BIEMS

5-1: Phasor-Domain Technique

A system is characterized by the differential equation

$$c_1 \frac{dy}{dt} + c_2 y = 10\cos(400t - 30^\circ).$$

Determine y(t), given that $c_1 = 10^{-2}$ and $c_2 = 3$. Determine y(t), given that $c_1 = 10^{-2}$ and $c_2 = 0.3$.

A system is characterized by the differential equation

$$c_1 \frac{d^2 y}{dt^2} + c_2 \frac{dy}{dt} + c_3 y = A \cos(\omega t + \phi).$$

mine y(t) for the following:

$$c_1 = 10^{-6}$$
, $c_2 = 3 \times 10^{-3}$, $c_3 = 3$, $A = 12$, $\omega = 10^3$ and $\phi = 60^\circ$.

$$c_1 = 5 \times 10^{-4}$$
, $c_2 = 10^{-2}$, $c_3 = 1$, $c_3 = 1$, $c_4 = 16$, $c_5 = 16$, $c_6 = 16$, $c_7 = 16$, $c_8 = 16$, $c_8 = 16$, $c_8 = 16$, $c_9 = 16$, c_9

$$c_1 = 5 \times 10^{-6}$$
, $c_2 = 1$, $c_3 = 10^6$, $A = 4$, $\omega = 10^6$ rad/s, and $\phi = -60^\circ$.

Repeat part (a) of Problem 5.2 after replacing the cosine a sine.

A system is characterized by

$$c_1 \frac{d^2 y}{dt^2} + c_2 \frac{dy}{dt} + c_3 y =$$

$$A_1 \cos(\omega t + \phi_1) + A_2 \sin(\omega t + \phi_2).$$

ermine y(t), given that $c_1 = 10^{-6}$, $c_2 = 3 \times 10^{-3}$, $c_3 = 3$, $c_4 = 10$, $c_5 = 10$, $c_6 = 10$, and $c_7 = 10$, and $c_7 = 10$.

Apply the superposition property of LTI systems.)

A system is characterized by

$$4 \times 10^{-3} \frac{dy}{dt} + 3y = 5\cos(1000t) - 10\cos(2000t).$$

mine y(t). (*Hint:* Apply the superposition property of systems.)

Sections 5-3 and 5-4: Fourier Series

Follow these instruction for each of the waveforms in Problems 5.6 through 5.15.

- (a) Determine if the waveform has dc, even, or odd symmetry.
- (b) Obtain its cosine/sine Fourier series representation.
- (c) Convert the representation to amplitude/phase format and plot the line spectra for the first five non-zero terms.
- (d) Convert the representation to complex exponential format and plot the line spectra for the first five non-zero terms.
- (e) Use MATLAB^{®†} or MathScript RT Module to plot the waveform using a truncated Fourier series representation with $n_{\text{max}} = 100$.
- **5.6** Waveform in Fig. P5.6 with A = 10.

Figure P5.6: Waveform for Problem 5.6.

5.7 Waveform in Fig. P5.7 with A = 4.

Figure P5.7: Waveform for Problem 5.7.

5.8 Waveform in Fig. P5.8 with A = 6.

Figure P5.8: Waveform for Problem 5.8.

Answer(s) in Appendix E.

MATLAB® is a registered trademark of The MathWorks, Inc.

*5.9 Waveform in Fig. P5.9 with A = 10.

Figure P5.9: Waveform for Problem 5.9.

5.10 Waveform in Fig. P5.10 with A = 20.

Figure P5.10: Waveform for Problem 5.10.

5.11 Waveform in Fig. P5.11 with A = 100.

Figure P5.11: Waveform for Problem 5.11.

5.12 Waveform in Fig. P5.12 with A = 4.

Figure P5.12: Waveform for Problem 5.12.

5.13 Waveform in Fig. P5.13 with A = 10.

Figure P5.13: Waveform for Problem 5.13.

5.14 Waveform in Fig. P5.14 with A = 10.

Figure P5.14: Waveform for Problem 5.14.

5.15 Waveform in Fig. P5.15 with A = 20.

Figure P5.15: Waveform for Problem 5.15.

- **5.16** Obtain the cosine/sine Fourier-series representation $f(t) = \cos^2(4\pi t)$, and use MATLAB® or MathScript Module software to plot it with $n_{\text{max}} = 100$.
- **5.17** Repeat Problem 5.16 for $f(t) = \sin^2(4\pi t)$.

- Which of the six waveforms shown in Figs. P5.6 through will exhibit the Gibbs oscillation phenomenon when ented by a Fourier series? Why?
- Consider the sawtooth waveform shown in Fig. 5-3(a). state the Gibbs phenomenon in the neighborhood of t = 4 s string the Fourier-series representation with $n_{\text{max}} = 100$ the range between 4.01 s and 4.3 s.
- The Fourier series of the periodic waveform shown in 5.21(a) is given by

$$f_1(t) = 10 - \frac{20}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi t}{2}\right).$$

mine the Fourier series of waveform $f_2(t)$ in P5.21(b).

Figure P5.21: Waveforms of Problem 5.21.

5-5: Circuit Applications

The voltage source $v_s(t)$ in the circuit of Fig. P5.22 mates a square wave (waveform #1 in Table 5-4) with = 10 V and T = 1 ms.

Figure P5.22: Circuit for Problem 5.22.

- (a) Derive the Fourier series representation of $v_{\text{out}}(t)$.
- (b) Calculate the first five terms of $v_{out}(t)$ using $R_1 = R_2 = 2 \text{ k}\Omega, \ C = 1 \ \mu\text{F}.$
- (c) Plot $v_{\text{out}}(t)$ using $n_{\text{max}} = 100$.
- **5.23** The current source $i_s(t)$ in the circuit of Fig. P5.23 generates a sawtooth wave (waveform in Fig. 5-3(a)) with a peak amplitude of 20 mA and a period T = 5 ms.

Figure P5.23: Circuit for Problem 5.23.

- (a) Derive the Fourier series representation of $v_{\text{out}}(t)$.
- (b) Calculate the first five terms of $v_{\text{out}}(t)$ using $R_1 = 500 \ \Omega$, $R_2 = 2 \text{ k}\Omega$, and $C = 0.33 \mu\text{F}$.
- (c) Plot $v_{\text{out}}(t)$ and $i_s(t)$ using $n_{\text{max}} = 100$.
- *5.24 The current source $i_s(t)$ in the circuit of Fig. P5.24 generates a train of pulses (waveform #3 in Table 5-4) with A = 6 mA, $\tau = 1 \mu$ s, and $T = 10 \mu$ s.

Figure P5.24: Circuit for Problem 5.24.

- (a) Derive the Fourier series representation of i(t).
- (b) Calculate the first five terms of i(t) using $R = 1 \text{ k}\Omega$, L = 1 mH, and $C = 1 \mu$ F.
- (c) Plot i(t) and $i_s(t)$ using $n_{\text{max}} = 100$.

5.25 Voltage source $v_s(t)$ in the circuit of Fig. P5.25(a) has the waveform displayed in Fig. P5.25(b).

Figure P5.25: Circuit and waveform for Problem 5.25.

- (a) Derive the Fourier series representation of i(t).
- (b) Calculate the first five terms of i(t) using $R_1 = R_2 = 10 \Omega$ and $L_1 = L_2 = 10 \text{ mH}$.
- (c) Plot i(t) and $v_s(t)$ using $n_{\text{max}} = 100$.
- **5.26** Determine the output voltage $v_{\rm out}(t)$ in the circuit of Fig. P5.26, given that the input voltage $v_{\rm in}(t)$ is a full-wave rectified sinusoid (waveform #8 in Table 5-4) with $A=120~{\rm V}$ and $T=1~\mu{\rm s}$.

- (a) Derive the Fourier series representation of $v_{out}(t)$.
- (b) Calculate the first five terms of $v_{\text{out}}(t)$ using $R = 1 \text{ k}\Omega$, L = 1 mH, and C = 1 nF.
- (c) Plot $v_{\text{out}}(t)$ and $v_{\text{in}}(t)$ using $n_{\text{max}} = 100$.

5.27

- (a) Repeat Example 5-6, after replacing the capacitor will inductor L = 0.1 H and reducing the value of R to 1.
- (b) Calculate the first five terms of $v_{\text{out}}(t)$.
- (c) Plot $v_{\text{out}}(t)$ and $v_{\text{s}}(t)$ using $n_{\text{max}} = 100$.
- **5.28** Determine $v_{\text{out}}(t)$ in the circuit of Fig. P5.28, given the input excitation is characterized by a triangular wave (#4 in Table 5-4) with A = 24 V and T = 20 ms.

Figure P5.28: Circuit for Problem 5.28.

- (a) Derive Fourier series representation of $v_{out}(t)$.
- (b) Calculate first five terms of $v_{\text{out}}(t)$ using R=470 L=10 mH, and C=10 μ F.
- (c) Plot $v_{\text{out}}(t)$ and $v_{\text{s}}(t)$ using $n_{\text{max}} = 100$.
- **5.29** A backward-sawtooth waveform (#7 in Table 5-4) A = 100 V and T = 1 ms is used to excite the circum Fig. P5.29.

Figure P5.29: Circuit for Problem 5.29.

- (a) Derive Fourier series representation of $v_{out}(t)$.
- (b) Calculate the first five terms of $v_{\text{out}}(t)$ using $R_1 = 1$ and $R_2 = 100 \ \Omega$, $L = 1 \ \text{mH}$, and $C = 1 \ \mu\text{F}$.
- (c) Plot $v_{\text{out}}(t)$ and $v_{\text{s}}(t)$ using $n_{\text{max}} = 100$.

The circuit in Fig. P5.30 is excited by the source shown in Fig. P5.25(b).

Figure P5.30: Circuit for Problem 5.30.

Solution Fourier series representation of i(t).

Colculate the first five terms of $v_{\text{out}}(t)$ using $R_2 = 100 \Omega$, L = 1 mH, and $C = 1 \mu\text{F}$.

Flot i(t) and $v_s(t)$ using $n_{\text{max}} = 100$.

The RC op-amp integrator circuit of Fig. P5.31 excited wave (waveform #1 in Table 5-4) with A = 4 V and

Figure P5.31: Circuit for Problem 5.31.

Derive Fourier series representation of $v_{\text{out}}(t)$.

Calculate the first five terms of $v_{\text{out}}(t)$ using $R_1 = 10 \text{ k}\Omega$ and $C = 10 \mu\text{F}$.

Flot $v_{\text{out}}(t)$ using $n_{\text{max}} = 100$.

Repeat Problem 5.31 after interchanging the locations $1-k\Omega$ resistor and the $10-\mu F$ capacitor.

5-6: Average Power

The voltage across the terminals of a certain circuit and rent entering into its (+) voltage terminal are given by

$$= [4 + 12\cos(377t + 60^\circ) - 6\cos(754t - 30^\circ)] \text{ V},$$

$$= [5 + 10\cos(377t + 45^{\circ})]$$

$$+ 2\cos(754t + 15^{\circ})$$
] mA.

mine the average power consumed by the circuit, and the per fraction.

5.34 The current flowing through a 2-k Ω resistor is given by

$$i(t) = [5 + 2\cos(400t + 30^\circ) + 0.5\cos(800t - 45^\circ)] \text{ mA}.$$

Determine the average power consumed by the resistor.

5.35 The current flowing through a $10-k\Omega$ resistor is given by a triangular waveform (#4 in Table 5-4) with A=4 mA and T=0.2 s.

- (a) Determine the exact value of the average power consumed by the resistor.
- (b) Using a truncated Fourier-series representation of the waveform with only the first four terms, obtain an approximate value for the average power consumed by the resistor.
- (c) What is the percentage of error in the value given in (b)?

*5.36 The current source in the parallel RLC circuit of Fig. P5.36 is given by

$$i_s(t) = [10 + 5\cos(100t + 30^\circ) - \cos(200t - 30^\circ)] \text{ mA}.$$

Determine the average power dissipated in the resistor given that $R=1~\mathrm{k}\Omega,~L=1~\mathrm{H},$ and $C=1~\mu\mathrm{F}.$

Figure P5.36: Circuit for Problem 5.36.

5.37 A series RC circuit is connected to a voltage source whose waveform is given by waveform #5 in Table 5-4, with $A=12~\rm V$ and $T=1~\rm ms$. Using a truncated Fourier-series representation composed of only the first three non-zero terms, determine the average power dissipated in the resistor, given that $R=2~\rm k\Omega$ and $C=1~\rm \mu F$.

Sections 5-7 and 5-8: Fourier Transform

For each of the waveforms in Problems 5.38 through 5.47, determine the Fourier transform.

5.38 Waveform in Fig. P5.38 with A = 5 and T = 3 s.

Figure P5.38: Waveform for Problem 5.38.

5.39 Waveform in Fig. P5.39 with A = 10 and T = 6 s.

Figure P5.39: Waveform for Problem 5.39.

5.40 Waveform in Fig. P5.40 with A = 12 and T = 3 s.

Figure P5.40: Waveform for Problem 4.50.

5.41 Waveform in Fig. P5.41 with A = 2 and T = 12 s.

Figure P5.41: Waveform for Problem 5.41.

5.42 Waveform in Fig. P5.42 with A = 1 and T = 3 s.

Figure P5.42: Waveform for Problem 5.42.

5.43 Waveform in Fig. P5.43 with A = 1 and T = 2 s

Figure P5.43: Waveform for Problem 5.43.

5.44 Waveform in Fig. P5.44 with A = 3 and T = 1 s

Figure P5.44: Waveform for Problem 5.44.

Using th

Waveform in Fig. P5.45 with A = 5, T = 1 s, and $= 10 \text{ s}^{-1}$.

Figure P5.45: Waveform for Problem 5.45.

Waveform in Fig. P5.46 with A = 10 and T = 2 s.

Figure P5.46: Waveform for Problem 5.46.

- Find the Fourier transform of the following signals with = 2, $\omega_0 = 5$ rad/s, $\alpha = 0.5$ s⁻¹, and $\phi_0 = \pi/5$.
- $f(t) = A\cos(\omega_0 t \phi_0), \quad -\infty < t < \infty$
- $g(t) = e^{-\alpha t} \cos(\omega_0 t) u(t)$
- Find the Fourier transform of the following signals with = 3, B = 2, $\omega_1 = 4$ rad/s, and $\omega_2 = 2$ rad/s.
- $f(t) = [A + B\sin(\omega_1 t)]\sin(\omega_2 t)$
- $g(t) = A|t|, \quad |t| < (2\pi/\omega_1)$
- Find the Fourier transform of the following signals with $= 0.5 \text{ s}^{-1}$, $\omega_1 = 4 \text{ rad/s}$, and $\omega_2 = 2 \text{ rad/s}$.
- $f(t) = e^{-\alpha t} \sin(\omega_1 t) \cos(\omega_2 t) u(t)$
- $g(t) = te^{-\alpha t}, \quad 0 \le t \le 10\alpha$
- Using the definition of Fourier transform, prove that

$$\mathcal{F}[t \ f(t)] = j \ \frac{d}{d\omega} \ \mathcal{F}(\omega).$$

5.51 Let the Fourier transform of f(t) be

$$\mathbf{\hat{F}}(\omega) = \frac{A}{(B+j\omega)} \ .$$

Determine the transforms of the following signals (using A = 5 and B = 2).

- (a) f(3t-2)
- **(b)** t f(t)
- (c) d f(t)/dt

5.52 Let the Fourier transform of f(t) be

$$\mathbf{\hat{F}}(\omega) = \frac{1}{(A+j\omega)} e^{-j\omega} + B.$$

Determine the Fourier transforms of the following signals (set A = 2 and B = 1).

- (a) $f\left(\frac{5}{8}t\right)$
- **(b)** $f(t)\cos(At)$
- (c) $d^3 f/dt^3$
- **5.53** Prove the following two Fourier transform pairs.
- (a) $\cos(\omega T) \hat{\mathbf{f}}(\omega) \iff \frac{1}{2} [f(t-T) + f(t+T)]$
- **(b)** $\sin(\omega T) \hat{\mathbf{F}}(\omega) \iff \frac{1}{2i} [f(t+T) f(t-T)]$
- **5.54** Using only Fourier transform properties, show that

$$\frac{\sin(10\pi t)}{\pi t} \left[1 + 2\cos(20\pi t) \right] = \frac{\sin(30\pi t)}{\pi t} \ .$$

5.55 Show that the spectrum of

$$\frac{\sin(20\pi t)}{\pi t} \; \frac{\sin(10\pi t)}{\pi t}$$

is zero for $|\omega| > 30\pi$.

*5.56 A square wave x(t) has the Fourier series given by

$$x(t) = \sin(t) + \frac{1}{3}\sin(3t) + \frac{1}{5}\sin(5t) + \cdots$$

Compute $y(t) = x(t) * 3e^{-|t|} * [\sin(4t)/(\pi t)].$

Section 5-9: Parseval's Theorem for Fourier Integral

- 5.57 If $x(t) = \sin(2t)/(\pi t)$, compute the energy of d^2x/dt^2 .
- **5.58** Compute the energy of $e^{-t} u(t) * \sin(t) / (\pi t)$.
- 5.59 Show that

$$\int_{-\infty}^{\infty} \frac{\sin^2(at)}{(\pi t)^2} dt = \frac{a}{\pi}$$

if a > 0.

Section 5-12: Circuit Analysis with Fourier Transform

5.60 The circuit in Fig. P5.23 is excited by the source waveform shown in Fig. P5.47.

- (a) Derive the expression for $v_{out}(t)$ using Fourier analysis.
- (b) Plot $v_{\text{out}}(t)$ using A=5 V, T=3 ms, $R_1=500$ Ω , $R_2=2$ k Ω , and C=0.33 μ F.
- (c) Repeat part (b) with C = 0.33 mF and comment on the results.
- **5.61** The circuit in Fig. P5.23 is excited by the sour waveform shown in Fig. P5.39.
- (a) Derive the expression for $v_{out}(t)$ using Fourier analysis
- (b) Plot $v_{\text{out}}(t)$ using A = 5 mA, T = 3 s, $R_1 = 500$ $R_2 = 2$ k Ω , and C = 0.33 mF.

6-11 6-12

Obje

Des
 moti