SYSTEMS

(2.120)

ent when
“complex

oidal

ol <

in the

Hence,

€s

1.25°).

 is
ge
°Ys

2-8.1

=& IMPULSE RESPONSE OF SECOND-ORDER LCCDES

R ——————

COS(7)  mm—)n ’ ht)=e " u(r) l —

Answer: The output is (1/+/2) cos(r — 45°). (See (50) |

Exercise 2-13:

2cos(t) =— | System | 2cos(2t) + 2.

Initial conditions are zero. Is this system LTT?

Answer: No. An LTI cannot create a sinusoid at a
frequency different from that of its input. (See &)

Exercise 2-14:

COS(27) el — (),

Can we say that the system is not LTI?
Answer: No. An LTI can make an amplitude = 0.

(See () .

2-8 Impulse Response of
Second-Order LCCDEs

Many physical systems are described by second-order LCCDEs
of the form

d*y dy dx
2 +a1— +az y(r) =b'Er_ + by x(1),

= (2.121)

where ay, as, b, and by are constant coefficients. In this
section, we examine how to determine the impulse response
function h(r) for such a differential equation, and in Section 2-9,
we demonstrate how we use that experience to analyze

% spring-mass-damper model of an automobile suspension
system.

LCCDE with No Input Derivatives

For simplicity, we start by considering a version of Eq. (2.121)
without the dxx /dt term, and then we use the result to treat the
more general case in the next subsection.

I Tm—
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Forby =0and by, = 1, Eq. (2.121) becomes
Exercise 2-12: ,
d-y dy
PT +a1~£ +ay y(t) = x(1). (2.122)

Step 1: Roots of characteristic equation

Assuming y(r) has a general solution of the form y(t) = Ae”,
substitution in the homogeneous form of Eq.(2.122)—i.e., with
x(tr) = O—Ileads to the characteristic equation:

s> +ajs +ap =0. (2.123)
If py and p; are the roots of Eq. (2.123), then
s*+ais+ay = (s — p1)(s — pa), (2.124)
which leads to
P1+ p2=—a, pip2 = a, (2.125)
and
aj aj 2
I
2 (2 (2.126)
aj a2
pP2= 2 (—2—) —a

Roots p; and p; are

(a) real if a? > day,

(b) complex conjugates if a} < 4a, or
(¢) identical if a? = 4a;.
Step 2: Two coupled first-order LCCDEs

The original differential equation given by Eq. (2.122) now can
be rewritten as

d?y Lo dy
T (P1+ p2) w73 +(p1p2) y() =x@),  (2.127a)

which can in turn be cast in the form

d d
[E — Pl] [E - pz] () = x(1).

Furthermore, we can split the second-order differential
equation into two coupled first-order equations by introducing
an intermediate variable z(1):

(2.127b)

d
= —=p1 2(1) = x(1) (2.128a)

dt

and

Q —p2y(t) = z(1). (2.128b)

dt
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These coupled first-order LCCDEs represent a series (or
cascade) connection of LTI systems, each described by a first-
order LCCDE. In symbolic form, we have

x(r) — hi(r) — z(1)

(2.129)

z(t)  — ha(t) — (1),

where /11 (1) and h2(r) are the impulse responses corresponding
to Eqgs. (2.128a and b), respectively.

Step 3: Impulse response of cascaded LTI systems

By comparison with Eq. (2.10) and its corresponding impulse
response, Eq. (2.17), we conclude that
hi(t) = eP'"" u(n) (2.130a)

and

ha(t) = eP*" u(t). (2.130b)

Using convolution property #2 in Table 2-1, the impulse
response of the series connection of two LTI systems is the
convolution of their impulse responses. Utilizing entry #3 in
Table 2-2, the combined impulse response becomes

he(t) = hy(t) * ha(t) = e u(t) % e u(t)

= [Pl 1P2} [eP'" — P2 u(t).
(2.131)

2-8.2 LCCDE with Input Derivative

We now consider the more general case of a-second-order
LCCDE that contains a first-order derivative on the input side
of the equation

d*y dy dx
S - 1) =bi— + by x(1). ;
2 +a|dr+az)’() i 2 x(1) (

S
)
)

By defining the right-hand side of Eq. (2.132) as an intermediate
variable w(r), the system can be represented as

x(t) =— w(r)=b1j—f+bzx(r) m— w(t)
w(t) w— he(t) m— (1), (2.133)

where h¢(t) is the impulse response given by Eq. (2.131)
the system with by = 0and by = 1.

To determine the impulse response of the overall sysi
we need to compute the convolution of hc(t) with the (yet
be determined) impulse response representing the other
in Eq. (2.133). A more expedient route is to use convolu
property #1 in Table 2-1. Since convolution is commutati
we can reverse the order of the two LTI systems in Eq. (2.13

X () w—t |} (1) | w—(1)
dv
u(t) m— (1) = b I + by v(r) |==—y(1),

where v(r) is another intermediate variable created for the
of convenience. By definition, when x(r) = (), the ou
v(r) becomes the impulse response h(t) of. the overall sys
That is, if we set x (1) = &(r), which results in v(r) = h¢(1)
v(t) = h(r), the system becomes

S(t) wm—p- | h (1) |w—-h(1)

dh
he(t) === | h(t) = by 'ch + by he(1)

Finally, the impulse response h(t) of the overall system is

h(t) = b % + by he(t)

= I:bl 4 +b2:| [ l ] [P — eP2' ] u(t)
dt P1— P2

_ bipy + b2 QP! byp2+ b2 QP!
P1— P2 P1—p2

u(t) — u(r). (2.136

Having established in the form of Eq. (2.136) an explici
expression for the impulse response of the general LCCD
given by Eq. (2.132), we can now determine the response y(f)
to any causal input excitation x(¢) by evaluating

y(t) = ulr) fh(r) x(t —1)dr. (2.137)
0
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2-8.3 Parameters of Second-Order LCCDE

Mathematically, our task is now complete. However, we can
zain much physical insight into the nature of the system'’s
m=sponse by examining scenarios associated with the three
states of roots p; and p; [as noted earlier in connection with

Eg. (2.126)].
‘a) py and p are real and distinct (different).

‘b py and p; are complex conjugates of one another.
c) pyand p; are real and equal.

®ecall that py and p; are defined in terms of coefficients a;
#d a in the LCCDE, so different systems characterized by
LCCDEs with identical forms but different values of @ and a,
may behave quite differently.

Before we examine the three states of p; and p» individually,
= will prove useful to express p; and p; in terms of physically
meaningful parameters. To start with, we reintroduce the
=xpressions for p; and p; given by Eq. (2.126):

__a a\? _ 2 138,
p=-7+ (2) a (2.138a)
a apy? ,,

P2 = '—? - (E‘) —az (_138b)

Based on the results of Section 2-6.4, in order for the system
described by Eq. (2.136) to be BIBO stable, it is necessary that

- e real parts of both p; and p> be negative. We now show that

s is true if and only if @) > 0 and a; > 0. Specifically, we
Save the following:

‘a) If both p; and p; are real, distinct, and negative,
Eq. (2.138) leads to the conclusion that a7 > 4a>, a; > 0,
and a> > 0.

‘b1 If py and p; are complex conjugates with negative real
parts, it follows that af < 4ay, a; > 0,and a> > 0.

¢! If py and p; are real, equal, and negative, then af = 4da»,
a; > 0,andaz > 0.

» The LTI system described by the LCCDE Egq. (2.132)
is BIBO stable if and only if a; > 0 and a; > 0. «

We now introduce three new non-negative, physically
=eaningful parameters:

a= 0_21 = attenuation coefficient (Np/s), (2.139a)

@y = \/a; = undamped natural frequency (rad/s),
(2.139b)

and

E_Cl o ag
ey 2ym

(unitless).

= damping coefficient

(2.139¢)

The unit Np is short for nepers, named after the inventor of the
logarithmic scale, John Napier. In view of Eq. (2.139), p; and
P2 can be written as

pr=—a+a? -} =w [—i,—‘+ vVE2 — l] (2.140a)

and

pr=—a— Ja? — w} = wo [—g —JE= 1] (2.140b)

The damping coefficient & plays a critically important role,
because its value determines the character of the system’s
response to any input x(¢). The system exhibits markedly
different responses depending on whether

(a) & > | === gverdamped response,
(b) & = | === critically damped response, or
(c) & < | === underdamped response.

The three names, overdamped, underdamped, and critically
damped, refer to the shape of the system’s response. Figure 2-22
displays three system step responses, each one of which starts
atzeroatr = O andrisesto y = 1 as 7 — oo, but the shapes of
their waveforms are quite different. The overdamped response
exhibits the slowest path towards y = 1; the underdamped
response is very fast, but it includes an oscillatory component;
and the critically damped response represents the fastest path
without oscillations.

2-8.4 Overdamped Case (¢ > 1)

For convenience, we rewrite Eq. (2.136) as

h(t) = A1e”"" u(t) + Aze™" u(t) (2.141)
(overdamped impulse response)
with
b b —(b b
A= 1p1+ by il = (brp2 + 2). (2.142)
Pr—p2 PL— P2
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nn Vstep(?)
4
3
Underdamped L R e
l- ...............
Critically damped 2t Overdamped response
Overdamped
1+
— —1(5)
0
Figure 2-22: Comparison of overdamped, underdamped, and ()0 | 2 3 . = 1(s)

critically damped responses. In each case, the response starts at
zero at t = 0 and approaches | as t — o0, but the in-between
paths are quite different.

If £ > 1—which corresponds to @® > . or equivalently,
012 > 4a,—roots p; and p, are both negative real numbers with
|p2| > |p1]. The step response ygep(t) is obtained by inserting
Eq. (2.141) into Eq. (2.137) and setting x(t —7) = u(r —7) and
V(1) = Vseep(r):
14
Ysiep(t) = f[A[e“’" u(t) 4+ A2eP" u(r)) ul(t — v) dr.

0
(2.143)

Over the range of integration (0, 1), u(r) = landu(r—1) = 1.
Hence,

[
Ystep(t) = f(“’llf-"plr + A2ePT) dt | u(t),
0
which integrates to

Vstep(t) = [ﬂ (eP = 1) + 22 (eP? — 1)] u(t).
P p2

(overdamped step response) (2.144)

Figure 2-23: Step response of overdamped system in Example
2-14.

Example 2-14: Overdamped Response

Compute and plot the step response ysep(r) of a system
described by the LCCDE

d*y dy dx
— +12—+9 =4 — + 25x(t).
ety 30) ar T2

Solution: From the LCCDE, a; = 12, a2 =9, b =4,
by = 25. When used in Egs. (2.139), (2.140), and (2.142),
obtain the values

a) 12

a=?=?=6Np/s.
o 6
wp = /a2 = V9 = 3 rads, E=—=-=12,
wy 3
p1 = —0.8 Np/s, p2 = —11.2 Np/s,
A

A )
= —2.62, and =2 = —0.17.
P1 P2

Since & > 1, the response is overdamped, in which
Eq. (2.144) applies:
Prapl(t) = [2.62(1 —e %8y 101701 - e-“-Z’)] u(t).

The plot of yep(?) is shown in Fig. 2-23.

2-8.5 Underdamped Case (§ < 1)

Ifé < 1,orequivalently,e® < w%,the square rootin Eq. (2.1
becomes negative, causing roots p; and p» to become com
numbers. For reasons that will become apparent shortly,
condition leads to an underdamped step response with
waveform that oscillates at a damped natural frequency

defined as
wd:,fa)(z)—ot2=w0 1—&2. (2.1
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of wy, roots py and p; [Eq. (2.140)] become

m=-a+jog and  pr = —a — juy. (2.146)

these expressions into the impulse response given by
“2.141) leads to

=[A1e™ /™! | Are~ omiwal) (1)
= [Aj(cos wqt + j sin wgt)
+ Aa(cos wgt — j sinwgt)]e™ u(r)

= [(A] + Az) coswgt + j(A] — A3) sinwgt]e™®" u(t),

(s)
can be contracted into
1
VR h(t) = [B) cos wqt + By sinwatle™" u(r)
(underdamped impulse response) (2.147)
-4, and swroducing two new coefficients, By and Bs, given by
42), we 5 5
B =A+A= 1P1 + b _bhmth =b; (2.148a)
P1—p2 P1— P2
2 )
k:j(Al—A2)=b2—_l—a. (2.148b)
wd
negative exponential e~*" in Eq. (2.147) signifies that / (r)
a damped waveform, and the sine and cosine terms signify
| h(r) is oscillatory with an angular frequency wy and a
casg ponding time period
2r
). T= o (2.149)
Example 2-15: Underdamped Response j
140) Compute and plot the step response Ysiep(t) of a system
plex described by the LCCDE
this i
th a d-y dy _ dx
@ an +12 7 + 144y(1) = 4 ar =+ 25x(r).
Solution: From the LCCDE, a) = 12, a, = 144, by = 4,and
45) b = 25.

The damping coefficient is
aj 12
= =——=0.5.
§ 2/ay  2./144

Hence, this is an underdamped case and the appropriate impulse
response is given by Eq. (2.147). The step response Vstep(r) is
obtained by convolving h(z) with x (1) = u(r):

Vstep(?) = h(t) * u(r)

T
= [f(B' coswyT + B sinwyt)e ©°F dr:l u(t).
0

Performing the integration by parts leads to

Ysep(f) = ;!2—_{_—6%2
- {[=(Bia + Bawy) cos wyt (2.150)
+ (Biwg + Baa) sinwgr]e ™'
+ (Bia + Bawg) } u(r).
(underdamped step response)
For the specified constants,
a = 6 Np/s, wy = /az = 12 rad/s, £=05,

wd = woy/ 1 — E2 = 10.4 rad/s.
B =4, By =9.62 x 1072, and

yuep(t) = { [<0.17cos 10.41 +0.29 sin 10.47] e~
+0.7} u(o.

Figure 2-24 displays a plot of Ystep(), which exhibits an
oscillatory pattern superimposed on the exponential response.
The oscillation period is T = 27/10.4 = 0.6 s.

2-8.6 Critically Damped Case (¢ = 1)

According to Eq. (2.140), if & = 1, then p; = p». Repeated
roots lead to a eritically damped step response, so called
because it provides the fastest path to the steady state that the
system approaches as t — co. With p; = p», the expression
for h(r) reduces to a single exponential, which is not a
viable solution, because a second-order LCCDE should include
two time-dependent functions in its solution. To derive an
appropriate expression for A (t), we take the following indirect
approach.
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Vstepl(?)
037

02| Underdamped response

017k f--mmmmmm e e

0.1+

0 - ' . : - 1(s)
0 02 04 06 08 I

Figure 2-24: Underdamped response of Example 2-15. Note the
oscillations.

Step 1: Start with a slightly underdamped system:

Suppose we have a slightly underdamped system with a very
small damped natural frequency wg = € and roots

pr=—a+je and p;=-—a— je.

According to Eq.(2.131), the impulse response h. (1) of a system
with no input derivative is

) = | 2] te = emyu)
Jjet _ ,—jet )
- [EJT:] e ut) = 2 ot iy,

(2151)

Since € is infinitesimally small, e <« «. Hence, e=*' will decay
to approximately zero long before €t becomes significant in
magnitude, which means that for all practical purposes, the
function sin €t is relevant only when et is very small, in which
case the approximation sin(er) ~ et is valid. Accordingly, /(1)
becomes

he(t) =te ™™ u(r),

as e — 0. (2.152)

Step 2 Obtain impulse response /(¢):

Implementation of Eq. (2.135) to obtain h(r) of the system
containing an input derivative dx/dr from that of the same

system without the dx /dr term leads to

dhe
bah(t
di + bahc(1)

= (C; 4+ Ca)e™ u(r)

h(r) = b,

(critically damped impulse response)
with
Ci=b
and

Cs = by —aby. (2.15

Example 2-16: Critically Damped Response

Compute and plot the step response of a system described by

d?y dy dx

— + 12 = 1) =4 — +25x(1).

i +12 o + 36y(1) o + 25x(1)
Solution: From the LCCDE, a; = 12, a» = 36, b; =4,
by = 25. The damping coefficient is

£ = a1 2 -
T 2J@m 243
Hence, this is a critically damped system. The relevant cons

are ai
tx=?=6Np/S, Ci=4,and C2 = 1,

and the impulse response is
h(t) = (4+ e u(r).

The corresponding step response is

Vstep(r) = h(1) * u(r) = l:f(4+ 7)e %" dt:| u(t)
0

= [;—2(1 Y é re"("] u(t),

and its profile is displayed in Fig. 2-25, The step response s
at zero and approaches a final value of 25/36 = 0.69 ast —
It exhibits the fastest damping rate possible without oscillati

The impulse and step responses of the second-order LCCD!
namely Eq. (2.132), are summarized in Table 2-3 for each
the three damping conditions.
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Table 2-3: Impulse and step responses of second-order LCCDE.

d%y dy dx

LCCDE dtz +a E—- +axy = by T + bax

a o
e=F. w=v@.  f=. p=al-t+VEoT p=wlit- VB
Overdamped Case £ > |

" ¢ AI ' AZ f
h(t) = AP u(t) + AzeP? u(t) Vstep (1) = _D_ (e” — 1)+ P_ @ — 1) | u(r)
1 2
b —(b
A=t G tb)
7 P1—p2

Underdamped Case £ < 1

h(t) = [Bj coswgt + By sinwgtle™™" u(t)
1
Ytep(t) = el {[=(Bia + Bywq) cos wat + (Biwg + Ba) sin watle ™™ + (B + Bowa)} u(t)
a

-b
Bi=by, &=ﬁ—ﬁ. ws = woy/T—€2
wd

Critically Damped Case £ = |

& C C
h(t) = (Cy + Cat)e™" u(t) Ystep(t) = [(—' + —:) [l—& by~ =2 re'“'] u(r)
o o o
Ci=b, Cy =by —ab
Vstep(f) Concept Question 2-14: What are the three damping
conditions of the impulse response?
R e
| 0.6+
Critically damped response f:oncept Question 2-15: How do input derivatives affect
impulse responses?
0.4+
0.2+ Exercise 2-15: Which damping condition is exhibited by
h(r) of .
d-y dy dx
2 482 +4y(t) =2 —1?
; ; . dr? dt dt
% 02 04 06 o8 1 'O
Answer: Overdamped,  because & =1.25> 1.
Figure 2-25: Critically damped response of Example 2-16. | (See (3)
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Exercise 2-16: For what constant a; is

d’y dy dx

= oL 2 g )

a2 +a o +9y(1) 2t
critically damped?

Answer: a; = 6. (See (3)

2-9 Car Suspension System

The results of the preceding section will now be used to analyze
a car suspension system, which is selected in part because
it offers a nice demonstration of how to model both the car
suspension system and several examples of input excitations,
including driving over a curb, over a pothole, and on a wavy
pavement.

2-9.1

The basic elements of an automobile suspension system are
depicted in Fig. 2-26.

Spring-Mass-Damper System

# x(tr) = input = vertical displacement of the pavement,
defined relative to a reference ground level.

e y(t) = output = vertical displacement of the car chassis
- from its equilibrium position.

e m = one-fourth of the car’s mass, because the car has four
wheels.

e k = spring constant or stiffness of the coil.
e b =damping coefficient of the shock absorber.

The forces exerted by the spring and shock absorber, which act

on the car mass in parallel, depend on the relative displacement

(¥ — x) of the car relative to the pavement. They act to oppose

the upward inertial force F. on the car, which depends on

only the car displacement y(r). When (y — x) is positive (car

mass moving away from the pavement), the spring force Fy is

directed downward. Hence, F is given by

| Fs= —k(y — x). (2.155)

The damper force Fy exerted by the shock absorber is governed

i by viscous compression. It also is pointed downward, but

N it opposes the change in (y — x). Therefore it opposes the
i derivative of (y — x) rather than (y — x) itself:

d
Fg=-b = (v —x). (2.156)

v
(a) Damping system

w(1) F.
CAR
Mass 4m
Coil with Shock absorber
spring ‘,Fs L= ‘Fd with damping
constant k coefficient b
x(1)

Pavement
(b) Model

Figure 2-26: Car suspension system model.

Using Newton’s law, F. =ma = m(d®y/dt?), the fo
equation is
F.=F; +Fy (2.15

or
dzy

m —
dr?

d
=—k(y-x)-ba (y —x),
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ich can be recast as

d’y bdy k

b _bdx _k
dt>  mdt m

=——d4 — x. 2.158
’ ma'r+ . ( )

form of Eq. (2.158) is identical with that of the second-
er LCCDE given by Eq. (2.132). Hence, all of the results we
-wived in the preceding section become directly applicable to
automobile suspension system upon settinga; = by = b/m
day=by =k/m.

Typical values for a small automobile are:

» m = 250 kg for a car with a total mass of one metric ton
(1000 kg); each wheel supports one-fourth of the car’s
mass.

» k= 10° N/m; it takes a force of 1000 N to compress the
spring by 1 cm.

» b = 10* N-s/m; a vertical motion of 1 m/s incurs a resisting
force of 104 N.

3.2  Pavement Models

iving on a curb

car driving over a curb can be modeled as a step in x(r) given

x1(1) = Ay u(r), (2.159)

ere Ay is the height of the curb (Fig. 2-27(a)).

iving over a pothole

a car moving at speed s over a pothole of length d, the
ole represents a depression of duration 7 = d/s. Hence,
=ving over the pothole can be modeled (Fig. 2-27(b)) as

x2(1) = Az[—u(t) + u(r — 7)), (2.160)

ere A> is the depth of the pothole.

iving over wavy pavement

e 2-27(c) depicts a wavy pavement whose elevation is a

force wmusoid of amplitude Az and period Tjy. Input x3(r) is then

.157)

il Apeon s | (2.161)
Ty

Example 2-17: Car Response to a Curb

A car with a mass of 1,000 kg is driven over a 10 cm high curb.
Each wheel is supported by a coil with spring constant k = 10°
N/m. Determine the car’s response to driving over the curb for
each of the following values of b, the damping constant of the
shock absorber: (a) 2 x 10* N-s/m, (b) 10* N-s/m, and (c) 5000
N-s/m.

Solution: (a) The mass per wheel is m = 1000/4 = 250 kg.
Comparison of the constant coefficients in Eq. (2.158) with
those in Eq. (2.132) for the LCCDE of Section 2-8 leads to

LCCDE Suspension System

b 2x10*
=—= =805,
N=n="2%0 s

ko 10° 5
@ = =50 = 400

b
by =—=80s"",

m
b2=£=400s_2,

m
m=@=20rad/s.

and
a=%=40Np/s.
The damping coefficient is

o 40

§ wp 20

Since &£ > 1, the car suspension is an overdamped system. As
was noted earlier in Section 2-9.2, the curb is modeled as a
step function with an amplitude A = 10 cm = 0.1 m. From
Table 2-3, the step response of an overdamped system scaled
by a factor of 0.1 is

1 (1) = 0.1 ygep(r)

A
=i [ﬂ (P — 1) + =2 (P — 1)] u(t).
P1 P2
(2.162)
From Table 2-3, we have
p1 = wol—& + VE? — 1] = —5.36 Np/s,
P2 = wo[—& — VEX — 1] = —74.64 Npl/s,

_ bipi+by _ 80(—5.36) + 400

i =-042s5"",
L= o —ps . —536+7464 g
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A

: Curb xi(H=Aqult
Aq "rwm Ay 10 1u(1)

‘ mEEEEEEEEsEss s - # t

0 0

Pavement Displacement

(a) Curb
x(t)=—Aru(t) + Ay u(t—T)
/g
r-v--—-b # t

(b) Pothole

=

(c) Wavy pavement

Figure 2-27: Pavement profiles and corresponding models for the vertical displacement x (7).

x3(f) = A3 cos(2xt/Tp)

A3
i
0 \_/ T

and

—(b1p2 +b2)  —[80(—74.64) + 400]
pi—p2  —5.36+74.64

Hence, y;(t) in meters becomes

yi(r) = [0.108(1 — e~ 74%%) _ 0.008(1 — e7>3%)] u(r) m,
(2.163)

=80.42s",

Ay =

A plot of y|(r) is displayed in Fig. 2-28.
(b) Changing the value of b to 10* N-s/m leads to
10*

a) =b1 =ﬁ=405h‘1,

ar=by = E = 40052 (unchanged),
m
wo = /az = 20 rad/s (unchanged),

@ = "2—‘ — 20 Npls,

For this critically damped case, the expressions given
Table 2-3 lead to

ya(t) = 0.1[(1 — e 2%) +20te 2" Ju() m. (2.1

From the plot of y2(f) in Fig. 2-28, it is easy to see
approaches its final destination of 0.1 m (height of the
much sooner than the overdamped response exhibited by y;
(¢) For an old shock absorber with b = 5000 N-s/m,
parameter values are

5000 _1
==y <
k
a; =by = . = 40052 (unchanged),
wo = y/az = 20 rad/s (unchanged),
a; 20 _
=== 10 Np/s,
and
o 10
=—=—=05.
§ 20
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“ar displacement in cm

15+
»(0): Overdamped

10

T

)

»a2(f): Critically damped ya(7): Underdamped

Figure 2-28: Car's response to driving over a 10 cm curb.

= £ < I, the system is underdamped, which means that the ~ The car’s vertical displacement y»(t) is in response to a 0.1 m
s=sponse to the curb will include some oscillations. Using  vertical step (curb). For the pothole model shown in Fig. 2-27,
2-3, we have the response y4(7) can be synthesized as
og = woy/1 — £2 = 20/T—0.25 = 17.32 radfs ya(0) = =y2(0) + y2(¢ ~ 0.2)
= —0.1[(1 — e™) +20re2] u(r)
+0.1(1 — 720002y s —0.2)
) =0.1{[— cos 17.32¢ + 115 sin 17.32r]e "% -1} u(r) m. +2( - 0.2)e72000D y; —_02)m. (2.166)

illatory behavior of y3(r) is clearly evident in the plot Because the height of the curb and the depth of the pothole are

i i both 0.1 m, no scaling was necessary in this case. For a pothole
#s profile in Fig. 2-28 (see G for details). of depth A, the multiplying coefficient (0.1) should be replaced
with A.

(b) For b = 2000 N-s/m, we have

ple 2-18: Car Response to a Pothole

ite the response of a car driven at 5 m/s over a | m
2. 10 cm deep pothole if the damping constant of its shock
arber is (a) 10* N-s/m or (b) 2000 N-s/m. All other attributes

the same as those in Example 2-17, namely, m = 250 kg wy = /az = 20 rad/s,
k=10 N/m.

Hon: (a) The travel time across the pothole is 7 = 5= 2
s. According to part (b) of the solution of Example 2-17,

= 1 when b = 10* N.s/m, representing a critically damped  and

stem with the response given by Eq. (2.164) as

o
M =011 -e™) + 20t u@rym.  (2.165) W
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Module 2.2 Automobile Suspension Response Select curb, pothole, or wavy pavement. Then, select the pavement
characteristics, the automobile’s mass, and its suspension’s spring constant and damping coefficient.

Car Response

~ Car Movement |\ Ground [Af M= &)

A

015 02 025 03 035
Tima le)

005 01

spring constant (N/m)
a0
50000 75000 100000 125000 150000
damping (Ns/m)
LW
R IR R 1 m
5000 10000

For this underdamped case, the expressions in Table 2-3 lead

to
| _ wa = woy/1 — €2 = 20v/1 — 0.22 = 19.6 rad/s

& and a unit-step response given by

y(t) = {[— cos 19.61 + 0.58 sin 19.61]e™* + 1} u(r) m.
(2.167)
For the pothole response, we have
y5(t) ==0.1y() + 0.1 y(t —0.2)
| = 0.1{[cos 19.6r — 0.58 sin 19.6¢]e™* — 1} u(r)
| — 0.1{[cos(19.6(r — 0.2))
—0.585in(19.6(r — 0.2))]e"*1—0-2

=1} u(t —0.2) m. (2.168)

Plots for y4(r) and ys(t) are displayed in Fig. 2-29 [see ® for
details].

' “ l Example 2-19: Driving over Wavy Pavement
\

' 1 A 1,000 kg car is driven over a wavy pavement (Fig. 2-27(c))

of amplitude A3 =5 cm and a period Tp =0.314s. The .

suspension system has a spring constant k = 10°
and a damping constant b = 10* N-s/m. Simulate the
displacement as a function of time.

Solution: The car suspension parameter values are

b 10*

— = _— =40s5"!

m 250 >
and

k10

— = — =400s"2.

m . 250 s

Using these values in Eq. (2.158) gives

d’y dy dx

—= +40 — + 400y = 40 — + 400x. (2.1

dt? + dt o8y qp TR
Following the recipe outlined in $ection 2-7.3, wherein we
x(1) = e/ and y(t) = H(w) e/*", Eq. (2.169) leads to
following expression for the frequency response function Hi;

400 + j40w 400 + j40w

(j)2 + j40w + 400 _ (400 — w?) + jmg,l'
(22

H(w) =
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vement @splacement in cm

10 -

Y4(0): Critically damped
response

¥s(1): Underdamped response

0.3 0.4

Figure 2-29: Car's response to driving over a 10 cm deep pothole.

- —— ;gﬁlliscation of Eq. (2.118) with a scaling amplitude of 0.05 m
75;

5

25¢ - Y6(r) = 0.05/H(20)| cos(wot + )

= 5.6cos(20r — 26.6°) x 10~2 m. (2.173)

Note that the amplitude of yg(r) in Fig. 2-30 is slightly greater
than the amplitude of the pavement displacement [5.6 ¢cm
i . ; t(s) compared with 5 cm for x(7)]. This is an example of resonance.
0.2 0.4 0.6 0.8 1

N Exercise 2-17: Use LabVIEW Module 2.2 to compute
Figure 2-30: Car's response to driving over a wavy pavement the wavy pavement response in Example 2-19 and shown
#ith a 5 cm amplitude. in Fig. 2-30.

angular frequency w of the wavy pavement is

_2n 2

S = ——1= ) i 2.17 2
) Thn 0314 rads 2.171) It — s

=
W0 1500 3o [

“valuating H(w) at wy = 20 rad/s gives

400 + j800 _ b
=1-j0.5=1.12¢726 .
(400 — 400) + /800 05=1.12
2.172)

H(20) =




