

Figure P3.1: Waveforms for Problem 3.1.

PROBLEMS

Sections 3-1 to 3-3: Laplace Transform and Its Properties

3.1 Express each of the waveforms in Fig. P3.1 in terms of step functions and then determine its Laplace transfrom. [Recall that the ramp function is related to the step function by $r(t-T) = (t-T) \ u(t-T)$.] Assume that all waveforms are zero for t < 0.

- (a) Staircase
 - *Answer(s) in Appendix E.

- (b) Square wave
- (c) Top hat
- (d) Mesa
- (e) Negative ramp
- (f) Triangular wave

- Determine the Laplace transform of each of the *periodic* forms shown in Fig. P3.2. (Hint: See Exercise 3.2.)
- Sawtooth
- Interrupted ramps
- Impulses
- Periodic exponentials

Figure P3.2: Periodic waveforms for Problem 3.2.

- **3.3** Determine the Laplace transform of each of the following functions by applying the properties given in Tables 3-1 and 3-2.
- (a) $x_1(t) = 4te^{-2t} u(t)$
- **(b)** $x_2(t) = 10\cos(12t + 60^\circ) u(t)$
- (c) $x_3(t) = 12e^{-3(t-4)} u(t-4)$
- **3.4** Determine the Laplace transform of each of the following functions by applying the properties given in Tables 3-1 and 3-2.
- (a) $x_1(t) = 12te^{-3(t-4)} u(t-4)$
- **(b)** $x_2(t) = 27t^2 \sin(6t 60^\circ) u(t)$
- (c) $x_3(t) = 10t^3e^{-2t} u(t)$
- **3.5** Determine the Laplace transform of each of the following functions by applying the properties given in Tables 3-1 and 3-2.
- (a) $x_1(t) = 16e^{-2t}\cos 4t \ u(t)$
- **(b)** $x_2(t) = 20te^{-2t} \sin 4t \ u(t)$
- (c) $x_3(t) = 10e^{-3t} u(t-4)$
- **3.6** Determine the Laplace transform of each of the following functions by applying the properties given in Tables 3-1 and 3-2.
- (a) $x_1(t) = 30(e^{-3t} + e^{3t}) u(t)$
- **(b)** $x_2(t) = 5(t-6) u(t-3)$
- (c) $x_3(t) = 4e^{-2(t-3)} u(t-4)$
- **3.7** Determine the Laplace transform of the following functions:
- (a) $x_1(t) = 25\cos(4\pi t + 30^\circ) \delta(t)$
- **(b)** $x_2(t) = 25\cos(4\pi t + 30^\circ) \delta(t 0.2)$
- (c) $x_3(t) = 10 \frac{\sin(3t)}{t} u(t)$
- (d) $x_4(t) = \frac{d^2}{dt^2} [e^{-4t} u(t)]$
- **3.8** Determine the Laplace transform of the following functions:
- (a) $x_1(t) = \frac{d}{dt} \left[4te^{-2t} \cos(4\pi t + 30^\circ) u(t) \right]$
- **(b)** $x_2(t) = e^{-3t} \cos(4t + 30^\circ) u(t)$
- (c) $x_3(t) = t^2[u(t) u(t-4)]$
- (d) $x_4(t) = 10\cos(6\pi t + 30^\circ) \delta(t 0.2)$
- **3.9** Determine $x(0^+)$ and $x(\infty)$ given that

$$\mathbf{X}(\mathbf{s}) = \frac{4\mathbf{s}^2 + 28\mathbf{s} + 40}{\mathbf{s}(\mathbf{s} + 3)(\mathbf{s} + 4)} \,.$$

3.10 Determine $x(0^+)$ and $x(\infty)$ given that

$$X(s) = \frac{s^2 + 4}{2s^3 + 4s^2 + 10s} \; .$$

†3.11 Determine $x(0^+)$ and $x(\infty)$ given that

$$\mathbf{X}(\mathbf{s}) = \frac{12e^{-2\mathbf{s}}}{\mathbf{s}(\mathbf{s}+2)(\mathbf{s}+3)} \ .$$

3.12 Determine $x(0^+)$ and $x(\infty)$ given that

$$\mathbf{X}(\mathbf{s}) = \frac{19 - e^{-\mathbf{s}}}{\mathbf{s}(\mathbf{s}^2 + 5\mathbf{s} + 6)} \ .$$

Section 3-4 and 3-5: Partial Fractions and Circuit Examples

3.13 Obtain the inverse Laplace transform of each of the following functions, by first applying the partial-fraction-expansion method.

(a)
$$\mathbf{X}_1(\mathbf{s}) = \frac{6}{(\mathbf{s}+2)(\mathbf{s}+4)}$$

(b)
$$\mathbf{X}_2(\mathbf{s}) = \frac{4}{(\mathbf{s}+1)(\mathbf{s}+2)^2}$$

(c)
$$\mathbf{X}_3(\mathbf{s}) = \frac{3\mathbf{s}^3 + 36\mathbf{s}^2 + 131\mathbf{s} + 144}{\mathbf{s}(\mathbf{s} + 4)(\mathbf{s}^2 + 6\mathbf{s} + 9)}$$

3.14 Obtain the inverse Laplace transform of each of the following functions:

(a)
$$\mathbf{X}_1(\mathbf{s}) = \frac{\mathbf{s}^2 + 17\mathbf{s} + 20}{\mathbf{s}(\mathbf{s}^2 + 6\mathbf{s} + 5)}$$

(b)
$$\mathbf{X}_2(\mathbf{s}) = \frac{2\mathbf{s}^2 + 10\mathbf{s} + 16}{(\mathbf{s} + 2)(\mathbf{s}^2 + 6\mathbf{s} + 10)}$$

(c)
$$\mathbf{X}_3(\mathbf{s}) = \frac{4}{(\mathbf{s}+2)^3}$$

3.15 Obtain the inverse Laplace transform of each of the following functions:

(a)
$$X_1(s) = \frac{(s+2)^2}{s(s+1)^3}$$

(b)
$$\mathbf{X}_2(\mathbf{s}) = \frac{1}{(\mathbf{s}^2 + 4\mathbf{s} + 5)^2}$$

(c)
$$\mathbf{X}_3(\mathbf{s}) = \frac{\sqrt{2}(\mathbf{s}+1)}{\mathbf{s}^2 + 6\mathbf{s} + 13}$$

3.16 Obtain the inverse Laplace transform of each of following functions:

(a)
$$\mathbf{X}_1(\mathbf{s}) = \frac{2\mathbf{s}^2 + 4\mathbf{s} - 16}{(\mathbf{s} + 6)(\mathbf{s} + 2)^2}$$

(b)
$$\mathbf{X}_2(\mathbf{s}) = \frac{2(\mathbf{s}^3 + 12\mathbf{s}^2 + 16)}{(\mathbf{s} + 1)(\mathbf{s} + 4)^3}$$

(c)
$$\mathbf{X}_3(\mathbf{s}) = \frac{-2(\mathbf{s}^2 + 20)}{\mathbf{s}(\mathbf{s}^2 + 8\mathbf{s} + 20)}$$

3.17 Obtain the inverse Laplace transform of each of following functions:

(a)
$$\mathbf{X}_1(\mathbf{s}) = 2 + \frac{4(\mathbf{s} - 4)}{\mathbf{s}^2 + 16}$$

(b)
$$\mathbf{X}_2(\mathbf{s}) = \frac{4}{\mathbf{s}} + \frac{4\mathbf{s}}{\mathbf{s}^2 + 9}$$

(c)
$$\mathbf{X}_3(\mathbf{s}) = \frac{(\mathbf{s}+5)e^{-2\mathbf{s}}}{(\mathbf{s}+1)(\mathbf{s}+3)}$$

3.18 Obtain the inverse Laplace transform of each of following functions:

(a)
$$\mathbf{X}_1(\mathbf{s}) = \frac{(1 - e^{-4\mathbf{s}})(24\mathbf{s} + 40)}{(\mathbf{s} + 2)(\mathbf{s} + 10)}$$

(b)
$$\mathbf{X}_2(\mathbf{s}) = \frac{\mathbf{s}(\mathbf{s} - 8)e^{-6\mathbf{s}}}{(\mathbf{s} + 2)(\mathbf{s}^2 + 16)}$$

(c)
$$\mathbf{X}_3(\mathbf{s}) = \frac{4\mathbf{s}(2 - e^{-4\mathbf{s}})}{\mathbf{s}^2 + 9}$$

3.19 Determine v(t) in the circuit of Fig. P3.19 given $v_s(t) = 2u(t)$ V, $R_1 = 1$ Ω , $R_2 = 3$ Ω , C = 0.3689 F, L = 0.2259 H.

Figure P3.19: Circuit for Problems 3.19 and 3.20.

3.20 Determine $i_L(t)$ in the circuit in Fig. P3.19 given $\upsilon_s(t) = 2u(t), \quad R_1 = 2 \ \Omega, \quad R_2 = 6 \ \Omega, \quad L = 2.215 \ H,$ $C = 0.0376 \ F.$

of each of

of each of the

Determine $v_{\text{out}}(t)$ in the circuit in Fig. P3.21 given that $v_0 = 35u(t)$ V, $v_{C_1}(0^-) = 20$ V, $v_{C_1}(0^-) = 20$ V, $v_{C_1}(0^-) = 20$ F, $v_{C_1}(0^-) = 20$ F.

Figure P3.21: Circuit for Problem 3.21.

Section 3-6: Transfer Function

A system is characterized by a transfer function given by

$$\mathbf{H}(\mathbf{s}) = \frac{18\mathbf{s} + 10}{\mathbf{s}^2 + 6\mathbf{s} + 5}$$

mine the output response y(t), if the input excitation is by the following:

$$\mathbf{x}_1(t) = \mathbf{u}(t)$$

$$x_2(t) = 2t \ u(t)$$

$$x_3(t) = 2e^{-4t} u(t)$$

$$x_4(t) = [4\cos(4t)] u(t)$$

When excited by a unit step function at t = 0, a system meantes the output response

$$y(t) = [5 - 10t + 20\sin(2t)] u(t).$$

ransfer function and (b) the impulse monse.

When excited by a unit step function at t = 0, a system matter the output response

$$y(t) = 10 \frac{\sin(5t)}{t} u(t).$$

ransfer function and (b) the impulse conse.

When excited by a unit step function at t = 0, a system matter the output response

$$y(t) = 10t^2 e^{-3t} u(t).$$

the system transfer function and (b) the impulse transfer.

3.26 When excited by a unit step function at t = 0, a system generates the output response

$$y(t) = 9t^2 \sin(6t - 60^\circ) \ u(t).$$

Determine (a) the system transfer function and (b) the impulse response.

3.27 For the circuit shown in Fig. P3.27, determine (a) $\mathbf{H}(\mathbf{s}) = \mathbf{V}_0/\mathbf{V}_1$ and (b) h(t) given that $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $C_1 = 1 \mu \mathrm{F}$, and $C_2 = 2 \mu \mathrm{F}$.

Figure P3.27: Circuit for Problem 3.27.

3.28 For the circuit shown in Fig. P3.28, determine (a) $\mathbf{H}(\mathbf{s}) = \mathbf{V}_0/\mathbf{V}_1$ and (b) h(t) given that $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $L_1 = 1$ mH, and $L_2 = 2$ mH.

Figure P3.28: Circuit for Problem 3.28.

[†]**3.29** For the circuit shown in Fig. P3.29, determine (a) $\mathbf{H}(\mathbf{s}) = \mathbf{V}_{\rm o}/\mathbf{V}_{\rm i}$ and (b) h(t) given that R = 5 Ω , L = 0.1 mH, and C = 1 μ F.

Figure P3.29: Circuit for Problem 3.29.

of each of

3.19 given the 0.3689 F, and

nd 3.20.

3.19 given the 2.215 H, and

Section 3-7: LTI System Stability

3.30 An LTI system is described by the LCCDE

$$\frac{d^2y}{dt^2} - 7\frac{dy}{dt} + 12y = \frac{dx}{dt} + 5x.$$

Is the system BIBO stable?

3.31 The response of an LTI system to input $x(t) = \delta(t) - 4e^{-3t} u(t)$ is output $y(t) = e^{-2t} u(t)$. Is the system BIBO stable?

3.32 An LTI system has impulse response $h(t) = (4+j5)e^{(2+j3)t} u(t) + (4-j5)e^{(2-j3)t} u(t)$. Is the system BIBO stable?

3.33 An LTI system has transfer function

$$H(s) = \frac{(s+1)(s+2)}{s(s+3)}.$$

Is it BIBO stable?

Section 3-8: Invertible Systems

†3.34 Compute the impulse response g(t) of the BIBO stable inverse system corresponding to the LTI system with impulse response $h(t) = \delta(t) - 2e^{-3t} u(t)$.

3.35 Compute the impulse response g(t) of the BIBO stable inverse system corresponding to the LTI system with impulse response $h(t) = \delta(t) + te^{-t} u(t)$.

3.36 Show that the LTI system with impulse response $h(t) = \delta(t) - 4e^{-3t} u(t)$ does not have a BIBO stable inverse system.

3.37 Show that the LTI system with impulse response $h(t) = e^{-t} u(t)$ does not have a BIBO stable inverse system.

Section 3-10: Interrelating Descriptions

3.38 An LTI system has an impulse response $h(t) = \delta(t) + 6e^{-t} u(t) - 2e^{-2t} u(t)$. Compute each of the following:

- (a) Frequency response function $\hat{\mathbf{H}}(\omega)$
- (b) Poles and zeros of the system
- (c) LCCDE description of the system
- (d) Response to input $x(t) = e^{-3t} u(t) e^{-4t} u(t)$

3.39 An LTI system has an impulse resp $h(t) = \delta(t) + 4e^{-3t}\cos(2t) u(t)$. Compute each of following:

- (a) Frequency response function $\hat{\mathbf{H}}(\omega)$
- (b) Poles and zeros of the system
- (c) LCCDE description of the system
- (d) Response to input $x(t) = 2te^{-5t} u(t)$

3.40 An LTI system has the LCCDE description

$$\frac{d^2y}{dt^2} + 7\frac{dy}{dt} + 12y = \frac{dx}{dt} + 2x.$$

Compute each of the following:

- (a) Frequency response function $\hat{\mathbf{H}}(\omega)$
- (b) Poles and zeros of the system
- (c) Impulse response h(t)
- (d) Response to input $x(t) = e^{-2t} u(t)$

3.41 An LTI system has the LCCDE description

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 13y = \frac{dx}{dt} + 2x.$$

Compute each of the following:

- (a) Frequency response function $\hat{\mathbf{H}}(\omega)$
- (b) Poles and zeros of the system
- (c) Impulse response h(t)
- (d) Response to input $x(t) = e^{-2t} u(t)$

3.42 The response of an LTI system to $x(t) = \delta(t) - 2e^{-3t} u(t)$ is output $y(t) = e^{-2t} u(t)$ Comeach of the following:

- (a) Frequency response function $\hat{\mathbf{H}}(\omega)$
- (b) Poles and zeros of the system
- (c) LCCDE description of the system
- (d) Impulse response h(t)

3.43 An LTI system has $\mathbf{H}(0) = 1$ and zeros: $\{-1\}$; $\{-3, -5\}$. Compute each of the following:

- (a) Frequency response function $\hat{\mathbf{H}}(\omega)$
- (b) LCCDE description of the system
- (c) Impulse response h(t)
- (d) Response to input $x(t) = e^{-t} u(t)$

mpulse respondent each of

ption

tion

- An LTI system has $\mathbf{H}(0) = 15$ and zeros: $\{-3 \pm j4\}$; $\{-1 \pm j2\}$. Compute each of the following:
- requency response function $\hat{\mathbf{H}}(\omega)$
- CCDE description of the system
- pulse response h(t)
- Seponse to input $x(t) = e^{-3t} \sin(4t) u(t)$
- The response of an LTI system to input $x(t) = \cos(4t) u(t)$ is output $y(t) = e^{-3t} \sin(4t) u(t)$. Compute the following:
- Frequency response $\hat{\mathbf{H}}(\omega)$
- Poles and zeros of the system
- CCDE description of the system
- Impulse response h(t)

3-11: Partitions of Responses

- Compute the following system responses for the circuit in Fig. P3.46 given that $x(t) = 25\cos(3t) u(t)$, R = 0, $C = 1 \mu F$, and the capacitor was initially charged to
- Zero-input response.
- Zero-state response.
- Transient response.
- Steady-state response.
- Natural response.
- Forced response.

Figure P3.46: Circuit for Problem 3.46.

- [†]**3.47** If the capacitor in the circuit of Fig. P3.46 is initially charged to y(0) volts, instead of 2 V, for what value of y(0) is the transient response identically equal to zero (i.e., no transient)?
- **3.48** For the circuit in Fig. P3.48, compute the steady-state unit-step response for i(t) in terms of R.

Figure P3.48: Circuit for Problems 3.48 to 3.50.

- **3.49** In the circuit of Fig. P3.48, let i(0) = 1 mA.
- (a) Compute the resistance R so that the zero-input response has the form

$$i(t) = Ae^{-20000t} u(t) + Be^{-5000t} u(t)$$

for some constants A and B.

- **(b)** Using the resistance R from (a), compute the initial capacitor voltage v(0) so that the zero-input response is $i(t) = Be^{-5000t} u(t)$ for some constant B.
- **3.50** In the circuit of Fig. P3.48, i(0) = 0.
- (a) Compute the resistance *R* so that the zero-input response has the form

$$i(t) = Ae^{-2000t} u(t) + Be^{-50000t} u(t)$$

for some constants A and B.

(b) Using the resistance R from (a), show that no initial capacitor voltage v(0) will make the zero-input response be $i(t) = Be^{-50000t} u(t)$ for some constant B.

n to ince

u(t) Comput

-1}; pole