dimension is 2. 

9. Since W is not closed under addition, W is not a subspace of R 3 . 

11. The angle between the vectors [1,0,1,1] and [0,1,1,1] in R 4 is a r c c o s | . 

12. The angle between [1,0] and [0,1] is 0. This is to be expected because 
[1,0] and [0,1] are perpendicular vectors. 

15. The coefficients of the vector [1,2,3] with respect to the basis Β arc 2, 
2, and 1. 

17. The projection v B is [f, \ , | , f ] . 

18. The projection gs is yjri — \ . 



Appendix D 
Glossary of Symbols 

The page number indicates the first page on which the symbol appears . 

• φ, the father wavelet, page 5 

• Vi the mother wavelet, page 5 

• V'n.A (t) = i/'(2 nf — k), the wavelet daughters, page 9 

• 0n.A W = 0(2" ' — k), the wavelet sons, page 27 

• An, a wavelet processing matrix, page 12 

• Mn = A " 1 (where m = 2") , a wavelet processing matr ix, page 34 

• 7J„, a basis foi R 2 consisting of father, mother, and daughter wavelets, 
page 12 

• Sn, a basis for R 2 " consisting of father and son wavelets, page 28 

• C„ . a basis for the oithogonal complement of V„ in Vn+i, page 31 

• ( , ) . an inner product , page 24 
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- the space of all functions tha t arc piecewise constant on intervals 
of length 1/2" in [0,1], page 9 

- the space of all functions tha t arc piecewise constant with breaks 
a t rational points of the form m / 2 " in R, page 43 

- a subspace of L 2 ( R ) that is a part of a multiresolution analysis, 
page 53 

W x , the orthogonal complement of W, page 25 

Cfc, refinement coefficients, page 28 

gu, high pass filter coefficients, page 63 

hi, low pass filter coefficients, page 63 

s, a generic signal, page 15 

v T , the transpose of the vector v , page 4 

VB, the projection of the vector ν onto the space W with basis B, page 
102 

£>4, Daubechies wavelet with four refinement coefficients, page 68 

G\ nigh pass operator, page 71 

Η, low pass operator, page 71 

G*, the dual of the high pass operator, page 74 

H*, the dual of the low pass operator, page 74 

L 2 ([0,1]) , the space of all functions whose squares are integrable on [0,1], 
page 25 

L 2 ( R ) , the space of all functions whose squares are integrable on R, page 
44 

.§, the Fourier transform of a, page 79 
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linear, 56 
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boundary condition, 88 
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Suppoit, 7 
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Thiesholding, 12, 18, 20 
haid, 14 
keep oi kill. 14 
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Translations. 49 
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Two-scale difference equation, 54 
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Wavelet, 6 
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