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0.5.1 Numerical Computations
The following instructions are intended for users who have no background in MATLAB but are inter-
ested in using it in signal processing. Once you get the basic information on how to use the language
you will be able to progress on your own.

1. Create a directory where you will put your work, and from where you will start MATLAB. This is
important because when executing a program, MATLAB will look at the current directory, and if
the file is not present in the current directory, and if it is not a MATLAB function, MATLAB gives
an error indicating that it cannot find‘the desired program.

2. There are two types of programs in MATLAB: the script, which consists in a list of commands
using MATLAB functions or your own functions, and the functions, which are programs that can
be called with different inputs and provide the corresponding outputs. We will show examples of
both.

3. Once you start MATLAB, you will see three windows: the command window, where you will type
commands; the command history, which keeps a list of commands that have been used; and the
workspace, where the variables used are kept. '

4. Your first command on the command window should be to change to your data directory where
you will keep your work. You can do this in the command window by using the command CD
(change directory) followed by the desired directory. It is also important to use the command
clear all and cff to clear all previous variables in memory and all figures.

5. Help is available in several forms in MATLAB. Just type helpwin, helpdesk, or demo to get started. If
you know the name of the function, help will give you the necessary information on the particular
function, and it will also give you information on help itself. Use help to find more about the
functions used in this introduction to MATLAB.

6. To type your scripts or functions you can use the editor provided by MATLAB; simply type edit.
You can also use any text editor to create scripts or functions, which need to be saved with the .m
extension. 3

Creating Vectors and Matrices
Comments are preceded by percent, and to begin a script, as the following, it is always a good idea
to clear all previous variables and all previous figures.

% matlab primer

clear all % clear all variables
clf % clear all figures
% row and column vectors

x=[12384] % row vector

Y =5¢ % column vector

The corresponding output is as follows (notice that there is no semicolon (;) at the end of the lines
to stop MATLAB from providing an output when the above script is executed).

Ko
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To see the dimension of x and y Vaﬁ;nbles, type

whos % provides.information on existing variables
f,
to which MATLAB responds
Name  Size Bytes Class
X 1x4 ; 32 double array
y 4x1 : 32 double array

Grand total is 8 elements using 64 bytes

Notice that a vector is thought of as a matrix; for instance, vector x is a matrix of one row and four

columns. Another way to express the column vector y is the following, where each of the row terms
is separated by a semicolon (;) :

y=[1;2,3;4] % another way to write a column

To give as before:

y=

A O =

MATLAB does not allow arguments of vectors or matrices to be zero or negative. For instance, if we
want the first entry of the vector y we need to type

y(1) % first entry of vector y

giving as output
ans =
A
If we type
y(0)

it will give us an error, to which we get the following warning:

277 Subscript indices must either be real positive integers or logicals.

MATLAB also has a peculiar way to provide information in a vector, for instance:

y(1:3) % first to third entry of column vectory

— ———— —
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giving as expected the first to the third entries of the column vector y:
ans =
’
2
3

The following will give the third to the first entry in the row vector x (notice the difference in the two
outputs; as expected the values of y are given in a column, while the requested entries of x are given

) -~ in a row). L
X(3:-1:1) % displays entries x(3) x(2) x(1)
Thus,
ans =
Bl el

Matrices are constructed as an concatenation of rows (or columns):
A=[12;34;56] % matrix A with rows [12],[34]and [5 6]

A=

CREED =t
o~ DN

To create a vector corresponding to a sequence of numbers (in this case integers) there are different
-approaches, as follows:
n=010 % vector with entries O to 10 increased by 1

This approach gives the following as output:
n=
Columns 1 through 10
P Hee 2 Ba1d theibeay 8 9
Column 11
10

which is the same as the command
n=[0:10]

If we wish the increment different from 1 (default value), then we indicate it as in the following:
ni1 = 0:2:10 % vector with entries from 0 to 10 increased by 2

which gives
ni =
OREI2 A4 =bE Brol0

We can combine the above vectors into one as follows: ==
nni1 =[nni] % combination of vectors

"
I




to get
RRlE=
Columns 1 through 10
EE s 2RE 3 S -5 6. 7 - 89
Columns 11 through 17
10 02 wd 6 =8 10

in the two
iven # -
= are give Vectorial Operations
MATLAB allows the conventional vectorial operations as well as facilitates others. For instance, if we
wish to multiply by 3 every entry of the row vector x given above, the command
Z = 3%X % multiplication by a constant
would give
=
B 659 =D
Besides the conventional multiplication of vectors with the correct dimensions, MATLAB allows two
types of multiplications of one vector by another. The first one is where the entries of one vector are
multiplied by the corresponding entries of the other. To effect this the two vectors should have the
same dimension (i.e, both should be columns or rows with the same number of entries) and it is
necessary to put a dot before the multiplication operator—that is, as shown here:
re different V= XX % multiplication of entries of two vectors
V=
e e (5
The other type of multiplication is the conventional multiplication allowed in linear algebra. For
instance, with that of a row vector by a column vector,
w=x*x" % multiplication of x (row vector) by x’(column vector)
w =230
the result is a constant—in this case, the length of the row vector should coincide with that of the
column vector. If you multiply a column (say x’) of dimension 4 x 1 by a row (say x) of dimension
1 x 4 (notice that the 1s coincide at the end of the first dimension and at the beginning of the
second), the multiplication z = x’ * x results in a 4 x 4 matrix.
lowing:

The solution of a set of linear equations is very simple in MATLAB. To guarantee that a unique solu-
tion exists, the determinant of the matrix should be computed before inverting the matrix. If the
determinant is zero MATLAB will indicate the solution is not possible.

% Solution of linear set of equations Ax = b
A=[100;220;3833]; % 3x3 matrix

t = det(A); % MATLAB function that calculates determinant
b=2 ) % column vector :
X = inv(A)xb; % MATLAB function that inverts a matrix

L————«#Mw
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The results of these operations are not given because of the semicolons at the end of the commands.

The following script could be used to display them:

disp( Ax = b))
A

b
X
t
which gives

Ax=Db
A=

w N =
w N O
(6515 @)

% MATLAB function that displays the text in *’

Another way to solve this set of equations is

x=Db/A

Try it!

MATLAB provides a fast way to obtain certain vectors/matrices; for instance,

% special vectors and matrices
x =ones(1, 10) % row of ten 1s

W=

s e S e e e
A=ones(5,5) % matrixof5x5 1s
A=

Gt SR U (e ¥
AR R O R
P S G G R SRR Y
P G (ST RS RS

x1 = [x zeros(1, 5)]

St Mt S e R

% vector with previous x and 5 Os




1ands. Xi=
Columns 1 through 10
T RN e RS RS 1B
Columns 11 through 15
R 00,70 -0

A2:5, 2:5) = zeros(4, 4) % zeros in rows 2—5, columns 2—5
A=

=
5

S8

R U R A

1
0
0
0
0

O OO o =
O OO o =
O OO o =

y =rand(1,10) 9% row vector with 10 random values (uniformly
% distributed in [0,1]
y =
Columns 1 through 6
0.9501 0.2311 0.6068 0.4860 0.8913 0.7621
Columns 7 through 10
0.4565 0.0185 0.8214 0.4447

Notice that these values are between 0 and 1. When using the normal or Caussmn—dlstnbuted noise
the values can be positive or negative reals.

y1 =randn(1,10) % row vector with 10 random values .
% (Gaussian distribution)
y1=
Columns 1 through 6

=0.4326  —1.6656. 0.1253" 0.2877 —1.1465 1.1909
Columns 7 through 10

1.1892 —0.0376 0.3273 0.1746

Using Built-In Functions and Creating Your Own
MATLAB provides a large number of built-in functions. The following script uses some of them.

% using built-in functions

t=0:0.01:1; % time vector from 0 to 1 with interval of 0.01

X = cos(2xpixt/0.1); % cos processes each of the entries in
% vector t to get the corresponding value in vector x

% plotting the function x

figure(1) % numbers the figure

plot(t, X) % interpolated continuous plot

xlabel(’'t (sec)’) % label of x-axis

ylabel(’x(t)’) % label of y-axis
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% let’s hear it
sound(1000xx, 10000)

The results are given in Figure 0.14.

To learn about any of these functions use help. In particular, use help to learn about MATLAB routines
for plotting plot and stem. Use help sound and help.waveplay to learn about the sound routines available
in MATLAB. Additional related functions are put at the end of these help files. Explore all of these
and become aware of the capabilitiéi;of MATLAB. To illustrate the plotting and the sound routines,
let us create a chirp that is a sinusoid for which the frequency is varying with time.

y = sin(2xpixt.2/.1); % notice the dot in the squaring
% t was defined before
sound(1000xy, 10000) % to listen to the sinusoid
figure(2) % numbering of the figure
plot(t(1:100), y(1:100)) % plotting of 100 values of y
figure(3)
plot(t(1:100), x(1:100), 'K’, t(1:100), y(1:100), 'r’) % plotting x and y on same plot

Let us hope you were able to hear the chirp, unless you thought it was your neighbor grunting. In
this case, we plotted the first 100 values of t and y and let MATLAB choose the color for them. In the
second plot we chose the colors: black (dashed lines) for x and blue (continuous line) for the second

signal y(t) (see Figure 0.15).

Other built-in functions are sin, tan, acos, asin, atan, atan2, log, log10, exp, etc. Find out what each does
using help and obtain a listing of all the functions in the signal processing toolbox.
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(a) Plotting of a sinusoid using plot, which gives a continuous plot, and (b) stem, which gives a discrete plot.
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{a) Plotting chirp (MATLAB chooses color), (b) sinusoid and chirp (the sinusoid is plotted with dashed lines and
the chirp with solid lines).

You do not need to define 7, as it is already done in MATLAB. For complex numbers also you do not
need to define the square root of —1, which for engineers is ’j' and for mathematicians ‘i’ (they have
no current to worry about).
% piand |
pi
j
[
ans =
3.1416
ans =
0 + 1.0000i
ans =
0 + 1.0000i

Creating Your Own Functions
MATLAB has created a lot of functions to make our lives easier, and it allows us also to create—in the
same way—our own. The following file is for a function f with an input of a scalar x and output of a
scalar y related by a mathematical function:

function y = f(x)

y = xkexp(—sin(x))/(1 + X2);

Functions cannot be executed on their own—they need to be part of a script. If you try to execute the
above function MATLAB will give the following:

??? format compact;function y = f(x)
I

Error: A function declaration cannot appear within a script M-file.




A function is created using the word “function” and then defining the output (y), the name of the
function (f), and the input of the function (x), followed by lines of code defining the function, which
in this case is given by the second line. In our function the input and the output are scalars. If you
want vectors as input/output you need to do the computation in vectorial form—more later.

Once the function is created and saved (the name of the function followed by the extension .m), MAT-
LAB will include it as a possible function that can be executed within a script. If we wish to compute
the value of the function for x = 2 (f.m should be in the working directory) we proceed as follows:

- y=1Q)
gives
| y=0.1611
I
| To compute the value of the function for a vector as input, we compute for each of the values in the
! vector the corresponding output using a for loop as shown in the following.
X=100:1100: % create an input vector x
N = length(x); % find the length of x
y = zeros(1,N); % initialize the output y to zeros
forni=REN; % for the variable n from 1 to N, compute
y(n) = f(x(n)); % the function
end
figure(3)
plot(x, y)
grid % put a grid on the figure
title("Function f(x)’)
l xlabel(’x’)
ylabel(’y’)

This is not very efficient. A general rule in MATLAB is: Loops are to be avoided, and vectorial
computations are encouraged. The results are shown in Figure 0.16.
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The function working on a vector x, rather than one value, takes the following form (to make it
different from the above function we let the denominator be 1 + x instead of 1 + x2):

function yy = ff(x)

% vectorial function

vy = X.xexp(—sin(x))./(1 + x);

Again, this function must be in the working directory. Notice that the computation of yy is done
considering x a vector; the .* and ./ are indicative of this. Thus, this function will accept a vector x and
will give as output a vector 7y, computed as indicated in the last line. When we use a function, the
names of the variables used in the script that calls the function do not need to coincide with the ones
in the definition of the function. Consider the following script:

z="1f(x); % x defined before,

% z instead of yy is the output of the function ff
figure(4)
plot(x, z); grid
title(’Function ff(x)’) % MATLAB function that puts title in plot
xlabel(’x’) % MATLAB function to label x-axis
ylabel('z’) % MATLAB function to label y-axis

The difference between plot and stem is important. The function plot interpolates the vector to be plot-
ted and so the plot appears continuous, while stem simply plots the entries of the vector, separating
them uniformly. The input x and the output of the function are discrete time and we wish to plot
them as such, so we use stem.

stem(x(1:30), z(1:30))

grid

title(’Function ff(x)")

xlabel(’x’)

ylabel(’z’)

The results are shown in Figure 0.17.

More on Plotting
There are situations where we want to plot several plots together. One can superpose two or more
plots by using hold on and hold off. To put several figures in the same plot, we can use the function
subplot. Suppose we wish to plot four figures in one plot and they could be arranged as two rows of
two figures each. We do the following:

subplot(221)

plot(x, y)

subplot(222)

plot(x, 2)

subplot(223)

stem(x, y)

subplot(224)

stem(x, z)
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In the subplot function the first two numbers indicate the number of rows and the number of columns,
and the last digit refers to the order of the graph that is, 1, 2, 3, and 4 (see Figure 0.18).

There is also a way to control the values in the axis, by using the function (you guessed!) axis. This
function is especially useful after we have a graph and want to improve its looks. For instance, suppose
that the professor would like the above graphs to have the same scales in the y-axis (picky professor).
You notice that there are two scales in the y-axis, one 0-0.8 and another 0-3. To have both with the
same scale, we choose the one 0-3, and modify the above code to the following

subplot(221)
plot(x, y)

axis([0 100 0 3))
subplot(222)
plot(x, z)

axis([0 100 0 3))
subplot(223)
stem(x, )

SN
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FIGURE 0.18
Plotting four figures in one.
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axis([0 100 0 3))
subplot(224)
stem(x, z)
axis([0 100 0 3))

Saving and Loading Data
In many situations you would like to either save some data or load some data. The following is one

way to do it. Suppose you want to build and save a table of sine values for angles between 0 and
360 degrees in intervals of 3 degrees. This can be done as follows:

X =0:3:360;
y = sin(x*pi/180); % sine computes the argument in radians

Xy =[x’ y’]; % vector with 2 columns one for x’
% and another for y’

Let's now save these values in a file “sine.mat” by using the function save (use help save to learn more):
save sine.mat xy

To load the table, we use the function load with the name given to the saved table “sine” (the extension

*.mat is not needed). The following script illustrates this:

clear all
load sine
whos




where we use whos to check its size:
Name  Size Bytes Class

Xy i 2:1x2 1936 double array
Grand total is 242 elements using 1936 bytes

This indicates that the array xy has 121 rows and 2 columns, the first colum corresponding to x, the
degree values, and the second column corresponding to the sine values, y. Verify this and plot the
values by using

x=xy(:, 1); -
y =xy(;, 2);
stem(x, y)

Finally, MATLAB provides some data files for experimentation and you only need to load them. The
following “train.mat” is the recording of a train whistle, sampled at the rate of F; samples/sec, which
accompanies the sampled signal y(n) (see Figure 0.19).

clear all

load train

whos
Name Size Bytes Class
ES 1x1 8 double array
y 12880x1 103040 double array

Grand total is 12881 elements using 103048 bytes

sound(y, Fs)
plot(y)
£
=g
FIGURE 0.19 0 2000 4000 6000 8000 10000 12000

Train signal. n (samples)
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MATLAB also provides two-dimensional signals, or images, such as “clown.mat,” a 200 x 320 pixels
image.

clear all

load clown

whos
Name Size Bytes Class
X 200x320 512000 double array
caption 2x 4 char array
map 81x3 1944 double array

Grand total is 64245 elements using 513948 bytes

We can display this image in gray levels by using the following script (see Figure 0.20):

colormap('gray’)
imagesc(X)

Or in color using

colormap(’hot’)
imagesc(X)

0.5.2 Symbolic Computations

We have considered the numerical capabilities of MATLAB, by which numerical data are transformed
into numerical data. There will be many situations when we would like to do algebraic or calculus
operations resulting in terms of variables rather than numerical data. For instance, we might want
1o find a formula to solve quadratic algebraic equations, to find a difficult integral, or to obtain the
Laplace or the Fourier transform of a signal. For those cases MATLAB provides the Symbolic Math
Toolbox, which uses the interface between MATLAB and MAPLE, a symbolic computing system. In
this section, we provide you with an introduction to symbolic computations by means of examples,
and hope to get you interested in learning more on your own.




Derivatives and Differences
The following script compares symbolic with numeric computations of the derivative of a chirp signal
(a sinusoid with changing frequency) y(t) = cos(t?), which is
dy(t) :
! @)

— =4 39
z(t) i tsin

L4

clf; clear all
% symbolic
symstyz % define the symbolic v riables
y = cos(t2) % chirp signal -- notice no . before " since t is no vector
z = diffly) % derivative
figure(1)
subplot(211)
ezplot(y, [0, 2xpi]);grid % plotting for symbolic y between 0 and 2xpi
hold on
subplot(212)
ezplot(z, [0, 2xpil);grid
hold on
Yenumeric
Ts = 0.1; % sampling period
t1 = 0:Ts:2xpi; % sampled time
y1 = cos(t1.2); % sampled signal --notice difference with y above
z1 = diff(y1)./diff(t1); % difference -- approximation to derivative
figure(1)
subplot(211)
stem(t1, y1, 'r’);axis([0 2*pi 1.1xmin(y1) 1.1sxmax(y1)])
subplot(212)
stem(t1(1:length(y1) - 1), z1, ’r’);axis([0 2*pi 1.1xmin(z1) 1.1sxmax(z1)])
legend(’Derivative (black)’, Difference (blue)’)
hold off

The symbolic function syms defines the symbolic variables (use help syms to learn more). The signal
(@) is written differently than y;(¢) in the numeric computation. Since t; is a vector, squaring it
requires a dot before the symbol. That is not the case for t, which is not a vector but a variable. The
results of using diff to compute the derivative of y(z) is given in the same form as you would have
obtained doing the derivative by hand—that is,

y = cos(t2)

Z = —2xtxsin(t’2)

The symbolic toolbox provides its own graphic routines (use help to learn about the different ez-
routines). For plotting y(t) and z(t), we use the function ezplot, which plots the above two functions
for t € [0, 27] and titles the plots with these functions.

The numeric computations differ from the symbolic in that vectors are being processed, and we are
obtaining an approximation to the derivative z(t). We sample the signal with T; = 0.1 and use again
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Symbolic and numeric computation of the derivative of the chirp y(t) = cos(t?). (a) y(t) and the sampled signal
y(nTy), Ts = 0.1 sec. (b) Displays the exact derivative (continuous line) and the approximation of the derivative at
samples nT;. Better approximation to the derivative can be obtained by using a smaller value of Ts.

the function diff to approximate the derivative (the denominator diff(t1) is the same as T;). Plot-
ting the exact derivative (continuous line) with the approximated one (samples) using stem clarifies
that the numeric computation is an approximation at nT; values of time. See Figure 0.21.

The Sinc Function and Integration
The sinc function is very significant in the theory of signals and systems. It is defined as

sinwt
y() = — —o0 =1 < 00
Tt

It is symmetric with respect to the origin, and defined from —oo to co. The value of y(0) can be found
using L'Hopital’s rule. We will see later (Parseval’s result in Chapter 5) that the integral of YAt is
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equal to 1. In the following script we are combining numeric and symbolic computations to sho
this. First, after defining the variables, we use the symbolic function int to compute the integral of the
squared sinc function, with respect to t, from 0 to integer values 1 < k < 10. We then use the function
subs to convert the symbolic results into a numerical array zz. The numeric part of the script defines
a vector y to have the values of the sinc function for 100 time values equally spaced between [—4, 4],
obtained using the function linspace. We then use plot and stem to plot the sinc and the values of the
integrals, which as seen in Figure 0.22 reach a value close to unity in less than 10 steps. Please use
help to learn more about each of these functions.
3

clf; clear all
% symbolic
symstz
fork =110,

0.5

. @----- SRt AT TR e Qs ? ----- e it

0.8

0.6

0.4

0.2

n

(b)
FIGURE 0.22
(a) Computation of the integral of the squared sinc function (b) lllustrates that the area under the curve of this
function, or its integral, is unity. Using the symmetry of the function only the integral for ¢ > 0 needs to be :
computed. _ . oy
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z = int(sinc(t)2, t, 0, k); % integral of sinc2 from O to k
zz(k) = subs(2xz); % substitution to numeric value zz
end
9% numeric
i1 = linspace(—4, 4); % 100 equally spaced points in [-4,4]
y =sinc(t1).2; % numeric definition of the squared sinc function
n—1:10; 2
figure(1)
subplot(211) =S
plot(t1, y);grid;axis([—4 4 —0.2 1.1xmax(y)]);title(’y(t)=sinc2(t)));
xlabel('t’)
subplot(212) :
stem(n(1:10), zz(1:10)); hold on
plot(n(1:10), zz(1:10), 'r');grid;title(’ [ y(z) dz’); hold off
axis([1 10 0 1.1*max(zz))); xlabel(’'n’)

Figure 0.22 shows the squared sinc function and the values of the integral

k

k
: 2
2/sincz(t)dt=2/|:sm::t)] & k=i .10
0 0

which quickly reaches the final value of unity. In computing the integral from (—o00, 00) we are using
the symmetry of the function and thus the multiplication by 2. :

Chebyshev Polynomials and Lissajous Figures
The Chebyshev polynomials are used in the design of filters. They can be obtained by plotting two
cosine functions as they change with time ¢, one of fix frequency and the other with increasing

frequency:
x(t) = cos(2xt)

y(t) = cos(2mkt) =1 = "\

The x(t) gives the x axis coordinate and y(t) the y axis coordinate at each value of t. If we solve for ¢ in
the top equation, we get

1o e st
= e cos™  (x(1))

which then replaced in the bottom equation gives
y(t) = cos [kcos™ (x(t))] k=1,...,N

as an expression for the Chebyshev polynomials (we will see in Chapter 6 that these equations can
be expressed as regular polynomials). Figure 0.23 shows the Chebyshev polynomials for N = 4. The
following script is used to compute and plot these polynomials.
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x=cos(2rt), y=cos(2zxt) x=cos(2rt), y=cos(4rxt)

0.5 0.5 \ /
e el G
-0.5 . : -0.5

-1 0 1 : -1 0 1
X X
(@ - (b)
x=cos(2xt), y=cos(6zt) x=cos(2rt), y=cos(8xt)

FIGURE 0.23
The Chebyshev polynomials for n = 1, 2, 3, 4. First (a) to fourth (d) polynomials. Notice that these polynomials
are defined between [—1, 1] in the x axis.

clear all;clf
syms x y t
X = cos(2xpixt); theta=0;
figure(1)
fork = 1:4,
y = cos(2#pixkxt + theta);
if k == 1, subplot(221)
elseif k == 2, subplot(222)
elseif k == 3, subplot(223)
else subplot(224)
end
ezplot(x, y);grid;hold on
end
hold off

I il
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FIGURE 0.24

—ssajous figures: (a) (four left plots) case 1 input and output of same amplitude (A = 1) but phase differences
27 0,7/4,7/2, and 37 /4; (b) (four right plots) case 2 input has unit amplitude but output has decreasing
=mplitudes and same phase differences as in case 1.

The Lissajous figures we consider next are a very useful extension of the above plotting of sinusoids in
the x and y axes. These figures are used to determine the difference between a sinusoidal input and its
corresponding sinusoidal steady state. In the case of linear systems, which we will formally define in
Chapter 2, for a sinusoidal input the outputs of the system are also sinusoids of the same frequency,
but they differ with the input in the amplitude and phase.

The differences in amplitude and phase can be measured using an oscilloscope for which we put
the input in the horizontal sweep and the output in the vertical sweep, giving figures from which
we can find the differences in amplitude and phase. Two situations are simulated in the following
script, one where there is no change in amplitude but the phase changes from zero to 37 /4, while
in the other case the amplitude decreases as indicated and the phase changes in the same way as
before. The plots, or Lissajous figures, indicate such changes. The difference between the maximum
and the minimum of each of the figures in the x axis gives the amplitude of the input, while the
difference between the maximum and the minimum in the y axis gives the amplitude of the output.
The orientation of the ellipse provides the difference in phase with respect to that of the input.
The following script is used to obtain the Lissajous figures in these cases. Figure 0.24 displays th
results. :

clear all;clf

syms xyt

X = cos(2xpixt); % input of unit amplitude and frequency 2*pi

A = 1;figure(1) % amplitude of output in case 1 '

Eil= 172,

for k = 0:3,




theta = kxpi/4; % phase of output
y = Akscos(2xpixt + theta);
if k == 0,subplot(221)
elseif k == 1,subplot(222)
elseif k == 2,subplot(223)

else subplot(224) 4
end
ezplot(x, y);grid;hold on ~ “#
end
A = 0.5; figure(2) % amplitude of output in case 2
end

Ramp, Unit-Step, and Impulse Responses
To close this introduction to symbolic computations we illustrate the response of a linear system
represented by a differential equation,

2
0 57O 4 60 = x00
where y(t) is the output and x(t) the input. The input is a constant x(t) = 1 for t > 0 and zero other-
wise (MATLAB calls this function heaviside, but we will call it the unit-step signal). We then let the
input be the derivative of x(t), which is a signal that we will call impulse, and finally we let the input
be the integral of x(t), which is what we will call the ramp signal. The following script is used to find

the responses, which are displayed in Figure 0.25.

clear all; clf

symsytxz

% input a unit-step (heaviside) response
y = dsolve('D2y + 5*Dy + 6y = heaviside(t)’,’y(0) = 0’,'Dy(0) = 0’,’t’);
x = diff(y); % impulse response

z = int(y); % ramp response

figure(1)

subplot(311)

ezplot(y, [0,5]);title(’Unit-step response’)
subplot(312)

ezplot(x, [0,5]);title(’Impulse response’)
subplot(313)

ezplot(z, [0,5]);title('Ramp response’)

This example illustrates the intuitive appeal of linear systems. When the input is a constant value (or
a unit-step signal or a heaviside signal) the output tries to follow the input after some initial inertia
and it ends up being constant. The impulse signal (obtained as the derivative of the unit-step sig-
nal) is a signal of very short duration equivalent to shocking the system with a signal that disappears
very fast, different from the unit-step signal that is like a dc source. Again the output tries to follow
the input, eventually disappearing as t increases (no energy from the input!), and the ramp that is
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FIGURE 0.25

Response of a second order system represented by a differential equation for input of the unit-step signal, its
derivative, or the impulse signal and the ramp signal that is the integral of the unit-step input.

the integral of the unit-step signal grows with time, providing more and more energy to the system
as time increases, thus the response we obtained. The function dsolve solves differential equations
explicitly given (D stands for the derivative operator, so D is the first derivative and D2 is the sec-

ond derivative). A second-order system requires two initial conditions, the output and its derivative
att=0.

We hope this introduction to MATLAB has provided you with the necessary background to understand the
basic way MATLAB operates, and shown you how to continue increasing your knowledge of it. Your best
source of information is the help command. Explore the different modules that MATLAB has and you will
become quickly convinced that these modules provide a great number of computational tools for many areas

of engineering and mathematics. Try it—you will like it! Tables 0.1 and 0.2 provide a listing of the numeric
and symbolic variables and operations.
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Table 0.1 Basic Numeric Matlab

Special variables ans
pi
inf, NaN
I, J ’
Function(s)
Mathematical abs, angle .

acos, asine, atan

acosh, asinh, atanh

cos, sin, tan

cosh, sinh, tanh

conj, imag, real

exp, log, log10
Special operations ceil, floor

fix, round

=

x', A
Array operations x=first:increment:last
x=linspace(first,last,n)
A=[x1;x2]
ones(N,M), zeros(N,M)
Ali))
Ali,2), AG,j)
whos
size(A)
length(x)
Control flow for, if, elseif
while
pause, pause(n)
Plotting plot, stem
figure
subplot
hold on, hold off
axis, grid
xlabel, ylabel, title, legend
Saving and loading save, load
Information and managing help
clear, clf
Operating system cd, pwd

Default name for result

7 value

infinity, not-a-number error (e.g., 0/0)
i=j=+—1

Operation

magnitude, angle of complex number
inverse cosine, sine, tangent

inverse cosh, sinh, tanh -

cosine, sine, tangent

hyperbolic cosine, sine, tangent

complex conjugate, imaginary, real parts
exponential, natural and base 10 logarithms
round up, round down to integer

round toward zero, to nearest integer
entry-by-entry multiplication, division
entry-by-entry power

transpose of vector x, matrix A

row vector x from first to last by increment
row vector x with n elements from first to last
matrix A with rows x1, x2

N x M ones and zeros arrays

(i, j) entry of matrix A

i row ( j-column) and all columns (rows) of matrix A
display variables in workspace

(number rows, number of colums) of matrix A
number rows (colums) of vector x

for loop, if, else-if loop

while loop

pause and pause n seconds

continuous, discrete plots

figure for plotting

subplots

hold plot on or off

axis, grid of plots

labeling of axes, plots, and subplots

saving and loading data

help

clear variables from memory, clear figures
change directory, current working directory

i e e



Table 0.2 Basic Symbolic Matlab Functions
Calculus diff differentiate
int i integrate
limt - % limit
taylor Taylor series
; symsum summation
Simplification simplify simplify
expand ~ expand
factor factor
simple find shortest form
subs symbolic substitution
Solving equations solve solve algebraic equations
dsolve solve differential equations
Transforms fourier Fourier transform
ifourier inverse Fourier transform
laplace Laplace transform
ilaplace inverse Laplace transform
ztrans Z-transform
iztrans inverse Z-transform
Symbolic operations sym Create symbolic objects
syms create symbolic objects
pretty make pretty expression
Special functions dirac Dirac or delta function
heaviside unit-step function
Plotting ezplot function plotter
ezpolar polar coordinate plotter
ezcontour contour plotter
2 ezsurf : surface plotter
ezmesh mesh (surface) plotter

For the problems requiring implementation in MATLAB, write scripts or functions to solve them
numerically or symbolically. Label the axes of the plots, give a title, and use legend to identify dif-
ferent signals in a plot. To save space use subplot to put several plots into one. To do the problem
numerically, sample analog signals with a small T.
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