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Communication Systems

* Provide for electronic exchange of multimedia data

— Voice, data, video, music, email, web pages, etc.

e Communication Systems Today
— Radio and TV broadcasting (will not be discussed)
— Public Switched Telephone Network (voice,fax, modem)
— Cellular Phones
— Computer networks (LANs, WANs, and the Internet)
— Satellite systems (pagers, voice/data, movie broadcasts)
— Bluetooth



PSTN Design

Local Switching hl Local Switching |__—" @
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Local exchange

— Handles local calls
— Routes long distance calls over high-speed lines

Circuit switched network tailored for voice
Faxes and modems modulate data for voice channel

DSL uses advanced modulation to get 1.5 Mbps



Cellular System Basics

Geographic region divided into cells

Frequencies/timeslots/codes reused at spatially-separated locations (analog systems use FD, digital use TD or CD)
Co-channel interference between same color cells.

Handoff and control coordinated through cell base stations
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Local Area Networks (LANSs)
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LANs connect “local” computers

Breaks data into packets
Packet switching (no dedicated channels)
Proprietary protocols (access,routing, etc.)



Wireless LLocal Area
Networks (WLANSs)
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® WLANSs connect “local” computers (100m range)
® Breaks data into packets
® Channel access is shared (random access)

® Backbone Internet provides best-effort service



Wireless LAN Standards

* 802.11b (Old —1990s)

— Standard for 2.4GHz IS(Ij\/I band (SO(MngZS)) Many WLAN )
— Direct sequence spread spectrum (D
— Speeds ?11 Mbps, approx. 500 ft range cards have

all 4 (a/b/g/n)
e 802.11a/g (Middle Age— mid-late 1990s)

— Standard for 5GHz NIl band (300 MHz)
— OFDM in 20 MHz with adaptive rate/codes
— Speeds of 54 Mbps, approx. 100-200 ft range

* 802.11n (Hot stuff, standard completed in 2009)

— Standard in 2.4 GHz and 5 GHzband
— Adaptive OFDM /MIMO in 20/40 MHz (2-4 antennas)
— Speeds up to 600Mbps, approx. 200 ft range
— Other advances in packetlzatlon antenna use, etc.
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Wide Area Networks:
The Internet

Interne
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Satellite and
Fiber Lines

Many LANs and MANs bridged together

Universal protocol: TCP/IP (packet based).
Guaranteed rates or delays cannot be provided.

Hard to support user mobility.

Highly scalable and flexible topology

Much work in “reinventing” Internet for current uses



Satellite Systems

Cover very large areas

Different orbit heights
— GEOs (39000 Km) versus LEOs (2000 Km)

Optimized for one-way transmission
— Radio (XM, DAB) and movie (SatTV) broadcasting

Most two-way satellite systems went bankrupt

— Expensive alternative to terrestrial system
— Niche applications (airplane Wifi; paging; etc.)



Bluetooth

Cable replacement for electronic devices
— Cell phones, laptops, PDAs, etc.

Short range connection (10-100 m)
1 data (721 Kbps) and 3 voice (56 Kbps) channels
Rudimentary networking capabilities



IEEE 802.15.4 / ZigBee Radios

* Low-Rate WPAN

e Data rates of 20, 40, 250 Kbps

e Support for large mesh networking or star clusters
e Support for low latency devices

* CSMA-CA channel access

* Very low power consumption

* Frequency of operation in ISM bands

Focus is primarily on low power RFID and sensor networks



Future Wireless Networks

Ubiquitous Communication Among People and Devices

Next-generation Cellular
Wireless Internet Access
Wireless Multimedia
Sensor Networks

Smart Homes/Spaces
Automated Highways
In-Body Networks

All this and more ...




Device Challenges

* Analog and RF Components

 A/D Converters
* Size, Power, Cost
* Multiple Antennas

e Multiradio Coexistence
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Wireless Sensor Networks

- Smart homes/buildings
- Smart grid

- Search and rescue

- Homeland security

- Event detection

- Surveillance

= Energy (transmit and processing) is the driving constraint
= Data flows to centralized location (joint compression)

= Low per-node rates but tens to thousands of nodes

= |ntelligence is in the network rather than in the devices



Distributed Control over Wireless Links

Automated Vehicles
- Cars
- UAVs

- Insect flyers ﬂ% )

= Different design principles

e Control requires fast, accurate, and reliable feedback.

e Networks introduce delay and loss for a given rate.

- Controllers must be robust and adaptive to random delay/loss.
- Networks must be designed with control as the design objective.
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Comm in Health, Biomedicine and Neuroscience
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Design Challenges

 Hardware Design

— Precise components

— Small, lightweight, low power
— Cheap

— High frequency operation

* System Design
— Converting and transferring information
— High data rates
— Robust to noise and interference
— Supports many users

* Network Design

— Connectivity and high speed
— Energy and delay constraints



Figure 1-1 Communication system.
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Main Points

Communication systems send information
electronically over communication channels

Many different types of systems which convey many
different types of information

Design challenges include hardware, system, and
network issues

Communication systems recreate transmitted
information at receiver with high fidelity

Focus of this class is design and performance of analog
and digital communication systems



Information Representation

Communication systems convert information into a format appropriate for
the transmission medium.

— Channels convey electromagnetic waves (signals).

AnanF communication systems convert (modulate) analog signals into
modulated (analog) signals

Digital communication systems covert information in the form of bits into
binary/digital signals
Types of Information:

— Analog Signals: Voice, Music, Temperature readings

— Analog signals or bits: Video, Images

— Bits: Text, Computer Data

— Analog signals can be converted into bits by quantizing/digitizing



Communication System
Block Diagram
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Source encoder converts message into message signal or bits.

Transmitter converts message signal or bits into format
appropriate for channel transmission (analog/digital signal).

Channel introduces distortion, noise, and interference.
Receiver decodes received signal back to message signal.

Source decoder decodes message signal back into original
message.



Analog vs. Digital Systems

* Analog signals *

— Value varies continuously /\/\’\

* Digital signals
— Value limited to a finite set x(?)

Digital systems more robust _I_\_‘ ‘_‘J_
* Binary signals

— Has at most 2 values
— Used to represent bit values ()
— Bit time T needed to send 1 bit

— Data rate R=1/T bits per second 0 IT ‘ 00 ‘ 0




Performance Metrics

* Analog Communication Systems

— Metric is fidelity
— Want m(t)=m\(t)

* Digital Communication Systems

— Metrics are data rate (R bps) and probability of
bit error (Pb=p(b¢b,)\)

— Without noise, never make bit errors

— With noise, P, depends on signal and noise
power, data rate, and channel characteristics.



Data Rate Limits

Data rate R limited by signal power, noise power,
distortion, and bit error probability

Without distortion or noise, can have infinite data
rate with P,=0.

Shannon capacity defines maximum possible data

rate for systems with noise and distortion

— Rate achieved with bit error probability close to zero
— In white Gaussian noise channels, C=B log(1+SNR)
— Does not show how to design real systems

Shannon obtained C=32 Kbps for phone channels

— Get higher rates with modems/DSL (use more BW)
— Nowhere near capacity in wireless systems



Figure 1-8 Performance of digital systems—uwith and without coding.
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Main Points

Communication systems modulate analog signals or bits for
transmission over channel.

The building blocks of a communication system convert information
into an electronic format for transmission, then convert it back to its
original format after reception.

Goal of transmitter (modulator) and receiver (demodulator) is to
mitigate distortion/noise from the channel.

Digital systems are more robust to noise and interference.

Performance metric for analog systems is fidelity, for digital it is rate
and error probability.

Pata rates over channels with noise have a fundamental capacity
imit.



Fourier Representation of Signals and
Systems



Analysis equation:
G(f) =f g(t) exp (- 2mrft)dt

sl T~

Time-domain Frequency-domain
description: description:
8() G(f)
i S / FIGURE 2.1 Sketch of the interplay
Synthesis equation: between the synthesis and analysis

equations embodied in Fourier

g0 = [ G(f)exp(j2nfodf

transformation.



Signal Energy and Power

 The energy in a signal g(t) is
E, = [lg()F dt= [g*(t)dt

 The power in a signal g(t) is

17 1’
P=lim,, flamr dt=lim..,, [a)?dt
T T

* Power is often expression in dBw or dBm
— [10 log,, P] dBW is dB power relative to Watts
— [10 log,, (P/.001)] dBm is dB power relative to mWatts
— Signal power/energy determines its resistance to noise



Signal Operations

Time-shifting: g(t-T): g(t)/\ g(t-T)/.\

* Time-scaling: g(t/a) g(t)/\ g%
-a a<l1
e Time-inversion: g(-t) & /\I g(-t) |/\

0

* Correlation of two signals x(t) and g(t)

g(t) and x(t) are orthogonal if

_ \/El_E [ gx*(at e




Unit Impulse Response oft)
(Dirac Delta Function)

* Defined by two properties

1. S(t) =
(t)=0 50

2. ?é(t)dt -1

— Also limit of unit area pulse with vanishing width
1. ¢(t)o(t) =¢(0)o(t)
2. ¢()o(t-T)=¢(T)o(t-T)

3. [p)s(t-T)dt=4(T)

* Properties:



Unit Step Function u(t)

e Defined as

u(t)={1 t>0

u(t)

0 t<0

* Properties

1. t}s(r)dr =u(t)

—0

au
2. — =4t
5 o0



Fourier Series Transform Pair
Let g(t) be a periodic signal with period T,=1/f,=1/(27®,)

o0
j 2mft 1 _j
g(t)= > De’*™ D, == [g(t)e *"dt
T
N=—o0 0T,
ID.] |G(f) | 5 £G(f)
21 |D,4] |D, | 1D, | £C4 €,
| Dyl <2 /€, “C1
000 ‘ l 000 000 ‘ I l oo
“ | 1 | — ] | ! | "
2f, f, O f, 2f, 2f, f, O fo  2f,

g(t) =a, + > (a, cos(2znf,t) + b, sin(2znft))
n=1

a, =T£ j g(t)cos(2anf,t)dt b :TE j g(t)sin(2znf,t)dt

n




Filtering and Power
of Periodic Signals

ej27z'ft H(f)ejZﬂft
> h(t) >
_ C j2mt/T, 0 2T,
9() n;OD”e rifiter 2, DyH(/T)e™™
N=—o0

* Exponentials are filter eigenfunctions

— An exponential input yields a scaled output at the frequency of the
exponential

— B?/ linearity, we can use this property to determine the output of a
filter to a periodic input

— This can be used to derive the convolution operation associated
with filtering

 Parseval’s Relation:

Py =210, [



Fourier Transform Pair

G(f)= Oojg(t)eisztdt

g(t) = Ooje(f)e”’f“df

|G(f) | Z£G(f)

"/_\r_{%/\“
- »

f
Real signals have [G(f)[=]G(-f)| and <G(f)=-<G(-f)



Rectangular Pulse Example

AIl(t/7) Infinite Frequency Content
A ﬁ
| m /_\ 0Q0

-.51 51 t
f

g(t) = AIl(t/7) © G(f) = Azsinc (r/

Rectangular pulse is a time window

Shrinking time axis causes stretching of frequency axis
Signals cannot be both time-limited and bandwidth-limited
Bandwidth of rectangular pulse defined as first null

lm

1
0




Figure 2-5 Waveshapes and corresponding symbolic notation.
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Figure 2—6 Spectra of rectangular, (sin x)/x, and triangular pulses.
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Figure 2—8 Waveform and spectrum of a switched sinusoid.
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Figure 2-9 Power spectrum of a sinusoid.

Pulf)

o

Weight is

= . A2
4 T/T
f()

_f 0

{ —

Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0



Main Points

IData rates over channels with noise have a fundamental capacity
imit.

Signal energy and power determine resistance to noise

Communication system shift, scale, and invert signals

Unit impulse and step functions important for analysis

Fourier series represents periodic signals in terms of exponential or
sinusoidal basis tunctions

Exponentials are eigenfunctions of LTI filters

Fourier transform is the spectral components of a signal

Rectangle in time is sinc in frequency; Time-limited signals are not
bandlimited and vice versa



Important Transform Pairs

1 <0o(f)

o(t)=1

cos(2mf,t) <.5[o(f+f,)+o(f-f,)]
sin(2ntf,t) <.5j[0(f+f,)-o(f-f,)]
exp(j2nf,t) < o(f-f,)

Rectangular pulse: I1(t/t) <7tsinc(rfr)
Sinc pulse: 2Bsinc(2nBt) < I1(f/(2B))




Key Transform Properties

Duality

— Operations in time lead to dual operations in frequency
— Fourier transform pairs are duals of each other

Time scaling
— Contracting in time yields expansion in frequency

Delay
— Leads to a linear phase shift
Frequency shifting

— Multiplying in time by an exponential leads to a frequency shift.

Convolution and Multiplication

— Multiplication in time leads to convolution in frequency
— Convolution in time leads to multiplication in frequency



Figure 2-12 Periodic rectangular wave used in Example 2—-12.
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Filtering

* Filter response to o(t) is impulse response

o(t) LTI h(t)
Filter

* For any input x(t), filter output is x(t)*h(t)

X(t) x(t)«h(t) Much easier to study filtering
- h(p) > in the frequency domain

X(f) H®X(®)




e Channels introduce linear distortion

Channel Distortion

— Electronic components introduce nonlinear distortion

* Simple equalizers invert channel distortion

— Can enhance noise power

X(®

Channel

H(#)

RS

() Equalizer

—

1/H()

— X(H+N(H/H®




Main Points

Fourier transform is spectral components of a signal
Rectangle in time is sinc in frequency

Time-limited signals not bandlimited and vice versa

Duality, time-scaling, time-delay, freq. shifting,
multiplication, and convolution are key FT properties

Easier to study filtering in the frequency domain

Channels introduce distortion, can be compensated by
an equalizer



|deal Filters

* Low Pass Filter (linear phase)

1

-B B
* Band Pass Filter (linear phase)

1 1

B, £ 4B, B, ‘ B,

C

* Most filtcering (and other signal proccessing) IS
done digitally (A/D followed by DSP)



Energy Spectral Density (ESD)

0

* Signal energy: E = [[g(t)[ dt= [|G(f)[ df

—a0

 ESD measures signal energy per unit Hz.

E, = [lg)Pdt= [\w,(f)df

P, (f)=1X(f) |

Contains less information than Fourier Transform (no phase)

* ESD of a modulation signal

cos(2Tf,t)

¥, () J\ 25[W,(f-fo)+ P, (F+£,)]

X



Autocorrelation

* Defined for real signals as y,(t)=g(t)*g(-1)
— Measures signal self-similarity at ©
— Can be used for synchronization

* ESD and autocorrelation FT pairs: y,(t)< Wy (f)
¥, (r) = [g(®)gt-7)dt=g(r)*g(-7) = G(F)G"(f) =|G(f) =W, (f)

 Filtering based on ESD

¥, (f) |H(®) | ?¥, ()
—1 H(® ~




1.4.1 Autocorrelation of an Energy Signal

Correlation is a matching process: autocorrelation refers to the matching of a
signal with a delayed version of itself. The autocorrelation function of a real-valued
energy signal x(¢7) is defined as

R(z) = J x(O)x(t + 1) dr for—o <7< ® (1.21)

The autocorrelation function R, (7) provides a measure of how closely the signal
matches a copy of itself as the copy is shifted 7 units in time. The variable 7 plays
the role of a scanning or scarching parameter. R, (1) is not a function of time; it is
only a function of the time difference T between the waveform and its shifted copy.

The autocorrelative function of a real-valued energy signal has the following
properties:

. R(7)=R.(-7) symmeltrical in T about zero
2. |R,(7)|=R(0)forall v maximum value occurs at the origin
3. Rr) = (h autocorrelation and ESD form a Fourier trans-
form pair, as designated by the double-headed
= Arrows
4. R(0)= f x*(1) dr value at the origin is equal to the energy of the

> signal



Power Spectral Density

» Similar to ESD but for power signals (P=E/t)
* Distribution of signal power over frequency

i 1 ! 2 — i 1 ?
P:"mT%EJg(t)l dt Sg(f)_T“ElE‘GT(f)‘
gT()t) g(t)
5T S(f) L1612
T 0 T —

. 1! »
Py =lim,_., o= [lg®) Fdt=[S,(f)df
2T = -




1.4.2 Autocorrelation of a Periodic (Power) Signal

The autocorrelation function of a real-valued power signal x(r) is defined as

$ g e | |

R(7) = t"'m r ’ x(t)xit + ) dt for—-® <7< % (1.22)
— J o

When the power signal x(7) is periodic with period 7}, the time average in Equation

(1.22) may be taken over a single period T,,, and the autocorrelation function can be

expressed as

I 1.2
R{7) = T x(t)x(t + 7)dt for—-® <7< ® (1.23)
N . T2
The autocorrelation function of a real-valued periodic signal has properties
similar to those of an energy signal:

1. R(7)=R(-1) symmetrical in 7 about zero

2. [RA7) £R,(0) foralls maximum value occurs at the origin

3. R,(7) e GAf) autocorrelation and PSD form a Fourier trans-
| 2 form pair

4. R(0) = 7‘-. xX(r) di value at the origin is equal W the average power

. of the signal



Filtering and Modulation

* Filtering

S, () |H(f) | S, (D)
—1 H@® -

* Modulation
— When S,(f) has bandwidth B<f,(Sec 7.8.2),

otherwise
cos(2rf t)

S¢(f) 25[S,(f-fp)+ S, (f+1£))] +cross terms
X —p




Main Points

Channels cause distortion, compensated by equalizer
|deal filters approximate real implementations

Most filtering and other SP done digitally

Energy spectral density measures signal energy distribution
across frequency domain

A signal’s autocorrelation and ESD are FT pairs

Power signals often don’t have FTs: characterized with PSD and
autocorrelation, which are FT pairs.

Filtering and modulation can be analyzed using PSD



Probability Theory

Mathematically characterizes random events.
Defined on a probability space: (S,/A.},P(¢))

— Sample space of possible outcomes C..

Sample space has a subset of events A,

Probability defined for these subsets.

‘. A .
[
)
[ [ o o ®

S



Probability Measure

P(S)=1
0<P(A)<1 for all events A
If (ANB)= then P(AUB)=P(A)+P(B).

Conditional Probability:
— P(B|A)=P(A mB)/P(A)
— Bayes Rule: P(B|A)=P(A|B)P(B)/P(A)

Independent Events:

— A and B are independent if P(A NB)=P(B)P(A)
— Independence is a property of P(e)

— For independent events, P(B|A)=P(B).



Main Points

Modulation of power signals can be analyzed using PSD
Autocorrelation and PSD are FT pairs
Random signals analyzed by PSD

Random events defined on a probability space, with events as
subsets and a probability measure.

Conditional probability characterizes the effect of one event on
another.

Events are independent if their joint probability equals the
product of their probabilities.



Independence and
Bernoulli Trails

* Independent Events:
— A and B are independent if P(A NB)=P(B)P(A)
— Independence is a property of P(e)
— For independent events, P(B|A)=P(B).

* Bernoulli Trails
— Probability of k successes in n trails
— p is probability of success
— Successes can occur in different orders
— Probability given by:

N kl n—k
k]p (1-p)



Random Variables

* Defined on Probability Space (S,/A.},P(®))
— Random variable (x) maps subsets of § to real line.
— Example: (x)=“Coin Toss Outcome”, H=1, T=0.

(*)

(*)

3 o

. 0o 1/2 3
* If (x) takes oh discrete valuesgsit is a discrete RV

e |If (x) takes continuous values it is a continuous RV




Cumulative Distribution Function (CDF)

* CDF of (x): F,(x)=P((x)<x) 1 cbF

* CDF satisfies O<F, (x)<1

X

0 X, X,

* CDF is nondecreasing: F (x,) < F. (5G], X X5

P((x)<2)=P((x)"(-,2))
=P(AUBUC)




1.5.1 Random Variables

Let a random variable X(A) represent the functional relationship between a ran-
dom event A and a real number. For notational convenience, we shall designate the
random variable by X, and let the functional dependence upon A be implicit, The
random variable may be discrete or continuous. The distribution function Fy(x) of
the random variable X is given by

Fo(x) = P(X=x) (1.24)

where P(X < x) is the probability that the value taken by the random variable X
is less than or equal to a real number x. The distribution function Fy(x) has the
following properties:

20 Signals and Spectra ~ Chap. 1






Probability Density Function

* The pdf defined by f (x)=dF,(x)/dx
* Defines probability (x)lies in a given range

P(x, <(X)<X,) = Xjfx (x)dx

 The pdf integrates to 1

o]fx (x)dx =1



Mean, Moments, Variance

e Mean of x is E[x]=jxpx(x)dx

+ Elg(X)]= Jg(x)py(x)dx
 nth Moment: E[x"], E[x?] is mean square
* Var[x]=o0’=E[(x- E[x])?]=E[x?]- E[x]?



L3.L.1 Ensemble Averages

The mean value my or expected value of a tandom variable X, 1s defined by

"

My = E{A} = I APyl dx (1.26)



where E[+) is called the expected value operator. The nth moment of a probability
distribution of a random variable X is defined by

E{X"} = f Vpx(x) dx (1.27)

For the purposes of communication system analysis, the most important moments
of X are the first two moments. Thus, n = 1 in Equation (1.27) gives miy as discussed
above, whereas n = 2 gives the mean-square value of X, as follows:

E{X*} = f X'pylx) dx (1.28)

We can also define central moments, which are the moments of the difference
between X and miy. The second central moment, called the variance of X, is de-
fined as '

var (X) = E{X — my)’} = f (x = my)’py(x) dx (1.29)

The variance of X is also denoted as v §, and its square root, oy, is called the stan-
dard deviation of X. Variance is a measure of the “randomness” of the random
variable X. By specifying the variance of a random variable, we are constraining
the width of its probability density function. The variance and the mean-square
value are related by

o} = E(X? — 2meX + m3)
= E{X?} = 2m,E{X} + m%
= E[X"} — m}

Thus, the variance is equal to the difference between the mean-square value and
the square of the mean.



Gaussian Random Var

e pdf defined in terms of mean anc

iables

variance

Ip,0%)

1 l(xe 1) ] 52

pX(X): e[( w) lo°] ﬁ
2To

Z~9(0. 1)
Tails decrease
« exponentially

* Gaussian CDF defined by Q function:

1 ¥ —x2/2
QY = 7= yje dx

(X SX)=FX(X)=1—Q(X_ﬂ} QM) =

O

5erfc(</x/§:




Several Random Variables

et X and Y be defined on ($,{A},P(*))

Joint CDF Fy(x,y)=P(X<x,Y<y)
Joint pdf: p., (x,y): Fy(X,y)= jijY(g,v)dgdv

Conditional densities: —ooen

Independent RVs: 0, (Y[ X = %) = Py (X, )/ Py (X)

Sums of RVs: Dy (X, ) = P (X) Py (¥)
— Mean of sum is sum of means

— Variance of sum is sum of variances



Main Points

Events are independent if their joint probability equals the
product of their probabilities.

Random variables are functions mapping from subsets of the
probability space to the real line

The CDF and pdf of a random variable are derived from its
underlying probability space.

Mean of a RV is its aver%lge value. Variance is the 2" moment
minus the mean squared.

Gaussian RV a common model for noise

Several random variables have a joint pdf. Their sum has a pdf
that is the convolution of individual pdfs



Random Processes

- Defined on Probability Space (S,{A},P(*))

— Random process X maps S to a set of functions.

S

A
°

A,

@

.

x(t) X ~x(t)
I RN VYL VAVE#C
ST x5
t

— P (x(ty)<x,)=P(UA.:x(t) <x.)

— Px(ty)=<xq,x(t;) <X, X(tn) <X0)=Fcipmica)..xen) Xor--Xn)

° * W x(t)
e Samples ofx(W



Random Processes

- Defined on Probability Space (S,{A},P(*))

— Random process X maps S to a set of functions.

S

A
°

A,

@

.

x(t) X ~x(t)
I RN VYL VAVE#C
ST x5
t

— P (x(ty)<x,)=P(UA.:x(t) <x.)

— Px(ty)=<xq,x(t;) <X, X(tn) <X0)=Fcipmica)..xen) Xor--Xn)

° * W x(t)
e Samples ofx(W



1.5.2 Random Processes

A random process X(A, ¢) can be viewed as a function of two variables: an event A
and time, Figure 1.5 illustrates a random process. In the figure there are N sample
functions of time, (X(f)]. Each of the sample functions can be regarded as the
output of a different noise generator. For a specific event A, we have a single time
function X(A, 1) = X(t) (Le., a sample function). The totality of all sample
functions is called an ensemble. For a specific time t,, X(A, 1) is a random variable
X(1,) whose value depends on the event. Finally, for a specific event, A = A, and a
specific time ¢ = 1, X(A. 1) is simply a number. For notational convenience we
shall designate the random process by Xir), and let the functional dependence
upon A be implicit.
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Real number, x
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1.5.2.1 Statistical Averages of a Random Process

Because the value of a random process at any future time is unknown (since
the identity of the event A is unknown), a random process whose distribution func-
tions are continuous can be described statistically with a probability density func-
tion (pdf). In general, the form of the pdf of a random process will be different for
different times. In most situations it is not practical to determine empirically the
probability distribution of a random process. However, a partial description con-
sisting of the mean and autocorrelation function are often adequate for the needs
of communication systems. We define the mean of the random process X(r) as

E{X{1,)} = f xpx.(.r) dx =m.(t,) (1.30)

where X(1;) is the random: variable obtained by observing the random process at
time ¢ and the pdf of X{z;). the density over the ensemble of events at time 1, is
designated py, (x).

We define the autocorrelation function of the random process X(f) to be a
function of two variables, #; and 5, given by

Ry(ty, 1) = E{X(t))X{n)} (1.31)



Stationarity, Mean, Autocorrelation

* Arandom process is strlctlyz)statlonary if
time shifts don’t change pro ab|I|ty

— P(x(ty)=<xy,x(t;) <x,,..., x(t,,) <X
P(X(t,+T)<x,X(t,+T) <X,,.. ,X(t +T) <X,)
— True for all T and all sets of sample times

» Mean of random process: E[x(t)]=  X(t)
— Stationary process: E[X(t)]= X

* Autocorrelation of a random process:
— Defined as Ry(t,,t,)= E[x(t,)x(t,)]]
— Stationary process: R,(t;,t,)=R,(t,-t,)
— Correlation of process samples over time



1.5.2.2 Stationarity

A random process X(7) is said to be stationary in the strict sense if none of its
statistics arc affected by a shift in the time origin. A random process is said to be
wide-sense stationary (WSS) if two of its statistics, its mean and autocorrelation
function, do not vary with a shift in the time origin. Thus. a process is WSS if

E{X{t)} = my = aconstant (1.32)
and
Rt t;) = Ry(t; — 13) (1.33)

Strict-sense stationary implies wide-sense stationary. but not vice versa. Most of
the useful results in communication theory are predicated on random information
signals and noise being wide-sense stationary. From a practical point of view, it is
not necessary for a random process to be stationary for all time but only for some
observation interval of interest.

For stationary processes, the autocorrelation function in Equation (1.33) does
not depend on time but only on the difference between 1, and .. That is, all pairs of
values of X(r) at points in time separated by 7 =1, - 1; have the same correlation
value. Thus. for stationary systems, we can denote Ry({. 1;) simply as R (7).



1.5.2.3 Autocorrelation of a Wide-Sense Stationary Random Process

Just as the variance provides a measure of randomness for random variables,
the autocorrelation function provides a similar measure for random processes. For
a wide-sense stationary process, the autocorrelation function is only a function of
the nme difference v = t; — t5; that is.

Ri(7) = E{X(0)X(t +7)} for—-® <7< (1.34)

For a zero mean WSS process, R,{7) indicates the extent to which the ran-
dom values of the process separated by 7 seconds in time are statistically corre-
lated. In other words, R{7) gives us an idea of the frequency response that is
associated with a random process. If R {7) changes slowly as 7 increases from zero
to some value, it indicates that. on average, sample values of X(r) taken at =1, and
t =1, + 7 are nearly the same. Thus, we would expect a frequency domain represen-
tation of X(r) to contain a preponderance of low frequencies. On the other hand. if
Ry{7) decreases rapidly as 7 is increased. we would expect X{(7) to change rapidly
with time and thereby contain mostly high frequencies.

Properties of the autocorrelation function of a real-valued wide-sense station-
ary process are as follows:



L Ry(r)=Ry(-7) symmetrical in 7 about zero
L R(r) <Ry (0)forall 7 maximum value occurs at the origin

L Rylr) e Gy autocorrelation and power spectral density form a
Fourier transform pair

4 Ry{0)=BLX(0) value at the origin is equal to the average power
of the signal



1.5.3 Time Averaging and Ergodicity

To compute miy and R{(7) by ensemble averaging. we would have to average
across all the sample functions of the process and would need to have complete
knowledge of the first- and second-order joint probability density functions. Such
knowledge is generally not available.

When a random process belongs to a special class. known as an ergodic
process, its time averages cqual its ensemble averages. and the statistical properties
of the process can be determined by rime averaging over a single sample funcrion of
the process. For a random process to be ergodic, it must be stationary in the strict
sense, (The converse is not necessary.) However. for communication systems,
where we are satisfied to meet the conditions of wide-sense stationarity, we arce
interested only in the mean and autocorrelation functions.

We can say that a random process is ergodic in the mean if

T2
"y = Tlim /7T X{r) dr (1.35)
- 20 = r..z
and it is ergodic in the awtocorrelation function if

b g
Ryf=) — lim /7 X()X(r + +) e (1.36)

-T2
Testing for the ergodicity of a random process is usually very difficult. In
practice one makes an intuitive judgment as to whether it is reasonable to inter-
change the time and ensemble averages. A reasonable assumption in the analysis of
most communication signals (in the absence of transient effects) is that the random
waveforms are ergodic in the mean and the autocorrelation function. Since time
averages equal ensemble averages for ergodic processes, fundamental clectrical
engineering parameters, such as dc value. rms value, and average power can be
related to the moments of an ergodic random process. Following is a summary of

these relationships:

1. The quantity 2, = E{ X(r)] is equal to the dc level of the signal.

2. The quantity »2’y is equal to the normalized power in the dc component.

3. The second moment of X(r), E{X?(r)]. is equal to the total average normalized
power.



Wide Sense Stationary (WSS)

e A processis WSS if
— E[x(t)] is constant
— Ry(ty,t5)= E[X(t,)X(t,)]]=Ry(t,-t;)= Ry(7)
— Intuitively, stationary in 15t and 2" moments

* Ergodic WSS processes

— Have the property that time averages equal
probabilistic averages

— Allow probability characteristics to be obtained
from a single sample over time



Main Points

Several random variables have a joint pdf. Their sum has a pdf
that is the convolution of individual pdfs

Gaussian RV a common model for noise

Sums of i.i.d. shifted, normalized RVs converge to a 9¢(0,1)
Gaussian RV.

Random process x(t) maps S to a set of functions
Samples of x(t) are joint RVs

A process is stationary if time shifts don’t affect probability
characteristics of process.

WSS process has constant mean and autocorrelation that
depends on time difference



Power Spectral Density (PSD)

Defined only for WSS processes

FT of autocorrelation function: Ry(t)<S,(f)
E[X2(t)]=] Sy(f)df
White Noise: Flat PSD

R, (T) 4 .5N,5(1) S, (1)
l « > 5N,
fnation in practlce f

Modulation:

cos(2nf t+0)

Sn(f) * .25 [Sn(f-fc)-l- Sn(f+fc)]
:\)_(/ >




Filtering a WSS Process

* Same PSD effect as for deterministic signals

n(t) with PSD S_(f) y(t) has PSD | H(f) | 2S. ()
—— H® >




Multiple Random Processes

Cross Correlation
ny (tl’tZ) — E[X(tl)Y(tz)]

Processes are jointly stationary if

WSS processes uncorrelated if R, (t,,t,) =R, (t, —t,)
WSS processes orthogonal if o
ny (tl’tZ) — Xy

For orthogonal random processes, autocorrelation of
sum is sum of autocorrelation, anB@ b’cgfllfnpis sum
of PSDs



Gaussian Processes

e z(t) is a Gaussian process if its samples are jointly
Gaussian

e Filtering a Gaussian process results in a Gaussian
process

* Integrating a Gaussian process results in a
Gaussian random variable

Y, = Tjg(t)x(t)dt



Examples of noise in
Communication Systems

* Gaussian processes

— Filtering a Gaussian process yields a Gaussian process.
— Sampling a Gaussian process yields jointly Gaussian RVs

— |If the autocorrelation at the sample times is zero, the RVs
are independent.

* The signal-to-noise power ratio (SNR) is obtained by

integrating the PSD of the signal and integrating the
PSD of the noise.

* |In digital communications, the bit value is obtained

by integrating the signal, and the probability of error
by integrating Gaussian noise.



Main Points

PSD of a WSS process is the average power of a random processes,
equals the FT of its autocorrelation

White noise has flat PSD

Modulation and filtering lead to WSS processes with same properties
as for deterministic functions

Gaussian random processes integrate to Gaussian RVs

Can use random process analysis in studying noise in communication
systems:

— SNR obtained for analog systems by measuring power of signal and power of
noise at receiver output

— Probability of bit error uses properties of Gaussian random variables and
processes.



Main Points

Sums of i.i.d. shifted, normalized RVs converge to a 91(0,1)
Gaussian RV.

Random process x(t) maps S to a set of functions

Samples of x(t) are joint RVs

A process is stationary if time shifts don’t affect probability
characteristics of process.

WSS process has constant mean and autocorrelation that
depends on time difference

PSD of a WSS process is the FT of its autocorrelation

White noise has flat PSD

Modulation lead to WSS processes with same properties as for
deterministic functions



Introduction to
Carrier Modulation

* Basic concept is to vary carrier signal relative to
information signal or bits

— The carrier frequency is allocated by a regulatory body like
the FCC — spectrum is pretty crowded at this point.

* Analog modulation varies amplitude (AM), frequency
(FM), or phase (PM) of carrier

e Digital modulation varies amplitude (MAM), phase
(PSK), pulse (PAM), or amplitude/phase (QAM)



Double Sideband (Suppressed
Carrier) Amplitude Modulation

* Modulated signal is s(t)=m(t)cos(2nf t)

Called double-sideband suppressed carrier (DSBSC) AM

S(t) =m(t)cos(24f t) < S[S(f — f,)+S(f + f.)]
 Generation of DSB-SC AM modulation

Direct multiplication (impractical)

Nonlinear modulators: Basic premise is to add m(t) and the
carrier, then perform a nonlinear operation

Generates desired signal s(t) plus extra terms that are filtered
out.

Examples include diode/transistor modulators, switch
modulators, and ring modulators



Amplitude Modulation

cos(m_t) s(t)=[A+m(t)]cosm_t
m(t) —é—)—é)'—- {D" {\ |

e Constant added to signal m(t)
— Simplifies demodulation if A>|m(t)]|
— Demodulate based on envelope|A+m(t) |=A+m(t)
— Constant is wasteful of power

* Modulated signal has twice bandwidth of m(t)

 Modulate same as DSBSC, except first add A to m(t)




Detection of AM Waves

Entails tradeoff between performance and
complexity (cost)

Many techniques can be used
— Square law detector, rectifier, envelope detector

Rectifier “cuts off” negative components

— Results in desired signal plus higher order terms that
are filtered out

Envelope detection is cheapest method
— Used in most AM radios



Envelope Detector

Ouipuot, [t
Input., 541

_— Input modulation
(squarewave ).

If-ﬂ St

et

___— Output from Envelope Detector
| N I A I A I O R | el
NIRRT

AN NRRATAYAVAVANA

| | | A | | A | III | | | | | I | | | II I| II II II II II II II III
ALYy Yy Y Y Y T AM Wave.
I B B I I N N B
I-I I-I I-I I-I I-I




Main Points

Modulation is the process of encoding a message signal or bits
into a carrier signal

DSBSC multiplies the message signal and the carrier together.

Coherent detection is needed for DSBSC: obtaining carrier
phase is one of biggest challenges in all demodulators.

AM modulation adds a constant term to message signal to
simplify demodulation: wasteful of power and hurts SNR

AM waves typically generated similar to DSBSC

AM waves demodulated using rectifier or envelope detectors,
which is the cheapest (and most common) method.



Single Sideband

* Only transmits upper or lower sideband of AM

USB | LSB I

 Reduces bandwidth by factor of 2

* Transmitted signal can be written in terms of Hilbert
transform of m(t)

e SSB can introduce distortion at DC




Quadrature Modulation

Sends two info. signals on the cosine and sine carriers
5cos(¢—¢ ) m(t)

DSBSC +.5sin(¢— ¢ Jm,(t)

m, (t)cos(m t+d)+ 7Y
m,(t)sin(w t+9)

cos(o t+¢’)

sin(o t+¢

5cos(¢— ¢ )Jm,(t)

DSBSC ﬂ +.5sin(¢p—¢ ) m,(t)




Introduction to Angle Modulation
and FM

Information encoded in carrier freq./phase
Modulated signal is s(t)=A_cos(0(t))
— O(t)=f(m(t))

Standard FM: 9(t)=2nfct+2nkffm(t)dr

— Instantaneous frequency: f.=f +k.m(t)

— Signal robust to amplitude variations

— Robust to signal reflections and refractions

Analysis nonlinear
— Hard to analyze



FM Bandwidth and Carson’s Rule

Frequency Deviation: Af=k; max|m(t)]
— Maximum deviation of ®, from o_: ©=o+km(t)

Carson’s Rule:

B ~2Af+2B

— B, depends on maXimum devidtlon from o AND how
fast o, changes

Narrowband FM: Af<<B_—>B~2B
Wideband FM: Af>>B = B ~2Af



Spectral Analysis of FM

* s(t)=Acos(m t+k: Jm(ot)dor)
— Very hard to analyze for general m(t).
* Let m(t)=cos(w, t): Bandwidth f

* S(f) sequence of o functions at f=f_tnf
— If Af <<f_, Bessel function small for f&(f £f )
— If Af >>f_, significant components up to f_+Af.

S(f) for m(t)=cos(2nf t) B~2AB~2B_ WBFNUBEM

SALB), TR
ces 5A,
wal | L1 ]

f-af, f.-3f, f.-2f flf £ ffy f42f fc+l3fm fo+ 4f, !
-5A_f




Generating FM Signals

¢ NBFM m 2nkff(-)dt ¢(t): Product - s(t)
Modulator .
Asin(o,t) Acos(at)
« WBFM -~

— Direct Method: Modulate a VCO with m(t)
— Indirect Method

Product $1(Y) | Nonlinear sy (t)
m(t) —| Modulator | Device ’ BPF [ s(v
(klrfl)

s, (t) = A, cos(2xf,t + 27k, J: m(z)dz); s, (t)=as(t)+...+a,s"(t)

s, (t) =a, A cos" (2aft + 27K, J: m(z)d7) +other terms

= Acos(2znft + 22nk, f m(z)d7) +other terms




FM Detection

* Differentiator and Envelope Detector

« Zero Crgzsmpg%etcéb wplsinloct+k, jm(“)d“]

— Uses rate of zero crossmgs to estimate 0;

* Phase Lock Loop (PLL)
— Uses VCO and feedback to extract m(t)



Main Points

FM modulation encodes information in signal frequency. More
robust to amplitude errors

FM modulation nonlinear. Bandwidth approximate by Carson’s
rule: B~2Af+2B

Spectral analysis of FM difficult. For a simple cosine information
signal, FM spectrum is discrete and infinite.

NBFM is easier to analyze and generate (simple product
modulator). WBFM more complicated to analyze and generate

In theory just need differentiator and envelope detection for FM.
Many techniques used in practice (mostly VCO).



Introduction to Digital Modulation

* Most information today is in bits

* Baseband digital modulation converts bits into analog
signals y(t) (bits encoded in amplitude)

iak p(t—KT,) = x(t)* p(t) for x(t) = ia@(t —KT,)



Pulse Shaping

* Pulse shaping is the design of pulse p(t)
— Want pulses that have zero value at sample times nT

e Rectangular pulses don’t have good BW properties

* Nyquist pulses allow tradeoff of bandwidth
characteristics and sensitivity to timing errors

4

=)
= 21 x_ 71 1




Figure 3-15 Binary signaling formats.

BINARY DATA

0

0

(a) Punched Tape

0

(b) Unipolar NRZ

(c) Polar NRZ

0

(d) Unipolar RZ

(e) Bipolart RZ

(f) Manchester NRZ
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Figure 3—-16 PSD for line codes (positive frequencies shown).
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Passband Digital Modulation

Changes amplitude (ASK), phase (PSK), or frequency (FSK)
of carrier relative to bits

We use BB digital modulation as the information signal
m(t) to encode bits, i.e. m(t) is on-off, etc.

Passband digital modulation for ASK/PSK) is a special case
of DSBSC; has form

FSK is a special case of FM

s(t)= > m(t) cos(e,t + )



ASK, PSK, and FSK

 Amplitude Shift Keying (ASK)

1 0 1 1

Acos(t) m(nT)=Acty WAL IAANAN

s(t) = m(t) cos(w,t) ={ 0 b(nT,) =0("0") | U U U U U U U U
* Phase Shift Keying (PSK)

m(t)

AM Modulation

1 0 1 1
B [ Acos(et)  m(nT,)=A(1") m(t)
s(t) =m(t) cos(@,1) = { Acos(ort ) m(NT.) = ACO" /\U/\UMU(\U(\U(\U/\U(\
* Frequency Shift Keying Phase Modulation
1 0 1 1

0 Acos(wt) m(nT,)=A WU%%WU%WU%
s(t) = {Acos(a)ot) m(nT,) =—A

FM Modulation



Figure 5-19 Bandpass digitally modulated signals.

(a) Unipolar
Modulation

(b) Polar
Modulation

(c) OOK Signal

(d) BPSK Signal

(e) FSK Signal

(f) DSB-SC with
Pulse Shaping
of the Baseband
Digital Signal

m(t)

BINARY DATA

1
T i
b=R

1

0

m(t)

s(t)

s(t)

s(t)

s(t)
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W
L
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Main Points

NBFM easy to generate and analyze. WBFM harder

In theory just need differentiator and envelope detection for FM.
Many techniques used in practice (mostly VCO).

Digital baseband modulation encodes bits in analog signal, whose
properties are dictated by the pulse shape

Digital passband modulation encodes binary bits into the
amplitude, phase, or frequency of the carrier.

ASK/PSK special case of AM; FSK special case of FM



Couch, Digital and Analog Communication Systems, Seventh Edition

Figure 5-21 Detection of OOK.

OOK in Envelope Binary output
detector

(a) Noncoherent Detection

OOK in _ Low-pass Binary output
filter
cos(w,1)

(b) Coherent Detection with Low-Pass Filter Processing

Matched filter
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'l Integrator ! ;
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(c) Coherent Detection with Matched Filter Processing
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FSK in »| Frequency
detector

Figure 5-28 Detection of FSK.

Binary
output

FSK in

—

X

cos(w; 1)

(a) Noncoherent Detection
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Main Points

Pulse shaping used in both baseband and passband modulation to determine signal
BW and resistance to impairments.

Digital passband modulation encodes binary bits into the amplitude, phase, or
frequency of the carrier.

ASK/PSK special case of AM; FSK special case of FM
Noise immunity in receiver dictates how much noise reqd to make an error

White Gaussian noise process causes a Gaussian noise term to be added to the
decision device input

Bit error probability with white noise is a function of the symbol energy to noise
spectral density ratio.

BPSK has lower error probability than ASK for same energy per bit.

FSK same error prob. as ASK; less susceptible to amplitude fluctuations.



Multilevel Modulation

m bits encoded in pulse of duration T, (R,=m/T,)

s(t) = > Acos(at+6,(t))

N=—c0 .
— @, constant over a symbol time T, and
values on each pulse.

Phase Shift Keyin gMPSK

[ Acos(wt) 00

A, cos(a t+ 7 /2) "01"

A cos(w.t+ ) "10"

| A cos(a t+37/2)"11"
Similar ideas in MFSK

S(t) =+

Demodulation similar to binary case

Higher data rate
more susceptible to

'an take MX)5%€different

4PSK: 2 bits per symbol (T,)
00 10 01 11

i

—>

T

S

00 10 01 11

P




Main Points

Bit error probability with white noise is a function of the symbol
energy to noise spectral density ratio.

BPSK has lower error probability than ASK for same energy per bit.

FSK same error probability as ASK and less susceptible to
amplitude fluctuations.

Phase offset, timing offset, and biased noise can increase
probability of error.

Can encode more than one bit per symbol. This increases the data
rate but makes signal more susceptible to noise



