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CHAPTER 2 LINEAR TIME-INVARIANT SYST

PROBLEMS
Section 2-1 and 2-2: LTI Systems

2.1 For each of the following systems, specify whether or not
the system is: (i) linear and/or (ii) time-invariant.

(@) y(2) = 3x(t)-1
“(b) y(t) =3sin(r) x(1)
© Z+1y0) =x0)
@ %42y =3%
() y() = [1  x(r) dt
) y(t) = [y x(x) dt
(@ y0) = x(x) de

2.2 For each of the following systems, specify whether or not
the system is: (i) linear and/or (ii) time-invariant.

(@ y(@®)=3x¢ -1

(b) y@) =1 x()

© Z+yi—1)=x()

@ 2 42y0) = [' x(2) de

(e) y() = x(1) u(®)

® y@) = [P x(x) dt

@® y) = [¥x(@) de
2.3 Compute the impulse response of the LTI system whose

step response is

1

012

2.4 Compute the impulse response of the LTI system whose
step response is

o=
A
[\8)
-~

2.5 The step response of an LTI system is

1

(=D

Compute the response of the system to the following inputs.

*Answer(s) in Appendix E.
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2.6 Compute the response y() of an initially uncharge
circuit to a pulse x(¢) of duration €, height % and area € %
(Fig. P2.6).

R
VA O T x(t)
T
x(t)¢ g + (1) 1{8
; - & |-

Figure P2.6: Circuit and input pulse.

The power series for ¢ truncated to two terms is e“* ~ 1
and is valid for ax < 1. Set a = ¢~ and substitute the |
in your answer. Show that y(¢) simplifies to Eq. (2.17).

2.7 Plot the response of the RC circuit shown in Fig. P
the input shown in Fig..P2.7, given that RC = 1 s.

3MV

> 1 (us)

Figure P2.7: Input pulse for Problem 2.7.

2.8 For the RC circuit shown in Fig. 2-5(a), appl
superposition principle to obtain the response y(z) to inp

(a) x1(¢) in Fig. P1.23(a) (in Chapter 1)
(b) x2(2) in Fig. P1.23(b) (in Chapter 1)
(¢) x3(#) in Fig. P1.23(c) (in Chapter 1)
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soase y(1) to input:

% 5(r) in Fig. P1.27(a) (in Chapter 1)
% x2(1) in Fig. P1.27(b) (in Chapter 1)
B x3(7) in Fig. P1.27(c) (in Chapter 1)

-

wn 2-3 to 2-5: Convolution

Functions x(¢) and £ (¢) are both rectangular pulses, as
“in Fig. P2.10. Apply graphical convolution to determine
= x(1) * h(t) given the following data.

B A=1 B=1, " ="2's "Iy
B A=2 B—1, Ty =4s, T =25
A=1, B=2 T =45 Th=2s"

x(7) h(?)
A B
0 0
0 T t(s) 7 7 t(s)

Figure P2.10: Waveforms of x(t) and h(r).

Apply graphical convolution to the waveforms of x(r)
1) shown in Fig. P2.11 to determine Y(@) = x@) x h(1).

i) h(z)
: |
T
~0 5 a0 ”?TO W Y

Figure P2.11: Waveforms for Problem 21!

-~ Functions x(7) and A(¢) have the waveforms shown in
*+ 212, Determine and plot y(7) = x(¢) h(t) using the
«ng methods.

‘cgrating the convolution analytically.
‘cgrating the convolution graphically.

For the RC circuit shown in Fig. 2-5(a), obtain the

x(1) h(t)
2 2
0 0
0 : t(s) 0 ; : t(s)

Figure P2.12: Waveforms for Problem 2.12.

2.13 Functions x(t) and h(t) have the ‘waveforms shown in
Fig. P2.13. Determine and plot y(t) = x(t) % h(t) using the
following methods.

(a) Integrating the convolution analytically.

(b) Integrating the convolution graphically.

x(7) h(t)
2

Figure P2.13: Waveforms for Problem 2513.

2.14  Functions x(¢) and h(t) are given by

0, forr <0
x(t) = {sinnwz, for0 =7<1%
0, fort > 1s
h(2) = ulr).

Determine y(r) = x(t) * h(r).

2.15 Compute the following convolutions without computing
any integrals.
@) u(r) * [6(6) —38(t — 1) +28(r — 2)]

(b) u(t) * [2u(t) — 2u@ — 3)]

© u(@®)*[(r = 1) u(r — 1)]
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2.16  Compute the following convolutions without computing
any integrals.

@) 8(r —2) % [u(r) — 3u(t — 1) + 2u(t — 2)]

(b) [8(1) +28(r — 1) 4 38(t — 2)] * [45(¢) + 56(r — D]
(©) w(t) * [ut) —u(t —2) —28(t — 2)]
2.17  Compute the following convolutions.

“@) e u(t) x e u(t)
S (b) e u(r) x e u(r)
(©) e u(t) xe™3 u(r)

2.18 Show that the overall impulse response of the
interconnected system shown in Fig. P2.18 is h(t) = 0!

(D= (1)

Figure P2.18: System of Problem 2.18.

x(7)

The impulse responses of the individual systems are
o hi()=e"u(t) —e 2 u(),

o ha(t) = e u(n),

® h3(t) = e~ u(t) — e u(yp),

o h4(t) =e " u(t).

2.19  Prove the following convolution properties.

(a) The convolution of two even functions is an even function.

(b) The convolution of an even function and an odd function
is an odd function.

(¢) The convolution of two odd functions is an even function.

2.20 Describe in words what this cascade connection of LTI

systems does.
d
= 5(t) +2u(t) |=» 7 =

= o2 ()

2.21 Compute the response of an initially uncharged
circuit with RC = 1 to the input voltage shown in Fig. P2.
using the following methods.

(a) Computing the appropriate convolution

(b) Writing the input in terms of delayed and scaled step =
ramp functions

Oislse2

Figure P2.21: Input signal of Problem 2.21.

Section 2-6: Causality and Stability

2.22  Determine whether or not each of the LTI systems w

impulse responses are specified below are (i) causal and/or
BIBO stable.

(@ h(t) =e M

(b) h() = (1 — [t + 1) — u(r — 1)]

(©) h(t) = e* u(—r)
“(d) h(t) = e u(r)

(e) h(t) = cos(2t)u(r)

0 h(t) = 25 ut)
2.23 Determine whether or not each of the following
systems is (i) causal and/or (ii) BIBO stable. If the Sys

is not BIBO stable, provide an example of a bounded input
yields an unbounded output.

(@) y() =%

(b) y@») = fioox(r) dt

(© y@) = [' _x(r) cos(t — 1) dt
@ y) =x(t+1)

© y) = [ x(2) de

® y@® = [P x(z) 20~ gz

2.24  This problem demonstrates the significance of abse
integrability of the impulse response for BIBO stability of
systems. An LTI system has impulse response

0o —1)n
h(t) = Z(T) 8t —n).

n=|

(a) Show that h(t) is integrable: [ h(r) dt < oo.
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uncharged Show that h(t) is not absolutel y integrable: . 232 An LTI system has the impulse response
in Fig. P2 T h(0)] dt > oo. h(t) = Se~"u(t) — 16e=> u(t) + 133 u(r). The input

- “vovide an example of a bounded input x(7) that yields an
“wbounded output.

icd sy An LTI  system  has

=(1/t%) u@ —1).
ifa>1.

impulse  response
Show that the system is BIBO

Prove the following statements.

“urallel connections of BIBO-stable systems are BIBO
stable.

“urallel connections of causal systems are causal.

Prove the following statements.

~+ cries connection of BIBO-stable systems are BIBO

stable.

ystems wi
sal and/or . Series connections of causal systems are causal.

An LTI system has an impulse response given by A(t) =
*' u(1). Obtain the response to inputx(f) = 2 cos(z) u(t)
“wiermine whether or not the system is BIBO-stable.

“wm 2-7: LTI Sinusoidal Response

- An LTI system has the frequency response function
B = 1/(jo + 3). Compute the output if the input is

llowing ¥r) =3

f the sys #11) = 34/2cos(3¢)

ed input x(1) = Scos(4t)
x(r) =46(t)
x(t) = u(t)

)il

An LTI system is described by the LCCDE

d?y dy dx
o ety L
Py S

T mput is x (1) = cos(wt).
absol

sility of '@ = 2rad/s, compute the output y(z).
* ©ind the frequency w so that y(t) = Acos(wt) for some
onstant A > 0. That is, the input and output sinusoids

wre in phase.

An LTI system has the impulse  response
= e~ 120508 The input to the system is

12 4 26 cos(5¢) + 45 cos(9¢) + 80 cos(16¢). Compute
put y(z).

is x(t) = 7 cos(2t 4 25°). Compute the output y(z).

2.33 Repeat Problem 2.32 after replacing the input with
x(t) =6+ 10cos(r) + 13 cos(2t).

234 If

cos(wt) = ’7(1) — 2qe™% u(t)w = A cos(wt + 6),

prove that A = 1 for any w and any real a > 0.

2.35 =If

cos(wt) = b o

prove that & = 0 for any » and any real h(t).

h(—t) |=% Acos(wt + 0),

2.36  We observe the following input-output pair for an LTI
system:

® x(1) = 1+ 2cos(t) + 3 cos(2t)

e y(1) = 6¢os(t) + 6 cos(2¢)

o x(t)=»| LTI |=9 y(1)

Determine  y(z) in response to a
x(t) =4 +4cos(t) +2 cos(2t).

new input

2.37 We observe the following input-output pair for an LTI
system:

® x(t) = u(r) + 2cos(2t)

® V(O =u(t) — e u(t) + V2 cos(2t — 45°)

o x(t)=>| LTI =9 y(r)

Determine  y(¢) in response to a new
X(1) = 5u(r — 3) + 3v/2 cos (2t — 60°),

input

2.38  Compute the convolution of the two signals:

® x(t) = 60+/2 cos(3r) + 60+/2 cos(41)

o h(t)=e 3 u(t) — e u(r)
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2.39  Compute the convolution of the two signals:

o xi(f) = 60+/2 (&3 + /)

o x2(t) =e ¥ u@r) —e

u(r)

2.40  An inductor is modeled as an ideal inductor in series
with a resistor representing the coil resistance. A current sine-
wave generator delivers a current i (f) = cos(5007) + c0s(900¢)
through the inductor, as shown in Fig.| P2.40: The
voltage across the inductor is measured to be v(r) =
13 cos(500¢ + 61) + 15 cos(900z + 6»), where the current is in

amps and the voltage in volts and phase angles 6; and 0, are
unknown. Compute the inductance L and coil resistance R.

i(7) Inductor

|
i(t) = cos(500) + cos(900)¢

Figure P2.40: Circuit for Problem 2.40.

2.41 A system is modeled as

dy dx
S Hay (@)= fi 25 + e x(1);

where the constants a, b, and ¢ are all unknown. The
response to input x(z) =9+ 15 cos(12¢) is output y(t) =
S + 13 cos(127 + 0.2487). Determine constants a, b, and c.

Section 2-8: Second-Order LCCDE

2.42  An LTI system is described by the LCCDE

d*y dy dx
—5 + B — +25y(t) = — + 23x(¢).
gz T B 4 +2550) 7y T 23x(@

Compute the range of values of constant B so that the system
impulse response is

(a) Overdamped (non-oscillatory)

(b) Underdamped (oscillatory)
*(c) Unstable (blows up)
If B = 26, compute the impulse response h(t).

2.43 An LTI system is described by the LCCDE

d?y dy
49y(1) = 213 x(1).
dt2+ < T4 =21V3 x(r)

Compute the range of values of constant B so that the syste
impulse response is

(a) Overdamped (non-oscillatory)

(b) Underdamped (oscillatory)

(¢) Unstable (blows up)

If B =7, compute the impulse response /(7).

244 A series RLC circuit with L = 10 mH and C = | 7
is connected to an input voltage source vy, (). Output volt
Uout (1) is taken across the resistor. For what value of R is
circuit step response critically damped?

2.45 A parallel RLC circuit with L = 10 mH and C = 1
is connected to an input source iin(). The system output
current ioy(¢) flowing through the inductor. For what val
of R is the circuit step response critically damped?
Section 2-9: Car Suspension System

For each of the following four problems:

e Total truck mass is 4 metric tons (i.e., one metric ton
wheel).

e Spring constant is 10° N/m.

e Viscous damper is 5 x 10* Ns/m.

2.46 A truck is driven over a curb 10 cm high. Compute
truck displacement.

2.47 A truck is driven over a pothole 5 cm deepand I mw
at 5 m/s. Compute the truck displacement.

2.48 A truck is driven up a ramp 5 m long Wlth a 10% sle
at 5 m/s. Compute the truck displacement.

$0.5m
0 Sm

distance

2.49 A truck is driven across a wavy pavement with a |
amplitude and 1-cm period. The truck speed is 5 m/s. Com
the truck displacement.

2.50  For a truck with the specified mass and- spring cons
what should the viscous damper be for a critically dams
response?
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