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Preface

I hear and I forget. I see and I remember. I do and I 
understand.—Confucius

This is a signals and systems textbook with a difference: 
Engineering applications of signals and systems are integrated 
into the presentation as equal partners with concepts and 
mathematical models, instead of just presenting the concepts 
and models and leaving the student to wonder how it all relates 
to engineering.

Book Contents

The first six chapters of this textbook cover the usual basic 
concepts of continuous-time signals and systems, including the 
Laplace and Fourier transforms. Chapters 7 and 8 present the 
discrete-time version of Chapters 1–6, emphasizing the 
similarities and analogies, and often using continuous-time 
results to derive discrete-time results. The two chapters serve 
to introduce the reader to the world of discrete-time signals 
and systems. Concepts highlighted in Chapters 1–8 include: 
compensator feedback configuration (Ch. 4); energy spectral 
density, group delay, expanded coverage of exponential 
Fourier series (Ch. 5); filtering of images, Hilbert transform, 
single-sideband (SSB), zero and first-order hold interpolation 
(Ch. 6); the Cooley-Tukey FFT (Ch. 7); bilateral z-transform 
and use for non-minimum-phase deconvolution (Ch. 8).

   Chapter 9 covers the usual concepts of discrete-time signal 
processing, including data windows, FIR and IIR filter design, 
multirate signal processing, and auto-correlation and cross-
correlation. It also includes some nontraditional concepts, 
including spectrograms, application of multirate signal 
processing, and the musical circle of fifths to audio signal 
processing, and some biomedical applications of auto-
correlation and cross-correlation.

Chapter 10 covers image processing, discrete-time wavelets 
(including the Smith-Barnwell condition and the Haar and 
Daubechies discrete-time wavelet expansions), and an 
introduction to compressed sensing. This is the first 
sophomore-junior level textbook the authors are aware of that 
allows students to apply compressed sensing concepts. 
Applications include: image denoising using 2-D filtering; 
image denoising using thresholding and shrinkage of image 
wavelet transforms; image deconvolution using Wiener filters; 
“valid” image deconvolution using ISTA; image inpainting; 
tomography and the projection-slice theorem, and image 
reconstruction from partial knowledge of 2-D DFT values. 
Problems allow students to apply these techniques to actual 
images and learn by doing, not by only reading.

LabVIEW Modules

An important feature of this book is the 32 LabView 
modules that support the more complicated examples in the 
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PREFACE

text. The LabVIEW modules use GUIs with slides to select 
various parameter values. Screen shots and brief descriptions of 
the modules are included in the text, and more details are 
available in Appendix E.

Applications

The systems applications presented in this textbook include: 
spring-mass-damper automobile suspension systems, electro-
mechanical analogues with specific application to a bio-
mechanical model, s-domain circuit analysis, oven tem-
perature control, motor system control, and inverted 
pendulum control.

Signals applications include: implementation of a notch 
filter to remove an interfering tone from the sound of a 
trumpet (which inspired the idea for the book cover), 
implementation of a comb filter to eliminate one of two 
trumpets playing two different notes simultaneously, and 
implementation of a resonator filter to remove most of the 
noise from a noisy trumpet signal. These signals applications 
are repeated using discrete-time signal processing, along with 
dereverberation, deconvolution (both real-time and batch), 
DFT-based noise filtering, and use of the DFT to compute 
spectra of both periodic (the trumpet signal) and non-periodic 
signals.

It amazes one of us (AEY) that almost all books on signal 
processing, even discrete-time signal processing, simply 
present the mathematical theory of the topic and show various 
methods for designing filters without ever explaining what 
they are for, let alone implementing them. Studying signal 
processing without filtering real-world signals is like studying 
a cookbook without ever turning on an oven or even a stove. 
This textbook implements the techniques presented on an 
actual trumpet signal (due to its simplicity and for unity of 
presentation) and provides the software programs so that 
students can experiment with altering parameters and see for 
themselves how the techniques work.

Website Contents S2

The website (see inside front cover) contains the following:

1. A detailed set of solutions to all of the concept questions
and exercises.

2. A detailed description of each computer-based example,
including a program listing and a sample output plot.

3. Forty .m files, fifteen .mat files, and thirty-two .vi files for
examples, problems, and LabVIEW modules.

4. 32 interactive LabView modules.

5. Over 200 “Test Your Understanding” questions.

Textbook Suitability for Courses

This textbook is designed for a two-course sequence, with the
first being a sophomore-level or early junior-level introductory
course on signals and systems. The continuous-time material of
Chapters 1 through 6 can be covered in one semester. Following
the first two chapters on basics of signals and LTI systems, the
book is structured such that odd-numbered chapters present
theory and each even-numbered chapter presents applications
of the theory presented in the chapter that preceded it.

The textbook is now suitable for any of the following:

1. A single semester course on continuous-time signals and
systems (Chs. 1-6);

2. A two-quarter course on continuous-time signals and
systems and their discrete-time counterparts (Chs. 1-8);

3. A two-semester sequence on continuous-time (Chs. 1–6)
and then discrete-time (Chs. 7–10) signals and systems.
In addition to the usual DSP topics (Chs. 7-9), the latter
course can also cover image processing, discrete-time
wavelets, and compressed sensing (Ch. 10).
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(a) Car suspension system model (b) Car suspension model and response to a pothole
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The following examples are illustrative of the applications

covered in this book.

Automobile Suspension System Model

Section 2-9 presents and analyzes a spring-mass-damper

model for a car suspension system (Fig. P1(a)) and applies

it to compute the displacement of the car as it travels over

a 10 cm deep pothole. The plots in Fig. P1(b) provide a

comparison of the car’s response for an underdamped system

and for a critically damped system. The underdamped 
response provides a much smoother ride over the pothole.

Biomechanical Model of a Person Sitting in a
Moving Chair

Section 4-4 presents a biomechanical model of a person sitting

in a moving chair, and analyzes it using electromechanical

analogues and s-domain circuit analysis (Fig. P2).

Head: m4

v1 = vx

vx

v2

v3

v4

Upper torso: m3

k3 b3

k2 b2

k1 b1

Middle torso: m2

Lower torso: m1

Seat

Figure P2

Oven Temperature Control System

Section 4-9 presents and analyzes an oven temperature control

system. The system and its response to a sharp change in

desired temperature, with and without feedback, are all shown

in Fig. P3. Feedback increases the speed of the oven response.

Coming Attractions



(a)  Closed-loop mode heating system

(b)  Step response
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Step Response of a Motor System

Section 4-9 presents and analyzes a motor, both with and

without feedback. The system is shown in Fig. P4. Feedback

stabilizes the system.

(a) Telescope system (b) Block diagram
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Control of Simple Inverted Pendulum on Cart

Stabilization of an inverted pendulum on a moving cart is

a classic control problem that illustrates many aspects of

feedback control. Section 4-12 presents and analyzes this

problem, shown in Fig. P5(a), and Fig. P5(b) shows how

the inverted pendulum responds to a tiny shove, using various

types of feedback.
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Figure P5

Spectra of Musical Notes

It is well known that the sound of a musical instrument

playing a single note consists of a fundamental and overtones,

which are pure tones (sinusoidal signals) at frequencies that

are integer multiples of the reciprocal of the period of the

signal. This is a good illustration of a Fourier series expansion.

Section 6-8 presents spectra of musical notes. Figure P6

shows the periodic signal of a trumpet sound and its associated

spectrum (note the fundamental at 494 Hz and the overtones,

called harmonics in signal processing).



(a)  Noise-free signal x(t)

(b)  M( f )
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Denoising a Trumpet Signal

Section 6-9 presents an example of how to denoise a noisy

trumpet signal. The result of applying a resonator filter, which

passes only the harmonics and eliminates all frequencies

between them, converts the noisy signal in Fig. P7(a) into the

denoised signal in part (b) of the figure.
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Frequency Division Multiplexing

Radio and analog cable TV all use frequency division

multiplexing to transmit many different signals at different

carrier frequencies through the air or a cable. The basic idea

is illustrated in Fig. P8.

Sampling Theorem

The sampling theorem, presented in Section 6-13, makes

digital signal and image processing possible. Many electronic

devices are digital. Sampling a continuous-time signal makes

its spectrum periodic in frequency, with a period equal to the

sampling rate. A lowpass filter can then recover the original,

continuous-time signal. The concept is illustrated in Fig. P9.
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(a) Time domain (b) Frequency domain
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Comb Filters for Removal of Periodic
Interference

Comb filters, presented in Section 8-3, can be used to

separate two simultaneously played trumpet notes because

their spectra do not overlap (in most cases). A comb filter

can be used to eliminate the harmonics of one trumpet while

leaving the other unaffected, as illustrated by Fig. P10.

(c)  Waveform of comb-filtered signal

(d)  Original interference-free signal

(a)  Spectra of trumpet notes A and B and of comb filter

(b)  Waveform of two-trumpet signal
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Spectrograms

The spectrogram of a signal is essentially a time-varying

spectrum, produced by concatenating spectra of short

segments of the signal. The spectrum and spectrum of a tonal

version of “The Victors,” the University of Michigan fight

song, are shown in Fig. P11. The spectrum reveals which

specific notes are included, not when they are played. But the

spectrogram reveals which notes are played as well as when

they are played.

(b) Spectrogram

(a) Line spectrum
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Multirate Signal Processing

Given a snippet of a trumpet playing a single note, multirate

signal processing and the “Circle of Fifths” of music, shown

in Fig. P12, can be used to alter the pitch of the note to

any of the other eleven notes. Multirate signal processing is

the discrete-time version of a variable-speed tape recorder or

record player. It has many other uses as well.
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D E
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D

E

F# / G 

A

Figure P12

Autocorrelation

Autocorrelation is the sum of products of the values of a

signal with a time-delayed version of itself. It can be used

to compute the period of a noisy periodic signal, as in the

extremely noisy EKG signals in Fig. P13.
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Figure P13

Edge Detection in Images

Edge detection in images is presented in Section 10-6, an

example of which is shown in Fig. P14.

(a) Clown image (b) Canny edge-detected image

Figure P14

Deconvolution (Deblurring) of Images

Deconvolution is performed to undo the distorting effect of

a system, such as an out-of-focus lens. A simple example,

extracted from Section 10-7, is shown in Fig. P15.

(c) Deconvolved image x[m,n]

(a) Letters image x[m,n] (b) Blurred image y[m,n]

Figure P15

Wavelet-Based Denoising

The wavelet transform, presented in Sections 10-8 through

10-13, represents signals and images using basis functions

that are localized in space or time, and also in frequency. The

wavelet transform of a signal or image is sparse (mostly zero-

valued), which makes it useful for compression, denoising,

and reconstruction from few measurements.

Denoising an image using thresholding and shrinkage of its

wavelet transform is illustrated in Fig. P16.

(a) Thresholding only (b) Thresholding and

shrinkage

Figure P16
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Objectives

Learn to:

� Perform transformations on signals.

� Use step, ramp, pulse, and exponential waveforms
to model simple signals.

� Model impulse functions.

� Calculate power and energy contents of signals.

Signals come in many forms: continuous, discrete, analog,
digital, periodic, nonperiodic, with even or odd symmetry or
no symmetry at all, and so on. Signals with special waveforms
include ramps, exponentials, and impulses. This chapter intro-
duces the vocabulary, the properties, and the transformations
commonly associated with signals in preparation for exploring
in future chapters how signals interact with systems.

1
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R1

R2

+

_

+

_
υo

υi

Figure 1-1: A voltage divider is a simple system.

Overview

This book is about how signals interact with systems. More
precisely, it is about how a system transforms input signals
(excitations) into output signals (responses) to perform a

Circulatory
system

Nervous
system

Muscular/skeletal
system

Excretory
system Reproductive

system

Respiratory
system

Digestive system

Immune
system

Endocrine system

Figure 1-2: The human body is a system of systems.

certain operation (or multiple operations). A system may
be as simple as the voltage divider in Fig. 1-1, wherein
the divider scales down input voltage υi to output voltage
υo = [R2/(R1 + R2)]υi, or as complex as a human body
(Fig. 1-2). Actually, the human body is a system of systems; it
includes the respiratory, blood circulation, and nervous systems,
among many others. Each can be modeled as a system with one
or more input signals and one or more output signals. When
a person’s fingertip touches a hot object (Fig. 1-3), a nerve
ending in the finger senses the elevated temperature and sends
a message (input signal) to the central nervous system (CNS),
consisting of the brain and spinal cord. Upon processing the
input signal, the CNS (the system) generates several output
signals directed to various muscles in the person’s arm, ordering
them to move the finger away from the hot object.

By modeling signals and systems mathematically, we can use
the system model to predict the output resulting from a specified
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Figure 1-3: Finger-CNS-muscle communication.

input. We can also design systems to perform operations of
interest. A few illustrative examples are depicted in Fig. 1-4.
Signals and systems are either continuous or discrete. Both
types are treated in this book, along with numerous examples
of practical applications.

To set the stage for a serious study of signals and systems
and how they interact with one another, we devote the
current chapter to an examination of the various mathematical
models and attendant properties commonly used to characterize
physical signals, and then we follow suit in Chapter 2 with a
similar examination for systems.

1-1 Types of Signals

1-1.1 Continuous vs. Discrete

The acoustic pressure waveform depicted in Fig. 1-5(a) is a
continuous-time signal carrying music between a source (the
trumpet) and a receiver (the listener’s ear). The waveform
varies with both spatial location and time. At a given instant in
time, the waveform is a plot of acoustic pressure as a function
of the spatial dimension x, but to the listener’s eardrum, the
intercepted waveform is a time-varying function at a fixed value
of x.

Imager

SYSTEM

SYSTEM

Signal denoising

Image
deblurring

SYSTEM

Heart monitor

SYSTEM 65 beats/minute

Music transcriber

SYSTEM

Temperature control
OVEN 350 degrees100 300

200

400

Figure 1-4: A system transforms a continuous input signal
x(t) into an output signal y(t) or a discrete input signal x[n]
into a discrete output signal y[n]. Such system transformations
exist not only in the few examples shown here but also
in countless electrical, mechanical, biological, acoustic, and
financial domains, among many others.

� Traditionally, a signal has been defined as any quantity
that exhibits a variation with either time, space, or both.
Mathematically, however, variation of any quantity as a
function of any independent variable would qualify as a
signal as well. �
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Acoustic pressure waveform
(a) Continuous-time signal

Brightness across discrete row of pixels
(b) Discrete-spatial signal

(d) 2-D spatial signal

(c) Independent variable is age group

X-ray image

% of total unemployed by age group

Age group

5

16-19 20-24 25-29 30-34 35-44 45-54 55-64 65+

10
15
20
Percent

Figure 1-5: Examples of continuous and discrete signals.

In contrast with the continuous-time signal shown in Fig. 1-5(a),
the brightness variation across the row of pixels on the computer
display of Fig. 1-5(b) constitutes a discrete-space signal
because the brightness is specified at only a set of discrete
locations. In either case, the signal may represent a physical
quantity, such as the altitude profile of atmospheric temperature,

a time record of blood pressure, or fuel consumption per
kilometer as a function of car speed— wherein each is plotted
as a function of an independent variable—or it may represent
a non-physical quantity such as a stock market index or the
distribution of unemployed workers by age group (Fig. 1-5(c)).
Moreover, in some cases, a signal may be a function of two
or more variables, as illustrated by the two-dimensional (2-D)
X-ray image in Fig. 1-5(d).

1-1.2 Causal vs. Noncausal
Real systems—as opposed to purely conceptual or mathe-
matical constructs that we may use as learning tools even
though we know they cannot be realized in practice—are
called physically realizable systems. When such a system is
excited by an input signal x(t), we usually define the time
dimension such that t = 0 coincides with when the signal is
first introduced. Accordingly, x(t) = 0 for t < 0, and x(t) is
called a causal signal. By extension, if x(t) �= 0 for t < 0,
it is called noncausal, and if x(t) = 0 for t > 0, it is called
anticausal.

� A signal x(t) is:

• causal if x(t) = 0 for t < 0 (starts at or after t = 0)

• noncausal if x(t) �= 0 for any t < 0
(starts before t = 0)

• anticausal if x(t) = 0 for t > 0
(ends at or before t = 0) �

Even though (in practice) our ultimate goal is to evaluate the
interaction of causal signals with physically realizable systems,
we will occasionally use mathematical techniques that represent
a causal signal in terms of artificial constructs composed of sums
and differences of causal and anticausal signals.

1-1.3 Analog vs. Digital
Consider an electronic sensor designed such that its output
voltage υ is linearly proportional to the air temperature T
surrounding its temperature-sensitive thermistor. If the sensor’s
output is recorded continuously as a function of time
(Fig. 1-6(b)), the resulting voltage record υ(t) would be
analogous to the pattern of the actual air temperature T (t).
Hence, υ(t) is regarded as an analog signal representing
T (t). The term analog (short for analogue) conveys the
similarity between the measured signal and the physical
quantity it represents. It also implies that because both υ and t
are continuous variables, the resolution associated with the
recorded υ(t) is infinite along both dimensions.
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(a) Atmospheric temperature in ˚C

(b) Sensor voltage in volts

(c) Discrete version of (b)

(d) Digital signal
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Figure 1-6: The atmospheric temperature temporal profile in (a)
is represented in (b) by the continuous signal υ(t)measured by a
temperature sensor. The regularly spaced sequence υ[n] in (c) is
the discrete version of υ(t). The discrete signal υ[n] is converted
into a digital sequence in (d) using a 4-bit encoder.

Had the temperature sensor recordedυ at only a set of equally
spaced, discrete values of time, the outcome would have looked
like the discrete-time signal υ[n] displayed in Fig. 1-6(c), in
which the dependent variable υ continues to enjoy infinite
resolution in terms of its own magnitude but not along the
independent variable t .

� To distinguish between a continuous-time signal υ(t)
and a discrete-time signal υ[n], the independent variable t
in υ(t) is enclosed in curved brackets, whereas for
discrete-time signalυ[n], the indexn is enclosed in square
brackets. �

If, in addition to discretizing the signal in time, we were to
quantize its amplitudes υ[n] using a 4-bit encoder, for example,
we would end up with the digital discrete-time signal shown
in Fig. 1-6(d). By so doing, we have sacrificed resolution along
both dimensions, raising the obvious question: Why is it that the
overwhelming majority of today’s electronic and mechanical
systems—including cell phones and televisions—perform their
signal conditioning and display functions in the digital domain?
The most important reason is so that signal processing can be
implemented on a digital computer. Computers process finite
sequences of numbers, each of which is represented by a finite
number of bits. Hence, to process a signal using a digital
computer, it must be in discrete-time format, and its amplitude
must be encoded into a binary sequence.

Another important reason for using digital signal processing
has to do with noise. Superimposed on a signal is (almost
always) an unwanted random fluctuation (noise) contributed
by electromagnetic fields associated with devices and circuits
as well as by natural phenomena (such as lightning). Digital
signals are more immune to noise interference than their analog
counterparts.

The terms continuous-time, discrete-time, analog, and digital
can be summarized as follows:

• A signal x(t) is analog and continuous-time if both x and
t are continuous variables (infinite resolution). Most real-
world signals are analog and continuous-time (Chapters 1
through 6).

• A signal x[n] is analog and discrete-time if the values
of x are continuous but time n is discrete (integer-valued).
Chapters 7 through 10 deal with analog discrete-time
signals.

• A signal x[n] is digital and discrete-time if the values
of x are discrete (i.e., quantized) and time n also is
discrete (integer-valued). Computers store and process
digital discrete-time signals. This class of signals is outside
the scope of this book.

• A signal x(t) is digital and continuous-time if x(t) can
only take on a finite number of values. An example is the
class of logic signals, such as the output of a flip-flop,
which can only take on values 0 or 1.
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t (s)
0 4 10 14−10 −6 20 30

0

2

4

6

x(t + 10) x(t − 10)x(t)

Figure 1-7: Waveforms of x(t), x(t − 10), and x(t + 10). Note that x(t − 10) reaches its peak value 10 s later than x(t), and x(t + 10)
reaches its peak value 10 s sooner than x(t).

As was stated earlier, a signal’s independent variable may
not always be time t , and in some cases, the signal may
depend on more than one variable (as in 2-D images and 3-D
X-ray tomographs). Nevertheless, in the interest of brevity when
introducing mathematical techniques, we will use the symbol t
as our independent variable exclusively. This does not preclude
using other, more appropriate, symbols when applying the
techniques to specific applications, nor does it limit expanding
the formulation to 2-D or 3-D when necessary.

Concept Question 1-1: What is the difference between 
a continuous-time signal and a discrete-time signal?
Between a discrete-time signal and a digital signal?
(See   )

Concept Question 1-2: What is the definition of a causal
signal? Noncausal signal? Anticausal signal? (See        )

1-2 Signal Transformations

� A system transforms an input signal into an output
signal. The transformation may entail the modification
of some attribute of the input signal, the generation of
an entirely new signal (based on the input signal), or the
extraction of information from the input signal for display
or to initiate an action. �

For example, the system may delay, compress or stretch out the
input signal, or it may filter out the noise accompanying it. If the
signal represents the time profile of a car’s acceleration a(t),
as measured by a microelectromechanical sensor, the system
may perform an integration to determine the car’s velocity:
υ(t) = ∫ t

0 a(τ) dτ . In yet another example, the system may be

an algorithm that generates signals to control the movements
of a manufacturing robot, using the information extracted from
multiple input signals.

1-2.1 Time-Shift Transformation

If x(t) is a continuous-time signal, a time-shifted version with
delay T is given by

y(t) = x(t − T ), (1.1)

wherein t is replaced with (t−T ) everywhere in the expression
and/or plot of x(t), as illustrated in Fig. 1-7. If T > 0, y(t) is
delayed by T seconds relative to x(t); the peak value of the
waveform of y(t) occurs T seconds later in time than does the
peak of x(t). Conversely, if T < 0, y(t) is advanced by T
seconds relative to x(t), in which case the peak value of y(t)
occurs earlier in time.

� While preserving the shape of the signal x(t), the time-
shift transformation x(t −T ) is equivalent to sliding the
waveform to the right along the time axis when T is
positive and sliding it to the left when T is negative. �

1-2.2 Time-Scaling Transformation

Figure 1-8 displays three waveforms that are all similar (but
not identical) in shape. Relative to the waveform of x(t), the
waveform of y1(t) is compressed along the time axis, while
that of y2(t) is expanded (stretched out). Waveforms of signals
y1(t) and y2(t) are time-scaled versions of x(t):

y1(t) = x(2t), (1.2a)
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t
1

10

3 4 52

x(t)y1(t) = x(2t) y2(t) = x(t / 2)

x(t) =
{

5t for 0 ≤ t ≤ 2

0 otherwise

y1(t) =
{

5 · 2t = 10t for 0 ≤ 2t ≤ 2

0 otherwise

y2(t) =
{

5t/2 = 2.5t for 0 ≤ t/2 ≤ 2

0 otherwise

Figure 1-8: Waveforms of x(t), a compressed replica given by
y1(t) = x(2t), and an expanded replica given byy2(t) = x(t/2).

and

y2(t) = x(t/2). (1.2b)

Mathematically, the time-scaling transformation can be
expressed as

y(t) = x(at), (1.3)

where a is a compression or expansion factor depending
on whether its absolute value is larger or smaller than 1,
respectively. For the time being, we will assume a to be positive.
As we will see shortly in the next subsection, a negative value
of a causes a time-reversal transformation in addition to the
compression/expansion transformation.

� Multiplying the independent variable t in x(t) by a
constant coefficient a results in a temporally compressed
replica of x(t) if |a| > 1 and by a temporally expanded
replica if |a| < 1. �

1-2.3 Time-Reversal Transformation

� Replacing t with −t in x(t) generates a signal y(t)
whose waveform is the mirror image of that of x(t) with
respect to the vertical axis. �

t
0 4 10−10 −4

x(t)x(−t)

Figure 1-9: Waveforms of x(t) and its time reversal x(−t).

The time-reversal transformation is expressed as

y(t) = x(−t), (1.4)

and is illustrated by the waveforms in Fig. 1-9.

1-2.4 Combined Transformation

The three aforementioned transformations can be combined
into a generalized transformation:

y(t) = x(at − b) = x

(
a

(
t − b

a

))
= x(a(t − T )),

(1.5)

where T = b/a. We recognize T as the time shift and a as
the compression/expansion factor. Additionally, the sign of a
(− or +) denotes whether or not the transformation includes a
time-reversal transformation.

The procedure for obtaining y(t) = x(a(t − T )) from x(t)

is as follows:

(1) Scale time by a:

• If |a| < 1, then x(t) is expanded.

• If |a| > 1, then x(t) is compressed.

• If a < 0, then x(t) is also reflected.

This results in z(t) = x(at).
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(2) Time shift by T :

• If T > 0, then z(t) shifts to the right.

• If T < 0, then z(t) shifts to the left.

This results in z(t − T ) = x(a(t − T )) = y(t).

The procedure for obtaining y(t) = x(at − b) from x(t)

reverses the order of time scaling and time shifting:

(1) Time shift by b.

(2) Time scale by a.

Example 1-1: Multiple Transformations

For signal x(t) profiled in Fig. 1-10(a), generate the
corresponding profile of y(t) = x(−2t + 6).

Solution: We start by recasting the expression for the
dependent variable into the standard form given by Eq. (1.5),

y(t) = x

(
−2

(
t − 6

2

))

= x(−2(t − 3)).

Reversal Compression factor Time-shift

We need to apply the following transformations:
(1) Scale time by −2t: This causes the waveform to reflect

around the vertical axis and then compresses time by a factor
of 2. These steps can be performed in either order. The result,
z(t) = x(−2t), is shown in Fig. 1-10(b).

(2) Delay waveform z(t) by 3 s: This shifts the waveform to
the right by 3 s (because the sign of the time shift is negative).
The result, y(t) = z(t − 3) = x(−2(t − 3)), is displayed in
Fig. 1-10(c).

Concept Question 1-3: Is the shape of a waveform
altered or preserved upon applying a time-shift
transformation? Time-scaling transformation? Time-
reversal transformation? (See        )

x(t)

t (s)
−1−2−3 10 3 4 5

1

2

e 

_t

t (s)

z(t) = x(−2t)

−1−2 10 3 4 5

1

2

e 
2t

(a)  x(t)

(b)  z(t)

(c)  y(t)

t (s)

y(t)

−1−2 10 3 4 5

1

2

Figure 1-10: Waveforms of Example 1-1.

Exercise 1-1: If signal y(t) is obtained from x(t)

by applying the transformation y(t) = x(−4t − 8),
determine the values of the transformation parameters a
and T .

Answer: a = −4 and T = −2. (See S2 )

Exercise 1-2: If x(t) = t3 and y(t) = 8t3, are x(t) and
y(t) related by a transformation?

Answer: Yes, because y(t) = 8t3 = (2t)3 = x(2t).
(See S2 )



“book” — 2016/3/14 — 12:57 — page 9 — #9

1-3 WAVEFORM PROPERTIES 9

Exercise 1-3: What type of transformations connect
x(t) = 4t to y(t) = 2(t + 4)?

Answer: y(t) = x( 1
2 (t + 4)), which includes a

time-scaling transformation with a factor of 1/2 and a
time-shift transformation with a time advance of 4 s.
(See S2 )

1-3 Waveform Properties

1-3.1 Even Symmetry

� A signal x(t) exhibits even symmetry if its waveform
is symmetrical with respect to the vertical axis. �

The shape of the waveform on the left-hand side of the vertical
axis is the mirror image of the waveform on the right-hand side.
Mathematically, a signal x(t) has even symmetry if

x(t) = x(−t) (even symmetry). (1.6)

A signal has even symmetry if reflection about the vertical axis
leaves its waveform unaltered.

The signal displayed in Fig. 1-11(b) is an example of a
waveform that exhibits even symmetry. Other examples include
cos(ωt) and tn for even integers n.

1-3.2 Odd Symmetry

In contrast, the waveform in Fig. 1-11(c) has odd symmetry.

� A signal exhibits odd symmetry if the shape of its
waveform on the left-hand side of the vertical axis is the
inverted mirror image of the waveform on the right-hand
side. �

Equivalently,

x(t) = −x(−t) (odd symmetry). (1.7)

A signal has odd symmetry if reflection about the vertical
axis, followed by reflection about the horizontal axis, leaves its
waveform unaltered. Examples of odd signals include sin(ωt)
and tn for odd integers n.

t
0 4

x(t)

x(t)

(a)  x(t)

(c) xo(t)

(b) xe(t)

t
0 4−4

x(t)

xe(t)

1
2x(−t)1

2

t
0 4

−4

5

5

10

−5

xo(t)

x(t)1
2

x(−t)− 1
2

Figure 1-11: Signal x(t) and its even and odd components.

We should note that if signal y(t) is equal to the product of
two signals, namely

y(t) = x1(t) x2(t), (1.8)

then y(t) will exhibit even symmetry if x1(t) and x2(t) both
exhibit the same type of symmetry (both even or both odd)
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Table 1-1: Signal transformations.

Transformation Expression Consequence

Time shift y(t) = x(t − T ) Waveform is shifted along +t direction if T > 0 and along −t direction if
T < 0.

Time scaling y(t) = x(at) Waveform is compressed if |a| > 1 and expanded if |a| < 1.

Time reversal y(t) = x(−t) Waveform is mirror-imaged relative to vertical axis.

Generalized y(t) = x(at − b) Shift by b, then scale by a, time reversal if a < 0.

Even / odd synthesis x(t) = xe(t)+ xo(t) xe(t) = 1
2 {x(t)+ x(−t)}, xo(t) = 1

2 {x(t)− x(−t)}.

and y(t) will exhibit odd symmetry if x1(t) and x2(t) exhibit
different forms of symmetry. That is,

(even)× (even) = even,

(even)× (odd) = odd,

and

(odd)× (odd) = even.

1-3.3 Even / Odd Synthesis

In Chapter 5, we will find it easier to analyze a signal if it
possesses even or odd symmetry than if it possesses neither. In
that case, it may prove advantageous to synthesize a signal x(t)
as the sum of two component signals, one with even symmetry
and another with odd symmetry:

x(t) = xe(t)+ xo(t), (1.9)

with

xe(t) = 1

2
[x(t)+ x(−t)], (1.10a)

xo(t) = 1

2
[x(t)− x(−t)]. (1.10b)

As the graphical example shown in Fig. 1-11 demonstrates,
adding a copy of its time reversal, x(−t), to any signal x(t)
generates a signal with even symmetry. Conversely, subtracting
a copy of its time reversal from x(t) generates a signal with odd
symmetry.

Table 1-1 provides a summary of the linear transformations
examined thus far.

1-3.4 Periodic vs. Nonperiodic

A signal’s waveform may be periodic or nonperiodic (also
called aperiodic).

� A periodic signal x(t) of period T0 satisfies the
periodicity property:

x(t) = x(t + nT0) (1.11)

for all integer values of n and all times t . �

The periodicity property states that the waveform of x(t)
repeats itself every T0 seconds. Examples of periodic signals
are displayed in Fig. 1-12.

Note that if a signal is periodic with period T0, it is also
periodic with period 2T0, 3T0, etc. The fundamental period of
a periodic signal is the smallest value of T0 such that Eq. (1.11)
is satisfied for all integer values of n. In future references, the
term “period” shall refer to the fundamental period T0.

The most important family of periodic signals are sinusoids.
A sinusoidal signal x(t) has the form

x(t) = A cos(ω0t + θ), −∞ < t < ∞,

where

A = amplitude; xmax = A and xmin = −A,

ω0 = angular frequency in rad/s,

θ = phase-angle shift in radians or degrees.

Related quantities include

f0 = ω0/2π = circular frequency in Hertz,

T0 = 1/f0 = period of x(t) in seconds.
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x(t) = A sin (2πt/T0)

0
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x(t) = A cos2 (πt/T0)

4T0

A

x(t)

t
T0 3T02T0

Figure 1-12: Examples of periodic waveforms.

Another important periodic signal is the complex exponential
given by

x(t) = Aejω0t = |A|ej (ω0t+θ),

where, in general, A is a complex amplitude given by

A = |A|ejθ .

By Euler’s formula,

x(t) = |A|ej (ω0t+θ) = |A| cos(ω0t + θ)+ j |A| sin(ω0t + θ).

Hence, the complex exponential is periodic with period T0 =
2π/ω0.

Concept Question 1-4: Define even-symmetrical and
odd-symmetrical waveforms. (See        )

Concept Question 1-5: State the periodicity property.
(See        )

Exercise 1-4: Which of the following functions have
even-symmetrical waveforms, odd-symmetrical wave-
forms, or neither? (a) x1(t) = 3t2, (b) x2(t) = sin(2t), (c)
x3(t) = sin2(2t), (d) x4(t) = 4e−t , (e) x5(t) = | cos 2t |.
Answer: (a), (c), and (e) have even symmetry; (b) has
odd symmetry; (d) has no symmetry. (See S2 )

1-4 Nonperiodic Waveforms

� A nonperiodic signal is any signal that does not satisfy
the periodicity property. �

Many real-world signals are often modeled in terms of a core
set of elementary waveforms which includes the step, ramp,
pulse, impulse, and exponential waveforms, and combinations
thereof. Accordingly, we will use this section to review their
properties and mathematical expressions and to point out the
connections between them.

1-4.1 Step-Function Waveform

The waveform of signal u(t) shown in Fig. 1-13(a) is an (ideal)
unit step function: It is equal to zero for t < 0, at t = 0 it makes
a discontinuous jump to 1, and from there on forward it remains
at 1. Mathematically, u(t) is defined as

u(t) =
{

0 for t < 0,

1 for t > 0.
(1.12)

Becauseu(t)does not have a unique value at t = 0, its derivative
is infinite at t = 0, qualifying u(t) as a singularity function.

� A singularity function is a function such that either
itself or one (or more) of its derivatives is (are) not finite
everywhere. �

Occasionally, it may prove more convenient to model the unit
step function as a ramp over an infinitesimal interval extending
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(a) u(t)

u(t)

t

u(t)

1

0

(b) Gradual step model

u(t)

t

u(t)

1

0.5

0 ε−ε

Slope =
1
2ε

(c) Time-shifted step function with T = 2.

t
2

u(t − 2)

u(t − 2)
1

0

(d) Time-reversed step function with T = 1.

t
1

u(1 − t)

u(1 − t) 1

0

Step Functions

Figure 1-13: Unit step function.

between −ε and +ε, as shown in Fig. 1-13(b). Accordingly,
u(t) can be defined as

u(t) = lim
ε→0

⎧⎪⎪⎨
⎪⎪⎩

0 for t ≤ −ε,[
1

2

(
t

ε
+ 1

)]
for − ε ≤ t ≤ ε,

1 for t ≥ ε.

(1.13)

With this alternative definition, u(t) is a continuous function
everywhere, but in the limit as ε → 0 its slope in the interval
(−ε, ε) is

u′(t) = lim
ε→0

d

dt

[
1

2

(
t

ε
+ 1

)]
= lim
ε→0

(
1

2ε

)
→ ∞. (1.14)

The slope of u(t) still is not finite at t = 0, consistent with the
formal definition given by Eq. (1.12), which describes the unit
step function as making an instantaneous jump at t = 0.As will
be demonstrated later in Section 1-4.4, the alternative definition
for u(t) given by Eq. (1.13) will prove useful in establishing the
connection between u(t) and the impulse function δ(t).

The unit time-shifted step functionu(t−T ) is a step function
that transitions between its two levels when its argument
(t − T ) = 0:

u(t − T ) =
{

0 for t < T ,

1 for t > T .
(1.15)

� For any unit step function, its value is zero when its
argument is less than zero and one when its argument is
greater than zero. �

Extending this definition to the time-reversed step function, we
have

u(T − t) =
{

1 for t < T ,

0 for t > T .
(1.16)

By way of examples, Figs. 1-13(c) and (d) display plots of
u(t − 2) and u(1 − t), respectively.

1-4.2 Ramp-Function Waveform

The unit ramp function r(t) and the unit time-shifted ramp
function r(t − T ) are defined as

r(t) =
{

0 for t ≤ 0,

t for t ≥ 0,

and

r(t − T ) =
{

0 for t ≤ T ,

(t − T ) for t ≥ T .

(1.17a)

(1.17b)

Two ramp-function examples are displayed in Fig. 1-14. In each
case, the ramp function is zero when its argument (t − T ) is
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(a)

(b)

−1−2−3 1 2 3 4
t (s)

1 2 3 4

6 V
3 V 3r(t − 1)

Slope = 3 V/s

Ramp Functions

−1−2−3
t (s)

−2 V

2 V

−4 V −2r(t + 1)
Slope = −2 V/s

0

0

Figure 1-14: Examples of ramp functions.

smaller than zero, and equal to its own argument when the value
of t is such that the argument is greater than zero. The slope of
a ramp function x(t) = ar(t − T ) is specified by the constant
coefficient a.

Because the time-derivative of r(t − T )—i.e., its slope—
is discontinuous at t = T , the ramp function qualifies as a
singularity function.

The unit ramp function is related to the unit step function by

r(t) =
t∫

−∞
u(τ) dτ = t u(t), (1.18)

and for the time-shifted case,

r(t − T ) =
t∫

−∞
u(τ − T ) dτ = (t − T ) u(t − T ). (1.19)

Example 1-2: Synthesizing a Step-Waveform

For the (realistic) step waveform υ(t) displayed in Fig. 1-15,
develop expressions in terms of ramp and ideal step functions.
Note that υ(t) is in volts (V) and the time scale is in
milliseconds.

−1−2−3−4−5 1 2 3 4
t (ms)

υ (V)

3
6

9
12

(a) Original function

(b) As sum of two time-shifted ramp functions

0

υ (V)

−1−2−3−4−5 1 2 3 4
t (ms)

6

9
12

−6
−9

−12

3

−3

υ2(t) = −3r(t − 2 ms)

υ1(t) = 3r(t + 2 ms)

Composite
waveform

0

Figure 1-15: Step waveform of Example 1-2.

Solution: The voltage υ(t) can be synthesized as the sum of
two time-shifted ramp functions (Fig. 1-15(b)): One starts at
t = −2 ms and has a positive slope of 3 V/ms and a second
starts at t = 2 ms but with a slope of −3 V/ms. Thus,

υ(t) = υ1(t)+ υ2(t) = 3r(t + 2 ms)− 3r(t − 2 ms) V.

In view of Eq. (1.19), υ(t) also can be expressed as

υ(t) = 3(t+2 ms) u(t+2 ms)−3(t−2 ms) u(t−2 ms) V.



“book” — 2016/3/14 — 12:57 — page 14 — #14

14 CHAPTER 1 SIGNALS

Rectangular Pulses

(b)

t (s)

τ
1

T0

rect ( )t − T
τ

(a)

(c)

t (s)
−1−2

T = −2
−3

8

0

2

8 rect ( )t + 2
2

−8

2 3 4

2

−8 rect ( )t − 3
2

T = 3

t (s)

1

0 1/2−1/2

rect(t)

Figure 1-16: Rectangular pulses.

1-4.3 Pulse Waveform

The rectangular function rect(t) is defined as

rect(t) =
{

1 for |t | < 1
2

0 for |t | > 1
2

= u

(
t + 1

2

)
− u

(
t − 1

2

)
,

and its waveform is displayed in Fig. 1-16(a). Note that the
rectangle is of width 1 s, height 1 unit, and is centered at t = 0.

In general, a rectangular pulse can be described mathe-
matically by the rectangular function rect[(t − T )/τ ]. Its two
parameters are T , which defines the location of the center of

the pulse along the t-axis, and τ , which is the duration of the
pulse (Fig. 1-16(b)). Examples are shown in Fig. 1-16(c). The
general rectangular function is defined as

rect

(
t − T

τ

)
=

⎧⎪⎨
⎪⎩

0 for t < (T − τ/2),

1 for (T − τ/2) < t < (T + τ/2),

0 for t > (T + τ/2).
(1.20)

We note that because the rectangular function is discontinuous
at its two edges (namely at t = T − τ/2 and t = T + τ/2), it
is a bona fide member of the family of singularity functions.

Example 1-3: Rectangular and Trapezoidal Pulses

Develop expressions in terms of ideal step functions for (a) the
rectangular pulseυa(t) in Fig. 1-17(a) and (b) the more-realistic
trapezoidal pulse υb(t) in Fig. 1-17(b).

Solution: (a) The amplitude of the rectangular pulse is 4 V, its
duration is 2 s, and its center is at t = 3 s. Hence,

υa(t) = 4 rect

(
t − 3

2

)
V.

The sequential addition of two time-shifted step functions,υ1(t)

at t = 2 s and υ2(t) at t = 4 s, as demonstrated graphically
in Fig. 1-17(c), accomplishes the task of synthesizing the
rectangular pulse in terms of two step functions:

υa(t) = υ1(t)+ υ2(t) = 4[u(t − 2)− u(t − 4)] V.

Generalizing, a unit rectangular function rect[(t−T )/τ ] always
can be expressed as

rect

(
t − T

τ

)

= u
[
t −

(
T − τ

2

)]
− u

[
t −

(
T + τ

2

)]
.

(1.21)

(b) The trapezoidal pulse exhibits a change in slope at
t = 0, t = 1 s, t = 3 s, and t = 4 s, each of which can
be accommodated by the introduction of a time-shifted ramp
function with the appropriate slope. Building on the procedure
used in Example 1-2, υb(t) can be synthesized as the sum of
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Waveform Synthesis

(c) υa(t) = 4u(t − 2) − 4u(t − 4) (d) υb(t) = υ1(t) + υ2(t) + υ3(t) + υ4(t)

(b) Trapezoidal pulse

t (s)

υa(t)

4 V

−4 V
1 2 3 4 5

−4u(t − 4)

4u(t − 2)

0

υb(t)

5 V

−1−2 1 2 3 4 5
t0

4 5

υb(t)

5 V

−1−2 1 2 3
t

υ1(t) = 5r(t)
υ4(t) = 5r(t − 4)

υ3(t) = −5r(t − 3)
υ2(t) = −5r(t − 1)

0

(a) Rectangular pulse

1 2 3 4 5
t (s)

υa(t)

4 V

0

4 rect ( )t − 3
2

Figure 1-17: Rectangular and trapezoidal pulses of Example 1-3.

the four ramp functions shown in Fig. 1-17(d):

υb(t) = υ1(t)+ υ2(t)+ υ3(t)+ υ4(t)

= 5[r(t)− r(t − 1)− r(t − 3)+ r(t − 4)]
= 5[t u(t)− (t − 1) u(t − 1)

− (t − 3) u(t − 3)+ (t − 4) u(t − 4)] V,

where in the last step, we used the relation given by Eq. (1.19).

Example 1-4: Periodic Sawtooth Waveform

Express the periodic sawtooth waveform shown in Fig. 1-18 in
terms of step and ramp functions.

Solution: The segment between t = 0 and t = 2 s is a ramp
with a slope of 5 V/s. To effect a sudden drop from 10 V down
to zero at t = 2 s, we need to (a) add a negative ramp function

t (s)

x(t)

10 V

......
0

2 4 6

Figure 1-18: Periodic sawtooth waveform of Example 1-4.

at t = 2 s and (b) add a negative offset of 10 V in the form of a
delayed step function. Hence, for this time segment,

x1(t) = [5r(t)− 5r(t − 2)− 10u(t − 2)] V, 0 ≤ t < 2 s.



“book” — 2016/3/14 — 12:57 — page 16 — #16

16 CHAPTER 1 SIGNALS

By extension, for the entire periodic sawtooth waveform with
period T0 = 2 s, we have

x(t)=
∞∑

n=−∞
x1(t − nT0)=

∞∑
n=−∞

[5r(t − 2n)− 5r(t − 2 − 2n)

− 10u(t − 2 − 2n)] V.

Concept Question 1-6: How are the ramp and rectangle
functions related to the step function? (See        )

Concept Question 1-7: The step function u(t) is 
considered a singularity function because it makes a 
discontinuous jump at t = 0. The ramp function r(t)  is 
continuous at t = 0. Yet it also is a singularity function. 
Why? (See        )

Exercise 1-5: Express the waveforms shown in Fig. E1-5
in terms of unit step or ramp functions.

(a)

x

t (s)
2 4

10

−10

(b)

x

t (s)
2 4

5

−5

0

0

Figure E1-5

Answer: (a) x(t) = 10 u(t)−20 u(t−2)+10 u(t−4),
(b) x(t) = 2.5 r(t)−10 u(t−2)−2.5 r(t−4). (See S2 )

(b) Rectangle model for δ(t)

(c) Gradual step model for u(t)

(a) δ(t) and δ(t − T)

tT0

δ(t − T)δ(t)

Area = 1

t
0 ε−ε

δ(t)

1/2ε

u(t)

t

u(t)

1

0.5

0 ε−ε

Slope =
1
2ε

Figure 1-19: Unit impulse function.

Exercise 1-6: How is u(t) related to u(−t)?
Answer: They are mirror images of one another (with
respect to the y-axis). (See S2 )

1-4.4 Impulse Function

Another member of the family of singularity functions is the
unit impulse function, which is also known as the Dirac delta
function δ(t). Graphically, it is represented by a vertical arrow,
as shown in Fig. 1-19(a). If its location is time-shifted to t = T ,
it is designated δ(t − T ). For any specific location T , the
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impulse function is defined through the combination of two
properties:

δ(t − T ) = 0 for t �= T (1.22a)

and

∞∫
−∞

δ(t − T ) dt = 1. (1.22b)

� The first property states that the impulse function
δ(t − T ) is zero everywhere, except at its own location
(t = T ), but its value is infinite at that location. The
second property states that the total area under the unit
impulse is equal to 1, regardless of its location. �

To appreciate the meaning of the second property, we can
represent the impulse function by the rectangle shown in
Fig. 1-19(b) with the understanding that δ(t) is defined in the
limit as ε → 0. The rectangle’s dimensions are such that its
width, w = 2ε, and height, h = 1/(2ε), are reciprocals of one
another. Consequently, the area of the rectangle is always unity,
even as ε → 0.

According to the rectangle model displayed in Fig. 1-19(b),
δ(t) = 1/(2ε) over the narrow range −ε < t < ε. For the
gradual step model of u(t) shown in Fig. 1-19(c), its slope also
is 1/(2ε). Hence,

du(t)

dt
= δ(t). (1.23)

Even though this relationship between the unit impulse and unit
step functions was obtained on the basis of specific geometrical
models for δ(t) and u(t), its validity can be demonstrated to be
true always. The corresponding expression for u(t) is

u(t) =
t∫

−∞
δ(τ ) dτ, (1.24)

and for the time-shifted case,

d

dt
[u(t − T )] = δ(t − T ),

u(t − T ) =
t∫

−∞
δ(τ − T ) dτ.

(1.25a)

(1.25b)

By extension, a scaled impulse k δ(t) has an area k and

t∫
−∞

k δ(τ ) dτ = k u(t). (1.26)

Example 1-5: Alternative Models for Impulse Function

Show that models x1(t) and x2(t) in Fig. 1-20 qualify as unit
impulse functions in the limit as ε → 0.

Solution: To qualify as a unit impulse function, a function
must: (1) be zero everywhere except at t = 0, (2) be infinite at
t = 0, (3) be even, and (4) have a unit area.

(a) Triangle Model x1(t)

(1) As ε → 0, x1(t) is indeed zero everywhere except at t = 0.

(2) lim
ε→0

x1(0) = lim
ε→0

1
ε

= ∞; hence infinite at t = 0.

(3) x1(t) is clearly an even function (Fig. 1-20(a)).

(b) Gaussian model x2(t)

(a) Triangle model x1(t)

t
0 ε−ε

x1(t)

t
0

x2(t)

Figure 1-20: Alternative models for δ(t).
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(4) Area of triangle = 1
2

(
2ε × 1

ε

) = 1, regardless of the value
of ε.

Hence, x1(t) does qualify as a unit impulse function.

(b) Gaussian Model x2(t)

(1) Except at t = 0, as ε → 0, the magnitude of the
exponential e−t2/2ε2

always will be smaller than ε
√

2π .
Hence, x2(t) → 0 as ε → 0, except at t = 0.

(2) At t = 0,

lim
ε→0

[
1

ε
√

2π
e−t2/2ε2

]
t=0

= lim
ε→0

[
1

ε
√

2π

]
= ∞.

(3) x2(t) is clearly an even function (Fig. 1-20(b)).

(4) The area of the Gaussian model is

A =
∞∫

−∞

1

ε
√

2π
e−t2/2ε2

dt.

Applying the integral formula

∞∫
−∞

e−a2x2
dx =

√
π

a

leads to A = 1. Hence, x2(t) qualifies as a unit impulse
function.

1-4.5 Sampling Property of δ(t)

As was noted earlier, multiplying an impulse function by
a constant k gives a scaled impulse of area k. Now we
consider what happens when a continuous-time function x(t)
is multiplied by δ(t). Since δ(t) is zero everywhere except at
t = 0, it follows that

x(t) δ(t) = x(0) δ(t), (1.27)

provided that x(t) is continuous at t = 0. By extension,
multiplication of x(t) by the time-shifted impulse function
δ(t − T ) gives

x(t) δ(t − T ) = x(T ) δ(t − T ). (1.28)

� Multiplication of a time-continuous function x(t) by
an impulse located at t = T generates a scaled impulse
of magnitude x(T ) at t = T , provided x(t) is continuous
at t = T . �

One of the most useful features of the impulse function is its
sampling (or sifting) property. For any function x(t) known to
be continuous at t = T :

∞∫
−∞

x(t) δ(t − T ) dt = x(T ).

(sampling property)

(1.29)

Derivation of the sampling property relies on Eqs. (1.22b) and
(1.28):

∞∫
−∞

x(t) δ(t − T ) dt =
∞∫

−∞
x(T ) δ(t − T ) dt

= x(T )

∞∫
−∞

δ(t − T ) dt = x(T ).

1-4.6 Time-Scaling Transformation of δ(t)

To determine how time scaling affects impulses, let us evaluate
the area of δ(at):

∞∫
−∞

δ(at) dt =
∞∫

−∞
δ(τ )

dτ

|a| = 1

|a| .

Hence, δ(at) is an impulse of area 1/|a|. It then follows that

δ(at) = 1

|a| δ(t) for a �= 0.

(time-scaling property)

(1.30)
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This result can be visualized for |a| > 1 by recalling that scaling
time by a compresses the time axis by |a|. The area of the
uncompressed rectangle in Fig. 1-19(b) is

Area of δ(t):
1

2ε
[ε − (−ε)] = 1.

Repeating the calculation for a compressed rectangle gives

Area of δ(at):
1

2ε

[
ε

|a| −
(

− ε

|a|
)]

= 1

|a| .

Also note that the impulse is an even function because

δ(−t) = 1

| − 1| δ(t) = δ(t),

δ(at − b) = 1

|a| δ
(
t − b

a

)
.

Example 1-6: Impulse Integral

Evaluate
∫ 2

1 t
2 δ(2t − 3) dt .

Solution: Using the time-scaling property, the impulse
function can be expressed as

δ(2t − 3) = δ

(
2

(
t − 3

2

))

= 1

2
δ

(
t − 3

2

)
.

Hence,

2∫
1

t2 δ(2t − 3) dt = 1

2

2∫
1

t2 δ

(
t − 3

2

)
dt

= 1

2

(
3

2

)2

= 9

8
.

We note that δ(t−(3/2)) /= 0 only at t = 3/2, which is included
in the interval of integration, 1 ≤ t ≤ 2.

Concept Question 1-8: How is u(t) related to δ(t)?
(See        )

Concept Question 1-9: Why is Eq. (1.29) called the
sampling property of the impulse function? (See        )

Exercise 1-7: If x(t) is the rectangular pulse shown in
Fig. E1-7(a), determine its time derivative x′(t) and plot
it.

Figure E1-7

(a)  x(t)

t (s)

x(t)

2

3 4

(b) x′(t)

t (s)

x′(t)

2 δ(t − 3)

−2 δ(t − 4)

Answer: x′(t) = 2δ(t − 3)− 2δ(t − 4). (See S2 )

1-4.7 Exponential Waveform

The exponential function is a particularly useful tool
for characterizing fast-rising and fast-decaying waveforms.
Figure 1-21 displays plots for

x1(t) = et/τ

and

x2(t) = e−t/τ

for τ > 0. The rates of increase of x1(t) and decrease of x2(t)

are governed by the magnitude of the time constant τ .
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−1−2−3 1 2 3
t/τ

1

0.37

Positive exponential

Negative 
exponential

e−t/τ

et/τ

0

Figure 1-21: By t = τ , the exponential function e−t/τ decays
to 37% of its original value at t = 0.

� An exponential function with a small (short) time con-
stant rises or decays faster than an exponential function
with a larger (longer) time constant (Fig. 1-22(a)). �

Replacing t in the exponential with (t−T ) shifts the exponential
curve to the right if T is positive and to the left if T is negative
(Fig. 1-22(b)). Multiplying a negative exponential function by
u(t) limits its range to t > 0 (Fig. 1-22(c)), and by extension,
an exponential that starts at t = T and then decays with time
constant τ is given by

x(t) = e−(t−T )/τ u(t − T ).

Its waveform is displayed in Fig. 1-22(d).
Occasionally, we encounter waveforms with the shape shown

in Fig. 1-22(e), wherein x(t) starts at zero and builds up as a
function of time towards a saturation value. An example is the
voltage response of an initially uncharged capacitor,

υ(t) = V0(1 − e−t/τ ) u(t).

Table 1-2 provides a general summary of the shapes and
expressions of the five nonperiodic waveforms we reviewed in
this section.

Concept Question 1-10: If the time constant of a 
negative exponential function is doubled in value, will 
the corresponding waveform decay faster or slower?
(See        )

Concept Question 1-11: What is the approximate shape
of the waveform described by the function (1 − e−|t|)?
(See        )

Exponential Functions

(b) Role of time shift T

(c) Multiplication of e−t/τ by u(t)

e−t/τ u(t)

t

1

0

(a) Role of time constant τ

Longer time
constant,
slower decay

Shorter time
constant,

faster decay

t

et/2ete−t/2 e−t

1

0

(d)

e−(t − T )/τ u(t − T )

t
T

1

0

(e) υ(t) = V0(1 − e−t/τ) u(t)

υ(t)

V0[1 − e−t/τ] u(t)

t
0

V0

t

e(t−1)

e−1 ≈ 0.37

e1 ≈ 2.7
ete(t+1)

1

0

Figure 1-22: Properties of the exponential function.
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Table 1-2: Common nonperiodic functions.

Function Expression General Shape

Step u(t − T ) =
{

0 for t < T

1 for t > T t

u(t − T)
1

T0

Ramp r(t − T ) = (t − T ) u(t − T )

t

r(t − T)

T

Slope = 1

0

Rectangle rect

(
t − T

τ

)
= u(t − T1)− u(t − T2)

T1 = T − τ

2
; T2 = T + τ

2
t

1

T1 T20

τ
rect

t − T

Impulse δ(t − T )

t

δ(t − T)1

T0

Exponential exp[−(t − T )/τ ] u(t − T )

t

exp[−(t − T)/τ] u(t − T)1

T0

Exercise 1-8:The radioactive decay equation for a certain
material is given byn(t) = n0e

−t/τ , wheren0 is the initial
count at t = 0. If τ = 2 × 108 s, how long is its half-life?
[Half-life t1/2 is the time it takes a material to decay to
50% of its initial value.]

Answer: t1/2 = 1.386 × 108 s ≈ 4 years. (See S2 )

Exercise 1-9: If the current i(t) through a resistor R
decays exponentially with a time constant τ , what is the
ratio of the power dissipated in the resistor at t = τ to its
value at t = 0?

Answer: p(t) = i2R = I 2
0R(e

−t/τ )2 = I 2
0Re

−2t/τ ,
p(τ)/p(0) = e−2 = 0.135, or 13.5%. (See S2 )

1-5 Signal Power and Energy
The instantaneous power p(t) dissipated in a resistor R due to
the flow of current i(t) through it is

p(t) = i2(t) R. (1.31)

Additionally, the associated energy expended over a time
interval t1 < t < t2 is

E =
t2∫
t1

p(t) dt. (1.32)

The expressions for power and energy associated with a
resistor can be extended to characterize the instantaneous
power and total energy of any signal x(t)—whether electrical
or not and whether real or complex—as

p(t) = |x(t)|2 (1.33a)
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and

E = lim
T→∞

T∫
−T

|x(t)|2 dt =
∞∫

−∞
|x(t)|2 dt, (1.33b)

where E is defined as the total energy over an infinite time
interval (−∞ < t < ∞).

If |x(t)|2 does not approach zero as t → ±∞, the integral
in Eq. (1.33b) will not converge. In that case, E is infinite,
rendering it unsuitable as a measure of the signal’s energy
capacity. An alternative measure is the (time) average
power Pav, which is defined as the power p(t) averaged over
all time:

Pav = lim
T→∞

1

T

T/2∫
−T/2

p(t) dt = lim
T→∞

1

T

T/2∫
−T/2

|x(t)|2 dt.

(1.34)
Conversely, if E is finite, Pav becomes the unsuitable measure,
because in view of Eq. (1.33b), we have

Pav = lim
T→∞

E

T
= 0 (E finite). (1.35)

� Pav and E define three classes of signals:

(a) Power signals: Pav is finite and E → ∞
(b) Energy signals: Pav = 0 and E is finite

(c) Non-physical signals: Pav → ∞ and E → ∞ �

For a periodic signal of period T0, it is not necessary to
evaluate the integral in Eq. (1.34) with T → ∞; integration
over a single period is sufficient. That is,

Pav = 1

T0

T0/2∫
−T0/2

|x(t)|2 dt (periodic signal). (1.36)

Most periodic signals have finite average power; hence, they
qualify as power signals.

(a) x1(t)

Slope = 3

t
0 2

6

x1(t)

6e−(t − 2)

(c) x3(t)

(b) x2(t)

t0 5 10−5−10 15

4

x2(t)

4 cos (2πt /10)

Slope = 2

t
0

2

1

x3(t)

Figure 1-23: Signal waveforms for Example 1-7.

Example 1-7: Power and Energy

Evaluate Pav and E for each of the three signals displayed in
Fig. 1-23.

Solution:
(a) Signal x1(t) is given by

x1(t) =

⎧⎪⎨
⎪⎩

0 for t ≤ 0,

3t for 0 ≤ t ≤ 2,

6e−(t−2) for t ≥ 2.
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Its total energy E is

E1 =
2∫

0

(3t)2 dt +
∞∫

2

[6e−(t−2)]2 dt

=
2∫

0

9t2 dt +
∞∫

2

36e−2(t−2) dt

= 9t3

3

∣∣∣∣
2

0
+ 36e4

∞∫
2

e−2t dt

= 24 + 36e4

(
−e−2t

2

∣∣∣∣
∞

2

)

= 42.

Note that the second integral represents the energy of 6e−t u(t)
delayed by 2 s. Since delaying a signal does not alter its energy,
an alternative method for evaluating the second integral is

∞∫
0

(6e−t )2 dt = 36

∞∫
0

e−2t dt

= 18.

Since E1 is finite, it follows from Eq. (1.35) that Pav1 = 0.
(b) Signal x2(t) is a periodic signal given by

x2(t) = 4 cos

(
2πt

10

)
.

From the argument of cos(2πt/10), the period is 10 s. Hence,
application of Eq. (1.36) leads to

Pav2 = 1

10

5∫
−5

[
4 cos

(
2πt

10

)]2

dt

= 1

10

5∫
−5

16 cos2
(

2πt

10

)
dt

= 8.

The integration was facilitated by the integral relation

1

T0

T0/2∫
−T0/2

cos2
(

2πnt

T0
+ φ

)
dt = 1

2
, (1.37)

which is valid for any value of φ and any integer value of n
equal to or greater than 1. In fact, because of Eq. (1.37),

Pav = A2

2

⎛
⎝ for any sinusoidal

signal of amplitude A
and nonzero frequency

⎞
⎠. (1.38)

If ω0 = 0, Pav = A2, not A2/2. Since Pav2 is finite, it follows
that E2 → ∞.

(c) Signal x3(t) is given by

x3(t) = 2r(t) =
{

0 for t ≤ 0,

2t for t ≥ 0.

The time-averaged power associated with x3(t) is

Pav3 = lim
T→∞

1

T

T/2∫
0

4t2 dt

= lim
T→∞

1

T

[
4t3

3

∣∣∣∣
T/2

0

]

= lim
T→∞

[
1

T
× 4T 3

24

]

= lim
T→∞

[
T 2

6

]
→ ∞.

Moreover, E3 → ∞ as well.

Concept Question 1-12: Signals are divided into three
power/energy classes. What are they? (See        )

Exercise 1-10: Determine the values of Pav and E for a
pulse signal given by x(t) = 5 rect

(
t−3

4

)
.

Answer: Pav = 0 and E = 100. (See S2 )
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Summary

Concepts

• A signal may be continuous, discrete, analog, or digital.
It may vary with time, space, or some other independent
variable and may be single or multidimensional.

• Signals are classified as causal, noncausal, or anticausal,
according to when they start and end.

• Signals can undergo time-shift, time-scaling, and time-
reversal transformations.

• A signal may exhibit even or odd symmetry. A signal

with neither form of symmetry can be synthesized as the
sum of two component signals: one with even symmetry
and the other with odd symmetry.

• Real-world signal waveforms often are modeled in terms
of a set of elementary waveforms, which include the
step, ramp, pulse, impulse, and exponential waveforms.

• A signal’s energy capacity is characterized by its average
power Pav and total energy E. These attributes are
defined for any signal, whether electrical or not.

Mathematical and Physical Models

Signal Transformations
Time shift y(t) = x(t − T )

Time scaling y(t) = x(at)

Time reversal y(t) = x(−t)

Signal Symmetry
Even x(t) = x(−t)
Odd x(t) = −x(−t)
Even part xe(t) = 1

2 {x(t)+ x(−t)}
Odd part xo(t) = 1

2 {x(t)− x(−t)}
Sum x(t) = xe(t)+ xo(t)

Signal Waveforms

See Table 1-2

Signal Power and Energy

Pav = lim
T→∞

1

T

T/2∫
−T/2

|x(t)|2 dt

E = lim
T→∞

T∫
−T

|x(t)|2 dt =
∞∫

−∞
|x(t)|2 dt

Important Terms
Provide definitions or explain the meaning of the following terms:

analog signal
anticausal signal
causal signal
continuous signal
digital signal
Dirac delta function
discrete signal

even symmetry
exponential waveform
impulse function
noncausal signal
nonperiodic (aperiodic)
odd symmetry
periodic

physically realizable system
pulse waveform
ramp function
sampling property
signal power
signal energy
singularity

time constant
time reversal
time-scaled
time-shifted
unit rectangular
unit step function
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PROBLEMS

Section 1-1: Types of Signals

1.1 Is each of these 1-D signals:

• Analog or digital?

• Continuous-time or discrete-time?

(a) Daily closes of the stock market

(b) Output from phonograph-record pickup

(c) Output from compact-disc pickup

1.2 Is each of these 2-D signals:

• Analog or digital?

• Continuous-space or discrete-space?

(a) Image in a telescope eyepiece

(b) Image displayed on digital TV

(c) Image stored in a digital camera

1.3 The following signals are 2-D in space and 1-D in time,
so they are 3-D signals. Is each of these 3-D signals:

• Analog or digital?

• Continuous or discrete?

(a) The world as you see it
∗(b) A movie stored on film

(c) A movie stored on a DVD

Section 1-2: Signal Transformations

1.4 Given the waveform of x1(t) shown in Fig. P1.4(a),
generate and plot the waveform of:

(a) x1(−2t)

(b) x1[−2(t − 1)]
1.5 Given the waveform of x2(t) shown in Fig. P1.4(b),
generate and plot the waveform of:

(a) x2[−(t + 2)/2]
(b) x2[−(t − 2)/2]

1.6 Given the waveform of x3(t) shown in Fig. P1.4(c),
generate and plot the waveform of:

∗
Answer(s) in Appendix F.

(a) x1(t)

t
2 4

2
4

0

x1(t)

(c) x3(t)

t
10

5
10

300 20

x3(t)

(b) x2(t)

−10

−4
t

10

4

x2(t)

(d) x4(t)

(t /2)2

t
2

Symmetrical

1

4 60

x4(t)

Figure P1.4: Waveforms for Problems 1.4 to 1.7.

∗(a) x3[−(t + 40)]
(b) x3(−2t)

1.7 The waveform shown in Fig. P1.4(d) is given by

x4(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for t ≤ 0,(
t
2

)2 for 0 ≤ t ≤ 2 s,

1 for 2 ≤ t ≤ 4 s,

f (t) for 4 ≤ t ≤ 6 s,

0 for t ≥ 6 s.
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(a) Obtain an expression for f (t), which is the segment
covering the time duration between 4 s and 6 s.

(b) Obtain an expression for x4(−(t − 4)) and plot it.

1.8 If

x(t) =
{

0 for t ≤ 2

(2t − 4) for t ≥ 2,

plot x(t), x(t + 1), x
(
t+1

2

)
, and x

(
− (t+1)

2

)
.

1.9 Given x(t) = 10(1 − e−|t |), plot x(−t + 1).

1.10 Given x(t) = 5 sin2(6πt), plot x(t − 3) and x(3 − t).

1.11 Given the waveform of x(t) shown in Fig. P1.11(a),
generate and plot the waveform of:

(a) x(2t + 6)
∗(b) x(−2t + 6)

(c) x(−2t − 6)

(a) (b)

t
2 6

4

t
3 6

4

Figure P1.11: Waveforms for Problems 1.11 and 1.12.

1.12 Given the waveform of x(t) shown in Fig. P1.11(b),
generate and plot the waveform of:

(a) x(3t + 6)

(b) x(−3t + 6)

(c) x(−3t − 6)

1.13 If x(t) = 0 unless a ≤ t ≤ b, and y(t) = x(ct + d)

unless e ≤ t ≤ f , compute e and f in terms of a, b, c, and d.
Assume c > 0 to make things easier for you.

1.14 If x(t) is a musical note signal, what is y(t) = x(4t)?
Consider sinusoidal x(t).

1.15 Give an example of a non-constant signal that has the
property x(t) = x(at) for all a > 0.

Sections 1-3 and 1-4: Waveforms

1.16 For each of the following functions, indicate if it exhibits
even symmetry, odd symmetry, or neither one.

(a) x1(t) = 3t2 + 4t4

∗(b) b x2(t) = 3t3

1.17 For each of the following functions, indicate if it exhibits
even symmetry, odd symmetry, or neither one.

(a) x1(t) = 4[sin(3t)+ cos(3t)]
(b) x2(t) = sin(4t)

4t

1.18 For each of the following functions, indicate if it exhibits
even symmetry, odd symmetry, or neither one.

(a) x1(t) = 1 − e−2t

(b) x2(t) = 1 − e−2t2

1.19 Generate plots for each of the following step-function
waveforms over the time span from −5 s to +5 s.

(a) x1(t) = −6u(t + 3)

(b) x2(t) = 10u(t − 4)

(c) x3(t) = 4u(t + 2)− 4u(t − 2)

1.20 Generate plots for each of the following step-function
waveforms over the time span from −5 s to +5 s.

(a) x1(t) = 8u(t − 2)+ 2u(t − 4)
∗(b) x2(t) = 8u(t − 2)− 2u(t − 4)

(c) x3(t) = −2u(t + 2)+ 2u(t + 4)

1.21 Provide expressions in terms of step functions for the
waveforms displayed in Fig. P1.21.

1.22 Generate plots for each of the following functions over
the time span from −4 s to +4 s.

(a) x1(t) = 5r(t + 2)− 5r(t)

(b) x2(t) = 5r(t + 2)− 5r(t)− 10u(t)
∗(c) x3(t) = 10 − 5r(t + 2)+ 5r(t)

(d) x4(t) = 10rect

(
t + 1

2

)
− 10rect

(
t − 3

2

)

(e) x5(t) = 5rect

(
t − 1

2

)
− 5rect

(
t − 3

2

)

1.23 Provide expressions for the waveforms displayed in
Fig. P1.23 in terms of ramp and step functions.
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(a) Step

x1(t)

t (s)
−1−2 1 3 4

6

2

−2
2

4

x4(t)

t (s)
−1−2 1 3 4

6

2

−2
2

4

x5(t)

t (s)
−1−2 1 3 4

6

2

−2
2

4

x3(t)

t (s)
−1−2 1 3 4

6

2

−2
2

4

(d) Staircase down

(b) Bowl (c) Staircase up

x6(t)

t (s)
−1−2 3 4

6

2

−2

4

(f) Square wave(e) Hat

x2(t)

t (s)
−1 1 3 4

6

2
4

−2
−2

2

1 2

0 0 0

0 0 0

Figure P1.21: Waveforms for Problem 1.21.

(a) “Vee”

(b) Mesa

x1(t)

t (s)
−2 4 6

−4

2

−2

4

2

(c) Sawtooth

x2(t)

t (s)
−2 4 6

2
4

2

x3(t)

t (s)
−2 4 6

−4

2

−2

4

2

0 0

0

Figure P1.23: Waveforms for Problem 1.23.
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1.24 For each of the following functions, indicate if its
waveform exhibits even symmetry, odd symmetry, or neither.

(a) x1(t) = u(t − 3)+ u(−t − 3)

(b) x2(t) = sin(2t) cos(2t)

(c) x3(t) = sin(t2)

1.25 Provide plots for the following functions over a time
span and with a time scale that will appropriately display the
shape of the associated waveform of:

(a) x1(t) = 100e−2t u(t)

(b) x2(t) = −10e−0.1t u(t)

(c) x3(t) = −10e−0.1t u(t − 5)

(d) x4(t) = 10(1 − e−103t ) u(t)

(e) x5(t) = 10e−0.2(t−4) u(t)

(f) x6(t) = 10e−0.2(t−4) u(t − 4)

1.26 Determine the period of each of the following
waveforms.

(a) x1(t) = sin 2t

(b) x2(t) = cos
(π

3
t
)

(c) x3(t) = cos2
(π

3
t
)

∗(d) x4(t) = cos(4πt + 60◦)− sin(4πt + 60◦)

(e) x5(t) = cos

(
4

π
t + 30◦

)
− sin(4πt + 30◦)

1.27 Provide expressions for the waveforms displayed in
Fig. P1.27 in terms of ramp and step functions.

1.28 Use the sampling property of impulses to compute the
following.

(a) y1(t) = ∫∞
−∞ t3 δ(t − 2) dt

(b) y2(t) = ∫∞
−∞ cos(t) δ(t − π/3) dt

(c) y3(t) = ∫ −1
−3 t

5 δ(t + 2) dt

1.29 Use the sampling property of impulses to compute the
following.

(a) y1(t) = ∫∞
−∞ t3 δ(3t − 6) dt

∗(b) y2(t) = ∫∞
−∞ cos(t) δ(3t − π) dt

(c) y3(t) = ∫ −1
−3 t

5 δ(3t + 2) dt

1.30 Determine the period of each of the following
waveforms.

(a) x1(t) = 6 cos
( 2π

3 t
)+ 7 cos

(
π
2 t
)

(b) x2(t) = 6 cos
( 2π

3 t
)+ 7 cos(π

√
2 t)

(c) x3(t) = 6 cos
( 2π

3 t
)+ 7 cos

( 2
3 t
)

(a) x1(t) “M”

(b) x2(t) “triangle”

(c) x3(t) “Haar”

t
52 8

3

62 10

2

−2

t

2

3

−3

t
106

Figure P1.27: Waveforms for Problem 1.27.

1.31 Determine the period of each of the following functions.

(a) x1(t) = (3 + j2)ejπt/3

(b) x2(t) = (1 + j2)ej2πt/3 + (4 + j5)ej2πt/6

(c) x3(t) = (1 + j2)ejt/3 + (4 + j5)ejt/2

1.32 IfM andN are both positive integers, provide a general
expression for the period of

A cos

(
2π

M
t + θ

)
+ B cos

(
2π

N
t + φ

)
.

Sections 1-5: Power and Energy

1.33 Determine if each of the following signals is a power
signal, an energy signal, or neither.

(a) x1(t) = 3[u(t + 2)− u(t − 2)]
(b) x2(t) = 3[u(t − 2)− u(t + 2)]
(c) x3(t) = 2[r(t)− r(t − 2)]
(d) x4(t) = e−2t u(t)
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1.34 Determine if each of the following signals is a power
signal, an energy signal, or neither.

(a) x1(t) = [1 − e2t ] u(t)
∗(b) x2(t) = [t cos(3t)] u(t)

(c) x3(t) = [e−2t sin(t)] u(t)
1.35 Determine if each of the following signals is a power
signal, an energy signal, or neither.

(a) x1(t) = [1 − e−2t ] u(t)
(b) x2(t) = 2 sin(4t) cos(4t)

(c) x3(t) = 2 sin(3t) cos(4t)

1.36 Use the notation for a signal x(t):

E[x(t)]: total energy of the signal x(t),
Pav[x(t)]: average power of the signal x(t) if x(t)

is periodic.

Prove each of the following energy and power properties.

(a)
E[x(t + b)] = E[x(t)]

and
Pav[x(t + b)] = Pav[x(t)]

(time shifts do not affect power or energy).

(b)
E[ax(t)] = |a|2 E[x(t)]

and
Pav[ax(t)] = |a|2 Pav[x(t)]

(scaling by a scales energy and power by |a|2).

(c)

E[x(at)] = 1

a
E[x(t)]

and
Pav[x(at)] = Pav[x(t)]

if a > 0 (time scaling scales energy by 1
a

but doesn’t affect
power).

1.37 Use the properties of Problem 1.36 to compute the
energy of the three signals in Fig. P1.27.

1.38 Compute the energy of the following signals.

(a) x1(t) = e−at u(t) for a > 0

(b) x2(t) = e−a|t | for a > 0

(c) x3(t) = (1 − |t |) rect(t/2)

1.39 Compute the average power of the following signals.

(a) x1(t) = ejat for real-valued a

(b) x2(t) = (3 − j4)ej7t

∗(c) c x3(t) = ej3ej5t

1.40 Prove these energy properties.

(a) If the even-odd decomposition of x(t) is

x(t) = xe(t)+ xo(t),

then
E[x(t)] = E[xe(t)] + E[xo(t)].

(b) If the causal-anticausal decomposition of x(t) is x(t) =
x(t) u(t)+ x(t) u(−t), then

E[x(t)] = E[x(t) u(t)] + E[x(t) u(−t)].
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Objectives

Learn to:

� Describe the properties of LTI systems.

� Determine the impulse and step responses of LTI
systems.

� Perform convolution of two functions.

� Determine causality and stability of LTI systems.

� Determine the overdamped, underdamped, and
critically damped responses of second-order
systems.

� Determine a car’s response to various pavement
profiles.

By modeling a car suspension system in terms of a differential
equation, we can determine the response of the car’s body to
any pavement profile it is made to drive over. The same approach
can be used to compute the response of any linear system to
any input excitation. This chapter provides the language, the
mathematical models, and the tools for characterizing linear,
time-invariant systems.
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Overview

Recall from the overview of Chapter 1 that a system is a device
or process that accepts as an input a signal x(t) and produces as
an output another signal y(t). It is customary to use the notation
x(t) to designate the input and y(t) to designate the output:

Input x(t) System y(t) Output.

This notation should not be misconstrued to mean that y(t) at
time t depends only on x(t) at time t ; it may also depend on
past or future values of x(t).

Among the various types of systems encountered in science
and engineering, linear time-invariant (LTI) systems stand out
as the most prominent. We note that:

1. Many physical systems, including circuits and mechanical
systems with linear elements, are LTI.

2. The input-output behavior of an LTI system can be
completely characterized by determining or observing its
response to an impulsive excitation at its input. Once this
is known, the system’s response to any other input can be
computed using convolution (see Section 2-3).

3. An LTI system can alter the amplitude and phase (but not
the frequency) of an input sinusoid or complex exponential
signal (see Section 2-7). This feature is fundamental to the
design of systems to filter noisy signals and images (see
Chapter 6).

4. The ease with which an LTI system can be analyzed
facilitates the inverse process, namely that of designing
the system to perform a desired task.

This chapter introduces the reader to the properties,
characterizations, and applications of LTI systems. Following
a brief discussion of the scaling, additivity, and time-
invariance properties of LTI systems, we will discuss what
the impulse response of an LTI system means—physically
and mathematically—and how to compute it. The next major
topic is convolution, which is often regarded by students as a
rather difficult concept to understand and apply. Accordingly,
we devote much attention to its derivation, properties, and
computation. Next, we discuss causality and stability of an LTI
system and examine its response to a complex exponential or
sinusoid. Finally, we analyze an LTI spring-mass-damper model
of an automobile suspension using the techniques developed in
this chapter.

Throughout this chapter, we assume that all initial conditions
are zero, so the system has no initial stored energy. We will learn
how to incorporate non-zero initial conditions in Section 3-11.

If

Linear
−1 0 1 2

t
−1 0 1 2

t

then

Linear
−1 0 1 2

t
−1 0 1 2

t

Figure 2-1: In a linear system, scaling the input signal x(t) by
a constant multiplier c results in an output c y(t).

2-1 Linear Time-Invariant Systems

� A system is linear if it has the scaling and additivity
properties. �

2-1.1 Scaling Property

If the response of a system to input x(t) is output y(t), and if this
implies that the response to c x(t) is c y(t) for any constant c,
the system is scalable. The scaling property can be depicted in
symbolic form as:

Given: x(t) System y(t),

then the system is scalable (has the scaling property) if

c x(t) System c y(t).

Thus, scaling the input also scales the output. The scaling
property is also known as the homogeneity or scalability
property.

A graphical example of the scaling property is shown in
Fig. 2-1.

Next, consider a system whose output y(t) is linked to its
input x(t) by the differential equation

d2y

dt2
+ 2

dy

dt
+ 3y = 4

dx

dt
+ 5x. (2.1)

Upon replacing x(t) with c x(t) and y(t) with c y(t) in all
terms, we end up with

d2

dt2
(cy)+ 2

d

dt
(cy)+ 3(cy) = 4

d

dt
(cx)+ 5(cx).
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Since c is constant, we can rewrite the expression as

c

[
d2y

dt2
+ 2

dy

dt
+ 3y

]
= c

[
4
dx

dt
+ 5x

]
, (2.2)

which is identical to the original equation, but multiplied by
the constant c. Hence, since the response to c x(t) is c y(t), the
system is scalable and has the scaling property.

However, the system described by the differential equation

d2y

dt2
+ 2

dy

dt
+ 3y = 4

dx

dt
+ 5x + 6 (2.3)

is not scalable, because the last term on the right-hand side is
independent of both x(t) and y(t), so we cannot factor out c.
Therefore the system is not linear.

The scaling property provides a quick mechanism to test if
a system is not linear. A good rule of thumb that works often
(but not always) is to test whether the system has the scaling
property with c = 2.

� If doubling the input does not double the output, the
system is not linear. But if doubling the input doubles
the output, the system is probably (but not necessarily)
linear. �

2-1.2 Additivity Property

If the system responses to N inputs x1(t), x2(t), . . . , xN(t)

are respectively y1(t), y2(t), . . . , yN(t), then the system is
additive if

N∑
i=1

xi(t) System
N∑
i=1

yi(t). (2.4)

That is, the response of the sum is the sum of the responses.
For an additive system, additivity must hold for both finite

and infinite sums, as well as for integrals.

� The combination of scalability and additivity is also
known as the superposition property, whose application
is called the superposition principle. �

If we denote y1(t) as the response to x1(t) in Eq. (2.1), and
similarly y2(t) as the response to x2(t), then

d2y1

dt2
+ 2

dy1

dt
+ 3y1 = 4

dx1

dt
+ 5x1, (2.5a)

d2y2

dt2
+ 2

dy2

dt
+ 3y2 = 4

dx2

dt
+ 5x2. (2.5b)

Next, if we add the two equations and denote x3 = x1 + x2 and
y3 = y1 + y2, we get

d2y3

dt2
+ 2

dy3

dt
+ 3y3 = 4

dx3

dt
+ 5x3. (2.5c)

Hence, the system characterized by differential equation (2.1)
has the additivity property. Since it was shown earlier also to
have the scaling property, the system is indeed linear.

2-1.3 Linear Differential Equations

Many physical systems are described by a linear differential
equation (LDE) of the form

n∑
i=0

an−i
diy

dt i
=

m∑
i=0

bm−i
dix

dt i
, (2.6)

where coefficients a0 to an and b0 to bm may or may not be
functions of time t . In either case, Eq. (2.6) represents a linear
system, because it has both the scaling and additivity properties.
If the coefficients are time-invariant (i.e., constants), then the
equation is called a linear, constant coefficient, differential
equation (LCCDE), and the system it represents is not only
linear but time-invariant as well. Time invariance is discussed
in Section 2-1.5.

2-1.4 Significance of the Linearity Property

To appreciate the significance of the linearity property,
consider the following scenario. We are given a linear system
characterized by a third-order differential equation. The system
is excited by a complicated input signal x(t). Our goal is to
obtain an analytical solution for the system’s output response
y(t).

Fundamentally, we can pursue either of the following two
approaches:

Option 1: Direct “brute-force” approach: This involves
solving the third-order differential equation with the compli-
cated signal x(t). While feasible, this may be mathematically
demanding and cumbersome.

Option 2: Indirect, linear-system approach, comprised of the
following steps:

(a) Synthesize x(t) as the linear combination of N relatively
simple signals x1(t), x2(t), . . . , xN(t):

x(t) = c1 x1(t)+ c2 x2(t)+ · · · + cN xN(t),

with signals x1(t) to xN(t) chosen so that they yield
straightforward solutions of the third-order differential
equation.
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(b) Solve the differential equation N times, once for each of
the N input signals acting alone, yielding outputs y1(t)

through yN(t).

(c) Apply the linearity property to obtain y(t) by summing the
outputs yi(t):

y(t) = c1 y1(t)+ c2 y2(t)+ · · · + cN yN(t).

Even though the second approach entails solving the differential
equation N times, the overall solution may prove significantly
more tractable than the solution associated with option 1.
The procedure will be demonstrated using numerous examples
scattered throughout the book.

Systems described by LCCDEs encompass all circuits
containing ideal resistors, inductors, capacitors, op-amps, and
dependent sources, so long as the circuit contains only a single
independent current or voltage source acting as the input. The
output is any individual voltage or current in the circuit, since
(by definition) a system has only one input and one output.

Limiting the circuit to a single independent source (the
input) may seem overly restrictive, as many circuits have
more than one independent source. Fortunately, the limitation
is circumvented by applying the superposition principle. To
analyze a circuit with N independent sources and zero initial
conditions (i.e., all capacitors are uncharged and all inductors
have zero currents flowing through them):

(a) We set all but one source to zero and then analyze the (now
linear) circuit using that source as the input. A voltage
source set to zero becomes a short circuit, and a current
source set to zero becomes an open circuit. We designate
y1(t) as the circuit response to source x1(t) acting alone.

(b) We then rotate the non-zero choice of source among all
of the remaining independent sources, setting all other
sources to zero each time. The process generates responses
y2(t) to yN(t), corresponding to sources x2(t) to xN(t),
respectively.

(c) We add responses y1(t) through yN(t).

We shall see in Section 4-1 that non-zero initial conditions are
equivalent to additional independent sources.

Example 2-1: Superposition

Apply the superposition principle to determine the current I
through resistor R2 in the circuit of Fig. 2-2(a).

Solution: (a) The circuit contains two sources, I0 and V0. We
start by transforming the circuit into the sum of two new circuits:

(a) Original circuit

(c) Source V0 alone generates I2

(b) Source I0 alone generates I1

I0 = 6 A R1 = 5 Ω

R2 = 10 ΩI1

Short
circuit

V0 = 45 VR1 = 5 Ω

R2 = 10 Ω

+
-

I2

Open circuit
+
_

V0 = 45 VI0 = 6 A R1 = 5 Ω

R2 = 10 Ω

+
-

I

+
_

Figure 2-2: Application of the superposition technique to the
circuit of Example 2-1.

one with I0 alone and another with V0 alone, as shown in parts
(b) and (c) of Fig. 2-2, respectively. The current throughR2 due
to I0 alone is labeled I1, and that due to V0 alone is labeled I2.

Application of current division in the circuit of Fig. 2-1(b)
gives

I1 = I0R1

R1 + R2
= 6 × 5

5 + 10
= 2 A.

In the circuit of Fig. 2-1(c), Ohm’s law gives

I2 = −V0

R1 + R2
= −45

5 + 10
= −3 A.

Hence,
I = I1 + I2 = 2 − 3 = −1 A.
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(a) (c)

t

x(t)

0
t

T

x(t − T )

0

Original Delayed

(b) (d)

t

y(t)

t
T

y(t − T )Original Delayed

Figure 2-3: Delaying a signal x(t) by T seconds at the input to a time-invariant system results in an equal delay at the output.

2-1.5 Time-Invariant Systems

� A system is time-invariant if delaying the input signal
x(t) by any constant T generates the same output y(t),
but delayed by exactly T . �

Given: x(t) System y(t),

then the system is time-invariant if

x(t − T ) System y(t − T ).

The process is illustrated graphically by the waveforms shown
in Figs. 2-3 and 2-4.

Physically, a system is time-invariant if it has no internal
clock. If the input signal is delayed, the system has no way
of knowing it, so it accepts the delayed input and delivers a
correspondingly delayed output.

How can one tell if a system is time-invariant? A good rule
of thumb that almost always works is:

If Time-
invariant
system

Time-
invariant
system

−1 0 1 2
t

−1 0 1 2
t

then

−1 0 1 2
t

−1 0 1 2
t

Figure 2-4: If the input of a time-invariant system is delayed by
1 s, the ouput will be delayed by 1 s also.

If t appears explicitly only in the expression for x(t) or in
derivatives or limits of integration in the equation describing
the system, the system is likely time-invariant.

Examples of time-invariant systems include

(a) y1(t) = 3
d2x

dt2
,

(b) y2(t) = sin[x(t)], and

(c) y3(t) = x(t + 2)

x(t − 1)
,
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where x(t + 2) is x(t) advanced by 2 seconds and x(t − 1) is
x(t) delayed by 1 second. We note that while all three systems
are time-invariant, systems (b) and (c) are not linear.

Examples of non-time-invariant systems include

(d) y4(t) = t x(t),

(e) y5(t) = x(t2), and

(f) y6(t) = x(−t).
We note that systems (d) to (f) all are linear but not
time-invariant, and systems (e) and (f) are not time-invariant
even though they do pass the rule-of-thumb test stated earlier—
namely that t is part of the expression of x(t) and not
in a multiplying function or coefficient. These are the two
exceptions to the rule of thumb.

� For the remainder of this book, we will deal with LTI
systems exclusively. �

Concept Question 2-1: What three properties must an
LTI system have? (See        )

Concept Question 2-2: Does a system described by a
linear differential equation qualify as LTI or just as linear?
(See        )

Exercise 2-1: Does the system y(t) = x2(t) have the
scaling property?

Answer: No, because substituting cx(t) for x(t)

gives y(t) = [cx(t)]2 = c2x2(t), which is different from
cy(t) = cx2(t). (See S2 )

Exercise 2-2: Which of the following systems is linear?
(a) y1(t) = | sin(3t)| x(t), (b) y2(t) = a dx

dt
(c) y3(t) = |x(t)|, (d) y4(t) = sin[x(t)]
Answer: Systems (a) and (b) are linear, but (c) and (d)
are not. (See S2 )

Exercise 2-3: Which systems are time-invariant?

(a) y(t) = dx
dt

+ sin[x(t − 1)]
(b) dy

dt
= 2 sin[x(t − 1)] + 3 cos[x(t − 1)]

Answer: Both are time-invariant. (See S2 )

2-2 Impulse Response

The impulse response h(t) of a system is (logically enough) the
response of the system to an impulse δ(t). Similarly, the step
response ystep(t) is the response of the system to a unit step
u(t). In symbolic form:

δ(t) LTI h(t) (2.7a)

and

u(t) LTI ystep(t). (2.7b)

The significance of the impulse response is that, if we know h(t)
for an LTI system, we can compute the response to any other
input x(t) using the convolution integral derived in Section 2-3.
The significance of the step response is that, in many physical
situations, we are interested in how well a system “tracks”
(follows) a step input. We will use the step response extensively
in control-related applications in Chapter 4.

2-2.1 Static and Dynamic Systems

� A system for which the output y(t) at time t depends
only on the input x(t) at time t is called a static or
memoryless system. �

An example of such a system is

y(t) = sin[x(t)]
x2(t)+ 1

.

To compute the output of a memoryless system from its input,
we just plug into its formula. Parenthetically, we note that this
system is not linear.

The only memoryless system that is also LTI is y(t) = ax(t)

for any constant a. We remind the reader that the affine system
y(t) = ax(t)+ b is not a linear system, although a plot of its
formula is a straight line. In the physical world, most systems
are dynamic in that the output y(t) at time t depend on past (or
future) as well as present values of the input x(t). Such systems
often involve integrals and derivatives of either the input, the
output, or both.

A system may physically exist, and its output may be
measured in response to physically realizable inputs, such as
a gradual step function (Section 1-4.1) or a sinusoid, or it may
be described by a mathematical model (usually in the form
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of a differential equation constructed from an analysis of the
physics, chemistry, or biology governing the behavior of the
system). In either case, the system behavior is characterized by
its impulse response h(t).

To develop familiarity with what the impulse response means
and represents, we will use a simple RC-circuit to derive and
demonstrate the physical interpretation of its impulse response
h(t).

2-2.2 Computing h(t) and ystep(t) of RC Circuit

Consider the RC circuit shown in Fig. 2-5(a). The input
is the voltage source x(t), and the output is the voltage
y(t) across the capacitor, which is initially uncharged, so
y(0−) = 0. The system in this case is the circuit inside the
dashed box. To distinguish between the state of the system
(or its output response) before and after the introduction of
the input excitation, we denote t = 0− and t = 0 as the times

(a) RC circuit

(c) ystep(t)

y(t)x(t) C

R

System OutputInput

+
_

+
_

i(t)

Step Response

t

1
ystep(t) (1 − e−1)

τc

(b)  h(t)

Impulse Response

t

h(t)

 (1/τc)e−1

τc

1/τc

Figure 2-5: RC circuit.

immediately before and immediately after the introduction
of x(t), respectively. The conditions prevailing at t = 0− are
called initial conditions. Accordingly, y(0−) = 0 represents
the initial condition of the system’s output.

Application of Kirchhoff’s voltage law around the loop yields

R i(t)+ y(t) = x(t). (2.8)

For the capacitor, the current through it, i(t), is related to the
voltage across it, y(t), by

i(t) = C
dy

dt
. (2.9)

Substituting Eq. (2.9) in Eq. (2.8) and then dividing all terms
by RC leads to

dy

dt
+ 1

RC
y(t) = 1

RC
x(t). (2.10)

To compute the impulse response, we label x(t) = δ(t) and
y(t) = h(t) and obtain

dh

dt
+ 1

RC
h(t) = 1

RC
δ(t). (2.11)

Next, we introduce the time constant τc = RC and multiply
both sides of the differential equation by the integrating factor
et/τc . The result is

dh

dt
et/τc + 1

τc
et/τc h(t) = 1

τc
et/τc δ(t). (2.12)

The left side of Eq. (2.12) is recognized as

dh

dt
et/τc + 1

τc
et/τc h(t) = d

dt
[h(t) et/τc ], (2.13a)

and the sampling property of the impulse function given by
Eq. (1.27) reduces the right-hand side of Eq. (2.12) to

1

τc
et/τc δ(t) = 1

τc
δ(t). (2.13b)

Incorporating these two modifications in Eq. (2.12) leads to

d

dt
[h(t) et/τc ] = 1

τc
δ(t). (2.14)

Integrating both sides from 0− to t gives

t∫
0−

d

dτ
[h(τ) eτ/τc ] dτ = 1

τc

t∫
0−

δ(τ ) dτ, (2.15)
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where τ is a dummy variable of integration and has no
connection to the time constant τc. We will use τ as a dummy
variable throughout this chapter. By Eq. (1.24), we recognize the
integral in the right-hand side of Eq. (2.15) as the step function
u(t). Hence,

h(τ) eτ/τc
∣∣t
0− = 1

τc
u(t),

or

h(t) et/τc − h(0−) = 1

τc
u(t). (2.16)

The function h(t) represents y(t) for the specific case when
the input is δ(t). We are told that the capacitor was initially
uncharged, so y(0−) = 0 for any input. Hence, h(0−) = 0, and
Eq. (2.16) reduces to

h(t) = 1

τc
e−t/τc u(t).

(impulse response of the RC circuit)

(2.17)

The plot displayed in Fig. 2-5(b) indicates that the capacitor
voltage h(t) jumps instantaneously at t = 0, which contradicts
the natural behavior of a capacitor. This contradiction is a
consequence of the fact that a pure δ(t) is a physically
unrealizable singularity function. However, as discussed in the
next subsection, we can approximate an impulse by a finite-
duration pulse and then use it to measure the impulse response
of the circuit.

To compute the step response of the circuit, we start with the
same governing equation given by Eq. (2.10), but this time we
label x(t) = u(t) and y(t) = ystep(t). The procedure leads to

ystep(t) = [1 − e−t/τc ] u(t).
(step response of the RC circuit)

(2.18)

As the initially uncharged capacitor builds up charge, the
voltage across it builds up monotonically from zero at t = 0
to 1 V as t → ∞ (Fig. 2-5(c)).

� Once we know the step response of an LTI system,
we can apply the superposition principle to compute
the response of the system to any input that can be
expressed as a linear combination of scaled and delayed
step functions. �

2-2.3 Measuring h(t) and ystep(t) of RC Circuits

Suppose we have a physical system for which we do not
have an LCCDE model. To physically measure its impulse
and step responses, we need to be able to apply impulse and
step signals at its input terminals. As ideal impulse and step
signals are physically unrealizable, we resort to techniques that
offer reasonable approximations. In general, the approximate
techniques used for representing u(t) and δ(t) must be tailor-
made to suit the system under consideration. We will illustrate
the procedure by measuring the step and impulse responses of
an RC circuit (Fig. 2-5(a)) with τc = RC = 2 s.

Step response

A unit step function at the input terminals can be represented
by a 1-V dc voltage source connected to the RC circuit via a
switch that is made to close at t = 0 (Fig. 2-6(a)). In reality,
the process of closing the switch has a finite (but very short)
switching time τs. That is, it takes the voltage at the input
terminals τs seconds to transition between zero and 1 volt. For
the RC circuit, its time constant τc is a measure of its reaction
time, so if τs � τc, the circuit will sense the switching action
as if it were instantaneous, in which case the measured output

(b) Simulating δ(t) at input

(a) Simulating u(t) at input

h(t)Volts C

+

_

t = T

R

+
_( )1

T

t = 0

1 V ystep(t)C

+

_

R

+
_

t = 0+
_

Figure 2-6: Simulating inputs u(t) and δ(t) through the use of
switches.
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voltage ystep(t) would closely match the computed expression
given by Eq. (2.18),

ystep(t) = [1 − e−t/2] u(t), (2.19)

where we have replaced τc with 2 s.

Impulse response

A unit impulse δ(t) can be simulated by a rectangle model
consisting of two step functions:

x(t) = 1

T
[u(t)− u(t − T )] as T → 0. (2.20)

The rectangular pulse has a duration of T and its amplitude (in
volts) is always chosen such that it is numerically equal to 1/T ,
thereby maintaining the area of the pulse at 1. Physically, the
rectangle excitation is realized by connecting a voltage source
of magnitude (1/T )volts to the circuit via a switch that connects
the RC circuit to the source at t = 0 and then connects it to a
short circuit at t = T (Fig. 2-6(b)).

Since the RC circuit is LTI, the superposition principle
applies. In view of Eq. (2.19), which is the response to the input
excitation u(t), the response ypulse(t) to the pulse excitation
modeled by Eq. (2.20) is

ypulse(t) = 1

T
[ystep(t)− ystep(t − T )]

= 1

T

{
(1 − e−t/2) u(t)− (1 − e−(t−T )/2) u(t − T )

}
.

(2.21)

Our goal is to answer the following pair of questions:
(1) Is it possible to measure the impulse response of the RC

circuit by exciting it with a rectangular pulse of amplitude (1/T )
and duration T ? (2) Are there any constraints on the choice of
the value of T ?

To explore the answers to these two questions, we display
in Fig. 2-7 plots of ypulse(t)—all computed in accordance with
Eq. (2.21)—for three different values of T , namely, 5 s, 0.05 s,
and 0.01 s. The first case was chosen to illustrate the response of
the circuit to a pulse whose duration T is greater than its own
time constant τc (i.e., T = 5 s and τc = 2 s). Between t = 0
and t = 5 s, the capacitor charges up to a maximum voltage of
(1−e−5/2)/5 = 0.184 V (Fig. 2-7(a)), almost to the level of the
input voltage (0.2 V). Upon disconnecting the voltage source
and replacing it with a short circuit at t = T = 5 s, the capacitor
starts to discharge towards zero volts as t → ∞. During both
the charge-up and discharge periods, the rates of increase and
decay are governed by the time constant τc = 2 s.

(a) T = 5 s

(b) T = 0.05 s

(c) T = 0.01 s

x3(t)

0
0

0.5

0.4

0.3

0.1

0.2

t (s)
1 2 3 4 5 6 7 8 9 10

0.499 V

0.01 s

100 V

0
0

0.5

0.4

0.3

0.1

0.2

ypulse1(t)

ypulse2(t)

ypulse3(t)

0

1 2 3

0.184 V

t (s)

x1(t)

ypulse1(t)

4 5 6 7 8 9 10

5 s
0.2 V

0
0

0.5

0.4

0.3

0.1

0.2

ypulse2(t)

ypulse3(t)

t (s)

x2(t)

1 2 3

0.05 s

(Not to scale)

20 V

4 5 6 7 8 9 10

0.494 V

Figure 2-7: Plots of ypulse(t), as expressed by Eq. (2.21), for
three values of T .

Next, we examine the case of T = 0.05 s (Fig. 2-7(b)); the
pulse duration now is much shorter than the time constant
(T/τc = 0.025). Also, the pulse amplitude is 1/T = 20 V
(compared with only 0.2 V for the previous case). The response
charges up to 20(1−e−0.05/2) = 0.494 V at t = 0.05 s and then
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discharges to zero as t → ∞. The plot in Fig. 2-7(b) exhibits
a close resemblance to the theoretical response shown earlier
in Fig. 2-5(b). For the theoretical response, the peak value is
1/τc = 1/2 = 0.5 V.

As the pulse duration is made shorter still, the measured
response approaches both the shape and peak value of
the theoretical response. The plot in Fig. 2-7(c) (cor-
responding to T = 0.01 s) exhibits a peak value of
100(1 − e−0.01/2) = 0.499 V, which is very close to the
theoretical peak value of 0.5 V.

Hence, the combined answer to the questions posed earlier
is yes, the impulse response of the RC circuit can indeed be
determined experimentally, provided the excitation pulse used
at the input is of unit area and its duration is much shorter than
the circuit’s time constant τc. This statement can be generalized:

� The response of an RC circuit to a sufficiently fast
pulse of any shape is (A/τc)e

−t/τc u(t), where A is the
area under the pulse. “Sufficiently fast” means that the
duration of the pulse T � τc. �

2-2.4 Impulse and Ramp Responses from Step
Response

We now extend the procedure we used to determine h(t) of the
RC circuit to LTI systems in general:

Step 1: Physically measure the step response ystep(t).

Step 2: Differentiate it to obtain

h(t) = dystep

dt
. (2.22)

To demonstrate the validity of Eq. (2.22), we start with the
definition of the step response given by Eq. (2.7b). We then use
the time-invariance property of LTI systems to delay both the
input and output by a constant delay ε:

u(t − ε) LTI ystep(t − ε). (2.23)

Next, using the additivity property of LTI systems, we
subtract Eq. (2.23) from Eq. (2.7b), and using the scaling

property, we multiply the result by 1/ε:

u(t)− u(t − ε)

ε
LTI

ystep(t)− ystep(t − ε)

ε
.

(2.24)
The two steps were justified by the additivity and scaling
properties of LTI systems. Finally, if we let ε → 0, the left-
hand side of Eq. (2.24) becomes du/dt , and the right-hand side
becomes dystep/dt . Moreover, from Eq. (1.23), du/dt = δ(t).
Hence,

du

dt
= δ(t) LTI h(t) = dystep

dt
. (2.25)

Example 2-2: RC Circuit Impulse Response from Step

Response

Obtain (a) the impulse response of the RC circuit in Fig. 2-5(a)
by applying Eq. (2.22) and (b) the circuit response to a ramp-
function input x(t) = r(t).

Solution: (a) Using the expression for ystep(t) given by
Eq. (2.18), the impulse response of the RC circuit is

h(t) = d

dt

[
(1 − e−t/τc) u(t)

]
= δ(t)− δ(t) e−t/τc + 1

τc
e−t/τc u(t)

= 1

τc
e−t/τc u(t), (2.26)

where we used δ(t) = du/dt and x(t) δ(t) = x(0) δ(t) for
any x(t). Because the step response ystep(t) was available to
us, the process leading to Eq. (2.26) was quite painless and
straightforward (in contrast with the much longer differential-
equation solution contained in Section 2-2.2).

(b) From Eq. (2.7b), we have

u(t) LTI ystep(t). (2.27)

The ramp function r(t) is related to the step function u(t) by
Eq. (1.18) as

r(t) =
t∫

−∞
u(τ) dτ.
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Integration is a linear operation, so its application to both sides
of Eq. (2.27) gives

r(t) =
t∫

−∞
u(τ) dτ LTI yramp(t)

(2.28)
with

yramp(t) =
t∫

−∞
ystep(τ ) dτ

=
t∫

−∞
(1 − e−τ/τc) u(τ ) dτ

=
t∫

0

(1 − e−τ/τc) dτ

= [t − τc(1 − e−t/τc)] u(t). (2.29)

Concept Question 2-3: How can you measure the
impulse response of a real system? (See        )

Concept Question 2-4: How can you compute the
impulse response of a system from its step response?
(See        )

Exercise 2-4:Determine the impulse response of a system
whose step response is

ystep(t) =

⎧⎪⎨
⎪⎩

0, t ≤ 0

t, 0 ≤ t ≤ 1

1, t ≥ 1.

Answer: h(t) = u(t)− u(t − 1). (See S2 )

Exercise 2-5: The RC circuit of Fig. 2-5(a) is excited
by x(t) = (1−1000t)[u(t)−u(t−0.001)]. Compute the
capacitor voltage y(t) for t > 0.001 s, given that τc = 1 s.

Answer: x(t) is a very short wedge-shaped pulse
with area = (0.5)(1)(0.001) = 0.0005. Therefore,
y(t) = 0.0005e−t u(t). (See S2 )

2-3 Convolution

We now derive a remarkable property of LTI systems.

� The response y(t) of an LTI system with impulse
response h(t) to any input x(t) can be computed explicitly
using the convolution integral

y(t) =
∞∫

−∞
x(τ) h(t − τ) dτ = h(t) ∗ x(t).

(convolution integral) (2.30)

All initial conditions must be zero. �

The convolution operation denoted by ∗ in Eq. (2.30) is not
the same as multiplication. The term convolution refers to the
convoluted nature of the integral. Note the following:

(a) τ is a dummy variable of integration.

(b) h(t− τ) is obtained from the impulse response h(t) by (1)
replacing t with the variable of integration τ , (2) reversing
h(τ) along the τ axis to obtain h(−τ), and (3) delaying
h(−τ) by time t to obtain h(t − τ) = h(−(τ − t)).

(c) As will be demonstrated later in this section, convolution
is commutative; we can interchange x and h in Eq. (2.30).

According to the convolution property represented by
Eq. (2.30), once h(t) of an LTI system has been determined,
the system’s response can be readily evaluated for any specified
input excitation x(t) by performing the convolution integration.
The integration may be carried out analytically, graphically, or
numerically—all depending on the formats of x(t) and h(t).
Multiple examples are provided in the latter part of this section.

2-3.1 Derivation of Convolution Integral

The derivation of the convolution integral follows directly from
the definition of the impulse response and the properties of LTI
systems. We need only the five steps outlined in Fig. 2-8.

Step 1: From the definition of the impulse response given by
Eq. (2.7a), we have

δ(t) LTI h(t). (2.31)
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LTI System with Zero Initial Conditions

1. δ(t) LTI y(t) = h(t)

2. δ(t − τ) LTI y(t) = h(t − τ)

3. x(τ) δ(t − τ) LTI y(t) = x(τ) h(t − τ)

4.

∞∫
−∞

x(τ) δ(t − τ) dτ LTI y(t) =
∞∫

−∞
x(τ) h(t − τ) dτ

5. x(t) LTI y(t) =
∞∫

−∞
x(τ) h(t − τ) dτ

Figure 2-8: Derivation of the convolution integral for a linear time-invariant system.

Step 2: According to the time-invariance property of LTI
systems, delaying the input δ(t) by a constant τ will delay the
output h(t) by the same constant τ :

δ(t − τ) LTI h(t − τ). (2.32)

Step 3: From the scaling property of LTI systems, if the input
has an amplitude x(τ), the output will scale by the same factor:

x(τ) δ(t − τ) LTI x(τ) h(t − τ).

(2.33)

Step 4: According to Eq. (2.33), an impulsive excitation
x(τ1) δ(t−τ1) at a specific value of τ (namely, τ1) will generate
a corresponding output x(τ1) h(t − τ1):

x(τ1) δ(t−τ1) LTI x(τ1) h(t−τ1). (2.34a)

Similarly, a second impulsive excitation of area x(τ2) at τ = τ2
leads to

x(τ2) δ(t−τ2) LTI x(τ2) h(t−τ2). (2.34b)

If the LTI system is excited by both inputs simultaneously, the
additivity property assures us that the output will be equal to the
sum of the outputs in Eqs. (2.34a and b). For a continuous-time
input function x(τ) extending over −∞ < τ < ∞, the input
and output of the LTI system become definite integrals:

∞∫
−∞

x(τ) δ(t − τ) dτ

LTI (2.35)

∞∫
−∞

x(τ) h(t − τ) dτ.

Step 5: From the sampling property of impulses, we have
∞∫

−∞
x(τ) δ(t − τ) dτ = x(t). (2.36)
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Hence, Eq. (2.35) simplifies to

x(t) LTI y(t) =
∞∫

−∞
x(τ) h(t − τ) dτ.

(2.37)

As a shorthand notation, the convolution integral is represented
by an asterisk *, so output y(t) is expressed as

y(t) = x(t) ∗ h(t) =
∞∫

−∞
x(τ) h(t − τ) dτ. (2.38)

By changing variables inside the integral of Eq. (2.38) from
τ to (t− τ), the convolution can be expressed by the equivalent
form

y(t) = h(t) ∗ x(t) =
∞∫

−∞
h(τ) x(t − τ) dτ. (2.39)

Equivalency of the integrals in Eqs. (2.38) and (2.39) implies
that the convolution operation is commutative; that is,

x(t) ∗ h(t) = h(t) ∗ x(t). (2.40)

2-3.2 Causal Signals and Systems

The integral given by Eq. (2.38) implies that the output y(t) at
time t depends on all excitations x(t) occurring at the input,
including those that will occur at times later than t . Since this
cannot be true for a physically realizable system, the upper
integration limit should be replaced with t instead of ∞. Also,
if we choose our time scale such that no excitation exists before
t = 0, we can then replace the lower integration limit with zero.
Hence, for causal signals and systems, Eq. (2.38) becomes

y(t) = u(t)

t∫
0

x(τ) h(t − τ) dτ

= u(t)

t∫
0

x(t − τ) h(τ) dτ.

(causal signals and systems)

(2.41)

Multiplication of the integral by u(t) is a reminder that the
convolution of two causal functions is itself causal.

Note that the response y(t) provided by the convolution
integral assumes that all initial conditions of the system are
zero. If the system has non-zero initial conditions, its total
response will be the sum of two responses: one due to the initial
conditions and another due to the input excitation x(t). Through
several examples, we will show in Chapter 3 how to account
properly for the two contributions of the total response.

2-3.3 Computing Convolution Integrals

Given a system with an impulse response h(t), the output
response y(t) can be determined for any specified input
excitation x(t) by computing the convolution integral given by
Eq. (2.38) or by Eq. (2.41) if x(t) is causal. The process may
be carried out:

(a) analytically, by performing the integration to obtain an
expression for y(t), and then evaluating y(t) as a function
of time t ,

(b) graphically, by simulating the integration using plots of
the waveforms of x(t) and h(t),

(c) analytically with simplification, by taking advantage of the
expedient convolution properties outlined in Section 2-5
to simplify the integration algebra, or

(d) numerically on a digital computer.

As we will see shortly through Examples 2-3 and 2-4, the
analytical approach is straightforward, but the algebra often is
cumbersome and tedious. The graphical approach (Section 2-4)
allows the user to “visualize” the convolution process, but it is
slow and repetitious. The two approaches offer complementary
insight; the choice of one over the other depends on the specifics
of x(t) and h(t).

After learning to use approaches (a) and (b), the reader will
appreciate the advantages offered by approach (c); invoking
the convolution properties simplifies the algebra considerably.
Finally, numerical integration always is a useful default option,
particularly if x(t) is a measured signal or difficult to model
mathematically.

Example 2-3: RC Circuit Response to Triangular Pulse

An RC circuit with τc = RC = 1 s is excited by the triangular
pulse shown in Fig. 2-9(a). The capacitor is initially uncharged.
Determine the output voltage across the capacitor.



“book” — 2016/3/14 — 13:02 — page 43 — #14

2-3 CONVOLUTION 43

(a) Triangular pulse

(b) Output response

C

R

+
_

+
_

0 1 2 3

1 V

t (s)

υin(t)

υin(t)

υout(t)

υin υout

0

υout(t)

t (s)

0.51 V

1 2 3 4

Figure 2-9: Triangular pulse exciting an RC circuit with τc = 1 s
(Example 2-3).

Solution: The input signal, measured in volts, is given by

υin(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for t ≤ 0,

t for 0 ≤ t ≤ 1 s,

2 − t for 1 ≤ t ≤ 2 s,

0 for t ≥ 2 s,

and according to Eq. (2.17), the impulse response for τc = 1 is

h(t) = 1

τc
e−t/τc u(t) = e−t u(t).

According to Eq. (2.41), the output is given by

υout(t) = υin(t) ∗ h(t) =
t∫

0

υin(τ ) h(t − τ) dτ

with

h(t − τ) = e−(t−τ) u(t − τ) =
{

0 for t < τ,

e−(t−τ) for t > τ.
(2.42)

The convolution integral will be evaluated for each of the four
time segments associated with υin(t) separately.

(1) t < 0:

The lowest value that the integration variable τ can assume
is zero. Therefore, when t < 0, t < τ and h(t − τ) = 0.
Consequently,

υout(t) = 0 for t < 0.

(2) 0 ≤ t ≤ 1 s:

h(t − τ) = e−(t−τ), υin(τ ) = τ,

and

υout(t) =
t∫

0

τe−(t−τ) dτ = e−t + t − 1, for 0 ≤ t ≤ 1 s.

(3) 1 s ≤ t ≤ 2 s:

υin(τ ) =
{
τ for 0 ≤ τ ≤ 1 s,

2 − τ for 1 s ≤ τ ≤ 2 s,

and

υout(t) =
1∫

0

τe−(t−τ) dτ +
t∫

1

(2 − τ)e−(t−τ) dτ

= (1 − 2e)e−t − t + 3, for 1 s ≤ t ≤ 2 s.
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(4) t ≥ 2 s:

υout(t) =
1∫

0

τe−(t−τ) dτ +
2∫

1

(2 − τ)e−(t−τ) dτ

= (1 − 2e + e2)e−t for t ≥ 2 s.

The cumulative response covering all four time segments is
displayed in Fig. 2-9(b).

Note that the four expressions for υout(t) provide identical
values at junctions between adjoining time intervals. The
convolution of two signals that contain no impulses must be
a continuous signal. This is a good check when computing the
convolution integral over multiple intervals.

2-3.4 Convolution of Two Rectangular Pulses

Given the rectangular waveforms x(t) and h(t) shown in
Fig. 2-10, our goal is to evaluate their convolution. To that end,
we start by expressing x(t) and h(t) in terms of step functions:

x(t) = A[u(t)− u(t − T1)] (2.43a)

and (for T2 > T1)

h(t) = B[u(t)− u(t − T2)]. (2.43b)

(a) x(t) and h(t)

(b)  y(t)

T1
t

x(t)

0
0

A

T2
t

h(t)

0
0

B

y(t) = x(t) * h(t)

x(t)
h(t)

T2T1 T1 + T2
t

y(t)

0
0

ABT1

Figure 2-10: The convolution of the two rectangular waveforms
in (a) is the pyramid shown in (b).

To evaluate the second-line convolution integral given in
Eq. (2.41), we need expressions for x(t − τ) and h(τ). Upon
replacing the argument (t) in Eq. (2.43a) with (t − τ) and
replacing t in Eq. (2.43b) with τ , we have

x(t − τ) = A[u(t − τ)− u(t − T1 − τ)] (2.44a)

and

h(τ) = B[u(τ)− u(τ − T2)]. (2.44b)

Inserting these expressions into Eq. (2.41) leads to

y(t) = u(t)

t∫
0

x(t − τ) h(τ) dτ

= AB u(t)

{ t∫
0

u(t − τ) u(τ) dτ

−
t∫

0

u(t − τ) u(τ − T2) dτ

−
t∫

0

u(t − T1 − τ) u(τ) dτ

+
t∫

0

u(t − T1 − τ) u(τ − T2) dτ

}
. (2.45)

We will now examine each term individually. Keeping in
mind that the integration variable is τ , and because the upper
integration limit is t , the difference (t−τ) is never smaller than
zero (over the range of integration). Also, T1 and T2 are both
non-negative numbers.

Term 1: Since over the range of integration, both u(τ) and
u(t − τ) are equal to 1, the integral in the first term simplifies
to

u(t)

t∫
0

u(t − τ) u(τ) dτ =
⎡
⎣ t∫

0

dτ

⎤
⎦ u(t) = t u(t). (2.46)
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Term 2: The unit step function u(τ − T2) is equal to zero
unless τ > T2, requiring that the lower integration limit be
replaced with T2 and the outcome be multiplied by u(t − T2):

t∫
0

u(t − τ) u(τ − T2) dτ =
⎡
⎢⎣

t∫
T2

dτ

⎤
⎥⎦ u(t − T2)

= (t − T2) u(t − T2). (2.47)

Term 3: The step function u(t − T1 − τ) is equal to zero,
unless τ < t − T1, requiring that the upper limit be replaced
with t − T1. Additionally, to satisfy the inequality, the smallest
value that t can assume at the lower limit (τ = 0) is t = T1.
Consequently, the outcome of the integration should be
multiplied by u(t − T1):

t∫
0

u(t − T1 − τ) u(τ) dτ =
⎡
⎣ t−T1∫

0

dτ

⎤
⎦ u(t − T1)

= (t − T1) u(t − T1). (2.48)

Term 4: To accommodate the product

u(t − T1 − τ) u(τ − T2),

we need to (a) change the lower limit to T2, (b) change the upper
limit to (t−T1), and (c) multiply the outcome by u(t−T1−T2):

t∫
0

u(t − T1 − τ) u(τ − T2) dτ

=
⎡
⎢⎣
t−T1∫
T2

dτ

⎤
⎥⎦ u(t − T1 − T2)

= (t − T1 − T2) u(t − T1 − T2). (2.49)

Collecting the results given by Eqs. (2.46) through (2.49) gives

y(t) = AB[t u(t)− (t − T2) u(t − T2)− (t − T1) u(t − T1)

+ (t − T1 − T2) u(t − T1 − T2)]. (2.50)

The waveform of y(t) is displayed in Fig. 2-10(b).
Building on the experience gained from the preceding

example, we can generalize the result as follows.

Convolution Integral
For functions x(t) and h(t) given by

x(t) = f1(t) u(t − T1) (2.51a)

and
h(t) = f2(t) u(t − T2), (2.51b)

where f1(t) and f2(t) are any constants or time-dependent
signals and T1 and T2 are any non-negative numbers, their
convolution is

y(t) = x(t) ∗ h(t)

= u(t)

t∫
0

x(t − τ) h(τ) dτ

=
t∫

0

f1(t − τ) f2(τ ) u(t − T1 − τ) u(τ − T2) dτ

=
⎡
⎢⎣
t−T1∫
T2

f1(t − τ) f2(τ ) dτ

⎤
⎥⎦ u(t − T1 − T2). (2.52)

The convolution result represented by Eq. (2.52) will
prove useful and efficient when analytically evaluating the
convolution integral of signals described in terms of step
functions.

Example 2-4: RC Circuit Response to Rectangular

Pulse

Given the RC circuit shown in Fig. 2-11(a), determine the
output response to a 1-s-long rectangular pulse. The pulse
amplitude is 1 V.

Solution: The time constant of the RC circuit is τc = RC =
(0.5 × 106)× 10−6 = 0.5 s. In view of Eq. (2.17), the impulse
response of the circuit is

h(t) = 1

τc
e−t/τc u(t) = 2e−2t u(t). (2.53)

The input voltage is

υin(t) = [u(t)− u(t − 1)] V. (2.54)
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(a) RC lowpass filter

0

1 V

1 s

+

_

+
_
+
_υin(t) = υout(t)

0.5 MΩ

1 μF

(b) Output response

1.0
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0
0 1 2 3 4 5

V
υin(t)

υout(t)

t (s)

Figure 2-11: Input pulse signal and output response of RC circuit
(Example 2-4).

Application of Eq. (2.41) to the expressions for h(t) and υin(t),
given respectively by Eqs. (2.53) and (2.54), gives

υout(t) = υin(t) ∗ h(t)

= u(t)

t∫
0

υin(τ ) h(t − τ) dτ

= u(t)

t∫
0

[u(τ)− u(τ − 1)]

× 2e−2(t−τ) u(t − τ) dτ

= u(t)

t∫
0

2e−2(t−τ) u(τ ) u(t − τ) dτ

− u(t)

t∫
0

2e−2(t−τ) u(τ − 1) u(t − τ) dτ. (2.55)

Upon application of the recipe described by Eq. (2.52), υout(t)

becomes

υout(t) =
⎡
⎣ t∫

0

2e−2(t−τ) dτ

⎤
⎦ u(t)

−
⎡
⎣ t∫

1

2e−2(t−τ) dτ

⎤
⎦ u(t − 1)

= 2

2
e−2(t−τ)

∣∣∣t
0
u(t)− 2

2
e−2(t−τ)

∣∣∣t
1
u(t − 1)

= [1 − e−2t ] u(t)− [1 − e−2(t−1)] u(t − 1)V,
(2.56)

where we reintroduced the unit step functions u(t) and u(t−1)
associated with the two integration terms. Figure 2-11(b)
displays the temporal waveform of υout(t).

2-4 Graphical Convolution

The convolution integral given by

y(t) =
t∫

0

x(τ) h(t − τ) dτ

can be evaluated graphically by computing it at successive
values of t .

Graphical Convolution Technique
Step 1: On the τ -axis, display x(τ) and h(−τ) with the
latter being an image ofh(τ) folded about the vertical axis.

Step 2: Shift h(−τ) to the right by a small increment t
to obtain h(t − τ) = h(−(τ − t)).

Step 3: Determine the product of x(τ) and h(t − τ) and
integrate it over the τ -domain from τ = 0 to τ = t to get
y(t). The integration is equal to the area overlapped by the
two functions.

Step 4: Repeat steps 2 and 3 for each of many successive
values of t to generate the complete response y(t).

By way of illustration, let us consider the RC circuit of
Example 2-4. Plots of the input excitationυin(t) and the impulse
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Module 2.1 Convolution of Exponential Functions This module computes the convolution of e−at u(t)and e−bt u(t).
The values of exponents a and b are selectable.

response h(t) are displayed in Fig. 2-12(a). To perform the
convolution

υout(t) = u(t)

t∫
0

υin(τ ) h(t − τ) dτ, (2.57)

we need to plot υin(τ ) and h(t − τ) along the τ axis.
Figure 2-12(b) through (e) show these plots at progressive
values of t , starting at t = 0 and concluding at t = 2 s. In
all cases, υin(τ ) remains unchanged, but h(t − τ) is obtained
by “folding” the original function across the vertical axis to
generate h(−τ) and then shifting it to the right along the τ -axis
by an amount t . The output voltage is equal to the integrated
product of υin(τ ) and h(t − τ), which is equal to the shaded
overlapping areas in the figures.

At t = 0 (Fig. 2-12(b)), no overlap exists; hence,
υout(0) = 0. Sliding h(t − τ) by t = 0.5 s, as shown in

Fig. 2-12(c), leads to υout(0.5) = 0.63. Sliding h(t−τ) further
to the right leads to a greater overlap, reaching a maximum at
t = 1 s (Fig. 2-12(d)). Beyond t = 1 s, the overlap is smaller in
area, as illustrated by part (e) of Fig. 2-12, which corresponds
to a shift t = 2 s. If the values of υout(t), as determined through
this graphical integration method at successive values of t ,
are plotted as a function of t , we would get the same circuit
response curve shown earlier in Fig. 2-11(b).

Example 2-5: Graphical Convolution

Given the waveforms shown in Fig. 2-13(a), apply the
graphical convolution technique to determine the response
y(t) = x(t) ∗ h(t).
Solution: Figure 2-13(b) shows waveforms x(τ) and h(−τ),
plotted along the τ -axis. The waveform h(−τ) is the mirror
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(a) Time domain

(b) Convolution @ t = 0 (c) Convolution @ t = 0.5 s

(e) Convolution @ t = 2 s(d) Convolution @ t = 1 s

τ

h(t) = 2e−2t u(t)

υin(t)

2

1

1.5

1.5

0.5

0.5
0

0 1 2
t (s)

υout(0) = overlap area = 02

1.5

1.5

0.5

0.5−0.5−0.5 −1−2 0 1

1
υin(τ )

τ

h(− τ        )

2

1.5

1.5

0.5

0.5−0.5−1 0 1

1

1 s

υin(τ )

h(1− τ )
τ

υout(1) = overlap area

=
1

0
2e− 2(1− τ ) d

= 0.86

2

1.5

1.5 2

0.5

0.5−0.5−1 0 1

1

2 s

υin(τ )

τ

h(2− τ )

υout(2) = overlap area

=
1

0
2e− 2(2− τ ) dτ

= 0.11

2

1.5

1.50.5−0.5−1.5 −1 0 1

1

0.5 s

0.5
υin(τ )

τ
h(0.5− τ )

Overlap area = υout(0.5)

=
0.5

0
υin(τ ) h(0. 5− τ ) dτ

=
0.5

0
2e− 2(0.5− τ ) dτ

= 0.63

Figure 2-12: Graphical convolution solution for RC circuit of Example 2-4.

image of h(τ) with respect to the vertical axis. In Fig. 2-13(c)
through (e), h(t − τ) is plotted for t = 1 s, 1.5 s, and 2 s,
respectively. In each case, the shaded area is equal to y(t). We
note that when t > 1 s, one of the shaded areas contributes a
positive number to y(t) while the other contributes a negative
number. The overall resultant response y(t) generated by
this process of sliding h(t − τ) to the right is displayed in
Fig. 2-13(f).

We note that when two functions with finite time widths
T1 and T2 are convolved, the width of the resultant function
will be equal to (T1 + T2), regardless of the shapes of the two
functions.

Concept Question 2-5: Describe the process involved in
the application of the graphical convolution technique.
(See        )
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(a) x(t) and h(t)

(f )  y(t)

(b) t = 0 (c) t = 1 s

(e) t = 2 s(d) t = 1.5 s

t

1

0
0 1 2

−1

h(t)

t

1

0
0 1 2

−1

x(t)

Negative
area

Positive
area

y(1.5) =      −   =

1

0
0 1 2

−1

−1−2
τ

x(τ)

h(1.5 − τ)

1
8

5
8

6
8 y(2) = 0

1

0
0 1 2

−1

τ

x(τ)

h(2 − τ)

y(0) = 0

1

0
0 1 2

−1

−1−2
τ

x(τ)
h(−τ)

y(1) = 0.5

1

0
0 1 2

−1

−1−2
τ

x(τ)
h(1 − τ)

t

y(t)

0.5

−0.5

0 1 2 3 4−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Output response

Figure 2-13: Solution for Example 2-5.

Exercise 2-6: Apply graphical convolution to the
waveforms of x(t) and h(t) shown in Fig. E2-6 to
determine y(t) = x(t) ∗ h(t).

x(t)

x(t)
h(t)

t (s)
1 3

1
0

2
3

4

2

h(t)

t (s)
1 3

1
0

2
3

4

2
Figure E2-6

Answer:

(a) At t = 0, overlap = 0

x(τ)

τ

h(−τ)
1
2
3

4

−1−2−3 1 3 4 52

(b) At t = 1 s, overlap = 0

t = 1 s

x(τ)

τ

h(1 − τ)
1
2
3

4

−1−2−3 1 3 4 52

x(τ)

τ

h(2 − τ)
1
2
3

4

−1−2−3 1 3 4 52

(c) At t = 2 s, overlap = 1/2     4 = 2

t = 2 s
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x(τ)

h(3 − τ)1
2
3

4

−1−2−3 1 3 4 5
τ

2

(d) At t = 3 s, overlap = 1.5     4 = 6

t = 3 s

x(τ)

τ

h(4 − τ)
1
2
3

4

−1−2−3 1 3 4 52

(e) At t = 4 s, overlap = 2.5     4 = 10

t = 4 s

(f) At t = 5 s, overlap = 0

x(τ)

τ

h(5 − τ)
1
2
3

4

−1−2−3 1 3 4 52

t = 5 s

(g) y(t)

Output response

y(t)

t (s)
1 3

2
0

4
6
8

10

2 4 65

(See S2 )

2-5 Convolution Properties
Computation of convolutions can be greatly simplified by using
the ten properties outlined in this section. In fact, in many cases
the convolutions can be determined without computing any
integrals. Also, to help the user with both the computation and
understanding of the convolution operation, we will attach a
physical interpretation to each of the ten properties.

2-5.1 Commutative Property

This property states that

y(t) = h(t) ∗ x(t) = x(t) ∗ h(t). (2.58)

Its validity can be demonstrated by changing variables from τ

to τ ′ = t − τ in the convolution integral:

y(t) = h(t) ∗ x(t) =
∞∫

−∞
h(τ) x(t − τ) dτ

=
−∞∫
∞

h(t − τ ′) x(τ ′) (−dτ ′)

=
∞∫

−∞
x(τ ′) h(t − τ ′) dτ ′ = x(t) ∗ h(t).

(2.59)

Physically, the commutative property means that we can
interchange the input and the impulse response of the LTI
system without changing its output:

If x(t) h(t) y(t),

then h(t) x(t) y(t).

Computationally, we can choose to time-shift and reverse
whichever of x(t) and h(t) that makes the computation or
graphical calculation of the convolution integral easier.

2-5.2 Associative Property

The combined convolution of three functions is the same,
regardless of the order in which the convolution is performed:

y(t) = [g(t) ∗ h(t)] ∗ x(t) = g(t) ∗ [h(t) ∗ x(t)].

(2.60)
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Proving this property in the time domain requires much algebra,
but proving it after introducing the Laplace transform in
Chapter 3 is straightforward. Hence, we will accept it at face
value for the time being.

� Physically, the associative property implies that the
impulse response of two LTI systems connected in series
is the convolution of their individual impulse responses. �

To see why, consider two LTI systems with impulse responses
h1(t) and h2(t) connected in series:

x(t) h1(t) z(t) h2(t) y(t),

where z(t) is an intermediate signal between the two systems.
Separately, the two systems are characterized by

z(t) = x(t) ∗ h1(t) (2.61a)

and

y(t) = z(t) ∗ h2(t). (2.61b)

Combining the two parts of Eq. (2.61) gives

y(t) = [x(t) ∗ h1(t)] ∗ h2(t). (2.62)

The associative property allows us to rewrite Eq. (2.62) as

y(t) = x(t) ∗ [h1(t) ∗ h2(t)] (2.63)

and to represent the process symbolically (Fig. 2-14) as

x(t) h1(t) ∗ h2(t) y(t).

� The joint impulse response of two series-connected LTI
systems is equivalent to the convolution of their individual
impulse responses carried out in either order. A series
connection of two systems also is known as a cascade
connection. �

y(t)x(t) h1(t) h2(t)

y(t)x(t) h1(t) ∗ h2(t)

Systems Connected in Series

Figure 2-14: The impulse response of two systems connected in
series is equivalent to the convolution of their individual impulse
responses.

2-5.3 Distributive Property

The distributive property, which follows directly from the
definition of convolution, allows us to perform the convolution
operation on the sum of multiple input signals as

h(t) ∗ [x1(t)+ x2(t)+ · · · + xN(t)] =
h(t) ∗ x1(t)+ h(t) ∗ x2(t)+ · · · + h(t) ∗ xN(t).

(2.64)

Conversely, if it is possible to model a complicated impulse
response h(t) as the sum of two or more simpler impulse
responses,

h(t) = h1(t)+ h2(t)+ · · · + hN(t), (2.65)

then application of the distributive property serves to simplify
computation of the convolution integral by replacing a
computation involving the complicated impulse response with
multiple, but simpler, computations involving its constituent
components. That is,

x(t) ∗ h(t) = x(t) ∗ h1(t)+ x(t) ∗ h2(t)

+ · · · + x(t) ∗ hN(t).
(2.66)

� The impulse response of the parallel connection of
two or more LTI systems is the sum of their impulse
responses. �

The preceding statements are encapsulated by the symbolic
diagram in Fig. 2-15.



“book” — 2016/3/14 — 13:02 — page 52 — #23

52 CHAPTER 2 LINEAR TIME-INVARIANT SYSTEMS

Systems Connected in Parallel

h1(t)

h2(t) y(t)x(t)

hN(t)

y(t)x(t) h1(t) + h2(t) + … + hN(t)

Figure 2-15: The impulse response h(t) of multiple LTI systems
connected in parallel is equivalent to the sum of their individual
impulse responses.

In combination, the associative and distributive properties
state that for LTI systems:

(1) Systems in series: Impulse responses convolved.
(2) Systems in parallel: Impulse responses added.

Example 2-6: Four Interconnected Systems

Determine the overall impulse response h(t) of the LTI system
depicted in Fig. 2-16.

Solution: Since h1(t) and h2(t) are in series, their joint
impulse response is h1(t) ∗ h2(t). Similarly, for the lower
branch, the joint response is h3(t) ∗ h4(t).

The two branches are in parallel, so their combined impulse
response is the sum of the impulse responses of the individual
branches:

h(t) = h1(t) ∗ h2(t)+ h3(t) ∗ h4(t).

h1(t)

h3(t)

y(t)x(t)

h2(t)

h4(t)

Figure 2-16: System of Example 2-6.

2-5.4 Causal ∗ Causal = Causal

Recall from Chapter 1 that a signal x(t) is causal if x(t) = 0 for
t < 0. Moreover, the output y(t) of a real-world causal system
can depend on only present and past values of its input signal
x(t). Hence, if its input is zero for t < 0, its output also must be
zero for t < 0. This argument led us in Section 2-3.2 to change
the limits of the convolution integral to [0, t] and to multiply
the integral by u(t). That is,

y(t) = u(t)

t∫
0

h(τ) x(t − τ) dτ

= u(t)

t∫
0

x(τ) h(t − τ) dτ.

(2.67)

� Convolution of a causal signal with another causal
signal or with a causal impulse response of an LTI system
generates a causal output. Moreover, the impulse response
of a causal LTI system is causal. �

2-5.5 Time-Shift Property

Given the convolution integral

y(t) = h(t) ∗ x(t) =
∞∫

−∞
h(τ) x(t − τ) dτ, (2.68)

the convolution of h(t) delayed by T1 and x(t) delayed by T2
is

h(t−T1)∗x(t−T2) =
∞∫

−∞
h(τ−T1) x(t−T2 −τ) dτ. (2.69)

Introducing the dummy variable τ ′ = τ−T1 everywhere inside
the integral leads to

h(t − T1) ∗ x(t − T2) =
∞∫

−∞
h(τ ′) x(t − T1 − T2 − τ ′) dτ ′

=
∞∫

−∞
h(τ ′) x(t ′ − τ ′) dτ ′, (2.70)
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(a) Original pulses

t (s)
1 3

1

0 2 4 5
t (s)

1 3

1

0 2 4 5

x1(t) x2(t)

(b) Pulses shifted to start at t = 0

t (s)
1 3

1

0 2 4 5
t (s)

1 3

1

0 2 4 5

x1(t)′ x2(t)′

t (s)
1 3

1

0 2 4 5

y′(t) y(t)

t (s)
1 3

1

0 2 4 5 6 7
(d) y′(t) delayed by 4 s gives y(t)(c) Convolution of x1(t) with x2(t)′ ′

Figure 2-17: Convolution of two rectangular pulses (Example 2-7).

where we introduced the time-shifted variable
t ′ = t − T1 − T2. The form of the integral in Eq. (2.70)
matches the definition of the convolution integral given by
Eq. (2.68), except that t has been replaced with t ′. Hence, the
output y(t) becomes

y(t ′) = y(t − T1 − T2). (2.71)

In conclusion,

h(t − T1) ∗ x(t − T2) = y(t − T1 − T2).

(time-shift property)

(2.72)

Physically, the time-shift property is just a statement of time-
invariance; delaying the input of a time-invariant system and/or
if the system has a built-in delay causes the output to be
delayed by the sum of the two delays. Computationally,
the shift property allows us to delay or advance signals to
take advantage of their symmetry or causality to make the
convolution operation simpler.

Example 2-7: Convolution of Two Delayed Rectangular

Pulses

Compute the convolution of the rectangular pulses x1(t) and
x2(t) shown in Fig. 2-17(a).

Solution: Our plan is to take advantage of as many convolution
properties as possible. We start by shifting x1(t) and x2(t) to the
left so that they both start at t = 0 (Fig. 2-17(b)). The shifted
pulses are

x′
1(t) = x1(t + 3) = u(t)− u(t − 2),

and
x′

2(t) = x2(t + 1) = u(t)− u(t − 1),

and their convolution is

x ′
1(t) ∗ x′

2(t) = [u(t)− u(t − 2)] ∗ [u(t)− u(t − 1)]
= u(t) ∗ u(t)− u(t) ∗ u(t − 1)

− u(t) ∗ u(t − 2)+ u(t − 1) ∗ u(t − 2).

For the first term, using the causality property, we have

u(t) ∗ u(t) = u(t)

t∫
0

1 dτ = t u(t) = r(t). (2.73)

Applying the time-shift property to the remaining three terms
gives

u(t) ∗ u(t − 1) = r(t − 1),

u(t) ∗ u(t − 2) = r(t − 2),
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and

u(t − 1) ∗ u(t − 2) = r(t − 3).

Hence,

x′
1(t) ∗ x′

2(t) = r(t)− r(t − 1)− r(t − 2)+ r(t − 3),

which is plotted in Fig. 2-17(c). Finally, we apply the time-
shift property again to restore the combined shift of 4 s that
was applied earlier to x1(t) and x2(t). The result is shown in
Fig. 2-17(d).

2-5.6 Convolution with an Impulse

Convolution of a signal x(t) with an impulse function δ(t −T )
simply delays x(t) by T :

x(t) ∗ δ(t − T ) =
∞∫

−∞
x(τ) δ(t − T − τ) dτ

= x(t − T ). (2.74)

The result follows from the sampling property of the impulse
function given by Eq. (1.29), namely that δ(t − T − τ) is zero
except at τ = t − T .

Example 2-8: Four Interconnected Systems

Compute the overall impulse response h(t) of the system
diagrammed in Fig. 2-18.

Solution: In the top branch, u(t) and δ(t + 1) are in series, so
their joint impulse response is

h1(t) = u(t) ∗ δ(t + 1) = u(t + 1).

Similarly, for the lower branch, we have

h2(t) = −δ(t) ∗ u(t) = −u(t).

u(t)

−δ(t)

δ(t + 1)

u(t)

y(t)x(t)

Figure 2-18: System of Example 2-8.

For the combination of the two branches,

h(t) = h1(t)+ h2(t) = u(t + 1)− u(t).

Note that the output is

y(t) = x(t) ∗ h(t) =
∞∫

−∞
x(τ) [u(t + 1 − τ)− u(t − τ)] dτ.

Using the recipe given by Eq. (2.52) or, equivalently, the
knowledge that a step function is zero if its argument is negative,
leads to

y(t) =
t+1∫
t

x(τ ) dτ.

Since y(t) depends on x(t) beyond time t (upper limit is t+1),
the system is noncausal.

2-5.7 Width Property

� When a function of time width T1 is convolved with
another of time width T2, the width of the resultant
function is (T1 + T2), regardless of the shapes of the two
functions. �

This property was noted earlier in connection with the graphical
convolution examples.

If h(t) = 0 when t is outside the interval a ≤ t ≤ b and
x(t) = 0 when t is outside the interval c ≤ t ≤ d, then y(t) = 0
when t is outside the interval (a+ c) ≤ t ≤ (b+d). Hence, we
have the

width of y(t) = (b + d)− (a + c). (2.75)

In Example 2-7, the widths of x1(t) and x2(t) are 2 s and 1 s,
respectively. The width of their convolution is 3 s (Fig. 2-17(d)).

2-5.8 Area Property

� The area under the convolution y(t) of two functions
x(t) and h(t) is the product of the areas under the
individual functions. �
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The area under y(t) is obtained by integrating y(t) over
(−∞,∞). That is,

Area of y(t) =
∞∫

−∞
y(t) dt

=
∞∫

−∞

⎡
⎣ ∞∫
−∞

h(τ) x(t − τ) dτ

⎤
⎦ dt

=
∞∫

−∞

∞∫
−∞

h(τ) x(t − τ) dt dτ

=
∞∫

−∞
h(τ)

⎡
⎣ ∞∫
−∞

x(t − τ) dt

⎤
⎦ dτ

=
⎡
⎣ ∞∫
−∞

h(τ) dτ

⎤
⎦
⎡
⎣ ∞∫
−∞

x(t − τ) dt

⎤
⎦

= area of h(t)× area of x(t). (2.76)

In step 3 of the derivation, we interchanged the order of dt and
dτ (because they are independent variables), and in step 4 we
used the fact that the areas of x(t) and x(t − τ) are the same
when evaluated over (−∞,∞).

2-5.9 Convolution with a Step Function

From the definition of convolution, we have

x(t) ∗ u(t) =
∞∫

−∞
x(τ) u(t − τ) dτ

=
t∫

−∞
x(τ) dτ,

(ideal integrator)

(2.77)

where we used the fact that u(t − τ) = 0 for t − τ < 0
or, equivalently, τ > t . Operationally, the right-hand side of
Eq. (2.77) constitutes an ideal integrator, and for a causal signal,
the lower limit on the integral should be zero.

� An LTI system whose impulse response is equivalent
to a unit step function performs like an ideal integrator. �

2-5.10 Differentiation and Integration Properties

Given the convolution

y(t) =
∞∫

−∞
x(τ) h(t − τ) dτ,

taking the derivative with respect to time gives

d

dt
[y(t)] = d

dt

∞∫
−∞

x(τ) h(t − τ) dτ

=
∞∫

−∞
x(τ)

d

dt
[h(t − τ)] dτ. (2.78)

Hence,
d

dt
[y(t)] = x(t) ∗ d

dt
[h(t)]. (2.79)

Similarly, we can show that

d

dt
[y(t)] = d

dt
[x(t)] ∗ h(t). (2.80)

Combining these two relations and generalizing to higher order
derivatives, we get

(
dmx

dtm

)
∗
(
dnh

dtn

)
= dm+ny
dtm+n . (2.81)

In a similar fashion, it is easy to show that

t∫
−∞

y(τ) dτ = x(t) ∗
⎡
⎣ t∫
−∞

h(τ) dτ

⎤
⎦

=
⎡
⎣ t∫
−∞

x(τ) dτ

⎤
⎦ ∗ h(t). (2.82)

The ten convolution properties are summarized in Table 2-1,
followed by a list of commonly encountered convolutions in
Table 2-2.
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Table 2-1: Convolution properties.

Convolution Integral y(t) = h(t) ∗ x(t) =
∞∫

−∞
h(τ) x(t − τ) dτ

• Causal Systems and Signals: y(t) = h(t) ∗ x(t) = u(t)

t∫
0

h(τ) x(t − τ) dτ

Property Description

1. Commutative x(t) ∗ h(t) = h(t) ∗ x(t)

2. Associative [g(t) ∗ h(t)] ∗ x(t) = g(t) ∗ [h(t) ∗ x(t)]

3. Distributive x(t) ∗ [h1(t)+ · · · + hN(t)] = x(t) ∗ h1(t)+ · · · + x(t) ∗ hN(t)

4. Causal ∗ Causal = Causal y(t) = u(t)

t∫
0

h(τ) x(t − τ) dτ

5. Time-shift h(t − T1) ∗ x(t − T2) = y(t − T1 − T2)

6. Convolution with Impulse x(t) ∗ δ(t − T ) = x(t − T )

7. Width Width of y(t) = width of x(t)+ width of h(t)

8. Area Area of y(t) = area of x(t)× area of h(t)

9. Convolution with u(t) y(t) = x(t) ∗ u(t) =
t∫

−∞
x(τ) dτ (Ideal integrator)

10a. Differentiation
(
dmx

dtm

)
∗
(
dnh

dtn

)
= dm+ny
dtm+n

10b. Integration

t∫
−∞

y(τ) dτ = x(t) ∗
⎡
⎣ t∫
−∞

h(τ) dτ

⎤
⎦ =

⎡
⎣ t∫
−∞

x(τ) dτ

⎤
⎦ ∗ h(t)

Example 2-9: RC-Circuit with Triangular

Pulse—Revisited

In Example 2-3, we computed the convolution of a triangular
pulse (shown again in Fig. 2-19) given by

x(t) = r(t)− 2r(t − 1)+ r(t − 2),

with the impulse response of an RC circuit, namely,

h(t) = e−t u(t).

Recompute the convolution integration by taking advantage of
the properties listed in Table 2-1.

Solution: Using the distributive property (#3 in Table 2-1) and
the time-shift property (#5), υout(t) can be expressed as

υout(t) = h(t) ∗ υin(t)

= h(t) ∗ r(t)− 2h(t) ∗ r(t − 1)+ h(t) ∗ r(t − 2)

= z(t)− 2z(t − 1)+ z(t − 2), (2.83)
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Table 2-2: Commonly encountered convolutions.

1. u(t) ∗ u(t) = t u(t)

2. eat u(t) ∗ u(t) =
(
eat − 1

a

)
u(t)

3. eat u(t) ∗ ebt u(t) =
[
eat − ebt

a − b

]
u(t), a 	= b

4. eat u(t) ∗ eat u(t) = teat u(t)

5. teat u(t) ∗ ebt u(t) = ebt − eat + (a − b)teat

(a − b)2
u(t),

a 	= b

6. teat u(t) ∗ eat u(t) = 1
2 t

2eat u(t)

7. δ(t − T1) ∗ δ(t − T2) = δ(t − T1 − T2)

where z(t) is an intermediary signal given by

z(t) = h(t) ∗ r(t) = u(t)

t∫
0

h(τ) r(t − τ) dτ

= u(t)

t∫
0

e−τ (t − τ) dτ

= (e−t + t − 1) u(t). (2.84)

Using Eq. (2.84) and its time-shifted versions in Eq. (2.83) leads
to

υout(t) = (e−t + t − 1) u(t)− 2[e−(t−1) + (t − 1)− 1]
× u(t − 1)+ [e−(t−2) + (t − 2)− 1] u(t − 2).

(2.85)

As expected, the plot of υout(t) shown in Fig. 2-19(b), which
is based on the expression given by Eq. (2.85), is identical with
the convolution plot shown earlier in Fig. 2-9(b) in conjunction
with Example 2-3.

In Section 2-3.4, we demonstrated through lengthy integra-
tion steps that if the waveforms of x(t) and h(t) are rectangular
pulses given by

x(t) = A[u(t)− u(t − T1)] (2.86a)

(a) Triangular pulse

(b) Output response

C

R

+
_

+
_

0 1 2 3

1 V

t (s)

υin(t)

υin(t)

υout(t)

υin υout

0

υout(t)

t (s)

0.51 V

1 2 3 4

Figure 2-19: Triangular pulse exciting an RC circuit (Example
2-9). This is the same as Fig. 2-9.

and

h(t) = B[u(t)− u(t − T2)], (2.86b)

their convolution is given by Eq. (2.50) as

y(t) = x(t) ∗ h(t)
= AB[t u(t)− (t − T2) u(t − T2)− (t − T1) u(t − T1)

+ (t − T1 − T2) u(t − T1 − T2)]. (2.87)

We will now derive the result given by Eq. (2.87) in a few simple
steps, using the distributive property (#3 in Table 2-1), the time-
shift property (#5), and Eq. (2.73), namely, u(t)∗u(t) = t u(t).
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Thus,

y(t) = x(t) ∗ h(t)
= A[u(t)− u(t − T1)] ∗ B[u(t)− u(t − T2)]
= AB[u(t) ∗ u(t)− u(t) ∗ u(t − T2)− u(t) ∗ u(t − T1)

+ u(t − T1) ∗ u(t − T2)]
= AB[t u(t)− (t − T2) u(t − T2)− (t − T1) u(t − T1)

+ (t − T1 − T2) u(t − T1 − T2)], (2.88)

which is identical to Eq. (2.87).
It should be evident by now that using the convolution

properties of Table 2-1 can greatly simplify the computation
of convolutions!

In practice, convolutions are computed numerically using the
fast Fourier transform (FFT) algorithm discussed in detail in
Chapter 7.

Concept Question 2-6: What initial conditions does the
convolution operation require? (See        )

Concept Question 2-7: Describe the time-shift property
of convolution. (See        )

Concept Question 2-8: What is the outcome of
convolving a signal with a step function? With an impulse 
function? (See        )

Concept Question 2-9: What is the area property of
convolution? (See        )

Exercise 2-7: Evaluate

u(t) ∗ δ(t − 3)− u(t − 4) ∗ δ(t + 1).

Answer: 0. Use convolution properties #5 and #6.
(See S2 )

Exercise 2-8: Evaluate lim
t→∞[e−3t u(t) ∗ u(t)].

Answer: 1/3 = area under e−3t u(t). Use convolution
properties #8 and #9 in Table 2-1. (See S2 )

2-6 Causality and BIBO Stability

Convolution leads to necessary and sufficient conditions for two
important LTI system properties: causality and bounded-input/
bounded output (BIBO) stability. We derive and illustrate these
properties in this section.

2-6.1 Causality

We define a causal system as a system for which the present
value of the output y(t) can only depend on present and
past values of the input {x(τ), τ ≤ t}. For a noncausal
system, the present output could depend on future inputs.
Noncausal systems are also called anticipatory systems, since
they anticipate the future.

A physical system must be causal, because a noncausal
system must have the ability to see into the future! For example,
the noncausal system y(t) = x(t + 2)must know the input two
seconds into the future to deliver its output at the present time.
This is clearly impossible in the real world.

� An LTI system is causal if and only if its impulse
response is a causal function: h(t) = 0 for t < 0. �

2-6.2 BIBO Stability: Definition

“BIBO stable” may sound like a hobbit from The Lord of the
Rings, but it is an extremely important and desirable property of
LTI systems. It can be stated succinctly as: “If the input doesn’t
blow up, the output won’t either.”

A signal x(t) is bounded if there is a constant C, so that
|x(t)| ≤ C for all t . Examples of bounded signals include:

• cos(3t), 7e−2t u(t), and e2t u(1 − t).

Examples of unbounded signals include:

• t2, e2t u(t), e−t , and 1/t .

A system is BIBO (bounded input/bounded output) stable if
every bounded input x(t) results in a bounded output y(t), as
depicted by the simple example shown in Fig. 2-20. It does
not require that an unbounded input result in a bounded output
(this would be unreasonable). Stability is obviously a desirable
property for a system.
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(a) BIBO-stable system

(b) Non-BIBO-stable system

x(t)

t

y(t)

t

x(t)

t

y(t)

t

Figure 2-20: Stable and unstable systems.

2-6.3 BIBO Stability: Condition and Proof

How can we ascertain if an LTI system is BIBO stable? The
answer is provided by the following theorem:

�An LTI system is BIBO stable if and only if its impulse
response h(t) is absolutely integrable (i.e., if and only if∫∞
−∞ |h(t)| dt is finite). �

We will go through the proof of this result in some
detail, because it is a useful exercise to learn how to prove
mathematical theorems.

A theorem statement that includes the phrase “if and only if”
requires a bidirectional proof. If B represents BIBO stability
and A represents absolute integrability of h(t), to prove the
bidirectional statement A ↔ B requires us to prove both A →
B and B → A. To proveA → B, we supposeA is true and use
it to proveB is true.Alternatively, we can use the contrapositive
of A → B, wherein we suppose B is false and use it to prove
A is false. That is,

A → B ≡ B → A, (2.89)

where A is shorthand for A being false.

“If” part of proof: A → B

With
A = absolute integrability of h(t)

and
B = BIBO stability,

we suppose A is true and use it to prove A → B. Absolute
integrability of h(t) implies that there exists a constant L of
finite magnitude such that

∞∫
−∞

|h(t)| dt = L < ∞. (2.90)

To prove B, namely, that the system is BIBO stable, we have to
suppose that the input x(t) is bounded, which means that there
exists a constant M of finite magnitude such that

|x(t)| ≤ M.

The goal now is to prove that the output y(t) is bounded. Having
properly formulated the problem, it is now clear how to proceed.
Applying the triangle inequality for integrals to the absolute
value of the convolution integral given by Eq. (2.30) leads to

|y(t)| =
∣∣∣∣∣∣

∞∫
−∞

h(τ) x(t − τ) dτ

∣∣∣∣∣∣ ≤
∞∫

−∞
|h(τ) x(t − τ)| dτ

≤
∞∫

−∞
|h(τ)|M dτ = LM,

(2.91)

which states that |y(t)| is bounded by the finite constant LM .
Hence, if h(t) is absolutely integrable, a bounded input results
in a bounded output, and the system is BIBO stable.

“Only if” part of proof: B → A

We can suppose B (system is BIBO stable) is true and then try
to prove A (h(t) is absolutely integrable) is true, but it is easier
to prove the contrapositive. We suppose h(t) is not absolutely
integrable (i.e., A not true), and then identify a bounded input
that results in an unbounded output (B not true). In short, we
need a counterexample.

Since we are supposing
∫∞
−∞ |h(t)| dt → ∞, we seek a

bounded input that would lead to an unbounded output. A
convenient candidate is the noncausal input x(t) given by

x(t) =
⎧⎨
⎩
h(−t)
|h(−t)| = |h(−t)|

h(−t) = ±1 if h(−t) 	= 0,

0 if h(−t) = 0.
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1

0

h(t) = e−|t|

t

Figure 2-21: Impulse response of system in Example 2-10.

At t = 0, the corresponding output y(t) is

y(0) =
∞∫

−∞
h(τ) x(0 − τ) dτ

=
∞∫

−∞
h(τ)

|h(τ)|
h(τ)

dτ =
∞∫

−∞
|h(τ)| dτ → ∞. (2.92)

This result proves that a system whose impulse response is not
absolutely integrable is not BIBO stable (A → B), which is
equivalent to B → A.

Example 2-10: Causality and BIBO Stability

A system is characterized by the impulse response h(t) = e−|t |.
Determine if the system is (a) causal and (b) BIBO stable.

Solution: (a) The specified impulse response is a two-sided
exponential function (Fig. 2-21). Since h(t) 	= 0 for t < 0, the
system is noncausal.

(b)

∞∫
−∞

|h(t)| dt =
∞∫

−∞
e−|t | dt = 2

∞∫
0

e−t dt = 2.

Hence, the system is BIBO stable.

2-6.4 BIBO Stability of System with Decaying
Exponentials

Consider a causal system with an impulse response

h(t) = Ceγ t u(t), (2.93)

whereC is a finite constant and γ is, in general, a finite complex
coefficient given by

γ = α + jβ, α = Re[γ ], and β = Im[γ ]. (2.94)

Such a system is BIBO stable if and only if α < 0 (i.e., h(t) is
a one-sided exponential with an exponential coefficient whose
real part is negative). To verify the validity of this statement,
we test to see if h(t) is absolutely integrable. Since |ejβt | = 1
and eαt > 0,

∞∫
−∞

|h(t)| dt =
∞∫

0

|Ceαtejβt | dt = |C|
∞∫

0

eαt dt. (2.95)

(a) α< 0

If α < 0, we can rewrite it as α = −|α| in the exponential,
which leads to

∞∫
−∞

|h(t)| dt = |C|
∞∫

0

e−|α|t dt = |C|
|α| < ∞. (2.96)

Hence, h(t) is absolutely integrable and the system is BIBO
stable.

(b) α ≥ 0

If α ≥ 0, Eq. (2.95) becomes

∞∫
−∞

|h(t)| dt = |C|
∞∫

0

eαt dt → ∞,

thereby proving that the system is not BIBO stable when α ≥ 0.

� By extension, for any positive integer N , an impulse
response composed of a linear combination of N

exponential signals

h(t) =
N∑
i=1

Ci e
γ i t u(t) (2.97)

is absolutely integrable, and its LTI system is BIBO stable,
if and only if all of the exponential coefficients γi have
negative real parts. This is a fundamental attribute of LTI
system theory. �

Some books define an LTI system as marginally stable if
one or more of the exponential coefficients γi have zero real
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parts and the remaining coefficients have negative real parts.
Accordingly, an LTI system with h(t) = ejt u(t) should be
marginally stable, because γ = 0 + j1.

However, a marginally stable system is not BIBO stable. We
can test the validity of the assertion by evaluating the system’s
output for a causal input signal x(t) = ejt u(t),

y(t) =
∞∫

−∞
x(τ) h(t − τ) dτ

= u(t)

t∫
0

ejτ ej (t−τ) dτ = u(t) ejt

t∫
0

dτ = tej t u(t).

Since t in the final expression can grow to ∞, the system is not
BIBO stable. Hence, this marginally stable LTI system is not
BIBO stable.

Concept Question 2-10: What constitutes a complete
proof of a statement of the form “A is true if and only 
if B is true”? (See        )

Concept Question 2-11: Given an expression for the 
impulse response h(t) of an LTI system, how can you 
determine if the system is (a) causal and (b) BIBO stable?
(See        )

Exercise 2-9: A system’s impulse response is h(t) =
u(t − 1)/t2. Is the system BIBO stable?

Answer: Yes, because
∫∞

1 |1/(t2)| dt = 1. (See S2 )

Exercise 2-10: A system’s impulse response is h(t) =
u(t − 1)/t . Is the system BIBO stable?

Answer: No, because
∫∞

1 1/|t | dt = log(|t |)|∞1 → ∞.
(See S2 )

Exercise 2-11: A system’s impulse response is

h(t) = (3 + j4)e−(1−j2)t u(t)

+ (3 − j4)e−(1+j2)t u(t).

Is the system BIBO stable?

Answer: Yes, because real parts of both exponential
coefficients are negative. (See S2 )

2-7 LTI Sinusoidal Response
This section introduces a vitally important property of LTI
systems.

�The response of an LTI system to a complex exponential
input signal x(t) = Aejωt is another complex exponential
signal y(t) = H(ω) Aejωt , where H(ω) is a complex
coefficient that depends on ω. A similar statement applies
to sinusoidal inputs and outputs. �

In Chapter 5, we will show that a complicated periodic signal
x(t) of period T0 and angular frequency ω0 = 2π/T0 can be
expressed as a linear combination of an infinite number of
complex exponential signals

x(t) =
∞∑

n=−∞
xnejnω0t (2.98)

with constant coefficients xn.

� A similar process applies to nonperiodic signals,
wherein

∑∞
n=−∞ becomes an integral

∫∞
−∞. �

According to the sinusoidal-response property, the correspond-
ing output y(t) will assume the form

y(t) =
∞∑

n=−∞
Hnxnejnω0t (2.99)

with constant coefficients Hn.
This sinusoidal-response property is at the heart of how

filtering of signals is performed by an LTI system to
remove noise, attenuate undesirable frequency components,
or accentuate contrast or other features in voice signals and
images. The relevant steps are covered as follows:

Chapter 2: We will show in later parts of the present section why
an LTI system excited by an input signal x(t) = ejωt generates
an output signal y(t) = H(ω) ejωt , and we will learn how to
compute H(ω) from the system’s impulse response h(t).

Chapter 5: We will learn how to perform the decomposition
of periodic signals, as described by Eq. (2.98). We will also
learn how to similarly express nonperiodic signals in terms of
frequency integrals.

Chapter 6: We will design a special LTI system called a
Butterworth filter with a special H(ω). Additionally, we will
use LTI systems to perform multiple filtering examples.
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2-7.1 LTI System Response to Complex
Exponential Signals

Let us examine the response of an LTI system to a complex
exponential x(t) = Aejωt . Since the system is LTI, we may
(without loss of generality) set A = 1. Hence,

y(t) = h(t) ∗ x(t) = h(t) ∗ ejωt =
∞∫

−∞
h(τ) ejω(t−τ) dτ

= ejωt

∞∫
−∞

h(τ) e−jωτ dτ

= H(ω) ejωt , (2.100)

where the frequency response function H(ω) is defined as

H(ω) =
∞∫

−∞
h(τ) e−jωτ dτ. (2.101)

The result given by Eq. (2.100) validates the statement made
earlier that the output of an LTI system excited by a complex
exponential signal is also a complex exponential signal at the
same angular frequency ω.

The frequency response function H(ω) bears a one-to-one
correspondence to h(t); it is completely specified by the
expression for h(t) and the value of ω. As alluded to earlier
in connection with Eqs. (2.98) and (2.99), we can express time
signals in terms of sums of signals at multiple frequencies. The
ability to transform signals between the time domain and the
ω-domain will prove very useful in the analysis and design of
LTI systems. It is in the spirit of such transformations that we
describe H(ω) as the frequency-domain equivalent of h(t).

In symbolic form, Eq. (2.100) is

ejωt h(t) H(ω) ejωt . (2.102)

In addition to working with H(ω) to determine a system’s
response to a specified input, we will occasionally find
it convenient to also work with its mirror image H(−ω).
Repetition of the procedure leading to Eq. (2.101) yields

y(t) = H(−ω) e−jωt (2.103)

with

H(−ω) =
∞∫

−∞
h(τ) ejωτ dτ. (2.104)

In symbolic form,

e−jωt h(t) H(−ω) e−jωt . (2.105)

Example 2-11: H(ω) of an RC Circuit

Determine the frequency response of an RC circuit character-
ized by an impulse response h(t) = e−t u(t). The capacitor
contained no charge prior to t = 0.

Solution: Application of Eq. (2.101) leads to

H(ω) =
∞∫

−∞
h(τ) e−jωτ dτ

=
∞∫

0

e−τ e−jωτ dτ = 1

1 + jω
. (2.106)

2-7.2 Properties of H(ω)

The frequency response function is characterized by the
following properties:

(a) H(ω) is independent of t .

(b) H(ω) is a function of jω, not just ω.

(c) H(ω) is defined for an input signal ejωt that exists for all
time, −∞ < t < ∞; i.e., x(t) = ejωt , not ejωt u(t).

If h(t) is real, H(ω) is related to H(−ω) by

H(−ω) = H∗(ω) (for h(t) real). (2.107)

The condition defined by Eq. (2.107) is known as conjugate
symmetry. It follows from the definition of H(ω) given by
Eq. (2.101), namely,

H∗(ω) =
∞∫

−∞
h∗(τ ) (e−jωτ )∗ dτ

=
∞∫

−∞
h(τ) ejωτ dτ = H(−ω). (2.108)
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� Since h(t) is real, it follows from Eq. (2.107) that
the magnitude |H(ω)| is an even function and the phase

H(ω) is an odd function:

• |H(ω)| = |H(−ω)| (2.109a)

and

• H(−ω) = − H(ω) . (2.109b)

�

The frequency response function of the RC filter, namely,
H(ω) = 1/(1 + jω) = (1 − jω)/(1 + ω2), satisfies the afore-
mentioned relationships.

2-7.3 H(ω) of LCCDE

If an LTI system is described by a linear, constant-coefficient,
differential equation, we can determine its frequency response
function H(ω) without having to know its impulse response
h(t). Consider, for example, the LCCDE

d2y

dt2
+ 2

dy

dt
+ 3y = 4

dx

dt
+ 5x. (2.110)

According to Eq. (2.100), y(t) = H(ω) ejωt when x(t) = ejωt .
Substituting these expressions for x(t) and y(t) in Eq. (2.110)
leads to the frequency domain equivalent of Eq. (2.110):

(jω)2 H(ω) ejωt + 2(jω) H(ω) ejωt + 3H(ω) ejωt

= 4(jω)ejωt + 5ejωt . (2.111)

After canceling ejωt (which is never zero) from all terms and
then solving for H(ω), we get

H(ω) = 5 + j4ω

−ω2 + 2jω + 3
= 5 + j4ω

(3 − ω2)+ j2ω
. (2.112)

� We note that every d/dt operation in the time domain
translates into a multiplication by jω in the frequency
domain. �

More generally, for any LCCDE of the form

a0
dny

dtn
+ · · · + an−2

d2y

dt2
+ an−1

dy

dt
+ any

= b0
dmx

dtm
+ · · · + bm−2

d2x

dt2
+ bm−1

dx

dt
+ bmx ,

or equivalently,

n∑
i=0

an−i
diy

dt i
=

m∑
i=0

bm−i
dix

dt i
, (2.113)

its H(ω) can be determined by substituting x(t) = ejωt and
y(t) = H(ω) ejωt in the LCCDE and using

(di/dt i)ejωt = (jω)iejωt .

The process leads to

H(ω) =

m∑
i=0

bm−i (jω)i

n∑
i=0

an−i (jω)i
. (2.114)

In Eqs. (2.113) and (2.114),m and n are the orders of the highest
derivatives of x(t) and y(t), respectively. We note that H(ω) is
a rational function of jω (ratio of two polynomials).

Example 2-12: H(ω) of an LCCDE

Compute H(1) for the system described by

3
d3y

dt3
+ 6

dy

dt
+ 4y(t) = 5

dx

dt
.

Solution: To determine H(ω), we apply Eq. (2.114) with
m = 1 and n = 3:

H(ω) = b1(jω)
0 + b0(jω)

1

a3(jω)0 + a2(jω)1 + a1(jω)2 + a0(jω)3
.

From the specified differential equation, a0 = 3, a1 = 0,
a2 = 6, a3 = 4, b0 = 5, and b1 = 0. Hence,

H(ω) = 5(jω)

4 + 6(jω)+ 3(jω)3
.

At ω = 1 rad/s,

H(1) = j5

4 + j6 − j3
= j5

4 + j3
= 1ej53◦

.

2-7.4 LTI Response to Sinusoids

We now examine the response of an LTI system with real-
valued h(t) to a pure sinusoid of the form x(t) = cosωt . When
analyzing signals and systems, operations involving sinusoids
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are most easily realized by expressing them in terms of complex
exponentials. In the present case,

x(t) = cosωt = 1

2
[ejωt + e−jωt ]. (2.115)

Using the additivity property of LTI systems, we can determine
the system’s response to cosωt by adding the responses
expressed by Eqs. (2.102) and (2.105):

1

2
ejωt h(t)

1

2
H(ω) ejωt

(2.116)

1

2
e−jωt h(t)

1

2
H(−ω) e−jωt .

Since h(t) is real, Eq. (2.107) stipulates that

H(−ω) = H∗(ω).

If we define

H(ω) = |H(ω)|ejθ ,
H(−ω) = |H(ω)|e−jθ ,

(2.117)

where θ = H(ω), the sum of the two outputs in Eq. (2.116)
becomes

y(t) = 1

2
[H(ω) ejωt + H(−ω) e−jωt ]

= 1

2
|H(ω)|[ej (ωt+θ) + e−j (ωt+θ)]

= |H(ω)| cos(ωt + θ).

In summary,

y(t) = |H(ω)| cos(ωt + θ)

(for x(t) = cosωt).
(2.118)

In symbolic form,

cosωt h(t) |H(ω)| cos(ωt + θ), (2.119)

and by applying the scaling and time-invariance properties
of LTI systems, this result can be generalized to any cosine

function of amplitude A and phase angle φ

A cos(ωt + φ)

h(t)

A|H(ω)| cos(ωt + θ + φ).

(2.120)

The full implication of this result will become apparent when
we express periodic signals as linear combinations of complex
exponentials or sinusoids.

Example 2-13: Response of an LCCDE to a Sinusoidal

Input

5 cos(4t + 30◦) dy

dt
+ 3y = 3

dx

dt
+ 5x ?

Solution: Inserting x(t) = ejωt and y(t) = H(ω) ejωt in the
specified LCCDE gives

jω H(ω) ejωt + 3H(ω) ejωt = 3jωejωt + 5ejωt .

Solving for H(ω) gives

H(ω) = 5 + j3ω

3 + jω
.

The angular frequency ω of the input signal is 4 rad/s. Hence,

H(4) = 5 + j12

3 + j4
= 13ej67.38◦

5ej53.13◦ = 13

5
ej14.25◦

.

Application of Eq. (2.120) with A = 5 and φ = 30◦ gives

y(t) = 5 × 13

5
cos(4t + 14.25◦ + 30◦) = 13 cos(4t + 44.25◦).

Concept Question 2-12: If the input to an LTI system is
a sinusoid, which of the following attributes can change
between the input and the output: amplitude, frequency, 
or phase? (See        )

Concept Question 2-13: What kind of function is H(ω)
for a system described by an LCCDE? (See        )
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Exercise 2-12:

cos(t) h(t) = e−t u(t) ?

Answer: The output is (1/
√

2) cos(t − 45◦). (See S2 )

Exercise 2-13:

2 cos(t) System 2 cos(2t)+ 2.

Initial conditions are zero. Is this system LTI?

Answer: No. An LTI cannot create a sinusoid at a
frequency different from that of its input. (See S2 )

Exercise 2-14:

cos(2t) System 0.

Can we say that the system is not LTI?

Answer: No. An LTI can make an amplitude = 0.
(See S2 )

2-8 Impulse Response of
Second-Order LCCDEs

Many physical systems are described by second-order LCCDEs
of the form

d2y

dt2
+ a1

dy

dt
+ a2 y(t) = b1

dx

dt
+ b2 x(t), (2.121)

where a1, a2, b1, and b2 are constant coefficients. In this
section, we examine how to determine the impulse response
functionh(t) for such a differential equation, and in Section 2-9,
we demonstrate how we use that experience to analyze
a spring-mass-damper model of an automobile suspension
system.

2-8.1 LCCDE with No Input Derivatives

For simplicity, we start by considering a version of Eq. (2.121)
without the dx/dt term, and then we use the result to treat the
more general case in the next subsection.

For b1 = 0 and b2 = 1, Eq. (2.121) becomes

d2y

dt2
+ a1

dy

dt
+ a2 y(t) = x(t). (2.122)

Step 1: Roots of characteristic equation

Assuming y(t) has a general solution of the form y(t) = Aest ,
substitution in the homogeneous form of Eq. (2.122)—i.e., with
x(t) = 0—leads to the characteristic equation:

s2 + a1s + a2 = 0. (2.123)

If p1 and p2 are the roots of Eq. (2.123), then

s2 + a1s + a2 = (s − p1)(s − p2), (2.124)

which leads to

p1 + p2 = −a1, p1p2 = a2, (2.125)

and

p1 = −a1

2
+
√(a1

2

)2 − a2 ,

p2 = −a1

2
−
√(a1

2

)2 − a2 .

(2.126)

Roots p1 and p2 are

(a) real if a2
1 > 4a2,

(b) complex conjugates if a2
1 < 4a2, or

(c) identical if a2
1 = 4a2.

Step 2: Two coupled first-order LCCDEs

The original differential equation given by Eq. (2.122) now can
be rewritten as

d2y

dt2
− (p1 + p2)

dy

dt
+ (p1p2) y(t) = x(t), (2.127a)

which can in turn be cast in the form[
d

dt
− p1

] [
d

dt
− p2

]
y(t) = x(t). (2.127b)

Furthermore, we can split the second-order differential
equation into two coupled first-order equations by introducing
an intermediate variable z(t):

dz

dt
− p1 z(t) = x(t) (2.128a)

and

dy

dt
− p2 y(t) = z(t). (2.128b)
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These coupled first-order LCCDEs represent a series (or
cascade) connection of LTI systems, each described by a first-
order LCCDE. In symbolic form, we have

x(t) h1(t) z(t)

z(t) h2(t) y(t),

(2.129)

where h1(t) and h2(t) are the impulse responses corresponding
to Eqs. (2.128a and b), respectively.

Step 3: Impulse response of cascaded LTI systems

By comparison with Eq. (2.10) and its corresponding impulse
response, Eq. (2.17), we conclude that

h1(t) = ep1t u(t) (2.130a)

and
h2(t) = ep2t u(t). (2.130b)

Using convolution property #2 in Table 2-1, the impulse
response of the series connection of two LTI systems is the
convolution of their impulse responses. Utilizing entry #3 in
Table 2-2, the combined impulse response becomes

hc(t) = h1(t) ∗ h2(t) = ep1t u(t) ∗ ep2t u(t)

=
[

1

p1 − p2

]
[ep1t − ep2t ] u(t).

(2.131)

2-8.2 LCCDE with Input Derivative

We now consider the more general case of a second-order
LCCDE that contains a first-order derivative on the input side
of the equation

d2y

dt2
+ a1

dy

dt
+ a2 y(t) = b1

dx

dt
+ b2 x(t). (2.132)

By defining the right-hand side of Eq. (2.132) as an intermediate
variable w(t), the system can be represented as

x(t) w(t) = b1
dx

dt
+ b2 x(t) w(t)

w(t) hc(t) y(t), (2.133)

where hc(t) is the impulse response given by Eq. (2.131) for
the system with b1 = 0 and b2 = 1.

To determine the impulse response of the overall system,
we need to compute the convolution of hc(t) with the (yet to
be determined) impulse response representing the other box
in Eq. (2.133). A more expedient route is to use convolution
property #1 in Table 2-1. Since convolution is commutative,
we can reverse the order of the two LTI systems in Eq. (2.133),

x(t) hc(t) υ(t)

υ(t) y(t) = b1
dυ

dt
+ b2 υ(t) y(t),

(2.134)

where υ(t) is another intermediate variable created for the sake
of convenience. By definition, when x(t) = δ(t), the output
y(t) becomes the impulse response h(t) of the overall system.
That is, if we set x(t) = δ(t), which results in υ(t) = hc(t) and
y(t) = h(t), the system becomes

δ(t) hc(t) hc(t)

hc(t) h(t) = b1
dhc

dt
+ b2 hc(t) h(t).

(2.135)

Finally, the impulse response h(t) of the overall system is

h(t) = b1
dhc

dt
+ b2 hc(t)

=
[
b1

d

dt
+ b2

] [
1

p1 − p2

]
[ep1t − ep2t ] u(t)

= b1p1 + b2

p1 − p2
ep1t u(t)− b1p2 + b2

p1 − p2
ep2t u(t). (2.136)

Having established in the form of Eq. (2.136) an explicit
expression for the impulse response of the general LCCDE
given by Eq. (2.132), we can now determine the response y(t)
to any causal input excitation x(t) by evaluating

y(t) = u(t)

t∫
0

h(τ) x(t − τ) dτ. (2.137)
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2-8.3 Parameters of Second-Order LCCDE

Mathematically, our task is now complete. However, we can
gain much physical insight into the nature of the system’s
response by examining scenarios associated with the three
states of roots p1 and p2 [as noted earlier in connection with
Eq. (2.126)].

(a) p1 and p2 are real and distinct (different).

(b) p1 and p2 are complex conjugates of one another.

(c) p1 and p2 are real and equal.

Recall that p1 and p2 are defined in terms of coefficients a1
and a2 in the LCCDE, so different systems characterized by
LCCDEs with identical forms but different values of a1 and a2
may behave quite differently.

Before we examine the three states ofp1 andp2 individually,
it will prove useful to express p1 and p2 in terms of physically
meaningful parameters. To start with, we reintroduce the
expressions for p1 and p2 given by Eq. (2.126):

p1 = −a1

2
+
√(a1

2

)2 − a2 , (2.138a)

p2 = −a1

2
−
√(a1

2

)2 − a2 . (2.138b)

Based on the results of Section 2-6.4, in order for the system
described by Eq. (2.136) to be BIBO stable, it is necessary that
the real parts of both p1 and p2 be negative. We now show that
this is true if and only if a1 > 0 and a2 > 0. Specifically, we
have the following:

(a) If both p1 and p2 are real, distinct, and negative,
Eq. (2.138) leads to the conclusion that a2

1 > 4a2, a1 > 0,
and a2 > 0.

(b) If p1 and p2 are complex conjugates with negative real
parts, it follows that a2

1 < 4a2, a1 > 0, and a2 > 0.

(c) If p1 and p2 are real, equal, and negative, then a2
1 = 4a2,

a1 > 0, and a2 > 0.

� The LTI system described by the LCCDE Eq. (2.132)
is BIBO stable if and only if a1 > 0 and a2 > 0. �

We now introduce three new non-negative, physically
meaningful parameters:

α = a1

2
= attenuation coefficient (Np/s), (2.139a)

ω0 = √
a2 = undamped natural frequency (rad/s),

(2.139b)

and

ξ = α

ω0
= a1

2
√
a2

= damping coefficient (unitless).

(2.139c)

The unit Np is short for nepers, named after the inventor of the
logarithmic scale, John Napier. In view of Eq. (2.139), p1 and
p2 can be written as

p1 = −α +
√
α2 − ω2

0 = ω0

[
−ξ +

√
ξ2 − 1

]
(2.140a)

and

p2 = −α −
√
α2 − ω2

0 = ω0

[
−ξ −

√
ξ2 − 1

]
(2.140b)

The damping coefficient ξ plays a critically important role,
because its value determines the character of the system’s
response to any input x(t). The system exhibits markedly
different responses depending on whether

(a) ξ > 1 overdamped response,

(b) ξ = 1 critically damped response, or

(c) ξ < 1 underdamped response.

The three names, overdamped, underdamped, and critically
damped, refer to the shape of the system’s response. Figure 2-22
displays three system step responses, each one of which starts
at zero at t = 0 and rises to y = 1 as t → ∞, but the shapes of
their waveforms are quite different. The overdamped response
exhibits the slowest path towards y = 1; the underdamped
response is very fast, but it includes an oscillatory component;
and the critically damped response represents the fastest path
without oscillations.

2-8.4 Overdamped Case (ξ > 1)

For convenience, we rewrite Eq. (2.136) as

h(t) = A1e
p1t u(t)+ A2e

p2t u(t)

(overdamped impulse response)

(2.141)

with

A1 = b1p1 + b2

p1 − p2
and A2 = −(b1p2 + b2)

p1 − p2
. (2.142)
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t (s)

y(t)

Underdamped

Overdamped

Critically damped

0

1

Figure 2-22: Comparison of overdamped, underdamped, and
critically damped responses. In each case, the response starts at
zero at t = 0 and approaches 1 as t → ∞, but the in-between
paths are quite different.

If ξ > 1—which corresponds to α2 > ω2
0, or equivalently,

a2
1 > 4a2—rootsp1 andp2 are both negative real numbers with

|p2| > |p1|. The step response ystep(t) is obtained by inserting
Eq. (2.141) into Eq. (2.137) and setting x(t−τ) = u(t−τ) and
y(t) = ystep(t):

ystep(t) =
t∫

0

[A1e
p1τ u(τ )+ A2e

p2τ u(τ )] u(t − τ) dτ.

(2.143)

Over the range of integration (0, t), u(τ) = 1 and u(t−τ) = 1.
Hence,

ystep(t) =
⎡
⎣ t∫

0

(A1e
p1τ + A2e

p2τ ) dτ

⎤
⎦ u(t),

which integrates to

ystep(t) =
[
A1

p1
(ep1t − 1)+ A2

p2
(ep2t − 1)

]
u(t).

(overdamped step response) (2.144)

Example 2-14: Overdamped Response

Compute and plot the step response ystep(t) of a system
described by the LCCDE

d2y

dt2
+ 12

dy

dt
+ 9y(t) = 4

dx

dt
+ 25x(t).

0 1 2 3 4 5
0

1

2

2.79
3

ystep(t)

t (s)

Overdamped response

Figure 2-23: Step response of overdamped system in Example
2-14.

Solution: From the LCCDE, a1 = 12, a2 = 9, b1 = 4, and
b2 = 25. When used in Eqs. (2.139), (2.140), and (2.142), we
obtain the values

α = a1

2
= 12

2
= 6 Np/s,

ω0 = √
a2 = √

9 = 3 rad/s, ξ = α

ω0
= 6

3
= 2,

p1 = −0.8 Np/s, p2 = −11.2 Np/s,

A1

p1
= −2.62, and

A2

p2
= −0.17.

Since ξ > 1, the response is overdamped, in which case
Eq. (2.144) applies:

ystep(t) =
[
2.62(1 − e−0.8t )+ 0.17(1 − e−11.2t )

]
u(t).

The plot of ystep(t) is shown in Fig. 2-23.

2-8.5 Underdamped Case (ξ < 1)

If ξ < 1, or equivalently,α2 < ω2
0, the square root in Eq. (2.140)

becomes negative, causing roots p1 and p2 to become complex
numbers. For reasons that will become apparent shortly, this
condition leads to an underdamped step response with a
waveform that oscillates at a damped natural frequency ωd
defined as

ωd =
√
ω2

0 − α2 = ω0

√
1 − ξ2 . (2.145)
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In terms of ωd, roots p1 and p2 [Eq. (2.140)] become

p1 = −α + jωd and p2 = −α − jωd. (2.146)

Inserting these expressions into the impulse response given by
Eq. (2.141) leads to

h(t) = [A1e
−αt ejωdt + A2e

−αt e−jωdt ] u(t)
= [A1(cosωdt + j sinωdt)

+ A2(cosωdt − j sinωdt)]e−αt u(t)
= [(A1 + A2) cosωdt + j (A1 − A2) sinωdt]e−αt u(t),

which can be contracted into

h(t) = [B1 cosωdt + B2 sinωdt]e−αt u(t)
(underdamped impulse response) (2.147)

by introducing two new coefficients, B1 and B2, given by

B1 = A1 + A2 = b1p1 + b2

p1 − p2
− b1p2 + b2

p1 − p2
= b1 (2.148a)

and

B2 = j (A1 − A2) = b2 − b1α

ωd
. (2.148b)

The negative exponential e−αt in Eq. (2.147) signifies that h(t)
has a damped waveform, and the sine and cosine terms signify
that h(t) is oscillatory with an angular frequency ωd and a
corresponding time period

T = 2π

ωd
. (2.149)

Example 2-15: Underdamped Response

Compute and plot the step response ystep(t) of a system
described by the LCCDE

d2y

dt2
+ 12

dy

dt
+ 144y(t) = 4

dx

dt
+ 25x(t).

Solution: From the LCCDE, a1 = 12, a2 = 144, b1 = 4, and
b2 = 25.

The damping coefficient is

ξ = a1

2
√
a2

= 12

2
√

144
= 0.5.

Hence, this is an underdamped case and the appropriate impulse
response is given by Eq. (2.147). The step response ystep(t) is
obtained by convolving h(t) with x(t) = u(t):

ystep(t) = h(t) ∗ u(t)

=
⎡
⎣ t∫

0

(B1 cosωdτ + B2 sinωdτ)e
−ατ dτ

⎤
⎦ u(t).

Performing the integration by parts leads to

ystep(t) = 1

α2 + ω2
d

· {[−(B1α + B2ωd) cosωdt

+ (B1ωd + B2α) sinωdt]e−αt
+ (B1α + B2ωd)

}
u(t).

(underdamped step response)

(2.150)

For the specified constants,

α = 6 Np/s, ω0 = √
a2 = 12 rad/s, ξ = 0.5,

ωd = ω0

√
1 − ξ2 = 10.4 rad/s,

B1 = 4, B2 = 9.62 × 10−2, and

ystep(t) =
{

[−0.17 cos 10.4t + 0.29 sin 10.4t] e−6t

+ 0.17
}
u(t).

Figure 2-24 displays a plot of ystep(t), which exhibits an
oscillatory pattern superimposed on the exponential response.
The oscillation period is T = 2π/10.4 = 0.6 s.

2-8.6 Critically Damped Case (ξ = 1)

According to Eq. (2.140), if ξ = 1, then p1 = p2. Repeated
roots lead to a critically damped step response, so called
because it provides the fastest path to the steady state that the
system approaches as t → ∞. With p1 = p2, the expression
for h(t) reduces to a single exponential, which is not a
viable solution, because a second-order LCCDE should include
two time-dependent functions in its solution. To derive an
appropriate expression for h(t), we take the following indirect
approach.
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.17
0.2

0.3

ystep(t)

t (s)

Underdamped response

Figure 2-24: Underdamped response of Example 2-15. Note the
oscillations.

Step 1: Start with a slightly underdamped system:

Suppose we have a slightly underdamped system with a very
small damped natural frequency ωd = ε and roots

p1 = −α + jε and p2 = −α − jε.

According to Eq. (2.131), the impulse responsehc(t)of a system
with no input derivative is

hc(t) =
[

1

p1 − p2

]
[ep1t − ep2t ] u(t)

=
[
ejεt − e−jεt

j2ε

]
e−αt u(t) = sin εt

ε
e−αt u(t).

(2.151)

Since ε is infinitesimally small, ε � α. Hence, e−αt will decay
to approximately zero long before εt becomes significant in
magnitude, which means that for all practical purposes, the
function sin εt is relevant only when εt is very small, in which
case the approximation sin(εt) ≈ εt is valid.Accordingly,hc(t)

becomes

hc(t) = te−αt u(t), as ε → 0. (2.152)

Step 2: Obtain impulse response h(t):

Implementation of Eq. (2.135) to obtain h(t) of the system
containing an input derivative dx/dt from that of the same

system without the dx/dt term leads to

h(t) = b1
dhc

dt
+ b2hc(t)

= (C1 + C2t)e
−αt u(t)

(critically damped impulse response)

(2.153)

with

C1 = b1 (2.154a)

and

C2 = b2 − αb1. (2.154b)

Example 2-16: Critically Damped Response

Compute and plot the step response of a system described by

d2y

dt2
+ 12

dy

dt
+ 36y(t) = 4

dx

dt
+ 25x(t).

Solution: From the LCCDE, a1 = 12, a2 = 36, b1 = 4, and
b2 = 25. The damping coefficient is

ξ = a1

2
√
a2

= 12

2
√

36
= 1.

Hence, this is a critically damped system. The relevant constants
are

α = a1

2
= 6 Np/s, C1 = 4, and C2 = 1,

and the impulse response is

h(t) = (4 + t)e−6t u(t).

The corresponding step response is

ystep(t) = h(t) ∗ u(t) =
⎡
⎣ t∫

0

(4 + τ)e−6τ dτ

⎤
⎦ u(t)

=
[

25

36
(1 − e−6t )− 1

6
te−6t

]
u(t),

and its profile is displayed in Fig. 2-25. The step response starts
at zero and approaches a final value of 25/36 = 0.69 as t → ∞.
It exhibits the fastest damping rate possible without oscillation.

The impulse and step responses of the second-order LCCDE,
namely Eq. (2.132), are summarized in Table 2-3 for each of
the three damping conditions.
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Table 2-3: Impulse and step responses of second-order LCCDE.

LCCDE
d2y

dt2
+ a1

dy

dt
+ a2y = b1

dx

dt
+ b2x

α = a1

2
, ω0 = √

a2 , ξ = α

ω0
, p1 = ω0[−ξ + √

ξ2 − 1], p2 = ω0[−ξ − √
ξ2 − 1]

Overdamped Case ξ > 1

h(t) = A1e
p1t u(t)+ A2e

p2t u(t) ystep(t) =
[
A1

p1
(ep1t − 1)+ A2

p2
(ep2t − 1)

]
u(t)

A1 = b1p1 + b2

p1 − p2
, A2 = −(b1p2 + b2)

p1 − p2

Underdamped Case ξ < 1

h(t) = [B1 cosωdt + B2 sinωdt]e−αt u(t)

ystep(t) = 1

α2 + ω2
d

{[−(B1α + B2ωd) cosωdt + (B1ωd + B2α) sinωdt]e−αt + (B1α + B2ωd)
}
u(t)

B1 = b1, B2 = b2 − b1α

ωd
, ωd = ω0

√
1 − ξ2

Critically Damped Case ξ = 1

h(t) = (C1 + C2t)e
−αt u(t) ystep(t) =

[(
C1

α
+ C2

α2

)
(1 − e−αt )− C2

α
te−αt

]
u(t)

C1 = b1, C2 = b2 − αb1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.7

ystep(t)

t (s)

Critically damped response

Figure 2-25: Critically damped response of Example 2-16.

Concept Question 2-14: What are the three damping
conditions of the impulse response? (See        )

Concept Question 2-15: How do input derivatives affect
impulse responses? (See        )

Exercise 2-15: Which damping condition is exhibited by
h(t) of

d2y

dt2
+ 5

dy

dt
+ 4y(t) = 2

dx

dt
?

Answer: Overdamped, because ξ = 1.25 > 1.
(See S2 )
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Exercise 2-16: For what constant a1 is

d2y

dt2
+ a1

dy

dt
+ 9y(t) = 2

dx

dt

critically damped?

Answer: a1 = 6. (See S2 )

2-9 Car Suspension System

The results of the preceding section will now be used to analyze
a car suspension system, which is selected in part because
it offers a nice demonstration of how to model both the car
suspension system and several examples of input excitations,
including driving over a curb, over a pothole, and on a wavy
pavement.

2-9.1 Spring-Mass-Damper System

The basic elements of an automobile suspension system are
depicted in Fig. 2-26.

• x(t) = input = vertical displacement of the pavement,
defined relative to a reference ground level.

• y(t) = output = vertical displacement of the car chassis
from its equilibrium position.

• m = one-fourth of the car’s mass, because the car has four
wheels.

• k = spring constant or stiffness of the coil.

• b = damping coefficient of the shock absorber.

The forces exerted by the spring and shock absorber, which act
on the car mass in parallel, depend on the relative displacement
(y − x) of the car relative to the pavement. They act to oppose
the upward inertial force Fc on the car, which depends on
only the car displacement y(t). When (y − x) is positive (car
mass moving away from the pavement), the spring force Fs is
directed downward. Hence, Fs is given by

Fs = −k(y − x). (2.155)

The damper force Fd exerted by the shock absorber is governed
by viscous compression. It also is pointed downward, but
it opposes the change in (y − x). Therefore it opposes the
derivative of (y − x) rather than (y − x) itself:

Fd = −b d

dt
(y − x). (2.156)

(b) Model

(a) Damping system

Coil with
spring 
constant k

Shock absorber
with damping 
coefficient b

CAR 
Mass 4m

Pavement

y(t)

x(t)

Fc

FdFs

TIRES

Figure 2-26: Car suspension system model.

Using Newton’s law, Fc = ma = m(d2y/dt2), the force
equation is

Fc = Fs + Fd (2.157)

or

m
d2y

dt2
= −k(y − x)− b

d

dt
(y − x),
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which can be recast as

d2y

dt2
+ b

m

dy

dt
+ k

m
y = b

m

dx

dt
+ k

m
x. (2.158)

The form of Eq. (2.158) is identical with that of the second-
order LCCDE given by Eq. (2.132). Hence, all of the results we
derived in the preceding section become directly applicable to
the automobile suspension system upon setting a1 = b1 = b/m

and a2 = b2 = k/m.
Typical values for a small automobile are:

• m = 250 kg for a car with a total mass of one metric ton
(1000 kg); each wheel supports one-fourth of the car’s
mass.

• k = 105 N/m; it takes a force of 1000 N to compress the
spring by 1 cm.

• b = 104 N·s/m; a vertical motion of 1 m/s incurs a resisting
force of 104 N.

2-9.2 Pavement Models

Driving on a curb

A car driving over a curb can be modeled as a step in x(t) given
by

x1(t) = A1 u(t), (2.159)

where A1 is the height of the curb (Fig. 2-27(a)).

Driving over a pothole

For a car moving at speed s over a pothole of length d, the
pothole represents a depression of duration T = d/s. Hence,
driving over the pothole can be modeled (Fig. 2-27(b)) as

x2(t) = A2[−u(t)+ u(t − T )], (2.160)

where A2 is the depth of the pothole.

Driving over wavy pavement

Figure 2-27(c) depicts a wavy pavement whose elevation is a
sinusoid of amplitude A3 and period T0. Input x3(t) is then

x3(t) = A3 cos
2πt

T0
. (2.161)

Example 2-17: Car Response to a Curb

A car with a mass of 1,000 kg is driven over a 10 cm high curb.
Each wheel is supported by a coil with spring constant k = 105

N/m. Determine the car’s response to driving over the curb for
each of the following values of b, the damping constant of the
shock absorber: (a) 2 × 104 N·s/m, (b) 104 N·s/m, and (c) 5000
N·s/m.

Solution: (a) The mass per wheel is m = 1000/4 = 250 kg.
Comparison of the constant coefficients in Eq. (2.158) with
those in Eq. (2.132) for the LCCDE of Section 2-8 leads to

LCCDE Suspension System

a1 = b

m
= 2 × 104

250
= 80 s−1,

a2 = k

m
= 105

250
= 400 s−2,

b1 = b

m
= 80 s−1,

b2 = k

m
= 400 s−2,

ω0 = √
a2 = 20 rad/s,

and

α = a1

2
= 40 Np/s.

The damping coefficient is

ξ = α

ω0
= 40

20
= 2.

Since ξ > 1, the car suspension is an overdamped system. As
was noted earlier in Section 2-9.2, the curb is modeled as a
step function with an amplitude A = 10 cm = 0.1 m. From
Table 2-3, the step response of an overdamped system scaled
by a factor of 0.1 is

y1(t) = 0.1 ystep(t)

= 0.1

[
A1

p1
(ep1t − 1)+ A2

p2
(ep2t − 1)

]
u(t).

(2.162)

From Table 2-3, we have

p1 = ω0[−ξ +
√
ξ2 − 1] = −5.36 Np/s,

p2 = ω0[−ξ −
√
ξ2 − 1] = −74.64 Np/s,

A1 = b1p1 + b2

p1 − p2
= 80(−5.36)+ 400

−5.36 + 74.64
= −0.42 s−1,
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(a) Curb

(b) Pothole

(c) Wavy pavement

x2(t) = −A2 u(t) + A2 u(t − T)
T

t
−A2−A2

Pothole

t
0

x1(t) = A1 u(t)A1

0

Curb

Pavement Displacement

A1

x3(t) = A3 cos(2πt/T0)

T0
t

A3

00

A3

Figure 2-27: Pavement profiles and corresponding models for the vertical displacement x(t).

and

A2 = −(b1p2 + b2)

p1 − p2
= −[80(−74.64)+ 400]

−5.36 + 74.64
= 80.42 s−1.

Hence, y1(t) in meters becomes

y1(t) = [0.108(1 − e−74.64t )− 0.008(1 − e−5.36t )] u(t) m,
(2.163)

A plot of y1(t) is displayed in Fig. 2-28.
(b) Changing the value of b to 104 N·s/m leads to

a1 = b1 = 104

250
= 40 s−1,

a2 = b2 = k

m
= 400 s−2 (unchanged),

ω0 = √
a2 = 20 rad/s (unchanged),

α = a1

2
= 20 Np/s,

and

ξ = α

ω0
= 20

20
= 1.

For this critically damped case, the expressions given in
Table 2-3 lead to

y2(t) = 0.1[(1 − e−20t )+ 20te−20t ] u(t) m. (2.164)

From the plot of y2(t) in Fig. 2-28, it is easy to see that it
approaches its final destination of 0.1 m (height of the curb)
much sooner than the overdamped response exhibited by y1(t).

(c) For an old shock absorber with b = 5000 N·s/m, the
parameter values are

a1 = b1 = 5000

250
= 20 s−1,

a2 = b2 = k

m
= 400 s−2 (unchanged),

ω0 = √
a2 = 20 rad/s (unchanged),

α = a1

2
= 20

2
= 10 Np/s,

and

ξ = α

ω0
= 10

20
= 0.5.
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0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

Car displacement in cm

t (s)

y1(t): Overdamped

y3(t): Underdampedy2(t): Critically damped

Figure 2-28: Car’s response to driving over a 10 cm curb.

Since ξ < 1, the system is underdamped, which means that the
car response to the curb will include some oscillations. Using
Table 2-3, we have

ωd = ω0

√
1 − ξ2 = 20

√
1 − 0.25 = 17.32 rad/s

and

y3(t) = 0.1{[− cos 17.32t+1.15 sin 17.32t]e−10t+1} u(t) m.

The oscillatory behavior of y3(t) is clearly evident in the plot

of its profile in Fig. 2-28 (see S2
for details).

Example 2-18: Car Response to a Pothole

Simulate the response of a car driven at 5 m/s over a 1 m
long, 10 cm deep pothole if the damping constant of its shock
absorber is (a) 104 N·s/m or (b) 2000 N·s/m. All other attributes
are the same as those in Example 2-17, namely, m = 250 kg
and k = 105 N/m.

Solution: (a) The travel time across the pothole is T = 1
5 =

0.2 s. According to part (b) of the solution of Example 2-17,
ξ = 1 when b = 104 N·s/m, representing a critically damped
system with the response given by Eq. (2.164) as

y2(t) = 0.1[(1 − e−20t )+ 20te−20t ] u(t) m. (2.165)

The car’s vertical displacement y2(t) is in response to a 0.1 m
vertical step (curb). For the pothole model shown in Fig. 2-27,
the response y4(t) can be synthesized as

y4(t) = −y2(t)+ y2(t − 0.2)

= −0.1[(1 − e−20t )+ 20te−20t ] u(t)
+ 0.1(1 − e−20(t−0.2)) u(t − 0.2)

+ 2(t − 0.2)e−20(t−0.2) u(t − 0.2) m. (2.166)

Because the height of the curb and the depth of the pothole are
both 0.1 m, no scaling was necessary in this case. For a pothole
of depthA, the multiplying coefficient (0.1) should be replaced
with A.

(b) For b = 2000 N·s/m, we have

a1 = b1 = 2000

250
= 8 s−1,

a2 = b2 = k

m
= 400 s−2,

ω0 = √
a2 = 20 rad/s,

α = a1

2
= 8

2
= 4 Np/s,

and

ξ = α

ω0
= 4

20
= 0.2.
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Module 2.2 Automobile Suspension Response Select curb, pothole, or wavy pavement. Then, select the pavement
characteristics, the automobile’s mass, and its suspension’s spring constant and damping coefficient.

For this underdamped case, the expressions in Table 2-3 lead
to

ωd = ω0

√
1 − ξ2 = 20

√
1 − 0.22 = 19.6 rad/s

and a unit-step response given by

y(t) = {[− cos 19.6t + 0.58 sin 19.6t]e−4t + 1} u(t) m.
(2.167)

For the pothole response, we have

y5(t) = −0.1 y(t)+ 0.1 y(t − 0.2)

= 0.1{[cos 19.6t − 0.58 sin 19.6t]e−4t − 1} u(t)
− 0.1{[cos(19.6(t − 0.2))

− 0.58 sin(19.6(t − 0.2))]e−4(t−0.2)

− 1} u(t − 0.2) m. (2.168)

Plots for y4(t) and y5(t) are displayed in Fig. 2-29 [see S2
for

details].

Example 2-19: Driving over Wavy Pavement

A 1,000 kg car is driven over a wavy pavement (Fig. 2-27(c))
of amplitude A3 = 5 cm and a period T0 = 0.314 s. The

suspension system has a spring constant k = 105 N/m
and a damping constant b = 104 N·s/m. Simulate the car
displacement as a function of time.

Solution: The car suspension parameter values are

b

m
= 104

250
= 40 s−1

and

k

m
= 105

250
= 400 s−2.

Using these values in Eq. (2.158) gives

d2y

dt2
+ 40

dy

dt
+ 400y = 40

dx

dt
+ 400x. (2.169)

Following the recipe outlined in Section 2-7.3, wherein we set
x(t) = ejωt and y(t) = H(ω) ejωt , Eq. (2.169) leads to the
following expression for the frequency response function H(ω):

H(ω) = 400 + j40ω

(jω)2 + j40ω + 400
= 400 + j40ω

(400 − ω2)+ j40ω
.

(2.170)
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0 0.1 0.2 0.3 0.4 0.5
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−20
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Car displacement in cm

t (s)

Pothole

y5(t): Underdamped response

y4(t): Critically damped
          response

Figure 2-29: Car’s response to driving over a 10 cm deep pothole.
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t (s)

Figure 2-30: Car’s response to driving over a wavy pavement
with a 5 cm amplitude.

The angular frequency ω of the wavy pavement is

ω0 = 2π

T0
= 2π

0.314
= 20 rad/s. (2.171)

Evaluating H(ω) at ω0 = 20 rad/s gives

H(20) = 400 + j800

(400 − 400)+ j800
= 1 − j0.5 = 1.12e−j26.6◦

.

(2.172)

Application of Eq. (2.118) with a scaling amplitude of 0.05 m
yields

y6(t) = 0.05|H(20)| cos(ω0t + θ)

= 5.6 cos(20t − 26.6◦)× 10−2 m. (2.173)

Note that the amplitude of y6(t) in Fig. 2-30 is slightly greater
than the amplitude of the pavement displacement [5.6 cm
compared with 5 cm for x(t)]. This is an example of resonance.

Exercise 2-17: Use LabVIEW Module 2.2 to compute
the wavy pavement response in Example 2-19 and shown
in Fig. 2-30.

Answer:
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Summary

Concepts

• A system is linear if it has both the scaling and additivity
properties.

• A system is time-invariant if delaying the input delays
the output by the same amount.

• A system is LTI if it is both linear and time-invariant.

• The impulse response h(t) is the response to an impulse
δ(t). The step response ystep(t) is the response to a step
function input u(t).

• If a system is LTI and its impulse response is known,

its response to any other input can be computed using
convolution, if all initial conditions are zero.

• If a system is LTI, its response to a complex exponential
time signal is another complex exponential time signal
at the same frequency.

• If a system is LTI, its response to a sinusoid is another
sinusoid at the same frequency.

• The frequency response function of a system can be
computed from the system’s LCCDE.

Mathematical and Physical Models

Computation of impulse response h(t)

h(t) = dystep

dt
, where ystep(t) = step response

Convolution

y(t) =
∞∫

−∞
x(τ) h(t − τ) dτ ,

where x(t) = input and y(t) = output

LTI Causality h(t) = 0 for t < 0

LTI Stability

∞∫
−∞

|h(t)| dt = finite

Frequency response H(ω)

For
n∑
i=0

an−i
diy

dt i
=

m∑
i=0

bm−i
dix

dt i

H(ω) =

m∑
i=0

bm−i (jω)i

n∑
i=0

an−i (jω)i

Important Terms
Provide definitions or explain the meaning of the following terms:

additivity
anticipatory
area property
associative property
attenuation coefficient
BIBO stability
bounded
causal
causality
commutative property

contrapositive
convolution
critically damped
damper force
damping coefficient
distributive property
frequency response

function
impulse response
LCCDE

LDE
linear
marginally stable
memoryless
natural undamped

frequency
overdamped
rational function
scalability
spring force

step response
superposition property
time constant
time invariant
triangle inequality
underdamped
width property
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PROBLEMS

Section 2-1 and 2-2: LTI Systems

2.1 For each of the following systems, specify whether or not
the system is: (i) linear and/or (ii) time-invariant.

(a) y(t) = 3x(t)+ 1
∗(b) y(t) = 3 sin(t) x(t)

(c) dy
dt

+ t y(t) = x(t)

(d) dy
dt

+ 2y(t) = 3 dx
dt

(e) y(t) = ∫ t
−∞ x(τ) dτ

(f) y(t) = ∫ t
0 x(τ) dτ

(g) y(t) = ∫ t+1
t−1 x(τ) dτ

2.2 For each of the following systems, specify whether or not
the system is: (i) linear and/or (ii) time-invariant.

(a) y(t) = 3x(t − 1)

(b) y(t) = t x(t)

(c) dy
dt

+ y(t − 1) = x(t)

(d) dy
dt

+ 2y(t) = ∫ t
−∞ x(τ) dτ

(e) y(t) = x(t) u(t)

(f) y(t) = ∫∞
t
x(τ ) dτ

(g) y(t) = ∫ 2t
t
x(τ ) dτ

2.3 Compute the impulse response of the LTI system whose
step response is

0 1

1

2
t

2.4 Compute the impulse response of the LTI system whose
step response is

0

1
2 t

−1

2.5 The step response of an LTI system is

0 1

1

2
t

Compute the response of the system to the following inputs.

∗
Answer(s) in Appendix F.

0 1

1(a)

2
t

0 1

1*(b)

2
t

0

1(c)
2 t

0 1

1(d)

2
t

−1

2.6 Compute the response y(t) of an initially uncharged RC
circuit to a pulse x(t) of duration ε, height 1

ε
, and area ε 1

ε
= 1

for ε � 1 (Fig. P2.6).

0
ε

1/ε
x(t)

t

x(t) y(t)C
+

_

R

+
_
+
_

Figure P2.6: Circuit and input pulse.

The power series for eax truncated to two terms is eax ≈ 1 + ax

and is valid for ax � 1. Set a = ε
RC

and substitute the result
in your answer. Show that y(t) simplifies to Eq. (2.17).

2.7 Plot the response of the RC circuit shown in Fig. P2.6 to
the input shown in Fig. P2.7, given that RC = 1 s.

2

3 MV

t (μs)

Figure P2.7: Input pulse for Problem 2.7.

2.8 For the RC circuit shown in Fig. 2-5(a), apply the
superposition principle to obtain the response y(t) to input:

(a) x1(t) in Fig. P1.23(a) (in Chapter 1)

(b) x2(t) in Fig. P1.23(b) (in Chapter 1)

(c) x3(t) in Fig. P1.23(c) (in Chapter 1)

2.9 For the RC circuit shown in Fig. 2-5(a), obtain the
response y(t) to input:
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(a) x1(t) in Fig. P1.27(a) (in Chapter 1)

(b) x2(t) in Fig. P1.27(b) (in Chapter 1)

(c) x3(t) in Fig. P1.27(c) (in Chapter 1)

Section 2-3 to 2-5: Convolution

2.10 Functions x(t) and h(t) are both rectangular pulses, as
shown in Fig. P2.10. Apply graphical convolution to determine
y(t) = x(t) ∗ h(t) given the following data.

(a) A = 1, B = 1, T1 = 2 s, T2 = 4 s

(b) A = 2, B = 1, T1 = 4 s, T2 = 2 s
∗(c) A = 1, B = 2, T1 = 4 s, T2 = 2 s.

T1
t (s)

x(t)

0
0

A

T2
t (s)

h(t)

0
0

B

Figure P2.10: Waveforms of x(t) and h(t).

2.11 Apply graphical convolution to the waveforms of x(t)
and h(t) shown in Fig. P2.11 to determine y(t) = x(t) ∗ h(t).

t (s)

h(t)

1 2

2

3 4
0 0

−1
t (s)

x(t)

2

4

0
0

Figure P2.11: Waveforms for Problem 2.11.

2.12 Functions x(t) and h(t) have the waveforms shown in
Fig. P2.12. Determine and plot y(t) = x(t) ∗ h(t) using the
following methods.

(a) Integrating the convolution analytically.

(b) Integrating the convolution graphically.

t (s)

x(t)

0
0

2 2

211
t (s)

h(t)

0
0

Figure P2.12: Waveforms for Problem 2.12.

2.13 Functions x(t) and h(t) have the waveforms shown in
Fig. P2.13. Determine and plot y(t) = x(t) ∗ h(t) using the
following methods.

(a) Integrating the convolution analytically.

(b) Integrating the convolution graphically.

t (s)

x(t)

0
0

2

1

11
t (s)

h(t)

0
0

Figure P2.13: Waveforms for Problem 2.13.

2.14 Functions x(t) and h(t) are given by

x(t) =

⎧⎪⎨
⎪⎩

0, for t < 0

sin πt, for 0 ≤ t ≤ 1 s

0, for t ≥ 1 s

h(t) = u(t).

Determine y(t) = x(t) ∗ h(t).
2.15 Compute the following convolutions without computing
any integrals.
∗(a) u(t) ∗ [δ(t)− 3δ(t − 1)+ 2δ(t − 2)]
(b) u(t) ∗ [2u(t)− 2u(t − 3)]
(c) u(t) ∗ [(t − 1) u(t − 1)]

2.16 Compute the following convolutions without computing
any integrals.

(a) δ(t − 2) ∗ [u(t)− 3u(t − 1)+ 2u(t − 2)]
(b) [δ(t)+ 2δ(t − 1)+ 3δ(t − 2)] ∗ [4δ(t)+ 5δ(t − 1)]
(c) u(t) ∗ [u(t)− u(t − 2)− 2δ(t − 2)]
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2.17 Compute the following convolutions.
∗(a) e−t u(t) ∗ e−2t u(t)

(b) e−2t u(t) ∗ e−3t u(t)

(c) e−3t u(t) ∗ e−3t u(t)

2.18 Show that the overall impulse response of the
interconnected system shown in Fig. P2.18 is h(t) = 0 !

h1(t)

h3(t)

y(t)x(t)

h2(t)

h4(t)

Figure P2.18: System of Problem 2.18.

The impulse responses of the individual systems are

• h1(t) = e−t u(t)− e−2t u(t),

• h2(t) = e−3t u(t),

• h3(t) = e−3t u(t)− e−2t u(t),

• h4(t) = e−t u(t).

2.19 Prove the following convolution properties.

(a) The convolution of two even functions is an even function.

(b) The convolution of an even function and an odd function
is an odd function.

(c) The convolution of two odd functions is an even function.

2.20 Describe in words what this cascade connection of LTI
systems does.

e−2t u(t) δ(t)+ 2u(t)
d

dt

2.21 Compute the response of an initially uncharged RC
circuit with RC = 1 to the input voltage shown in Fig. P2.21,
using the following methods.

(a) Computing the appropriate convolution

(b) Writing the input in terms of delayed and scaled step and
ramp functions

0 1

1

2
t

Figure P2.21: Input signal of Problem 2.21.

Section 2-6: Causality and Stability

2.22 Determine whether or not each of the LTI systems whose
impulse responses are specified below are (i) causal and/or (ii)
BIBO stable.

(a) h(t) = e−|t |

(b) h(t) = (1 − |t |)[u(t + 1)− u(t − 1)]
(c) h(t) = e2t u(−t)

∗(d) h(t) = e2t u(t)

(e) h(t) = cos(2t)u(t)

(f) h(t) = 1
t+1 u(t)

2.23 Determine whether or not each of the following LTI
systems is (i) causal and/or (ii) BIBO stable. If the system is
not BIBO stable, provide an example of a bounded input that
yields an unbounded output.

(a) y(t) = dx
dt

(b) y(t) = ∫ t
−∞ x(τ) dτ

(c) y(t) = ∫ t
−∞ x(τ) cos(t − τ) dτ

∗(d) y(t) = x(t + 1)

(e) y(t) = ∫ t+1
t−1 x(τ) dτ

(f) y(t) = ∫∞
t
x(τ ) e2(t−τ) dτ

2.24 This problem demonstrates the significance of absolute
integrability of the impulse response for BIBO stability of LTI
systems. An LTI system has impulse response

h(t) =
∞∑
n=1

(−1)n

n
δ(t − n).

(a) Show that h(t) is integrable:
∫∞
−∞ h(t) dt < ∞.

(b) Show that h(t) is not absolutely integrable:

∞∫
−∞

|h(t)| dt → ∞.

(c) Provide an example of a bounded input x(t) that yields an
unbounded output.

2.25 An LTI system has impulse response

h(t) = (1/ta) u(t − 1).

Show that the system is BIBO stable if a > 1.
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2.26 Prove the following statements.

(a) Parallel connections of BIBO-stable systems are BIBO
stable.

(b) Parallel connections of causal systems are causal.

2.27 Prove the following statements.

(a) Series connection of BIBO-stable systems are BIBO
stable.

(b) Series connections of causal systems are causal.

2.28 An LTI system has an impulse response given by

h(t) = 2 cos(t) u(t).

Obtain the response to input x(t) = 2 cos(t) u(t) and determine
whether or not the system is BIBO-stable.

Section 2-7: LTI Sinusoidal Response

2.29 An LTI system has the frequency response function
H(ω) = 1/(jω + 3). Compute the output if the input is

(a) x(t) = 3

(b) x(t) = 3
√

2 cos(3t)
∗(c) x(t) = 5 cos(4t)

(d) x(t) = δ(t)

(e) x(t) = u(t)

(f) x(t) = 1

2.30 An LTI system is described by the LCCDE

d2y

dt2
+ 2

dy

dt
+ 7y = 5

dx

dt
.

Its input is x(t) = cos(ωt).

(a) If ω = 2 rad/s, compute the output y(t).

(b) Find the frequency ω so that y(t) = A cos(ωt) for some
constantA > 0. That is, the input and output sinusoids are
in phase.

2.31 An LTI system has the impulse response

h(t) = e−12t u(t).

The input to the system is

x(t) = 12 + 26 cos(5t)+ 45 cos(9t)+ 80 cos(16t).

Compute the output y(t).

2.32 An LTI system has the impulse response

h(t) = 5e−t u(t)− 16e−2t u(t)+ 13e−3t u(t).

The input is x(t) = 7 cos(2t + 25◦). Compute the output y(t).

2.33 Repeat Problem 2.32 after replacing the input with
x(t) = 6 + 10 cos(t)+ 13 cos(2t).

2.34 If

cos(ωt) δ(t)− 2ae−at u(t) A cos(ωt + θ),

prove that A = 1 for any ω and any real a > 0.

2.35 If

cos(ωt) h(t) h(−t) A cos(ωt + θ),

prove that θ = 0 for any ω and any real h(t).

2.36 We observe the following input-output pair for an LTI
system:

• x(t) = 1 + 2 cos(t)+ 3 cos(2t)

• y(t) = 6 cos(t)+ 6 cos(2t)

• x(t) LTI y(t)

Determine y(t) in response to a new input

x(t) = 4 + 4 cos(t)+ 2 cos(2t).

2.37 We observe the following input-output pair for an LTI
system:

• x(t) = u(t)+ 2 cos(2t)

• y(t) = u(t)− e−2t u(t)+ √
2 cos(2t − 45◦)

• x(t) LTI y(t)

Determine y(t) in response to a new input

x(t) = 5u(t − 3)+ 3
√

2 cos(2t − 60◦).
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∗2.38 Compute the convolution of the two signals:

• x(t) = 60
√

2 cos(3t)+ 60
√

2 cos(4t)

• h(t) = e−3t u(t)− e−4t u(t)

2.39 Compute the convolution of the two signals:

• x1(t) = 60
√

2 (ej3t + ej4t )

• x2(t) = e−3t u(t)− e−4t u(t)

2.40 An inductor is modeled as an ideal inductor in
series with a resistor representing the coil resistance.
A current sine-wave generator delivers a current
i(t) = cos(500t)+ cos(900t) through the inductor, as
shown in Fig. P2.40. The voltage across the inductor is
measured to be υ(t) = 13 cos(500t + θ1)+ 15 cos(900t + θ2),
where the current is in amps and the voltage in volts and phase
angles θ1 and θ2 are unknown. Compute the inductance L and
coil resistance R.

Inductori(t)
R

L

+

_

υ(t)

i(t) = cos(500t)+ cos(900t)

Figure P2.40: Circuit for Problem 2.40.

2.41 A system is modeled as

dy

dt
+ a y(t) = b

dx

dt
+ c x(t),

where the constants a, b, and c are all unknown. The response
to input x(t) = 9 + 15 cos(12t) is output

y(t) = 5 + 13 cos(12t + 0.2487).

Determine constants a, b, and c.

2.42 Show that the circuit in Fig. P2.42 is all pass.
Specifically:

(a) Show that its gain is unity at all frequencies.

(b) Find the frequency ω0, in terms of R and C, for which if
υ1(t) = cos(ω0t) then υ2(t) = sin(ω0t). This is called a
90-degree phase shifter.

C

C
+ _R

R

+
_υ1(t) υ2(t)

Figure P2.42: Circuit for Problem 2.42.

Section 2-8: Second-Order LCCDE

2.43 An LTI system is described by the LCCDE

d2y

dt2
+ B

dy

dt
+ 25y(t) = dx

dt
+ 23x(t).

Compute the range of values of constant B so that the system
impulse response is

(a) Overdamped (non-oscillatory)

(b) Underdamped (oscillatory)
∗(c) Unstable (blows up)
If B = 26, compute the impulse response h(t).

2.44 An LTI system is described by the LCCDE

d2y

dt2
+ B

dy

dt
+ 49y(t) = 21

√
3 x(t).

Compute the range of values of constant B so that the system
impulse response is

(a) Overdamped (non-oscillatory)

(b) Underdamped (oscillatory)

(c) Unstable (blows up)
If B = 7, compute the impulse response h(t).

2.45 A series RLC circuit with L = 10 mH and C = 1 μF
is connected to an input voltage source υin(t). Output voltage
υout(t) is taken across the resistor. For what value of R is the
circuit step response critically damped?

2.46 A parallel RLC circuit withL = 10 mH andC = 1μF is
connected to an input source iin(t). The system output is current
iout(t) flowing through the inductor. For what value of R is the
circuit step response critically damped?
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Section 2-9: Car Suspension System

For each of the following four problems:

• Total truck mass is 4 metric tons (i.e., one metric ton per
wheel).

• Spring constant is 105 N/m.

• Viscous damper is 5 × 104 Ns/m.

2.47 A truck is driven over a curb 10 cm high. Compute the
truck displacement.

2.48 A truck is driven over a pothole 5 cm deep and 1 m wide
at 5 m/s. Compute the truck displacement.

2.49 A truck is driven up a ramp 5 m long with a 10% slope
at 5 m/s. Compute the truck displacement.

0 5 m
0.5 m distance

2.50 A truck is driven across a wavy pavement with a 1 cm
amplitude and 1 cm period. The truck speed is 5 m/s. Compute
the truck displacement.

2.51 For a truck with the specified mass and spring constant,
what should the viscous damper be for a critically damped
response?

LabVIEW Module 2.1

2.52 Use LabVIEW Module 2.1 to compute and display the
convolution e−t u(t)∗e−10t u(t). This is the response of an RC
circuit with RC = 1 to input e−10t u(t).

2.53 Use LabVIEW Module 2.1 with one signal given by
e−5t u(t). Choose a in e−at u(t) of the second signal so that
e−5t u(t) ∗ e−at u(t) decays to zero as rapidly as possible.
Explain your result.

2.54 In LabVIEW Module 2.1, let the two inputs be e−at u(t)
and e−bt u(t). Choose a and b so that e−at u(t) ∗ e−bt u(t)
decays to zero as rapidly as possible.

2.55 In LabVIEW Module 2.1, compute and display
e−5t u(t) ∗ e−5t u(t). Explain why the analytic plot is blank
but the numeric plot shows the correct result.

LabVIEW Module 2.2

2.56 In LabVIEW Module 2.2, for a car mass of 1500 kg,
a spring constant of 100000 N/m, and a damping coefficient
of 5000 Ns/m, compute and display the response to a curb of
amplitude 2 cm.

2.57 In LabVIEW Module 2.2, for a car mass of 1500 kg,
a spring constant of 150000 N/m, and a damping coefficient
of 5000 Ns/m, compute and display the response to a curb of
amplitude 4 cm.

2.58 In LabVIEW Module 2.2, for a car mass of 1000 kg, a
spring constant of 100000 N/m, and a curb of height 4 cm, find
the value of the damping coefficient that makes the response
decay to zero and stay there as quickly as possible.

2.59 In LabVIEW Module 2.2, for a car mass of 1000 kg, a
spring constant of 100000 N/m, and a damping coefficient of
5000 Ns/m, compute and display the response to a pothole of
depth 10 cm and width of 1 m at a speed of 4 m/s.

2.60 In LabVIEW Module 2.2, for a car mass of 1500 kg,
a spring constant of 150000 N/m, and a damping coefficient
of 5000 Ns/m, compute and display the response to a (small)
pothole of depth 0.1 cm and width of 0.1 m at a speed of 2 m/s.

2.61 In LabVIEW Module 2.2, experiment with different
values of the car mass, spring constant, damping coefficient, and
pavement period within the ranges allowed to find the values
that minimize the amplitude of the car response to the amplitude
of a wavy pavement.

2.62 In LabVIEW Module 2.2, experiment with different
values of the car mass, spring constant, damping coefficient, and
pavement period within the ranges allowed to find the values
that make the car response match the wavy pavement as much
as possible (similar amplitude and minimal phase difference).

2.63 In LabVIEW Module 2.2, for a car mass of 1500 kg,
a spring constant of 150000 N/m, and a damping coefficient
of 5000 Ns/m, find the speed that makes the smoothest ride
(minimal cusp) over a pothole of depth 10 cm and width of
1 m.
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Objectives

Learn to:

� Compute the Laplace transform of a signal.

� Apply partial fraction expansion to compute the
inverse Laplace transform.

� Perform convolution of two functions using the
Laplace transform.

� Relate system stability to the poles of the transfer
function.

� Interrelate the six different descriptions of LTI
systems.

tuptuOtupnI

x(t) y(t)

Inverse
Laplace
TransformLaplace

Transform

System

Differential Eq.
(Time Domain)

Solution
(Time Domain)

Algebraic Eq.
(s-Domain)

Solution
(s-Domain)

The beauty of the Laplace-transform technique is that
it transforms a complicated differential equation into a
straightforward algebraic equation. This chapter covers the
A-to-Z of how to transform a differential equation from the
time domain to the complex frequency s domain, solve it, and
then inverse transform the solution to the time domain.

85
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Overview

A domain transformation is a mathematical operation that
converts a set of dependent variables from their actual domain,
such as the time domain t , into a corresponding set of
dependent variables defined in another domain. In this chapter,
we explore how and why the Laplace transform is used to
convert continuous-time signals and systems from the time
domain into corresponding manifestations in a two-dimensional
complex domain called the complex frequency s. In contrast
with the answer to the how question, which consumes the
bulk of the material in this chapter, the answer to the why
question is very straightforward: mathematical expediency!
Often, signal/system scenarios are described in terms of one or
more LCCDEs. To determine the system’s output response to a
specified input excitation, the LCCDEs can be solved entirely
in the time domain. In general, however, the solution method
is mathematically demanding and cumbersome. The Laplace
transform technique offers an alternative—and mathematically
simpler—approach to arriving at the same solution. It entails a
three-step procedure.

Solution Procedure: Laplace Transform

Step 1: The LCCDE is transformed into the Laplace
domain—also known as the s-domain. The transforma-
tion converts the LCCDE into an algebraic equation.

Step 2: The s-domain algebraic equation is solved for
the variable of interest.

Step 3: The s-domain solution is transformed back to
the time domain. The solution includes both the transient
and steady-state components of the system response.

3-1 Definition of the (Unilateral)
Laplace Transform

The symbol LLL[x(t)] is a shorthand notation for “the Laplace
transform of function x(t).” Usually denoted X(s), the
unilateral Laplace transform is defined as

X(s) = LLL[x(t)] =
∞∫

0−
x(t) e−st dt, (3.1)

where s is a complex variable—with a real part σ and an
imaginary part ω—given by

s = σ + jω. (3.2)

In the interest of clarity, complex quantities are represented by
bold letters. Note that the lower limit of 0− in Eq. (3.1) means
that t = 0 is included in the interval of integration.

Given that the exponent st in the integral has to be
dimensionless, s has the unit of inverse second (which is the
same as Hz or rad/s). Moreover, since s is a complex quantity,
it has the name complex frequency.

In view of the definite limits on the integral in Eq. (3.1), the
outcome of the integration will be an expression that depends on
a single variable, namely s. The transform operation converts
a function or signal x(t) defined in the time domain into a
function X(s) defined in the s-domain. Functions x(t) and X(s)
constitute a Laplace transform pair.

Because the lower limit on the integral in Eq. (3.1) is 0−,
X(s) is called a unilateral transform (or one-sided transform),
in contrast with the bilateral transform or two-sided transform,
for which the lower limit is −∞. When we apply the Laplace
transform technique to physically realizable systems, we select
the start time for the system operation as t = 0−, making
the unilateral transform perfectly suitable for handling causal
systems with non-zero initial conditions. Should there be a
need to examine conceptual scenarios in which the signal is
everlasting (exists over −∞ < t < ∞), the bilateral transform
should be used instead. The bilateral Laplace transform is
discussed in Section 3-9.

� Because we are primarily interested in physically
realizable systems excited by causal signals, we shall
refer to the unilateral Laplace transform as simply
the Laplace transform. Moreover, unless noted to the
contrary, it will be assumed that a signal x(t) always is
multiplied by an implicit invisible step function u(t). �

3-1.1 Uniqueness Property

The uniqueness property of the Laplace transform states:

� A given x(t) has a unique Laplace transform X(s), and
vice versa. �

In symbolic form, the uniqueness property can be expressed as

x(t) X(s) (3.3a)

The two-way arrow is a shorthand notation for the combination
of the two statements

LLL[x(t)] = X(s) and LLL−1[X(s)] = x(t). (3.3b)

The first statement asserts that X(s) is the Laplace transform of
x(t), and the second statement asserts that LLL−1[X(s)], which is
the inverse Laplace transform of X(s), is x(t).
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3-1.2 Convergence Condition

Depending on the functional form of x(t), the Laplace
transform integral given by Eq. (3.1) may or may not converge
to a finite value. If it does not, the Laplace transform does not
exist. It can be shown that convergence requires that

∞∫
0−

|x(t) e−st | dt =
∞∫

0−
|x(t)||e−σ t ||e−jωt | dt

=
∞∫

0−
|x(t)|e−σ t dt < ∞ (3.4)

for some real value of σ . We used the fact that |e−jωt | = 1
for any value of ωt , and since σ is real, |e−σ t | = e−σ t . If σc
is the smallest value of σ for which the integral converges,
then the region of convergence (ROC) is σ > σc. Fortunately,
this convergence issue is somewhat esoteric to analysts and
designers of real systems because the waveforms of the
excitation sources usually do satisfy the convergence condition,
and hence, their Laplace transforms do exist. We will not
consider ROC further in this book.

3-1.3 Inverse Laplace Transform

Equation (3.1) allows us to obtain Laplace transform X(s)
corresponding to time function x(t). The inverse process,
denotedLLL−1[X(s)], allows us to perform an integration on X(s)
to obtain x(t):

x(t) = LLL−1[X(s)] = 1

2πj

σ+j∞∫
σ−j∞

X(s) est ds, (3.5)

whereσ > σc. The integration, which has to be performed in the
two-dimensional complex plane, is rather cumbersome and to
be avoided if an alternative approach is available for converting
X(s) into x(t).

Fortunately, there is an alternative approach. Recall from
our earlier discussion in the Overview section that the Laplace
transform technique entails several steps, with the final step
involving a transformation of the solution realized in the
s-domain to the time domain. Instead of applying Eq. (3.5),
we can generate a table of Laplace transform pairs for all of
the time functions commonly encountered in real systems and
then use it as a look-up table to transform the s-domain solution
to the time domain. The validity of this approach is supported
by the uniqueness property of the Laplace transform, which
guarantees a one-to-one correspondence between every x(t)

and its corresponding X(s). The details of the inverse-transform
process are covered in Section 3-3.As a result, we will not apply
the complex integral given by Eq. (3.5) in this book.

Example 3-1: Laplace Transforms of Singularity

Functions

Determine the Laplace transforms of the signal waveforms
displayed in Fig. 3-1.

Solution: (a) The step function in Fig. 3-1(a) is given by

x1(t) = A u(t − T ).

(a)

Step

Rectangle

Impulse

tT

A

x1(t)

(b)

A

t

x2(t)

T2T1

(c)

A

t

x3(t)

T

Figure 3-1: Singularity functions for Example 3-1.
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Application of Eq. (3.1) gives

X1(s) =
∞∫

0−
x1(t) e

−st dt

=
∞∫

0−
A u(t − T ) e−st dt

= A

∞∫
T

e−st dt = −A
s
e−st

∣∣∣∣
∞

T

= A

s
e−sT .

For the special case where A = 1 and T = 0 (i.e., the step
occurs at t = 0), the transform pair becomes

u(t)
1

s
. (3.6)

(b) The rectangle function in Fig. 3-1(b) can be constructed
as the sum of two step functions:

x2(t) = A[u(t − T1)− u(t − T2)],

and its Laplace transform is

X2(s) =
∞∫

0−
A[u(t − T1)− u(t − T2)]e−st dt

= A

∞∫
0−
u(t − T1) e

−st dt − A

∞∫
0−
u(t − T2) e

−st dt

= A

s
[e−sT1 − e−sT2 ].

(c) The impulse function in Fig. 3-1(c) is given by

x3(t) = A δ(t − T ),

and the corresponding Laplace transform is

X3(s) =
∞∫

0−
A δ(t − T ) e−st dt = Ae−sT ,

where we used the sampling property of the impulse function
defined by Eq. (1.29). For the special case where A = 1 and
T = 0, the Laplace transform pair simplifies to

δ(t) 1. (3.7)

Example 3-2: Laplace Transform Pairs

Obtain the Laplace transforms of (a) x1(t) = e−at u(t) and (b)
x2(t) = [cos(ω0t)] u(t).
Solution:

(a) Application of Eq. (3.1) gives

X1(s) =
∞∫

0−
e−at u(t) e−st dt = e−(s+a)t

−(s + a)

∣∣∣∣∣
∞

0

= 1

s + a
.

Hence,

e−at u(t) 1

s + a
. (3.8)

Note that setting a = 0 in Eq. (3.8) yields Eq. (3.6).
(b) We start by expressing cos(ω0t) in the form

cos(ω0t) = 1

2
[ejω0t + e−jω0t ].

Next, we take advantage of Eq. (3.8):

X2(s) = LLL[cos(ω0t) u(t)]

= 1

2
LLL[ejω0t u(t)] + 1

2
LLL[e−jω0t u(t)]

= 1

2

1

s − jω0
+ 1

2

1

s + jω0
= s

s2 + ω2
0

.

Hence,

[cos(ω0t)] u(t) s

s2 + ω2
0

. (3.9)
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Concept Question 3-1: Is the uniqueness property of the 
Laplace transform uni-directional or bi-directional? Why 
is that significant? (See        )

Concept Question 3-2: Is convergence of the Laplace 
transform integral an issue when applied to physically 
realizable systems? If not, why not? (See        )

Exercise 3-1: Determine the Laplace transform of (a)
[sin(ω0t)] u(t) and (b) r(t − T ) (see ramp function in
Chapter 1).

Answer: (a) [sin(ω0t)] u(t) ω0

s2 + ω2
0

,

(b) r(t − T )
e−sT

s2 . (See S2 )

Exercise 3-2: Determine the Laplace transform of the
causal sawtooth waveform shown in Fig. E3-2 (compare
with Example 1-4).

t (s)

x(t)

10 V

...
0

2 4 6
Figure E3-2

Answer:

X(s) = X1(s)
∞∑
n=0

e−2ns = X1(s)
1 − e−2s ,

where

X1(s) =
2∫

0

(5t)e−st dt = 5

s2 [1 − (2s + 1)e−2s].

Alternatively, we can compute X1(s) by applying the
answer to part (b) of Exercise 3-1 to the expression

developed in Example 1-4 for the first cycle of the
sawtooth:

x1(t) = 5r(t)− 5r(t − 2)− 10u(t − 2)

and

X1(s) = LLL[x1(t)]
= 5LLL[r(t)] − 5LLL[r(t − 2)] − 10LLL[u(t − 2)]

= 5

s2 − 5

s2 e
−2s − 10

s
e−2s

= 5

s2 [1 − (2s + 1)e−2s].

In general, if x(t) is a periodic function of period T , the
Laplace transform of x(t) u(t) is

X(s) = X1(s)
1 − e−T s ,

where X1(s) is the Laplace transform of the cycle starting
at t = 0. (See S2 )

3-2 Poles and Zeros

The Laplace-transform operation defined by Eq. (3.1) converts a
one-dimensional function x(t) into a two-dimensional function
X(s), with s = σ + jω. The s-domain is also known as the
s-plane. The transform pairs of the four functions we examined
thus far are

x1(t) = u(t) X1(s) = 1

s
, (3.10a)

x2(t) = δ(t) X2(s) = 1, (3.10b)

x3(t) = e−at u(t) X3(s) = 1

s + a
, (3.10c)

and

x4(t) = [cos(ω0t)] u(t) X4(s) = s

s2 + ω2
0

. (3.10d)

In the expression for x4(t), we added a subscript to the angular
frequency to distinguish it from the variableω, representing the
imaginary axis in the s-plane.

In general, X(s) is a rational function of the form

X(s) = N(s)
D(s)

,
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where N(s) is a numerator polynomial and D(s) is a
denominator polynomial. For X4(s), for example, N(s) = s and
D(s) = s2 + ω2

0.

� The zeros of X(s) are the values of s that render
N(s) = 0, which are also called the roots of N(s).
Similarly, the poles of X(s) are the roots of its
denominator D(s). �

The Laplace transform of the unit step function, X1(s), has no
zeros and only one pole, namely, s = 0. In Fig. 3-2(a), the origin
in the s-plane is marked with an “ ,” indicating that X1(s) has
a pole at that location. To distinguish a zero from a pole, a zero
is marked with a small circle “ .”

Laplace transform X2(s) = 1 has no poles and no zeros, and
X4(s), corresponding to cos(ω0t) u(t), has a single zero and
two poles (Fig. 3-2(b)). Given that its numerator is simply
N4(s) = s, X4(s) has its single zero at the origin s = 0,

(a) X1(s) = 1/s has a single pole

(s)
Pole @ origin 

s-plane

[s]

(b) X4(s) = s / [(s − jω0)(s + jω0)]

(s)
Zero @ origin 

Pole

Pole

s-plane

[s]

jω0

−jω0

Figure 3-2: Positions of poles and zeros in the s-plane.

corresponding to coordinates (σ, ω) = (0, 0) in the s-plane. To
determine the locations of its two poles, we need to compute
the roots of

D4(s) = s2 + ω2
0 = 0,

which leads to

s1 = −jω0 and s2 = jω0.

Hence, Eq. (3.10d) can be recast as

X4(s) = s
(s − jω0)(s + jω0)

.

Because the real parts of s1 and s2 are zero, the poles of X4(s)
are located in the s-plane at (0, jω0) and (0,−jω0).

In general, identifying the locations of the poles and zeros of
a function X(s) can be greatly facilitated if X(s) can be cast in
the form

X(s) = N(s)
D(s)

= A(s − z1)(s − z2) . . . (s − zm)
(s − p1)(s − p2) . . . (s − pn)

,

where the zeros z1 to zm are the roots of N(s) = 0 and the
poles p1 to pn are the roots of D(s) = 0. As we will see in
later chapters, the specific locations of poles and zeros in the
s-plane carry great significance when designing frequency
filters or characterizing their performance.

Occasionally, X(s) may have repeated poles or zeros, such
as z1 = z2 or p1 = p2. Multiple zeros are marked by that many
concentric circles, such as “���” for two identical zeros, and
multiple poles are marked by overlapping Xs “××××××.”

Concept Question 3-3: How does one determine the
poles and zeros of a rational function X(s)? (See        )

Exercise 3-3: Determine the poles and zeros of
X(s) = (s + a)/[(s + a)2 + ω2

0].
Answer: z = (−a + j0), p1 = (−a − jω0), and
p2 = (−a + jω0). (See S2 )

3-3 Properties of the Laplace
Transform

The Laplace transform has a number of useful universal
properties that apply to any function x(t)—greatly facilitating
the process of transforming a system from the t-domain to the
s-domain. To demonstrate what we mean by a universal
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property, we consider the linearity property of the Laplace
transform, which states that if

x1(t) X1(s)

and
x2(t) X2(s),

then for any linear combination of x1(t) and x2(t),

K1 x1(t)+K2 x2(t) K1 X1(s)+K2 X2(s),

(linearity property)

(3.11)

where K1 and K2 are constant coefficients. Thus, the Laplace
transform obeys the linearity property and the principle of
superposition holds.

Another example of a universal property of the Laplace
transform is the time-scaling property, which states that if x(t)
and X(s) constitute a Laplace transform pair,

x(t) X(s),

then the transform of the time-scaled signal x(at) is

x(at)
1

a
X
( s
a

)
, a > 0.

(time-scaling property)

(3.12)

� A universal property of the Laplace transform applies
to any x(t), regardless of its specific functional form. �

This section concludes with Table 3-1, featuring 13 universal
properties of the Laplace transform and to which we will
be making frequent reference throughout this chapter. Some
of these properties are intuitively obvious, while others may
require some elaboration. Proof of the time scaling property
follows next.

3-3.1 Time Scaling

The time scaling property given by Eq. (3.12) states that
shrinking the time axis by a factor a corresponds to stretching
the s-domain and the amplitude of X(s) by the same factor, and
vice-versa. Note that a > 0.

To prove Eq. (3.12), we start with the standard definition of
the Laplace transform given by Eq. (3.1):

LLL[x(at)] =
∞∫

0−
x(at) e−st dt. (3.13)

In the integral, if we set t ′ = at and dt = 1
a
dt ′, we have

LLL[x(at)] = 1

a

∞∫
0−
x(t ′) e−(s/a)t ′ dt ′

= 1

a

∞∫
0−
x(t ′) e−s′t ′ dt ′ with s′ = s

a
. (3.14)

The definite integral is identical in form with the Laplace
transform definition given by Eq. (3.1), except that the dummy
variable is t ′, instead of t , and the coefficient of the exponent is
s′ = s/a, instead of just s. Hence,

LLL[x(at)] = 1

a
X(s′) = 1

a
X
( s
a

)
, a > 0. (3.15)

3-3.2 Time Shift

If t is shifted by T along the time axis with T ≥ 0, then

x(t − T ) u(t − T ) e−T s X(s), T ≥ 0.

(time-shift property)

(3.16)

The validity of this property is demonstrated as follows:

LLL[x(t − T ) u(t − T )] =
∞∫

0−
x(t − T ) u(t − T ) e−st dt

=
∞∫
T

x(t − T ) e−st dt

=
∞∫

0−
x(t ′) e−s(t ′+T ) dt ′

= e−T s

∞∫
0−
x(t ′) e−st ′ dt ′

= e−T s X(s), (3.17)

where we made the substitutions t − T = t ′ and dt = dt ′ and
then applied the definition for X(s) given by Eq. (3.1).

To illustrate the utility of the time-shift property, we consider
the cosine function of Example 3-2, where it was shown that

cos(ω0t) u(t)
s

s2 + ω2
0

. (3.18)
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Application of Eq. (3.16) yields

cos[ω0(t − T )] u(t − T ) e−T s s

s2 + ω2
0

. (3.19)

Had we analyzed a linear circuit (or system) driven by a
sinusoidal source that started at t = 0 and then wanted to
reanalyze it anew, but we wanted to delay both the cosine
function and the start time by T , Eq. (3.19) provides an
expedient approach to obtaining the transform of the delayed
cosine function.

Exercise 3-4: Determine, for T ≥ 0,

LLL{[sinω0(t − T )] u(t − T )}.

Answer: e−T s ω0

s2 + ω2
0

. (See S2 )

3-3.3 Frequency Shift

According to the time-shift property, if t is replaced with
(t −T ) in the time domain, X(s) gets multiplied by e−T s in the
s-domain. Within a (−) sign, the converse is also true: if s is
replaced with (s + a) in the s-domain, x(t) gets multiplied by
e−at in the time domain. Thus,

e−at x(t) X(s + a).

(frequency shift property)

(3.20)

Proof of Eq. (3.20) is part of Exercise 3-5.

Concept Question 3-4: According to the time scaling
property of the Laplace transform, “shrinking the time
axis corresponds to stretching the s-domain.” What does 
that mean? (See        )

Concept Question 3-5: Explain the similarities and 
differences between the time-shift and frequency-shift 
properties of the Laplace transform. (See        )

Exercise 3-5: (a) Prove Eq. (3.20) and (b) apply it to
determine LLL[e−at cos(ω0t) u(t)].
Answer: (a) (See S2 ), and

(b) e−at cos(ω0t) u(t)
s + a

(s + a)2 + ω2
0

. (See S2 )

3-3.4 Time Differentiation

Differentiating x(t) in the time domain is equivalent to (a)
multiplying X(s) by s in the s-domain and then (b) subtracting
x(0−) from s X(s):

x′ = dx

dt
s X(s)− x(0−).

(time-differentiation property)

(3.21)

To verify Eq. (3.21), we start with the standard definition for
the Laplace transform:

LLL[x′] =
∞∫

0−

dx

dt
e−st dt. (3.22)

Integration by parts with

u = e−st , du = −se−st dt,

dυ =
(
dx

dt

)
dt, and υ = x

gives

LLL[x′] = uυ
∣∣∞
0− −

∞∫
0−
υ du

= e−st x(t)
∣∣∞
0− −

∞∫
0−

−s x(t) e−st dt

= −x(0−)+ s X(s), (3.23)

which is equivalent to Eq. (3.21).
Higher derivatives can be obtained by repeating the

application of Eq. (3.21). For the second derivative of x(t),
we have

x′′ = d2x

dt2
s2 X(s)− s x(0−)− x′(0−),

(second-derivative property)

(3.24)

where x′(0−) is the derivative of x(t) evaluated at t = 0−.
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Example 3-3: Second Derivative Property

Verify the second-derivative property for

x(t) = sin(ω0t) u(t)

by (a) applying the transform equation to x′′(t) and
(b) comparing it with the result obtained via Eq. (3.24).

Solution: (a) The first derivative of x(t) is

x′(t) = d

dt
[sin(ω0t) u(t)]

= ω0 cos(ω0t) u(t)+ sin(ω0t)
d

dt
[u(t)]

= ω0 cos(ω0t) u(t)+ sin(ω0t) δ(t)

= ω0 cos(ω0t) u(t)+ 0.

The second term is zero because

sin(ω0t) δ(t) = sin(0) δ(t) = 0.

The second derivative of x(t) is

x′′(t) = d

dt
[x′(t)] = d

dt
[ω0 cos(ω0t) u(t)]

= −ω2
0 sin(ω0t) u(t)+ ω0 cos(ω0t) δ(t)

= −ω2
0 sin(ω0t) u(t)+ ω0 δ(t).

From Exercise 3-1,

LLL[sin(ω0t) u(t)] = ω0

s2 + ω2
0

,

and from Eq. (3.7),

LLL[δ(t)] = 1.

Hence, the Laplace transform of x′′(t) is

LLL[x′′] = −ω2
0

(
ω0

s2 + ω2
0

)
+ ω0 = ω0s2

s2 + ω2
0

.

(b) Application of Eq. (3.24) gives

LLL[x′′] = s2 X(s)− sx(0−)− x′(0−).

For x(t) = sin(ω0t) u(t), we have

X(s) = ω0

s2 + ω2
0

,

x(0−) = sin(0−) u(0−) = 0,

and

x′(0−) = ω0 cos(ω0t) u(t)|t=0− = ω0 u(0
−) = 0,

because u(0−) = 0.
Hence,

LLL[x′′] = s2

(
ω0

s2 + ω2
0

)
= ω0s2

s2 + ω2
0

,

which agrees with the result of part (a).

3-3.5 Time Integration

Integration of x(t) in the time domain is equivalent to dividing
X(s) by s in the s-domain:

t∫
0

x(t ′) dt ′ 1

s
X(s).

(time-integration property)

(3.25)

Application of the Laplace transform definition gives

LLL
⎡
⎣ t∫

0−
x(t ′) dt ′

⎤
⎦ =

∞∫
0−

⎡
⎣ t∫

0−
x(t ′) dt ′

⎤
⎦ e−st dt. (3.26)

Integration by parts with

u =
t∫

0−
x(t ′) dt ′, du = x(t) dt,

dυ = e−st dt, and υ = −e
−st

s
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leads to

LLL
⎡
⎣ t∫

0−
x(t ′) dt ′

⎤
⎦

= uυ
∣∣∞
0− −

∞∫
0−
υ du

=
⎡
⎣−e

−st

s

t∫
0−
x(t ′) dt ′

⎤
⎦
∣∣∣∣∣∣
∞

0−

+ 1

s

∞∫
0−
x(t) e−st dt = 1

s
X(s).

(3.27)

Both limits on the first term on the right-hand side yield zero
values.

For example, since

δ(t) 1,

it follows that

u(t) =
t∫

0−
δ(t ′) dt ′ 1

s

and

r(t) =
t∫

0−
u(t ′) dt ′ 1

s2 .

3-3.6 Initial- and Final-Value Theorems

The relationship between x(t) and X(s) is such that the
initial value x(0+) and the final value x(∞) of x(t) can be
determined directly from the expression of X(s)—provided
certain conditions are satisfied (as discussed later in this
subsection).

Consider the derivative property represented by Eq. (3.23) as

LLL[x′] =
∞∫

0−

dx

dt
e−st dt = s X(s)− x(0−). (3.28)

If we take the limit as s → ∞ while recognizing that x(0−) is
independent of s, we get

lim
s→∞

⎡
⎣ ∞∫

0−

dx

dt
e−st dt

⎤
⎦ = lim

s→∞[s X(s)] − x(0−). (3.29)

The integral on the left-hand side can be split into two integrals:
one over the time segment (0−, 0+), for which e−st = 1, and
another over the segment (0+,∞). Thus,

lim
s→∞

⎡
⎣ ∞∫

0−

dx

dt
e−st dt

⎤
⎦

= lim
s→∞

⎡
⎢⎣

0+∫
0−

dx

dt
dt +

∞∫
0+

dx

dt
e−st dt

⎤
⎥⎦ = x(0+)− x(0−).

(3.30)

As s → ∞, the exponential function e−st causes the integrand
of the last term to vanish. Equating Eqs. (3.29) and (3.30) leads
to

x(0+) = lim
s→∞ s X(s),

(initial-value theorem)
(3.31)

which is known as the initial-value theorem.
A similar treatment in which s is made to approach 0 (instead

of ∞) in Eq. (3.29) leads to the final-value theorem:

x(∞) = lim
s→0

s X(s).

(final-value theorem)
(3.32)

We should note that Eq. (3.32) is useful for determining
x(∞), so long as x(∞) exists. Otherwise, application of
Eq. (3.32) may lead to an erroneous result. Consider, for
example, x(t) = cos(ω0t) u(t), which does not have a unique
value as t → ∞.Yet, application of Eq. (3.32) to Eq. (3.9) leads
to x(∞) = 0, which is incorrect.

Example 3-4: Initial and Final Values

Determine the initial and final values of a function x(t) whose
Laplace transform is given by

X(s) = 25s(s + 3)

(s + 1)(s2 + 2s + 36)
.

Solution: Application of Eq. (3.31) gives

x(0+) = lim
s→∞ s X(s) = lim

s→∞
25s2(s + 3)

(s + 1)(s2 + 2s + 36)
.
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To avoid the problem of dealing with ∞, it is often more
convenient to first apply the substitution s = 1/u, rearrange
the function, and then find the limit as u → 0. That is,

x(0+) = lim
u→0

25(1/u2)(1/u + 3)

(1/u + 1)(1/u2 + 2/u + 36)

= lim
u→0

25(1 + 3u)
(1 + u)(1 + 2u + 36u2)

= 25(1 + 0)

(1 + 0)(1 + 0 + 0)
= 25.

To determine x(∞), we apply Eq. (3.32):

x(∞) = lim
s→0

s X(s) = lim
s→0

25s2(s + 3)

(s + 1)(s2 + 2s + 36)
= 0.

Exercise 3-6: Determine the initial and final values of
x(t) if its Laplace transform is given by

X(s) = s2 + 6s + 18

s(s + 3)2
.

Answer: x(0+) = 1, x(∞) = 2. (See S2 )

3-3.7 Frequency Differentiation

Given the definition of the Laplace transform, namely,

X(s) = LLL[x(t)] =
∞∫

0−
x(t) e−st dt, (3.33)

if we take the derivative with respect to s on both sides, we have

d X(s)
ds

=
∞∫

0−

d

ds
[x(t) e−st ] dt

=
∞∫

0−
[−t x(t)]e−st dt = LLL[−t x(t)], (3.34)

where we recognize the integral as the Laplace transform of
the function [−t x(t)]. Rearranging Eq. (3.34) provides the
frequency differentiation relation:

t x(t) − d X(s)
ds

= −X′(s),

(frequency differentiation property)

(3.35)

which states that multiplication of x(t) by −t in the time domain
is equivalent to differentiating X(s) in the s-domain.

Example 3-5: Applying the Frequency Differentiation

Property

Given that

X(s) = LLL[e−at u(t)] = 1

s + a
,

apply Eq. (3.35) to obtain the Laplace transform of te−at u(t).

Solution:

LLL[te−at u(t)] = − d

ds
X(s) = − d

ds

[
1

s + a

]
= 1

(s + a)2
.

3-3.8 Frequency Integration

Integrating both sides of Eq. (3.33) from s to ∞ gives

∞∫
s

X(s′) ds′ =
∞∫

s

⎡
⎣ ∞∫

0−
x(t) e−s′t dt

⎤
⎦ ds′. (3.36)

Since t and s′ are independent variables, we can interchange
the order of the integration on the right-hand side of Eq. (3.36),

∞∫
s

X(s′) ds′ =
∞∫

0−

⎡
⎣ ∞∫

s

x(t) e−s′t ds′
⎤
⎦ dt

=
∞∫

0−

[
x(t)

−t e
−s′t

∣∣∣∣
∞

s

]
dt

=
∞∫

0−

[
x(t)

t

]
e−st dt = LLL

[
x(t)

t

]
. (3.37)

This frequency integration property can be expressed as

x(t)

t

∞∫
s

X(s′) ds′.

(frequency integration property)

(3.38)

Table 3-1 provides a summary of the principal properties
of the Laplace transform. Entry #11 in Table 3-1 is proved in
Section 3-6 below. For easy reference, Table 3-2 contains a list
of Laplace transform pairs that we are likely to encounter in
future sections.
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Table 3-1: Properties of the Laplace transform for causal functions; i.e., x(t) = 0 for t < 0.

Property x(t) X(s) = LLL[x(t)]
1. Multiplication by constant K x(t) K X(s)

2. Linearity K1 x1(t)+K2 x2(t) K1 X1(s)+K2 X2(s)

3. Time scaling x(at), a > 0
1

a
X
( s
a

)
4. Time shift x(t − T ) u(t − T ) e−T s X(s)

5. Frequency shift e−at x(t) X(s + a)

6. Time 1st derivative x′ = dx

dt
s X(s)− x(0−)

7. Time 2nd derivative x′′ = d2x

dt2
s2X(s)− sx(0−)

− x′(0−)

8. Time integral

t∫
0−
x(t ′) dt ′ 1

s
X(s)

9. Frequency derivative t x(t) − d

ds
X(s) = −X′(s)

10. Frequency integral
x(t)

t

∞∫
s

X(s′) ds′

11. Initial value x(0+) = lim
s→∞ s X(s)

12. Final value lim
t→∞ x(t) = x(∞) = lim

s→0
s X(s)

13. Convolution x1(t) ∗ x2(t) X1(s) X2(s)

Example 3-6: Laplace Transform

Obtain the Laplace transform of

x(t) = t2e−3t cos(4t) u(t).

Solution: The given function is a product of three functions.
We start with the cosine function which we will call x1(t):

x1(t) = cos(4t) u(t). (3.39)

According to entry #11 in Table 3-2, the corresponding Laplace
transform is

X1(s) = s
s2 + 16

. (3.40)

Next we define

x2(t) = e−3t cos(4t) u(t) = e−3t x1(t), (3.41)

and we apply the frequency shift property (entry #5 inTable 3-1)
to obtain

X2(s) = X1(s + 3) = s + 3

(s + 3)2 + 16
, (3.42)

where we replaced s with (s + 3) everywhere in the expression
of Eq. (3.40). Finally, we define

x(t) = t2 x2(t) = t2e−3t cos(4t) u(t), (3.43)
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Table 3-2: Examples of Laplace transform pairs. Note that x(t) = 0 for t < 0− and T ≥ 0.

Laplace Transform Pairs

x(t) X(s) = LLL[x(t)]
1 δ(t) 1

1a δ(t − T ) e−T s

2 u(t)
1

s

2a u(t − T )
e−T s

s

3 e−at u(t) 1

s + a

3a e−a(t−T ) u(t − T )
e−T s

s + a

4 t u(t)
1

s2

4a (t − T ) u(t − T )
e−T s

s2

5 t2 u(t)
2

s3

6 te−at u(t) 1

(s + a)2

7 t2e−at u(t) 2

(s + a)3

8 tn−1e−at u(t) (n− 1)!
(s + a)n

9 sin(ω0t) u(t)
ω0

s2 + ω2
0

10 sin(ω0t + θ) u(t)
s sin θ + ω0 cos θ

s2 + ω2
0

11 cos(ω0t) u(t)
s

s2 + ω2
0

12 cos(ω0t + θ) u(t)
s cos θ − ω0 sin θ

s2 + ω2
0

13 e−at sin(ω0t) u(t)
ω0

(s + a)2 + ω2
0

14 e−at cos(ω0t) u(t)
s + a

(s + a)2 + ω2
0

15 2e−at cos(bt − θ) u(t)
ejθ

s + a + jb
+ e−jθ

s + a − jb

15a e−at cos(bt − θ) u(t)
(s + a) cos θ + b sin θ

(s + a)2 + b2

16
2tn−1

(n− 1)! e
−at cos(bt − θ) u(t)

ejθ

(s + a + jb)n
+ e−jθ
(s + a − jb)n
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υs(t) = V0 u(t) L

R

V0 = 1.6 V C = 0.1 F
0.4 H

i

t = 0+
_

4 Ω

υc(0−) = 0.4 V

υcυs

+

_

+
_

Figure 3-3: RLC circuit. The dc source, in combination with
the switch, constitutes an input excitation υs(t) = Vo u(t).

and we apply the frequency derivative property (entry #9 in
Table 3-1), twice:

X(s) = X′′
2(s) = d2

ds2

[
s + 3

(s + 3)2 + 16

]

= 2(s + 3)[(s + 3)2 − 48]
[(s + 3)2 + 16]3 . (3.44)

Exercise 3-7: Obtain the Laplace transform of
(a) x1(t) = 2(2 − e−t ) u(t) and
(b) x2(t) = e−3t cos(2t + 30◦) u(t).

Answer: (a) X1(s) = 2s + 4

s(s + 1)
,

(b) X2(s) = 0.866s + 1.6

s2 + 6s + 13
. (See S2 )

3-4 Circuit Analysis Example
Having learned how to transform a time-domain signal into its
Laplace transform counterpart, we will now demonstrate the
utility of the Laplace transform by analyzing a simple electric
circuit. Figure 3-3 displays a series RLC circuit connected to a
1.6 V dc voltage source via a single-pole, single-throw (SPST)
switch that closes at t = 0. Prior to t = 0, the RLC circuit had
been connected to another input source, as a result of which
the capacitor continued to hold electric charge up until t = 0−
(immediately before closing the switch). The corresponding
voltage across the capacitor was υc(0−) = 0.4 V. Our objective
is to determine i(t) for t ≥ 0.

Step 1: Apply Kirchhoff’s voltage law (KVL) to obtain an
integrodifferential equation for the current i(t) for t ≥ 0.

The dc source, in combination with the switch, constitutes
an input excitation (signal) given by

υs(t) = Vo u(t). (3.45)

For the loop, application of KVL for t ≥ 0− gives

υR + υC + υL = υs,

where

υR = R i(t),

υC = 1

C

t∫
0−
i(t ′) dt ′ + υC(0

−),

υL = L
di(t)

dt
,

and

υs = V0 u(t).

Substitution of these expressions in the KVL equation gives

R i(t)+
⎡
⎣ 1

C

t∫
0−
i(t ′) dt ′ + υC(0

−)

⎤
⎦+ L

di(t)

dt
= Vo u(t).

(3.46)

Step 2: Define I(s) as the Laplace transform corresponding
to the unknown current i(t), obtain s-domain equivalents for
each term in Eq. (3.46), and then apply the linearity property of
the Laplace transform to transform the entire integrodifferential
equation into the s-domain.

The four terms of Eq. (3.46) have the following Laplace
transform pairs:

R i(t) R I(s)

1

C

t∫
0−
i(t ′) dt ′ + υC(0

−) 1

C

[
I(s)

s

]
+ υC(0−)

s

(time integral property)

L
di(t)

dt
L[s I(s)− i(0−)]

(time derivative property)

and

Vo u(t)
Vo

s
(transform of step function).
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Hence, the s-domain equivalent of Eq. (3.46) is

R I(s)+ I(s)
Cs

+ υC(0−)
s

+ Ls I(s) = Vo

s
, (3.47)

where we have set i(0−) = 0, because no current could
have been flowing through the loop prior to closing the
switch. Equation (3.47) is the s-domain equivalent of the
integrodifferential equation (3.46). Whereas Eq. (3.46) has
time-derivatives and integrals, Eq. (3.47) is a simple algebraic
equation in s.

� The beauty of the Laplace transform is that it converts
an integrodifferential equation in the time domain into a
straightforward algebraic equation in the s-domain. �

Solving for I(s) and then replacing R, L, C, Vo, and υC(0−)
with their numerical values leads to

I(s) = Vo − υC(0−)

L

[
s2 + R

L
s + 1

LC

] = 1.6 − 0.4

0.4

(
s2 + 4

0.4
s + 1

0.4 × 0.1

)

= 3

s2 + 10s + 25
= 3

(s + 5)2
.

(3.48)

According to entry #6 in Table 3-2, we have

LLL−1
[

1

(s + a)2

]
= te−at u(t).

Hence,

i(t) = 3te−5t u(t). (3.49)

In this particular example, the expression for I(s) given by
Eq. (3.48) matches one of the entries available in Table 3-2,
but what should we do if it does not? We have two options.

(1) We can apply the inverse Laplace transform relation
given by Eq. (3.5), which in general involves a rather
cumbersome contour integration.

(2) We can apply the partial-fraction-expansion method to
rearrange the expression for I(s) into a sum of terms, each
of which has an appropriate match in Table 3-2. This latter
approach is the subject of the next section.

3-5 Partial Fraction Expansion

Let us assume that, after transforming the integrodifferential
equation associated with a system of interest to the s-domain and
then solving it for the output signal whose behavior we wish to
examine, we end up with an expression X(s). Our next step is to
inverse transform X(s) to the time domain, thereby completing
our solution. The degree of mathematical difficulty associated
with the implementation of the inverse transformation depends
on the mathematical form of X(s).

Consider for example the expression

X(s) = 4

s + 2
+ 6

(s + 5)2
+ 8

s2 + 4s + 5
. (3.50)

The inverse transform, x(t), is given by

x(t) = LLL−1[X(s)]

= LLL−1
[

4

s + 2

]
+ LLL−1

[
6

(s + 5)2

]

+ LLL−1
[

8

s2 + 4s + 5

]
. (3.51)

By comparison with the entries in Table 3-2, we note the
following:

(a) The first term in Eq. (3.51), 4/(s + 2), is functionally the
same as entry #3 in Table 3-2 with a = 2. Hence,

LLL−1
[

4

s + 2

]
= 4e−2t u(t). (3.52a)

(b) The second term, 6/(s + 5)2, is functionally the same as
entry #6 in Table 3-2 with a = 5. Hence,

LLL−1
[

6

(s + 5)2

]
= 6te−5t u(t). (3.52b)

(c) The third term 8/(s2 +4s+5), is similar (but not identical)
in form to entry #13 in Table 3-2. However, it can be
rearranged to assume the proper form:

8

s2 + 4s + 5
= 8

(s + 2)2 + 1
.

Consequently,

LLL−1
[

8

(s + 2)2 + 1

]
= 8e−2t sin t u(t). (3.52c)
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Combining the results represented by Eqs. (3.52a–c) gives

x(t) = [4e−2t + 6te−5t + 8e−2t sin t] u(t). (3.53)

3-5.1 Proper Form

The preceding example demonstrated that the implementation
of the inverse Laplace transform is a rather painless process,
as long as the expression for X(s) is composed of a series of
terms similar to those in Eq. (3.50). More often than not, X(s) is
not in the proper form, so we will need to reconfigure it before
we can apply the inverse transform. At the most general level,
X(s) is given by the ratio of a polynomial numerator N(s) to a
polynomial denominator D(s):

X(s) = N(s)
D(s)

= bmsm + bm−1sm−1 + · · · + b1s + b0

ansn + an−1sn−1 + · · · + a1s + a0
,

(3.54a)
where all of the ai and bj coefficients are real and the powers
m and n are positive integers.

� The roots of N(s), namely the values of s at which
N(s) = 0, are called the zeros of X(s), and we designate
them {zi , i = 1, 2, . . . , m}. A polynomial of order m
hasm roots. Similarly, the roots of D(s) = 0 are called the
poles of X(s) and are designated {pi , i = 1, 2, . . . , n}. �

Function X(s) can be expressed in terms of its poles and zeros
as

X(s) = C
(s − z1)(s − z2) . . . (s − zm)
(s − p1)(s − p2) . . . (s − pn)

= C

∏m
i=1(s − zi )∏n
i=1(s − pi )

,

(3.54b)
where C is a constant.

An important attribute of X(s) is the degree of its numerator,
m, relative to that of its denominator, n.

(a) If m < n, X(s) is considered a strictly proper rational
function, in which case it can be expanded into a sum of
partial fractions by applying the applicable recipe from
among those outlined in Subsections 3-5.2 through 3-5.5
(to follow).

(b) Ifm = n, X(s) is called a proper rational function, and if
m > n, it is called an improper rational function. In both
cases, a preparatory step is required prior to the application
of partial fraction expansion.

Case 1: m = n

Consider the function

X1(s) = 2s2 + 8s + 6

s2 + 2s + 1
.

Since m = n = 2, this is a proper function, but not a strictly
proper function. To convert it to the latter, we use the following
steps:

Step 1: Factor out a constant equal to the ratio of the
coefficient of the highest term in the numerator to the coefficient
of the highest term in the denominator, which in the present case
is 2/1 = 2.

Step 2: Apply the division relationship

N(s)
D(s)

= 1 + N(s)− D(s)
D(s)

. (3.55)

For X1(s), this two-step process leads to

X1(s) = 2

(
s2 + 4s + 3

s2 + 2s + 1

)
(step 1)

= 2

[
1 + (s2 + 4s + 3)− (s2 + 2s + 1)

(s2 + 2s + 1)

]
(step 2)

= 2

[
1 + 2s + 2

s2 + 2s + 1

]

= 2 + 4s + 4

s2 + 2s + 1
.︸ ︷︷ ︸

strictly proper function

Case 2: m > n

Function

X2(s) = 6s3 + 4s2 + 8s + 6

s2 + 2s + 1

is an improper rational function. To convert X2(s) into a form
in which the highest power terms are s3 in both the numerator
and denominator, we factor out 6s:

X2(s) = 6s
[

s3 + (2/3)s2 + (8/6)s + 1

s3 + 2s2 + s

]
.
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Next, we apply the division relationship, which yields

X2(s) = 6s
[

1 + [s3 + (2/3)s2 + (8/6)s + 1] − [s3 + 2s2 + s]
s3 + 2s2 + s

]

= 6s
[

1 + −(4/3)s2 + (2/6)s + 1

s3 + 2s2 + s

]

= 6s + (−8s2 + 2s + 6)

s2 + 2s + 1︸ ︷︷ ︸
proper function

.

The second term of X2(s) is a proper function. We can convert it
into a strictly proper function by following the recipe in Case 1.
The final outcome is

X2(s) = (6s − 8)+ 18s + 14

s2 + 2s + 1
.︸ ︷︷ ︸

strictly proper function

3-5.2 Distinct Real Poles

Consider the s-domain function

X(s) = s2 − 4s + 3

s(s + 1)(s + 3)
. (3.56)

The poles of X(s) are p1 = 0, p2 = −1, and p3 = −3. All
three poles are real and distinct. By distinct we mean that no
two or more poles are the same. [In (s + 4)2, for example, the
pole p = −4 occurs twice, and therefore, it is not distinct.] The
highest power of s in the numerator of Eq. (3.56) is m = 2,
and the highest power of s in the denominator is n = 3. Hence,
X(s) is a strictly proper rational function becausem < n. Given
these attributes, X(s) can be decomposed into partial fractions
corresponding to the three factors in the denominator of X(s):

X(s) = A1

s
+ A2

(s + 1)
+ A3

(s + 3)
, (3.57a)

where A1 to A3 are expansion coefficients, sometimes called
residues (to be determined shortly). Equating the two functional
forms of X(s), we have

A1

s
+ A2

(s + 1)
+ A3

(s + 3)
= s2 − 4s + 3

s(s + 1)(s + 3)
. (3.57b)

Associated with each expansion coefficient is a pole factor: s,
(s+1), and (s+3) are the pole factors associated with expansion
coefficients A1, A2, and A3, respectively. To determine the
value of any expansion coefficient we multiply both sides of

Eq. (3.57b) by the pole factor of that expansion coefficient, and
then we evaluate them at s = pole value of that pole factor. The
procedure is called the residue method.

To determine A2, for example, we multiply both sides of
Eq. (3.57b) by (s + 1), we reduce the expressions, and then we
evaluate them at s = −1:{

(s + 1)

[
A1

s
+ A2

(s + 1)
+ A3

(s + 3)

]}∣∣∣∣
s=−1

=
[
(s + 1)(s2 − 4s + 3)

s(s + 1)(s + 3)

]∣∣∣∣
s=−1

. (3.58)

After canceling factors of (s + 1), the expression becomes

[
A1(s + 1)

s
+ A2 + A3(s + 1)

(s + 3)

]∣∣∣∣
s=−1

=
[
(s2 − 4s + 3)

s(s + 3)

]∣∣∣∣
s=−1

. (3.59)

We note that (a) the presence of (s + 1) in the numerators of
terms 1 and 3 on the left-hand side will force those terms to
go to zero when evaluated at s = −1, (b) the middle term has
only A2 in it, and (c) the reduction on the right-hand side of
Eq. (3.59) eliminated the pole factor (s+1) from the expression.
Consequently,

A2 = (−1)2 + 4 + 3

(−1)(−1 + 3)
= −4.

Similarly,

A1 = s X(s)|s=0 = s2 − 4s + 3

(s + 1)(s + 3)

∣∣∣∣
s=0

= 1,

and

A3 = (s + 3) X(s)|s=−3 = s2 − 4s + 3

s(s + 1)

∣∣∣∣
s=−3

= 4.

Having established the values of A1, A2, and A3, we now are
ready to apply the inverse Laplace transform to Eq. (3.57a):

x(t) = LLL−1[X(s)] = LLL
[

1

s
− 4

s + 1
+ 4

s + 3

]

= [1 − 4e−t + 4e−3t ] u(t). (3.60)

Building on this example, we can generalize the process to
any strictly proper rational function.
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Distinct Real Poles

Given a strictly proper rational function defined by

X(s) = N(s)
D(s)

= N(s)
(s − p1)(s − p2) . . . (s − pn)

,

(3.61)
with distinct real poles p1 to pn, such that pi �= pj for all
i �= j , andm < n (wherem and n are the highest powers
of s in N(s) and D(s), respectively), then X(s) can be
expanded into the equivalent form:

X(s) = A1

s − p1
+ A2

s − p2
+ · · · + An

s − pn

=
n∑
i=1

Ai

s − pi
(3.62)

with expansion coefficients A1 to An given by

Ai = (s − pi) X(s)|s=pi ,
i = 1, 2, . . . , n.

(3.63)

In view of entry #3 in Table 3-2, the inverse Laplace
transform of Eq. (3.62) is obtained by replacing a

with −pi :

x(t) = LLL−1[X(s)]
= [A1e

p1t + A2e
p2t + · · · + Ane

pnt ] u(t). (3.64)

Exercise 3-8: Apply the partial fraction expansion
method to determine x(t) given that its Laplace transform
is

X(s) = 10s + 16

s(s + 2)(s + 4)
.

Answer: x(t) = [2 + e−2t − 3e−4t ] u(t). (See S2 )

3-5.3 Repeated Real Poles

We now will consider the case when X(s) is a strictly
proper rational function containing repeated real poles or a
combination of distinct and repeated poles. The partial fraction
expansion method is outlined by the following steps.

Step 1. We are given a strictly proper rational function X(s)
composed of the product

X(s) = X1(s) X2(s) (3.65)

with

X1(s) = N(s)
(s − p1)(s − p2) . . . (s − pn)

(3.66)

and

X2(s) = 1

(s − p)m
. (3.67)

We note that X1(s) is identical in form with Eq. (3.61) and
contains only distinct real poles, p1 to pn, thereby qualifying
it for representation by a series of terms as in Eq. (3.62). The
second function, X2(s), has anm-repeated pole at s = p, where
m is a positive integer. Also, the repeated pole is not a pole of
X1(s); p �= pi for i = 1, 2, . . . , n.

Step 2. Partial fraction representation for anm-repeated pole at
s = p consists of m terms:

B1

s − p
+ B2

(s − p)2
+ · · · + Bm

(s − p)m
. (3.68)

Step 3. Partial fraction expansion for the combination of the
product X1(s) X2(s) is then given by

X(s) = A1

s − p1
+ A2

s − p2
+ · · · + An

s − pn

+ B1

s − p
+ B2

(s − p)2
+ · · · + Bm

(s − p)m

=
n∑
i=1

Ai

s − pi
+

m∑
j=1

Bj

(s − p)j
. (3.69)

Step 4. Expansion coefficients A1 to An are determined by
applying Eq. (3.63):

Ai = (s − pi) X(s)|s=pi , i = 1, 2, . . . , n. (3.70)
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Repeated Real Poles

Expansion coefficients B1 to Bm are determined through
a procedure that involves multiplication by (s − p)m,
differentiation with respect to s, and evaluation at s = p:

Bj =
{

1

(m− j)!
dm−j

dsm−j [(s − p)m X(s)]
}∣∣∣∣

s=p
,

j = 1, 2, . . . , m. (3.71)

For them,m− 1, andm− 2 terms, Eq. (3.71) reduces to

Bm = (s − p)m X(s)|s=p, (3.72a)

Bm−1 =
{
d

ds
[(s − p)m X(s)]

}∣∣∣∣
s=p

, (3.72b)

Bm−2 =
{

1

2!
d2

ds2 [(s − p)m X(s)]
}∣∣∣∣

s=p
. (3.72c)

Thus, the evaluation ofBm does not involve any differentiation,
that ofBm−1 involves differentiation with respect to s only once
(and division by 1!), and that of Bm−2 involves differentiation
twice and division by 2!. In practice, it is easiest to start by
evaluating Bm first and then evaluating the other expansion
coefficients in descending order.

Step 5. Once the values of all of the expansion coefficients of
Eq. (3.69) have been determined, transformation to the time
domain is accomplished by applying entry #8 of Table 3-2,

LLL−1
[
(n− 1)!
(s + a)n

]
= tn−1e−at u(t) (3.73)

with a = −p. The result is

x(t) = LLL−1[X(s)] =
⎡
⎣ n∑
i=1

Aie
pi t +

m∑
j=1

Bj t
j−1

(j − 1)! e
pt

⎤
⎦ u(t).

(3.74)

Example 3-7: Repeated Poles

Determine the inverse Laplace transform of

X(s) = N(s)
D(s)

= s2 + 3s + 3

s4 + 11s3 + 45s2 + 81s + 54
.

Solution: In theory, any polynomial with real coefficients
can be expressed as a product of linear and quadratic factors
(of the form (s + p) and (s2 + as + b), respectively). The
process involves long division, but it requires knowledge of
the roots of the polynomial, which can be determined through
the application of numerical techniques. In the present case,
numerical evaluation reveals that s = −2 and s = −3 are roots
of D(s). Given that D(s) is of order four, it should have four
roots, including possible duplicates.

Since s = −2 is a root of D(s), we should be able to factor
out (s + 2) from it. Long division gives

D(s) = s4 + 11s3 + 45s2 + 81s + 54

= (s + 2)(s3 + 9s2 + 27s + 27).

Next, we factor out (s + 3):

D(s) = (s + 2)(s + 3)(s2 + 6s + 9) = (s + 2)(s + 3)3.

Hence, X(s) has a distinct real pole at s = −2 and a triple
repeated pole at s = −3, and the given expression can be
rewritten as

X(s) = s2 + 3s + 3

(s + 2)(s + 3)3
.

Through partial fraction expansion, X(s) can be decomposed
into

X(s) = A

s + 2
+ B1

s + 3
+ B2

(s + 3)2
+ B3

(s + 3)3
,

with

A = (s + 2) X(s)|s=−2 = s2 + 3s + 3

(s + 3)3

∣∣∣∣
s=−2

= 1,

B3 = (s + 3)3 X(s)|s=−3 = s2 + 3s + 3

s + 2

∣∣∣∣
s=−3

= −3,

B2 = d

ds
[(s + 3)3 X(s)]

∣∣∣∣
s=−3

= 0,

and

B1 = 1

2

d2

ds2 [(s + 3)3 X(s)]
∣∣∣∣
s=−3

= −1.

Hence,

X(s) = 1

s + 2
− 1

s + 3
− 3

(s + 3)3
,
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and application of Eq. (3.73) leads to

LLL−1[X(s)] =
[
e−2t − e−3t − 3

2
t2e−3t

]
u(t).

Concept Question 3-6: What purpose does the partial
fraction expansion method serve? (See        )

Concept Question 3-7: When evaluating the expansion 
coefficients of a function containing repeated poles, is 
it more practical to start by evaluating the coefficient of 
the fraction with the lowest-order pole or that with the 
highest-order pole? Why? (See        )

Exercise 3-9: Determine the inverse Laplace transform
of

X(s) = 4s2 − 15s − 10

(s + 2)3
.

Answer: x(t) = (4 − 31t + 18t2)e−2t u(t). (See S2 )

3-5.4 Distinct Complex Poles

The Laplace transform of a certain system is given by

X(s) = 4s + 1

(s + 1)(s2 + 4s + 13)
. (3.75)

In addition to the simple-pole factor, the denominator includes
a quadratic-pole factor with roots p1 and p2. Solution of
s2 + 4s + 13 = 0 gives

p1 = −2 + j3, p2 = −2 − j3. (3.76)

The fact that the two roots are complex conjugates of
one another is a consequence of an important property of
Eq. (3.54a), namely that if all of the coefficients ai and bi are
real-valued, then the roots of the numerator and denominator
polynomials occur in complex conjugate pairs.

In view of Eq. (3.76), the quadratic factor is given by

s2 + 4s + 13 = (s − p1)(s − p2) = (s + 2 − j3)(s + 2 + j3),
(3.77)

and X(s) can now be expanded into partial fractions:

X(s) = A

s + 1
+ B1

s + 2 − j3
+ B2

s + 2 + j3
. (3.78)

Expansion coefficients B1 and B2 are printed in bold letters
to signify the fact that they may be complex quantities.
Determination of A, B1, and B2 follows the same factor-
multiplication technique employed in Section 3-5.2:

A = (s + 1) X(s)|s=−1 = 4s + 1

s2 + 4s + 13

∣∣∣∣
s=−1

= −0.3,

(3.79a)

B1 = (s + 2 − j3) X(s)|s=−2+j3

= 4s + 1

(s + 1)(s + 2 + j3)

∣∣∣∣
s=−2+j3

= 4(−2 + j3)+ 1

(−2 + j3 + 1)(−2 + j3 + 2 + j3)

= −7 + j12

−18 − j6
= 0.73e−j78.2◦

, (3.79b)

and

B2 = (s + 2 + j3) X(s)|s=−2−j3

= 4s + 1

(s + 1)(s + 2 − j3)

∣∣∣∣
s=−2−j3

= 0.73ej78.2◦
. (3.79c)

We observe that B2 = B∗
1.

� The expansion coefficients associated with conjugate
poles are always conjugate pairs themselves. �

The inverse Laplace transform of Eq. (3.78) is

x(t) = LLL−1[X(s)]

= LLL−1
(−0.3

s + 1

)
+ LLL−1

(
0.73e−j78.2◦

s + 2 − j3

)

+ LLL−1

(
0.73ej78.2◦

s + 2 + j3

)

= [−0.3e−t + 0.73e−j78.2◦
e−(2−j3)t

+ 0.73ej78.2◦
e−(2+j3)t ] u(t). (3.80)

Because complex numbers do not belong in the time domain,
our initial reaction to their presence in the solution given by
Eq. (3.80) is that perhaps an error was committed somewhere
along the way. The truth is that the solution is correct but
incomplete. Terms 2 and 3 are conjugate pairs, so by applying
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Euler’s formula, they can be combined into a single term
containing only real quantities:

[0.73e−j78.2◦
e−(2−j3)t + 0.73ej78.2◦

e−(2+j3)t ] u(t)
= 0.73e−2t [ej (3t−78.2◦) + e−j (3t−78.2◦)] u(t)
= 2 × 0.73e−2t cos(3t − 78.2◦) u(t)

= 1.46e−2t cos(3t − 78.2◦) u(t). (3.81)

This approach is supparized in entry #3 of Table 3-3. Hence,
the final time-domain solution is

x(t) = [−0.3e−t + 1.46e−2t cos(3t − 78.2◦)] u(t). (3.82)

Exercise 3-10: Determine the inverse Laplace transform
of

X(s) = 2s + 14

s2 + 6s + 25
.

Answer: x(t) = [2√
2 e−3t cos(4t − 45◦)] u(t).

(See S2 )

3-5.5 Repeated Complex Poles

If the Laplace transform X(s) contains repeated complex poles,
we can expand it into partial fractions by using a combination
of the tools introduced in Sections 3-5.3 and 3-5.4. The process
is illustrated in Example 3-8.

Example 3-8: Five-Pole Function

Determine the inverse Laplace transform of

X(s) = 108(s2 + 2)

(s + 2)(s2 + 10s + 34)2
.

Solution: The roots of s2 + 10s + 34 = 0 are p1 = −5 − j3
and p2 = −5 + j3. Hence,

X(s) = 108(s2 + 2)

(s + 2)(s + 5 + j3)2(s + 5 − j3)2
,

and its partial fraction expansion can be expressed as

X(s) = A

s + 2
+ B1

s + 5 + j3
+ B2

(s + 5 + j3)2

+ B∗
1

s + 5 − j3
+ B∗

2

(s + 5 − j3)2
,

where B∗
1 and B∗

2 are the complex conjugates of B1 and B2,
respectively. Coefficients A, B1, and B2 are evaluated as

A = (s + 2) X(s)|s=−2 = 108(s2 + 2)

(s2 + 10s + 34)2

∣∣∣∣
s=−2

= 2,

B2 = (s + 5 + j3)2 X(s)|s=−5−j3

= 108(s2 + 2)

(s + 2)(s + 5 − j3)2

∣∣∣∣
s=−5−j3

= 108[(−5 − j3)2 + 2]
(−5 − j3 + 2)(−5 − j3 + 5 − j3)2

= 24 + j6 = 24.74ej14◦
,

and

B1 = d

ds
[(s + 5 + j3)2 X(s)]

∣∣∣∣
s=−5−j3

= d

ds

[
108(s2 + 2)

(s + 2)(s + 5 − j3)2

]∣∣∣∣
s=−5−j3

=
[

108(2s)
(s + 2)(s + 5 − j3)2

− 108(s2 + 2)

(s + 2)2(s + 5 − j3)2

− 2 × 108(s2 + 2)

(s + 2)(s + 5 − j3)3

]∣∣∣∣
s=−5−j3

= −(1 + j9) = 9.06e−j96.34◦
.

The remaining constants are

B∗
1 = 9.06ej96.34◦

and B∗
2 = 24.74e−j14◦

,

and the inverse Laplace transform is

x(t) = LLL−1[X(s)]

= LLL−1
[

2

s + 2
+ 9.06e−j96.34◦

s + 5 + j3
+ 9.06ej96.34◦

s + 5 − j3

+ 24.74ej14◦

(s + 5 + j3)2
+ 24.74e−j14◦

(s + 5 − j3)2

]

= [
2e−2t

+ 9.06(e−j96.34◦
e−(5+j3)t + ej96.34◦

e−(5−j3)t )

+ 24.74t (ej14◦
e−(5+j3)t + e−j14◦

e−(5−j3)t )
]
u(t)

= [2e−2t + 18.12e−5t cos(3t + 96.34◦)

+ 49.48te−5t cos(3t − 14◦)] u(t).
This approach is summarized in entry #4 of Table 3-3.
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Table 3-3: Transform pairs for four types of poles.

Pole X(s) x(t)

1. Distinct real
A

s + a
Ae−at u(t)

2. Repeated real
A

(s + a)n
A

tn−1

(n− 1)! e
−at u(t)

3. Distinct complex
[

Aejθ

s + a + jb
+ Ae−jθ

s + a − jb

]
2Ae−at cos(bt − θ) u(t)

4. Repeated complex
[

Aejθ

(s + a + jb)n
+ Ae−jθ

(s + a − jb)n

]
2Atn−1

(n− 1)! e
−at cos(bt − θ) u(t)

Example 3-9: Transform Involving e−as

Determine the time-domain equivalent of the Laplace transform

X(s) = se−3s

s2 + 4
.

Solution: We start by separating out the exponential e−3s from
the remaining polynomial fraction. We do so by defining

X(s) = e−3s X1(s),

where

X1(s) = s
s2 + 4

= s
(s + j2)(s − j2)

= B1

s + j2
+ B2

s − j2

with

B1 = (s + j2) X(s)|s=−j2 = s
s − j2

∣∣∣∣
s=−j2

= −j2

−j4
= 1

2
,

and

B2 = B∗
1 = 1

2
.

Hence,

X(s) = e−3s X1(s) = e−3s

2(s + j2)
+ e−3s

2(s − j2)
.

By invoking property #3a of Table 3-2, we obtain the inverse
Laplace transform

x(t) = LLL−1[X(s)] = LLL−1
[

1

2

e−3s

s + j2
+ 1

2

e−3s

s − j2

]

=
[

1

2
(e−j2(t−3) + ej2(t−3))

]
u(t − 3)

= [cos(2t − 6)] u(t − 3).

Alternatively, we could have obtained this result by using
properties #4 in Table 3-1 and #11 in Table 3-2.

We conclude this section with Table 3-3, which lists X(s) and
its corresponding inverse transform x(t) for all combinations
of real versus complex and distinct versus repeated poles.

� Computation of partial fraction expansions can
be algebraically arduous. Hence, in Appendix D, we
demonstrate how the residue command of MATLAB
or MathScript can be used to compute the expansion
coefficients. �

3-6 Transfer Function H(s)
If y(t) is the output response of an LTI system to an input signal
x(t), and if X(s) and Y(s) are the Laplace transforms of x(t) and
y(t), respectively, then the system is said to be characterized by
an s-domain transfer function H(s) defined as the ratio of Y(s)
to X(s), provided that all initial conditions of y(t) are zero at
t = 0−. That is,

H(s) = Y(s)
X(s)

(with y(0−) = 0, y′(0−) = 0, . . . ).

(3.83)
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As we will demonstrate shortly, H(s) is the Laplace transform of
the system’s impulse response h(t), which was first introduced
in Section 2-2.

3-6.1 Relationship to Impulse Response

Consider a system with an impulse response h(t), excited by
a causal input signal x(t) and generating an output response
y(t). Their corresponding Laplace transforms are X(s), H(s),
and Y(s):

x(t) X(s) (3.84a)

h(t) H(s) (3.84b)

y(t) Y(s) (3.84c)

According to Eq. (2.38), the system output y(t) is given by the
convolution of x(t) with h(t),

y(t) = x(t) ∗ h(t) =
∞∫

0−
x(τ) h(t − τ) dτ, (3.85)

where we used 0− as the lower limit on the integral (as opposed
to −∞) because the signals and systems are causal.

Application of the Laplace transform to both sides yields

LLL[x(t) ∗ h(t)] =
∞∫

0−

⎡
⎣ ∞∫

0−
x(τ) h(t − τ) dτ

⎤
⎦ e−st dt

=
∞∫

0−
x(τ)

⎡
⎣ ∞∫

0−
h(t − τ) e−st dt

⎤
⎦ dτ,

(3.86)

where we interchanged the order of the two integrals in the
second step, which is allowable because t and τ are independent
variables.

Because τ in the inner integral represents nothing more than
a constant time shift, we can introduce the dummy variable
μ = t − τ and replace dt with dμ,

LLL[x(t) ∗ h(t)] =
∞∫

0−
x(τ) e−sτ

⎡
⎣ ∞∫
−τ

h(μ) e−sμ dμ

⎤
⎦ dτ

=
∞∫

0−
x(τ) e−sτ dτ

∞∫
0−
h(μ) e−sμ dμ

= X(s) H(s). (3.87)

In the middle step, we changed the lower limit on the second
integral from −τ to 0− because h(μ), being a causal signal,
equals zero when its independent variable μ < 0.

The result given by Eq. (3.87) can be framed as

y(t) = x(t) ∗ h(t) Y(s) = X(s) H(s). (3.88)

� Convolution in the time domain corresponds to
multiplication in the s-domain. �

In symbolic form:

Response

Y(s) = X(s) H(s)

y(t) = x(t) * h(t)

LTI
system

H(s)

h(t)

Excitation

X(s)

x(t)

s-domain

Time
domain

3-6.2 Significance of the Transfer Function

For a linear system, H(s) does not depend on X(s), so an
easy way by which to determine H(s) is to select an arbitrary
excitation X(s), determine the corresponding response Y(s),
and then form the ratio defined by Eq. (3.83). Of particular note
is the excitation X(s) = 1, because then Eq. (3.83) simplifies
to H(s) = Y(s). The inverse Laplace transform of 1 is the
unit impulse function δ(t). Thus, when a system is excited
by x(t) = δ(t), its s-domain output is equal to the system’s
transfer function H(s):

1s-domain

Time
domain

Impulse response

Y(s) = H(s)

y(t) = δ(t) * h(t) 
      = h(t)

LTI
system

H(s)

h(t)

Impulse

δ(t)
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Once H(s) of a given system has been established, y(t) can be
readily determined for any excitation x(t) using the following
steps:

Step 1: Transform x(t) to the s-domain to obtain X(s).

Step 2: Multiply X(s) by H(s) to obtain Y(s).

Step 3: Express Y(s) in the form of a sum of partial fractions.

Step 4: Transform the partial-fraction expansion of Y(s) to the
time domain to obtain y(t).

The process is straightforward, as long as x(t) is
transformable to the s-domain and Y(s) is transformable to the
time domain (i.e., steps 1 and 4). If x(t) is some irregular or
unusual waveform, or if it consists of a series of experimental
measurements generated by another system, it may not be
possible to transform x(t) to the s-domain analytically. Also, in
some cases, the functional form of Y(s)may be so complicated
that it may be very difficult to express it in a form amenable for
transformation to the time domain. In such cases, the alternative
approach is to determine y(t) by computing the convolution
integral, thereby operating entirely in the time domain.

Example 3-10: Transfer Function

The output response of a system excited by a unit step function
at t = 0 is given by

y(t) = [2 + 12e−3t − 6 cos 2t] u(t).
Determine: (a) the transfer function of the system and (b) its
impulse response.

Solution: (a) The Laplace transform of a unit step function is

X(s) = 1

s
.

By using entries #2, 3, and 11 in Table 3-2, we obtain the
Laplace transform of the output response

Y(s) = 2

s
+ 12

s + 3
− 6s

s2 + 4
.

The system transfer function is then given by

H(s) = Y(s)
X(s)

= 2 + 12s
s + 3

− 6s2

s2 + 4
.

(b) The impulse response is obtained by transferring H(s) to
the time domain. To do so, we need to have every term in the

expression for H(s) to be in the form of a sum of a constant
(which may be zero) and a strictly proper rational function,
which can be realized by applying the division relationship
discussed in Section 3-5. Such a process leads to

H(s) = 2 +
(

12 − 36

s + 3

)
+
(

−6 + 24

s2 + 4

)

= 8 − 36

s + 3
+ 24

s2 + 4
.

The corresponding inverse transform is

h(t) = 8δ(t)− 36e−3t u(t)+ 12 sin(2t) u(t).

Concept Question 3-8: The transfer function H(s) is
defined under what initial conditions? (See        )

3-7 Poles and System Stability

In general, a system transfer function H(s) is given in the form
of a ratio of two polynomials,

H(s) = N(s)
D(s)

. (3.89)

Suppose N(s) is of degree m (highest power of s) and D(s) is
of degree n. It then follows that H(s) has m zeros and n poles.
The zeros and poles may be real or complex, also distinct or
repeated. We will now examine how the poles/zeros and their
orders define the stability of the system characterized by H(s).

3-7.1 Strictly Proper Rational Function (m < n)

If H(s) has n poles, several combinations of distinct and
repeated poles may exist.

Case 1: All n poles are distinct

Application of partial fraction expansion (Section 3-5.1) leads
to

H(s) =
n∑
i=1

Ai
s − pi

, (3.90)

where p1 to pn are real or complex poles and A1 to An are their
corresponding residues. According to Section 3-5, the inverse
Laplace transform of H(s) is

h(t) = [A1e
p1t + A2e

p2t + · · · Anepnt ] u(t). (3.91)
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In Section 2-6.4, we demonstrated that an LTI system with such
an impulse response is BIBO stable if and only if all of the
exponential coefficients have negative real parts. That is,

Re[pi] < 0, i = 1, 2, . . . , n. (3.92)

� The condition for BIBO stability defined by Eq. (3.92)
requires that p1 to pn reside in the open left half-plane
(OLHP) in the s-domain. The imaginary axis is not
included in the OLHP; a system with poles along the
imaginary axis is not BIBO stable. �

Example 3-11: Transfer Function I

Determine if the transfer function

H(s) = s2 − 4s + 3

s(s + 1)(s + 3)
(3.93)

is BIBO stable.

Solution: The expression for H(s) has poles p1 = 0 ,
p2 = −1, and p3 = −3. Hence, two of the poles are in the
OLHP, but the third is at the origin (Fig. 3-4). According to the
condition given by Eq. (3.92), the system is not BIBO stable.
This conclusion can be further ascertained by considering
the time-domain equivalent of Eq. (3.93), which is given by
Eq. (3.60) as

h(t) = [1 − 4e−t + 4e−3t ] u(t). (3.94)

For x(t) = u(t), the step response ystep(t) is

ystep(t) = h(t) ∗ u(t) =
{
[1 − 4e−t + 4e−3t ] u(t)

}
∗ u(t).

(3.95)

−1 0−3 1 3

Poles s-plane

Left half-plane

Figure 3-4: The system with poles at s = 0, −1, and −3 is not
BIBO stable because not all its poles are in the open left-hand
plane (OLHP) of the s-domain (the pole at the origin is not in
the OLHP).

From Table 2-2, we obtain

u(t) ∗ u(t) = t u(t)

and

eat u(t) ∗ u(t) =
[
eat − 1

a

]
u(t),

which when applied to Eq. (3.95), yields

ystep(t) =
[
t + 4(e−t − 1)− 4

3
(e−3t − 1)

]
u(t). (3.96)

As t → ∞, ystep(t) ≈ (t−8/3) u(t) → ∞, thereby confirming
our earlier conclusion that the system described by Eq. (3.93)
is not BIBO stable.

Case 2: Some poles are repeated

If H(s) has a k-repeated pole p, for example, of the form

H(s) = N(s)
(s − p)k

, (3.97)

it can be transformed into

H(s) =
k∑
j=1

Bj
(s − p)j

= B1

s − p
+ B2

(s − p)2
+ · · · + Bk

(s − p)k
.

(3.98)

According to Eq. (3.74), its inverse transform is

h(t) =
⎡
⎣ k∑
j=1

Bj tj−1

(j − 1)! e
pt

⎤
⎦ u(t)

=
[

B1 + B2t + B3t
2

2
+ · · · + Bktk−1

(k − 1)!
]
ept u(t).

(3.99)

According to Section 2-6.3, a system is BIBO stable if and only
if its impulse response is absolutely integrable. That is,

∞∫
−∞

|h(t)| dt is finite.

Hence h(t) is absolutely integrable if and only if Re[p] < 0.
This requirement for repeated poles is identical with the
requirement for distinct poles given by Eq. (3.92).

� A system whose transfer function H(s) is a strictly
proper rational function is BIBO stable if and only if
its distinct and repeated poles, whether real or complex,
reside in the OLHP of the s-domain, which excludes the
imaginary axis. Furthermore, the locations of the zeros of
H(s) have no bearing on the system’s stability. �
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3-7.2 Proper Rational Function (m = n)

Consider the function

H(s) = 2s2 + 10s + 6

s2 + 5s + 6
. (3.100)

This is a proper rational function because m = n = 2. By
applying the division relationship given by Eq. (3.55), H(s)
can be re-expressed as

H(s) = 2 − 6

s2 + 5s + 6
= 2 − 6

(s + 2)(s + 3)

= 2 − 6

(s + 2)
+ 6

(s + 3)
. (3.101)

The two poles of H(s) are p1 = −2 and p2 = −3, both of which
are in the OLHP in the s-domain, but what role will the constant
term (2) play with regard to system stability? Let’s examine the
inverse transform,

h(t) = 2δ(t)− [6e−2t − 6e−3t ] u(t). (3.102)

We already know that the last two terms of Eq. (3.102) satisfy
the stability condition, so we will deal with the first term only:

∞∫
−∞

2|δ(t)| dt = 2,

which is finite.

� A system whose transfer function is a proper rational
function obeys the same rules with regard to system
stability as a strictly proper rational function. �

3-7.3 Improper Rational Function (m > n)

The function

H(s) = 6s3 + 4s2 + 8s + 6

s2 + 2s + 1
(3.103)

is an improper rational function because m = 3 and n = 2. By
applying the division relationship given by Eq. (3.55) twice,
H(s) can be expressed as

H(s) = 6s − 8 + 18s + 14

(s + 1)2
. (3.104)

Based on our analysis in the preceding two subsections, terms
2 and 3 present no issues with regard to system stability, but the
first term is problematic. Let us define the first term as

H1(s) = 6s, (3.105)

and let us examine the output response to a bounded input
x(t) = u(t). The Laplace transform of u(t) is 1/s, so

Y(s) = H1(s) X(s) = 6s · 1

s
= 6. (3.106)

The corresponding time-domain output is

y(t) = 6 δ(t), (3.107)

which is an unbounded singularity function.

� A system whose transfer function is an improper
rational function is not BIBO stable, regardless of the
locations of its poles and zeros. �

Example 3-12: Dangerous Consequences of Unstable

Systems

A system has a transfer function H(s) = s + 1. Because H(s) is
an improper rational function, the system is not BIBO stable.
The undesirability of such a system can be demonstrated by
examining the consequence of having high-frequency noise
accompany an input signal. Suppose the input to the system
is

x(t) = xs(t)+ xn(t),

where xs(t) is the intended input signal and xn(t) is the
unintended input noise, respectively. Furthermore, let

xs(t) = 10 sin(103t) u(t)

and

xn(t) = 10−2 sin(107t) u(t).

Note that the amplitude of the noise is 1000 times smaller than
that of the signal, but the angular frequency of the signal is
103 rad/s, compared with 107 rad/s for the noise. Determine the
signal-to-noise ratio [the ratio of the average power of xs(t) to
that of xn(t)] at the input and output of the system.
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Solution:

(a) At input

The signal-to-noise ratio is defined in terms of the average
power carried by a waveform. Per Eq. (1.38), the average power
of a sinusoidal signal of amplitude 10 is

Ps(at input) = 1
2 (10)2 = 50.

Similarly, for the noise component, we have

Pn(at input) = 1
2 (10−2)2 = 5 × 10−5.

The signal-to-noise ratio is

(S/N)input = Ps

Pn
= 50

5 × 10−5
= 106.

Note that since the average power is proportional to the square
of amplitude, the amplitude ratio of 103 becomes an average
power ratio of 106. The fact that S/N = 106 means that the
signal at the input to the system is essentially unaffected by the
noise.

(b) At output

For H(s) = s + 1, the output is

Y(s) = H(s) X(s) = s X(s)+ X(s).

FromTable 3-1, the following two Laplace transform properties
are of interest:

x(t) X(s)

dx

dt
s X(s)− s x(0−).

In the present case, x(t) consists of sinusoidal waveforms, so
x(0−) = 0. Application of the Laplace transform properties
leads to

y(t) = LLL−1[Y(s)] = LLL−1[s X(s)+ X(s)]

= dx

dt
+ x(t)

= d

dt
[(xs + xn)] + (xs + xn)

= d

dt
[10 sin(103t)+ 10−2 sin(107t)]
+ 10 sin(103t)+ 10−2 sin(107t)

= [104 cos(103t)+ 10 sin(103t)]︸ ︷︷ ︸
output signal at 103 rad/s

+ [105 cos(107t)+ 10−2 sin(107t)]︸ ︷︷ ︸
output noise at 107 rad/s

.

The average powers associated with the signal and noise are

Ps(@output) = 1
2 (104)2 + 1

2 (10)2 ≈ 5 × 107,

Pn(@output) = 1
2 (105)2 + 1

2 (10−2)2 ≈ 5 × 109,

and the signal-to-noise ratio is

(S/N)output = 5 × 107

5 × 109 = 10−2.

Whereas the noise component was inconsequential at the input
end of the system, propagation through the unstable system led
to the undesirable consequence that at the output the noise
power became two orders of magnitude greater than that of the
signal power.

Concept Question 3-9:Why is it that zeros of the transfer
function have no bearing on system stability? (See        )

Concept Question 3-10: Why is a system with an
improper transfer function always BIBO unstable?
(See        )

Exercise 3-11: Is the system with transfer function

H(s) = s + 1

(s + j3)(s − j3)

BIBO stable?

Answer: No. It has poles on the imaginary axis.A stable
system has all its poles in the OLHP. (See S2 )

Exercise 3-12: Is the system with transfer function

H(s) = (s + 1)(s + 2)(s + 3)

(s + 4)(s + 5)

BIBO stable?

Answer: No. H(s) is improper. (See S2 )

3-8 Invertible Systems

A system with input signal x(t) and a corresponding output
response y(t) is said to be invertible if an operation exists by
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which x(t) can be determined from y(t). In other words, the
system is invertible if an inverse system exists such that

x(t) System y(t)

y(t)
Inverse
System

x(t).

Invertible systems are important in signal processing. One
example is when equalization is applied to the system’s
frequency response spectrum by boosting the amplitudes of its
high-frequency components.

A trivial example of a non-invertible system is

y(t) = 2|x(t)|;
the sign of x(t) cannot be recovered from y(t).

3-8.1 Inverse System

Consider the following three causal LTI systems and their
inverses:

y1(t) = 4x1(t) x1(t) = 1

4
y1(t), (3.108)

y2(t) = [5 + 3 sin 4t] x2(t) x2(t) = 1

5 + 3 sin 4t
y2(t),

(3.109)

and

y3(t) = 2
dx3

dt
x3(t) = 1

2

t∫
−∞

y3(τ ) dτ.

All three are very simple, easily invertible systems, but most
systems are not so simple. Consider, for example, the LCCDE

d2y

dt2
+ a1

dy

dt
+ a2 y(t) = b1

dx

dt
+ b2 x(t). (3.110)

Givenx(t), we can determiney(t) either by solving the equation
in the time domain or by applying the Laplace transform
technique. For causal signals with zero initial conditions,
transforming Eq. (3.110) to the s-domain entails replacing x(t)
with X(s) and y(t)with Y(s), and replacing each time derivative
with multiplication by s. That is,

s2 Y(s)+ a1s Y(s)+ a2 Y(s) = b1s X(s)+ b2 X(s),

which can be solved to obtain the transfer function

H(s) = Y(s)
X(s)

= b1s + b2

s2 + a1s + a2
. (3.111)

According to Section 3-8, H(s) is a proper rational function
because the order of its numerator is smaller than that of its
denominator, namely, 1 < 2. Hence, if both poles of H(s) reside
in the OLHP of the s-domain, then H(s) represents a stable
system.

In contrast, the transfer function of the inverse system, G(s),
is given by

G(s) = 1

H(s)
= X(s)

Y(s)
= s2 + a1s + a2

b1s + b2
(3.112)

and is not stable because G(s) is an improper rational function.
This means that in order for both a system H(s) and its inverse
G(s) to be stable, it is necessary (but not sufficient) that H(s)
be a proper rational function with m = n, where m and n are
the degrees of its numerator and denominator. To extend this
statement to include the sufficient part, both the poles and zeros
of H(s) should reside in the OLHP of the s-domain. Under those
conditions, the poles of G(s), which are the zeros of H(s), will
also lie in the OLHP, thereby satisfying the stability condition.

�A BIBO stable and causal LTI system has a BIBO stable
and causal inverse system if and only if all of its poles and
zeros are in the open left half-plane, and they are equal in
number (its transfer function is proper). Such a system is
called a minimum phase system. �

Example 3-13: Inverse System

Compute the inverse system for the system with

h(t) = δ(t)+ 2e−3t u(t)− 6e−4t u(t). (3.113)

Solution: Taking the Laplace transform of h(t) and putting
each rational function term over a common denominator gives

H(s) = 1 + 2

s + 3
− 6

s + 4

= (s + 3)(s + 4)+ 2(s + 4)− 6(s + 3)

(s + 3)(s + 4)

= s2 + 3s + 2

s2 + 7s + 12
= (s + 1)(s + 2)

(s + 3)(s + 4)
. (3.114)
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We note that H(s) is proper (m = n = 2) and has

• Zeros at {−1,−2}, both in the open left half-plane

• Poles at {−3,−4}, both in the open left half-plane

Hence, the inverse system exists, and its transfer function is

G(s) = 1

H(s)
= s2 + 7s + 12

s2 + 3s + 2
= 1 + 4s + 10

(s + 1)(s + 2)

= 1 + 6

s + 1
− 2

s + 2
.

(3.115)

The impulse response of the inverse system is

g(t) = δ(t)+ 6e−t u(t)− 2e−2t u(t). (3.116)

Concept Question 3-11: Why doesn’t a strictly proper 
transfer function have a BIBO stable and causal inverse 
system? (See        )

Concept Question 3-12: What role do zeros of transfer
functions play in system invertibility? (See        )

Exercise 3-13: A system has the impulse response
h(t) = δ(t)− 2e−3t u(t). Find its inverse system.

Answer: g(t) = δ(t)+ 2e−t u(t). (See S2 )

3-9 Bilateral Transform for
Continuous-Time Sinusoidal
Signals

So far, we have limited our examination of the Laplace
transform to causal signals that start at t = 0, and in order to
incorporate initial conditions, we defined the Laplace transform
of the system impulse response as

H(s) =
∞∫

0−
h(τ) e−sτ dτ. (3.117)

This is the unilateral Laplace transform with a lower
integration limit of 0−.

Let’s assume we wish to determine the output response y(t)
to a sinusoidal signal

x(t) = A cos(ωt + φ), (3.118)

and that x(t) has existed for a long time, long enough to be
regarded as everlasting; i.e., extending over (−∞,∞). In that
case, there are no initial conditions, and the solution y(t) we
seek is the steady-state response. Because x(t) is everlasting,
we need to adopt the bilateral Laplace transform definition
for the Laplace transforms of x(t), y(t), and h(t). For h(t), its
bilateral transform is

Hb(s) =
∞∫

−∞
h(τ) e−sτ dτ, (3.119)

wherein we used −∞ as the lower integration limit and added
a subscript ”b” to distinguish the bilateral transform Hb(s)
from the unilateral transform H(s). However, because h(t) is
causal, changing the lower integration limit from 0− to −∞
has no impact on the resulting expression for Hb(s). Thus,
Hb(s) = H(s) for causal systems.

In Section 2-7.4, we demonstrated that for an LTI system
with impulse response h(t),

cosωt h(t) y(t) = |H(ω)| cos(ωt + θ), (3.120)

where

H(ω) = |H(ω)| θ

and H(ω) =
∞∫

−∞
h(τ) e−jωτ dτ. (3.121)

Comparison of Eqs. (3.119) and (3.121) leads to the
conclusion that Hb(jω) reduces to H(ω) when the input signal
is a sinusoid with angular frequency ω. Hence, if we have
an expression for H(s), H(ω) can be obtained by replacing
s with jω,

H(ω) = H(s)
∣∣
s=jω

(
sinusoidal input

causal system

)
. (3.122)

The output y(t) can then be determined by applying Eq. (3.120).
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Example 3-14: Sinusoidal Signal

An LTI system with a transfer function

H(s) = 100/(s2 + 15s + 600)

has an input signal

x(t) = 10 cos(20t + 30◦).

Determine the output response y(t).

Solution: At ω = 20 rad/s, we have

H(ω) = H(s)|s=j20 = 100

(j20)2 + 15(j20)+ 600

= 100

200 + j300
= 0.28 −56.31◦ .

Application of Eq. (3.120) leads to

y(t) = A|H(ω)| cos(ωt + θ + φ)

= 10 × 0.28 cos(20t − 56.31◦ + 30◦)
= 2.8 cos(20t − 26.31◦).

3-10 Interrelating Different
Descriptions of LTI Systems

An LTI system can be described in six different ways, namely:

• Transfer function H(s)

• Impulse response h(t)

• Poles {pi , i = 1, . . . , n} and zeros {zi , i = 1, . . . , m}
• Specific input-output pair, x(t) and y(t), where

x(t) LTI y(t)

• Differential Equation (LCCDE)

• Frequency response H(ω)

Given any one of these descriptions, we can easily determine
the other five (Fig. 3-5). Specifically, the transfer function H(s)
can be related to the other descriptions as follows.

Impulse response h(t)

• Given h(t), its corresponding transfer function can be
determined by applying the transformation

H(s) = LLL[h(t)].

• Conversely, given H(s), it follows that

h(t) = LLL−1[H(s)].

Poles and zeros

• Given {pi , i = 1, . . . , n} and {zi , i = 1, . . . , m}, H(s)
can be expressed as

H(s) = C

∏m
i=1(s − zi )∏n
i=1(s − pi )

. (3.123)

where C is a constant that needs to be specified.

• Conversely, given H(s), we can recast its expression as the
ratio of two polynomials N(s) and D(s):

H(s) = N(s)
D(s)

,

in which case we can determine the poles
{pi , i = 1, . . . , n} by computing the roots of D(s) = 0
and the zeros {zi , i = 1, . . . , m} by computing the roots
of N(s) = 0.

Input-output pair

• Given the response y(t) to an input x(t), H(s) can be
determined from the ratio of their Laplace transforms:

H(s) = LLL[y(t)]
LLL[x(t)] .

• Conversely, given H(s), the output response y(t) to a
specific input x(t) is

y(t) = LLL−1 [H(s) · LLL[x(t)]] .
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Specific input x(t)
Specific output y(t)

Frequency
response H(ω)

s =  jω ω =  −js

Transfer
function H(s)

h(t)Impulse
response

Differential equation
Zeros {zi, i = 1, ..., m}
Poles {pi, i = 1, ..., n}
Value of H(0) = C

ˆ

Figure 3-5: Relationships between H(s) and other system descriptions.

Differential equation (LCCDE)

• Given an LCCDE in the general form given by Eq. (2.6):

n∑
i=0

an−i
diy

dt i
=

m∑
i=0

bm−i
dix

dt i
(3.124)

taking the Laplace transform of both sides gives

LLL
[

n∑
i=0

an−i
diy

dt i

]
= LLL

[
m∑
i=0

bm−i
dix

dt i

]
. (3.125a)

Applying the linearity property of the Laplace transform,
we have

n∑
i=0

an−i LLL
[
diy

dti

]
=

m∑
i=0

bm−i LLL
[
dix

dti

]
. (3.125b)

Under zero initial conditions, application of property #6
in Table 3-1 leads to

n∑
i=0

an−isi Y(s) =
m∑
i=0

bm−isi X(s), (3.126)

from which we obtain the transfer function

H(s) = Y(s)
X(s)

=

m∑
i=0

bm−isi

n∑
i=0

an−isi
. (3.127)

• Given H(s), the LCCDE can be obtained by expressing
H(s) as the ratio of two polynomials and then reversing
steps back to Eq. (3.124).
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Frequency response H(ω)

• Given H(s), the frequency response function H(ω) for a
sinusoidal input signal at angular frequency ω is obtained
by simply replacing s with jω [as noted by Eq. (3.122)]:

H(ω) = H(s)
∣∣
s=jω. (3.128)

• Given H(ω), H(s) can be obtained by replacing jω with s.
However, if the available function is expressed in terms
of ω rather than jω, a prerequisite step will be required to
convert H(ω) into the proper form. In general, H(ω) is the
ratio of two polynomials:

H(ω) =

m∑
i=0

biω
i

n∑
i=0

aiω
i

. (3.129)

For a real system, even powers of ω must have
real coefficients and odd powers of ω must have
imaginary coefficients. That is, b0, b2, b4, . . . are real and
b1, b3, b5, . . . include a multiplicative factor of j . The
same is true for the ai coefficients in the denominator.
By making the substitution

ω = −j (jω),
it is straightforward to convert H(ω) into a form in
which coefficients of all (jω) terms—both even and odd
powers—are real.

Example 3-15: Relate h(t) to Other LTI System

Descriptions

Given an LTI system with h(t) = e−2t u(t)+ e−4t u(t),
determine the following: (a) H(s), (b) H(ω), (c) LCCDE, (d)
poles and zeros, and (e) the output response y(t) due to an input
x(t) = δ(t)+ e−3t u(t). Assume zero initial conditions.

Solution:
(a)

H(s) = LLL[h(t)] = LLL[e−2t u(t)+ e−4t u(t)]. (3.130)

Application of entry #3 in Table 3-2 leads to

H(s) = 1

s + 2
+ 1

s + 4

= (s + 4)+ (s + 2)

(s + 2)(s + 4)
= 2s + 6

s2 + 6s + 8
. (3.131)

(b)

H(ω) = H(s)
∣∣
s=jω = 2(jω)+ 6

(jω)2 + j6ω + 8
= 6 + j2ω

(8 − ω2)+ j6ω
.

Note that all even powers of ω have real coefficients and all odd
powers of ω have imaginary coefficients.

(c)

H(s) = Y(s)
X(s)

= 2s + 6

s2 + 6s + 8
.

Cross multiplying gives

s2 Y(s)+ 6s Y(s)+ 8Y(s) = 2s X(s)+ 6X(s).

For a system with zero initial conditions, differentiation in the
time domain corresponds to multiplication by s in the s-domain
(property #6 in Table 3-1). Hence, the time-domain equivalent
of the preceding equation is

d2y

dt2
+ 6

dy

dt
+ 8y = 2

dx

dt
+ 6x.

(d) From Eq. (3.131), we have

2s + 6 = 0 zero {−3}

and

s2 + 6s + 8 = 0 poles {−2,−4} .

(e) Forx(t) = δ(t)+e−3t u(t), application of entries #1 and 3
in Table 3-2 leads to

X(s) = 1 + 1

s + 3
= s + 4

s + 3
.

Output Y(s) is then given by

Y(s) = H(s) X(s) = 2(s + 3)

s2 + 6s + 8
· s + 4

s + 3

= 2(s + 3)(s + 4)

(s + 2)(s + 4)(s + 3)
= 2

s + 2
.

Hence,

y(t) = LLL−1
(

2

s + 2

)
= 2e−2t u(t).
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Example 3-16: Determine H(ω) from LCCDE

Given

d2y

dt2
+ 5

dy

dt
+ 6y = d2x

dt2
+ 5

dx

dt
+ 4x

for a system with zero initial conditions, determine the
frequency response function H(ω).

Solution: Transforming the LCCDE to the s-domain gives

Y(s)[s2 + 5s + 6] = X(s)[s2 + 5s + 4],
from which we obtain the transfer function

H(s) = Y(s)
X(s)

= s2 + 5s + 4

s2 + 5s + 6
.

The frequency response H(ω) is then given by

H(ω) = H(s)
∣∣
s=jω = (jω)2 + j5ω + 4

(jω)2 + j5ω + 6
= (4 − ω2)+ j5ω

(6 − ω2)+ j5ω
.

Example 3-17: Determine H(s) from its Poles and Zeros

Transfer functions H(s) has zero {+1} and pole {−3}. Also,
H(0) = −1. Obtain an expression for H(s).

Solution: H(s) has one zero at s = 1 and one pole at s = −3.
Hence, for some constant C, H(s) is given by

H(s) = C
s − 1

s + 3
.

At s = 0, H(0) = −1. Hence,

−1 = C
(−1)

3
,

so C = 3, and then

H(s) = 3
s − 1

s + 3
.

Concept Question 3-13: Does knowledge of just the
poles and zeros completely determine the LCCDE?
(See        )

Concept Question 3-14: How do we convert a function
of form H(ω) into one of form H(s)? (See        )

Exercise 3-14: An LTI system has impulse response
h(t) = 3e−t u(t)− 2e−2t u(t). Determine the LCCDE
description.

Answer:
d2y

dt2
+ 3

dy

dt
+ 2y = dx

dt
+ 4x. (See S2 )

Exercise 3-15: Compute the impulse response of the
system described by LCCDE

d2y

dt2
+ 5

dy

dt
+ 4y = 3x.

Answer: h(t) = e−t u(t)− e−4t u(t). (See S2 )

3-11 LTI System Response Partitions

The beauty of the Laplace transform technique is that it can
provide a complete solution for the LCCDE describing an LTI
system, whether or not the system has zero initial conditions.
The solution may be partitioned (divided or organized)
into different formats so as to discern from them different
information about the character of the system’s response. In
this section, we will examine three different approaches to
partitioning the system response. We will explain what each
type of partition means, how to extract it from the system
response, and what purpose it serves.

3-11.1 Zero-State / Zero-Input Partition

As a working example, let us consider the RC circuit shown
in Fig. 3-6. Prior to closing the switch at t = 0, the capacitor
voltage was

υ(0−) = Ac. (3.132)

υ(0−) = Acυi(t) = Ai(1 − e−ait ) V

C

R i

t

+
_

+
_

t = 0
υυi

υi

Ai

RC CircuitInput Excitation

Figure 3-6: The RC circuit and input excitation are treated as
separate entities that get connected at t = 0.
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Application of KVL at t ≥ 0 gives

RI + υ = υi(t), (3.133)

where υ is the voltage across the capacitor and υi(t) is the input
voltage excitation introduced at t = 0. Since i = C dυ/dt for
the capacitor, Eq. (3.133) can be converted into a first-order
differential equation in one variable, namely,

RC
dυ

dt
+ υ = υi(t). (3.134)

So we may easily distinguish between the attributes of the RC
circuit and those of the input voltage, we will use the following
notation:

• Subscript c refers to attributes that pertain to the
circuit alone, independently of the character of the input
excitation.

• Subscript i refers to attributes specific to the input
excitation.

Accordingly, we denoted in Eq. (3.132) the initial voltage across
the capacitor as Ac, and we now define the characteristic time
constant of the RC circuit as

RC = 1

ac
. (3.135)

Transforming Eq. (3.134) to the s-domain entails

υ(t) V(s),

dυ

dt
s V(s)− υ(0−) = s V(s)− Ac

(by property #6 in Table 3-1),

υi(t) Vi(s),

which leads to(
s
ac

+ 1

)
V(s)︸ ︷︷ ︸

Zero state

= Ac

ac︸︷︷︸
Initial condition

+ Vi(s).︸ ︷︷ ︸
Input excitation

(3.136)

A system (or RC circuit in the present case) is said to be in
zero state if it has zero initial conditions, i.e., no stored energy.
The term on the left-hand side of Eq. (3.136) represents the
zero-state status of the circuit; it is the s-domain sum of the
voltages across the resistor and the capacitor, excluding the
initial voltage υ(0−). The first term on the right-hand side (with

subscript c) represents the initial conditions as an equivalent
excitation source, and the last term is the real excitation voltage
Vi(s).

Our goal is to solve for V(s). Dividing all terms in Eq. (3.136)
by the factor multiplying V(s) leads to the expression

V(s)︸︷︷︸
Total response

= Ac

s + ac︸ ︷︷ ︸
Zero-input response

+ ac Vi(s)
s + ac

.︸ ︷︷ ︸
Zero-state response

(3.137)

The total response is a sum of the following:

• Zero-input response (ZIR) = response of the system in
the absence of an input excitation (Vi(s) = 0).

• Zero-state response (ZSR) = response of the system
when it is in zero state (zero initial conditions,
Ac = υ(0−) = 0).

In the present case, the RC circuit is excited by an input voltage
given by

υi(t) = Ai[1 − e−ait ] u(t)V (3.138)

with amplitude Ai and exponential coefficient ai. The
corresponding s-domain expression is

Vi(s) = Ai

s
− Ai

s + ai
= Aiai

s(s + ai)
. (3.139)

Inserting Eq. (3.139) into Eq. (3.137) leads to

V(s) = Ac

s + ac
+ Aiacai

s(s + ac)(s + ai)
. (3.140)

In preparation for transforming the expression to the time
domain, we use the recipe in Section 3-5.2 to express the second
term as a sum of partial fractions. The result is

V(s) = Ac

s + ac

+
[
Ai

s
+ Aiai

(ac − ai)

(
1

s + ac

)
+ Aiac

(ai − ac)

(
1

s + ai

)]
.

(3.141)
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In view of entries #2 and 3 in Table 3-2, the time-domain
counterpart of Eq. (3.141) is

υ(t) = Ace
−act u(t)︸ ︷︷ ︸
ZIR

+
[
Ai +

(
Aiai

ac − ai

)
e−act +

(
Aiac

ai − ac

)
e−ait

]
u(t)︸ ︷︷ ︸

ZSR

.

(3.142)

ForAc = υ(0−) = 2 V, ac = 3 s−1, Ai = 6 V, and ai = 2 s−1,
we have

υ(t) = 2e−3t u(t)︸ ︷︷ ︸
ZIR

+ [6 + 12e−3t − 18e−2t ] u(t)︸ ︷︷ ︸
ZSR

. (3.143)

The function e−act = e−3t is called a mode of the system. It
is independent of the input function because ac = 1/(RC) is
characteristic of the RC circuit alone. The zero-input response
is composed exclusively of modes, whereas the zero-state
response includes both the modes of the system as well as other
modes that mimic the character of the excitation function. The
second term in Eq. (3.143) includes a term that varies as e−3t

and two others with functional forms similar to those in the
expression for υi(t) given by Eq. (3.138).

3-11.2 Natural / Forced Partition

If we partition the total response into a

• Natural response = all terms that vary with t according
to the system’s modes (in the present case, the system has
only one mode, namely e−3t ), and a

• Forced response = all remaining terms,

then Eq. (3.143) would become

υ(t) = [2e−3t + 12e−3t ] u(t)+ [6 − 18e−2t ] u(t)
= 14e−3t u(t)︸ ︷︷ ︸

Natural response

+ [6 − 18e−2t ] u(t)︸ ︷︷ ︸
Forced response

. (3.144)

Recall that the exponent ac = 3 s−1 is (RC)−1, which
reflects the natural identity of the circuit. Hence, all terms of

the total response that vary as e−3t are regarded as elements
of the natural response. Remaining terms are part of the forced
response, which includes modes that mimic the character of the
excitation function.

3-11.3 Transient / Steady-State Partition

In many practical situations, the system analyst or designer may
be particularly interested in partitioning the response into a

• Transient response = all terms that decay to zero as
t → ∞, and a

• Steady-state response = all terms that remain after the
demise of the transient response.

Partitioning the expression for υ(t) along those lines gives

υ(t) = [14e−3t − 18e−2t ] u(t)︸ ︷︷ ︸
Transient response

+ 6u(t).︸ ︷︷ ︸
Steady-state response

(3.145)

The terms included in the first square bracket decay
exponentially to zero as t → ∞, leaving behind the steady-
state component 6u(t). The steady-state component need not be
a constant (dc value). In fact, if the input function is a sinusoid,
the steady-state response will also be a sinusoid at the same
frequency.

Example 3-18: RC Circuit with υi(t) = 6 sin2(2t) u(t)

Analyze the RC circuit of Fig. 3-6 to determine υ(t) for t ≥ 0
given that υ(0−) = 2 V, RC = (1/3) s, and

υi(t) = 6 sin2(2t) u(t)V.

Divide the total response along each of the three partitions
discussed in this section.

Solution: Using the identity sin2 x = (1−cos 2x)/2, the input
voltage can be rewritten in the form

υi(t) = 6 sin2(2t) u(t) = 3[1 − cos 4t] u(t). (3.146)

Its s-domain counterpart is

Vi(s) = 3

s
− 3s

s2 + 16
. (3.147)
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Using Eq. (3.147) in Eq. (3.137) leads to

V(s) = 2

s + 3
+ 9

s(s + 3)
− 9s
(s + 3)(s2 + 16)

= 2

s + 3
+ 9

s(s + 3)
− 9s
(s + 3)(s + j4)(s − j4)

,

(3.148)

where we used the numerical values specified in the problem
(Ac = υ(0−) = 2 V and ac = 3 s−1) and expanded (s2 + 16)
into the product of two conjugate terms.

The first term of Eq. (3.148) is already in a form amenable
to direct transformation to the time domain, but the second and
third terms require partial fraction expansion:

9

s(s + 3)
= 3

s
− 3

(s + 3)
,

−9s
(s + 3)(s + j4)(s − j4)

= B1

s + 3
+ B2

s + j4
+ B∗

2

s − j4
,

with

B1 = −9s
(s + j4)(s − j4)

∣∣∣∣
s=−3

= 27

25
= 1.08,

B2 = −9s
(s + 3)(s − j4)

∣∣∣∣
s=−j4

= −0.9ej53.1◦
,

B∗
2 = −0.9e−j53.1◦

.

Hence,

V(s) = 2

s + 3
+3

s
− 3

s + 3
+ 1.08

s + 3
−0.9

[
ej53.1◦

s + j4
+ e−j53.1◦

s − j4

]
.

(3.149)
The corresponding time-domain response is

υ(t) = 2e−3t u(t)+ 3(1 − e−3t ) u(t)

+ 1.08e−3t u(t)− 1.8 cos(4t − 53.1◦) u(t).
(3.150)

• ZIR / ZSR partition:

υ = 2e−3t u(t)︸ ︷︷ ︸
ZIR

+

3(1 − e−3t ) u(t)+ 1.08e−3t u(t)− 1.8 cos(4t − 53.1◦) u(t)︸ ︷︷ ︸
ZSR

.

(3.151)

• Natural / forced partition:

υ(t) = [2e−3t − 3e−3t + 1.08e−3t ] u(t)
+ [3 − 1.8 cos(4t − 53.1◦)] u(t)

= 0.08e−3t u(t)︸ ︷︷ ︸
Natural response

+ [3 − 1.8 cos(4t − 53.1◦)] u(t)︸ ︷︷ ︸
Forced response

. (3.152)

• Transient / steady-state partition:

υ(t) = 0.08e−3t u(t)︸ ︷︷ ︸
Transient response

+ [3 − 1.8 cos(4t − 53.1◦)] u(t)︸ ︷︷ ︸
Steady-state response

,

which is the same as the natural/forced partition.

Concept Question 3-15: For stable systems, the transient
response includes what other responses? (See        )

Concept Question 3-16: For stable systems, the zero-
state response includes what other responses? (See        )

Exercise 3-16: Compute the poles and modes of the
system with LCCDE

d2y

dt2
+ 3

dy

dt
+ 2y = dx

dt
+ 2x.

Answer: Modes: {−1,−2}. Poles: {−1}. (See S2 )
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Exercise 3-17: Compute the zero-input response of

dy

dt
+ 2y = 3

dx

dt
+ 4x

with y(0) = 5.

Answer: y(t) = 5e−2t u(t). (See S2 )

We conclude this chapter with a long example that brings
together many of the concepts presented in the last half of the
chapter, and shows how they relate to each other.

Example 3-19: System Responses

An LTI system is described by the LCCDE

d2y

dt2
+ 3

dy

dt
+ 2y(t) = dx

dt
+ 2x(t). (3.153)

The input is x(t) = 4 cos(t) u(t), and the initial conditions are
y(0−) = 1 and dy

dt
(0−) = 0. Compute the following:

(a) The transfer function, poles, zeros, and modes
(b) The zero-state and zero-input responses
(c) The transient and steady-state responses
(d) The forced and natural responses
(e) The choice of initial conditions for which the transient

response is zero

Solution: (a) The transfer function does not depend on the
specific input x(t) = 4 cos(t) u(t), and it assumes zero initial
conditions. The Laplace transform of the LCCDE is

[s2 Y(s)− s y(0−)− dy

dt
(0−)] + 3[s Y(s)− y(0−)] + 2Y(s)

= [s X(s)− x(0−)] + 2X(s). (3.154)

Setting all of the initial conditions to zero gives

s2 Y(s)+ 3s Y(s)+ 2Y(s) = s X(s)+ X(s). (3.155)

The transfer function is then

H(s) = Y(s)
X(s)

= s + 2

s2 + 3s + 2
= s + 2

(s + 1)(s + 2)
= 1

s + 1
.

(3.156)
The zeros are the roots of the numerator polynomial set equal
to zero, so there are no zeros. The poles are the roots of the
denominator polynomial set equal to zero, so the only pole
is −1. The system is BIBO stable.

The modes are the roots of the characteristic polynomial set
equal to zero. From Eq. (2.123), the characteristic equation is
the polynomial whose coefficients are the coefficients of the left
side of the LCCDE. In this example, the characteristic equation
is

s2 + 3s + 2 = 0, (3.157)

so the modes are {−1,−2}. Note that modes and poles are not
the same in this example, due to the cancellation of the factors
(s + 2) in the numerator and denominator of Eq. (3.156). This
is called pole-zero cancellation.

(b) The zero-state response is found by setting all initial
conditions to zero and setting the input to x(t) = 4 cos(t) u(t).
The Laplace transform of x(t) is

X(s) = LLL[4 cos(t) u(t)] = 4s
s2 + 1

, (3.158)

and the Laplace transform of the zero-state response is

YZSR(s) = H(s) X(s) =
[

1

s + 1

] [
4s

s2 + 1

]
. (3.159)

Partial fraction expansion of YZSR(s) gives

YZSR(s) = 1 − j

s − j
+ 1 + j

s + j
− 2

s + 1
, (3.160)

and the inverse Laplace transform of YZSR(s) is

yzsr(t) = (1 − j)ejt u(t)+ (1 + j)e−j t u(t)− 2e−t u(t).
(3.161)

Noting that (1 ± j) = √
2 e±j45◦

, Eq. (3.161) can be put into
trigonometric form using entry #3 in Table 3-3. The result is

yzsr(t) = 2
√

2 cos(t − 45◦) u(t)− 2e−t u(t). (3.162)
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The zero-input response is found by setting the input x(t)
to zero. The Laplace transform of the zero-input response can
then be computed from Eq. (3.153) as

YZIR(s) = s y(0−)+ dy
dt
(0−)+ 3y(0−)

s2 + 3s + 2
= s + 3

s2 + 3s + 2
.

(3.163)
Partial fraction expansion of YZIR(s) gives

YZIR(s) = 2

s + 1
− 1

s + 2
, (3.164)

and its inverse Laplace transform is

yzir(t) = 2e−t u(t)− e−2t u(t). (3.165)

(c) The complete response is then

y(t) = yzsr(t)+ yzir(t)

= 2
√

2 cos(t − 45◦) u(t)− 2e−t u(t)

+ 2e−t u(t)− e−2t u(t)

= 2
√

2 cos(t − 45◦) u(t)− e−2t u(t). (3.166)

The given choice of initial conditions has produced a
cancellation of two 2e−t u(t) terms.

The transient response is the part of the complete response
that decays to zero:

ytrans(t) = −e−2t u(t). (3.167)

The steady-state response is the part of the complete response
that does not decay to zero:

yss(t) = 2
√

2 cos(t − 45◦) u(t). (3.168)

Note that except for the step function u(t), we could have
computed the steady-state response using phasors, without the
Laplace transform. The frequency response function for the
LCCDE can be read off as

H(ω) = (jω)+ 2

(jω)2 + 3(jω)+ 2
= 1

jω + 1
. (3.169)

Inserting ω = 1 gives

H(1) = 1

jω + 1
= 1√

2
e−j45◦

. (3.170)

The response to 4 cos(t) in the sinusoidal steady-state is

yphasors(t) = 4√
2

cos(t − 45◦) = 2
√

2 cos(t − 45◦) (3.171)

which agrees with yss(t) for t > 0.
(d) The forced response is the part of the complete response

that resembles the input:

yforced(t) = 2
√

2 cos(t − 45◦) u(t). (3.172)

The input and the forced response are both sinusoids with
frequency ω = 1 rad/s.

The natural response is the part of the complete response that
resembles the zero-input response:

ynatural(t) = −e−2t u(t). (3.173)

Both have exponential time functions proportional to e−2t u(t).
But the e−t u(t) term in the zero-input response does not appear
in the natural response (actually, it does appear, but with a
coefficient of zero).

(e) After partitioning into zero-state and zero-input re-
sponses, determining the initial conditions for which the
transient response becomes zero is fairly straightforward. In
order to cancel the −2e−t u(t) term in the zero-state response,
we require

yzir(t) = 2e−t u(t) → YZIR(s) = 2

s + 1
. (3.174)

So we must choose the initial conditions y(0−) and dy
dt
(0−) in

Eq. (3.163) so that

YZIR(s) = sy(0−)+ dy
dt
(0−)+ 3y(0−)

s2 + 3s + 2

= 2

s + 1
= 2(s + 2)

s2 + 3s + 2
. (3.175)

Equating coefficients of s in the numerator of YZIR(s), leads to

y(0−) = 2 and
dy

dt
(0−) = −2. (3.176)
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Summary

Concepts

• The unilateral Laplace transform converts a causal time-
domain signal x(t) into an s-domain counterpart X(s).
A major advantage of the Laplace transform is that it
converts differential equations into algebraic equations,
thereby facilitating their solutions considerably.

• The Laplace transform has many useful properties that
can be applied to streamline the process of finding the
Laplace transform of a time function. Not all time-
domain functions have Laplace transforms.

• The s-domain counterpart of a system’s impulse
response h(t) is the system transfer function H(s).

• The convolution-integral method allows us to determine
the output response of a system by convolving the input
excitation with the impulse response of the system. This
approach is particularly useful when the excitation is in
the form of experimental measurements that may be
difficult to characterize in the form of a mathematical
function.

Mathematical and Physical Models
Laplace Transform Pair (Unilateral)

X(s) = LLL[x(t)] =
∞∫

0−
x(t) e−st dt

x(t) = LLL−1[X(s)] = 1

2πj

σ+j∞∫
σ−j∞

X(s) est ds

Properties of Laplace Transform
(comprehensive list in Table 3-1)

x(at), a > 0
1

a
X
( s
a

)
e−at x(t) X(s + a)

x′ = dx

dt
s X(s)− x(0−)

t∫
0−
x(t ′) dt ′ 1

s
X(s)

Examples of Laplace Transform Pairs
(longer list in Table 3-2)

δ(t) 1

u(t)
1

s

e−at u(t) 1

s + a

t u(t)
1

s2

Transfer Function

H(s) = Y(s)
X(s)

Convolution

x(t) ∗ h(t) X(s) H(s)

Important Terms Provide definitions or explain the meaning of the following terms:

complex frequency
convergence condition
convolution
Dirac delta function
expansion coefficients
final-value theorem
frequency shift

improper rational function
impulse response
initial-value theorem
Laplace transform
partial fraction expansion
pole
pole factor

proper rational function
residue method
sampling property
singularity function
time invariance
time scaling
time shift

transfer function
uniqueness property
unit impulse function
unit step function
zero (of a polynomial)
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PROBLEMS

Sections 3-1 to 3-3: Laplace Transform and Its Properties

3.1 Express each of the waveforms in Fig. P3.1 in terms
of step functions and then determine its Laplace transform.
(Recall that the ramp function is related to the step function
by r(t − T ) = (t − T ) u(t − T ).) Assume that all waveforms
are zero for t < 0.

(a) (b)

(c) (d)

(e) (f)

x1

4

2

0
1 2

t (s)

x2

0

2

−2

2 431
t (s)

x3

4

2

0
3 41

t (s)

x4

4

2

0
2 6 7

t (s)

x5

0
2

−10

t (s)

x6

0
2 4 6 8

−10

10

t (s)

Staircase

Top hat

Negative ramp

Square wave

Mesa

Triangular wave

Figure P3.1: Waveforms for Problem 3.1.

∗
Answer(s) in Appendix F.

∗(a) Staircase

(b) Square wave

(c) Top hat

(d) Mesa

(e) Negative ramp

(f) Triangular wave
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3.2 Determine the Laplace transform of each of the periodic
waveforms shown in Fig. P3.2. (Hint: See Exercise 3.2.)

(a) Sawtooth

(b) Interrupted ramps

(c) Impulses

(d) Periodic exponentials

(a)

Sawtooth

Interrupted ramps

Impulses

Periodic exponential

(b)

(c)

(d)

x4

t (s)
2 31

0

10

...

x3

t (s)

−2

2

2 31
0

...

x2

t (s)
2 3 41

0

10

...

x1

2 3 4 51
0 t (s)

−10

10

...

e−2t

Figure P3.2: Periodic waveforms for Problem 3.2.

3.3 Determine the Laplace transform of each of the following
functions by applying the properties given in Tables 3-1 and
3-2.

(a) x1(t) = 4te−2t u(t)

(b) x2(t) = 10 cos(12t + 60◦) u(t)
(c) x3(t) = 12e−3(t−4) u(t − 4)

3.4 Determine the Laplace transform of each of the following
functions by applying the properties given in Tables 3-1 and
3-2.

(a) x1(t) = 12te−3(t−4) u(t − 4)

(b) x2(t) = 27t2 sin(6t − 60◦) u(t)
∗(c) x3(t) = 10t3e−2t u(t)

3.5 Determine the Laplace transform of each of the following
functions by applying the properties given in Tables 3-1 and
3-2.

(a) x1(t) = 16e−2t cos 4t u(t)

(b) x2(t) = 20te−2t sin 4t u(t)

(c) x3(t) = 10e−3t u(t − 4)

3.6 Determine the Laplace transform of each of the following
functions by applying the properties given in Tables 3-1 and
3-2.

(a) x1(t) = 30(e−3t + e3t ) u(t)

(b) x2(t) = 5(t − 6) u(t − 3)

(c) x3(t) = 4e−2(t−3) u(t − 4)

3.7 Determine the Laplace transform of the following
functions:
∗(a) x1(t) = 25 cos(4πt + 30◦) δ(t)
(b) x2(t) = 25 cos(4πt + 30◦) δ(t − 0.2)

(c) x3(t) = 10
sin(3t)

t
u(t)

(d) x4(t) = d2

dt2
[e−4t u(t)]

3.8 Determine the Laplace transform of the following
functions:

(a) x1(t) = d

dt
[4te−2t cos(4πt + 30◦) u(t)]

(b) x2(t) = e−3t cos(4t + 30◦) u(t)
(c) x3(t) = t2[u(t)− u(t − 4)]
(d) x4(t) = 10 cos(6πt + 30◦) δ(t − 0.2)

3.9 Determine x(0+) and x(∞) given that

X(s) = 4s2 + 28s + 40

s(s + 3)(s + 4)
.
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3.10 Determine x(0+) and x(∞) given that

X(s) = s2 + 4

2s3 + 4s2 + 10s
.

∗3.11 Determine x(0+) and x(∞) given that

X(s) = 12e−2s

s(s + 2)(s + 3)
.

3.12 Determine x(0+) and x(∞) given that

X(s) = 19 − e−s

s(s2 + 5s + 6)
.

Section 3-4 and 3-5: Partial Fractions and Circuit
Examples

3.13 Obtain the inverse Laplace transform of each of the
following functions, by first applying the partial-fraction-
expansion method.

(a) X1(s) = 6

(s + 2)(s + 4)

(b) X2(s) = 4

(s + 1)(s + 2)2

(c) X3(s) = 3s3 + 36s2 + 131s + 144

s(s + 4)(s2 + 6s + 9)

3.14 Obtain the inverse Laplace transform of each of the
following functions:

(a) X1(s) = s2 + 17s + 20

s(s2 + 6s + 5)

(b) X2(s) = 2s2 + 10s + 16

(s + 2)(s2 + 6s + 10)

(c) X3(s) = 4

(s + 2)3

3.15 Obtain the inverse Laplace transform of each of the
following functions:

(a) X1(s) = (s + 2)2

s(s + 1)3

(b) X2(s) = 1

(s2 + 4s + 5)2

∗(c) X3(s) =
√

2(s + 1)

s2 + 6s + 13

3.16 Obtain the inverse Laplace transform of each of the
following functions:

(a) X1(s) = 2s2 + 4s − 16

(s + 6)(s + 2)2

(b) X2(s) = 2(s3 + 12s2 + 16)

(s + 1)(s + 4)3

(c) X3(s) = −2(s2 + 20)

s(s2 + 8s + 20)

3.17 Obtain the inverse Laplace transform of each of the
following functions:

(a) X1(s) = 2 + 4(s − 4)

s2 + 16

(b) X2(s) = 4

s
+ 4s

s2 + 9

(c) X3(s) = (s + 5)e−2s

(s + 1)(s + 3)

3.18 Obtain the inverse Laplace transform of each of the
following functions:

(a) X1(s) = (1 − e−4s)(24s + 40)

(s + 2)(s + 10)

∗(b) X2(s) = s(s − 8)e−6s

(s + 2)(s2 + 16)

(c) X3(s) = 4s(2 − e−4s)

s2 + 9

3.19 Solve the following two simultaneous differential
equations by taking Laplace transforms and then solving a 2×2
linear system of equations:

dx

dt
= 2x(t)− 3y(t), with x(0−) = 8,

dy

dt
= −2x(t)+ y(t), with y(0−) = 3.
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3.20 Solve the following two simultaneous differential
equations by taking Laplace transforms and then solving a 2×2
linear system of equations:

dx

dt
+ 3x(t)+ 8y(t) = 0, with x(0−) = 1,

dy

dt
+ 3y(t)− 2x(t) = 0, with y(0−) = 2.

3.21 Determine υ(t) in the circuit of Fig. P3.21 given that
υs(t) = 2u(t) V, R1 = 1 
, R2 = 3 
, C = 0.3689 F, and
L = 0.2259 H.

C

R2R1

Lυυs(t)

iL(t)
+
_

Figure P3.21: Circuit for Problems 3.21 and 3.22.

3.22 Determine iL(t) in the circuit in Fig. P3.21 given that
υs(t) = 2u(t), R1 = 2 
, R2 = 6 
, L = 2.215 H, and
C = 0.0376 F.

3.23 Determine υout(t) in the circuit in Fig. P3.23 given that
υs(t) = 35u(t) V, υC1(0

−) = 20 V, R1 = 1 
, C1 = 1 F,
R2 = 0.5 
, and C2 = 2 F.

+

_
υs(t)

R1

C1 C2 R2 υout

υC1

+
_

Figure P3.23: Circuit for Problem 3.23.

Section 3-6: Transfer Function

3.24 A system is characterized by a transfer function given by

H(s) = 18s + 10

s2 + 6s + 5
.

Determine the output response y(t), if the input excitation is
given by the following:
∗(a) x1(t) = u(t)

(b) x2(t) = 2t u(t)

(c) x3(t) = 2e−4t u(t)

(d) x4(t) = [4 cos(4t)] u(t)
3.25 When excited by a unit step function at t = 0, a system
generates the output response

y(t) = [5 − 10t + 20 sin(2t)] u(t).

Determine (a) the system transfer function and (b) the impulse
response.

3.26 When excited by a unit step function at t = 0, a system
generates the output response

y(t) = 10
sin(5t)

t
u(t).

Determine (a) the system transfer function and (b) the impulse
response.

3.27 When excited by a unit step function at t = 0, a system
generates the output response

y(t) = 10t2e−3t u(t).

Determine (a) the system transfer function and (b) the impulse
response.

3.28 When excited by a unit step function at t = 0, a system
generates the output response

y(t) = 9t2 sin(6t − 60◦) u(t).

Determine (a) the system transfer function and (b) the impulse
response.

3.29 A system has 2N OLHP poles { pi ,p∗
i , i = 1, . . . , N }

in complex conjugate pairs and 2N zeros { −pi ,−p∗
i ,

i = 1, . . . , N } in complex conjugate pairs in the right half-
plane. Show that the gain |H(jω)| of the system is constant for
all ω. This is an all-pass system. All-pass systems are used to
alter a filter’s phase response without affecting its gain. Hint:
For any complex number z = |z|ejθ , the ratio

z
z∗ = |z|ejθ

|z|e−jθ = ej2θ

has magnitude one.
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3.30 For the circuit shown in Fig. P3.30, determine
(a) H(s) = Vo/Vi and (b) h(t) given thatR1 = 1
, R2 = 2 
,
C1 = 1 μF, and C2 = 2 μF.

C2

C1

R1

R2
+

_
Vi

+

_
Vo

Figure P3.30: Circuit for Problem 3.30.

3.31 For the circuit shown in Fig. P3.31, determine
(a) H(s) = Vo/Vi and (b) h(t) given thatR1 = 1
, R2 = 2 
,
L1 = 1 mH, and L2 = 2 mH.

L2

L1

R1

R2
+

_
Vi

+

_
Vo

Figure P3.31: Circuit for Problem 3.31.

∗3.32 For the circuit shown in Fig. P3.32, determine
(a) H(s) = Vo/Vi and (b) h(t) given that R = 5 
,
L = 0.1 mH, and C = 1 μF.

C

L

R
+

_
Vi

+

_
Vo

Figure P3.32: Circuit for Problem 3.32.

Section 3-7: LTI System Stability

3.33 An LTI system is described by the LCCDE

d2y

dt2
− 7

dy

dt
+ 12y = dx

dt
+ 5x.

Is the system BIBO stable?

3.34 The response of an LTI system to input

x(t) = δ(t)− 4e−3t u(t)

is output y(t) = e−2t u(t). Is the system BIBO stable?

3.35 An LTI system has impulse response

h(t) = (4 + j5)e(2+j3)t u(t)+ (4 − j5)e(2−j3)t u(t).

Is the system BIBO stable?

3.36 An LTI system has transfer function

H(s) = (s + 1)(s + 2)

s(s + 3)
.

Is it BIBO stable?

Section 3-8: Invertible Systems

∗3.37 Compute the impulse response g(t) of the BIBO stable
inverse system corresponding to the LTI system with impulse
response h(t) = δ(t)− 2e−3t u(t).

3.38 Compute the impulse response g(t) of the BIBO stable
inverse system corresponding to the LTI system with impulse
response h(t) = δ(t)+ te−t u(t).
3.39 Show that the LTI system with impulse response
h(t) = δ(t)− 4e−3t u(t) does not have a BIBO stable inverse
system.

3.40 Show that the LTI system with impulse response
h(t) = e−t u(t) does not have a BIBO stable inverse system.

Section 3-10: Interrelating Descriptions

3.41 An LTI system has an impulse response

h(t) = δ(t)+ 6e−t u(t)− 2e−2t u(t).

Compute each of the following:

(a) Frequency response function H(ω)
∗(b) Poles and zeros of the system

(c) LCCDE description of the system

(d) Response to input x(t) = e−3t u(t)− e−4t u(t)

3.42 An LTI system has an impulse response

h(t) = δ(t)+ 4e−3t cos(2t) u(t).

Compute each of the following:

(a) Frequency response function H(ω)

(b) Poles and zeros of the system

(c) LCCDE description of the system

(d) Response to input x(t) = 2te−5t u(t)
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3.43 An LTI system has the LCCDE description

d2y

dt2
+ 7

dy

dt
+ 12y = dx

dt
+ 2x.

Compute each of the following:

(a) Frequency response function H(ω)

(b) Poles and zeros of the system

(c) Impulse response h(t)
∗(d) Response to input x(t) = e−2t u(t)

3.44 An LTI system has the LCCDE description

d2y

dt2
+ 4

dy

dt
+ 13y = dx

dt
+ 2x.

Compute each of the following:

(a) Frequency response function H(ω)

(b) Poles and zeros of the system

(c) Impulse response h(t)

(d) Response to input x(t) = e−2t u(t)

3.45 The response of an LTI system to input

x(t) = δ(t)− 2e−3t u(t)

is output y(t) = e−2t u(t). Compute each of the following:

(a) Frequency response function H(ω)

(b) Poles and zeros of the system

(c) LCCDE description of the system

(d) Impulse response h(t)

3.46 An LTI system has H(0) = 1 and zeros: {−1}; poles:
{−3,−5}. Compute each of the following:

(a) Frequency response function H(ω)

(b) LCCDE description of the system
∗(c) Impulse response h(t)

(d) Response to input x(t) = e−t u(t)

3.47 An LTI system has H(0) = 15 and zeros: {−3 ± j4};
poles: {−1 ± j2}. Compute each of the following:

(a) Frequency response function H(ω)

(b) LCCDE description of the system

(c) Impulse response h(t)

(d) Response to input x(t) = e−3t sin(4t) u(t)

3.48 The response of an LTI system to input

x(t) = e−3t cos(4t) u(t)

is output y(t) = e−3t sin(4t) u(t). Compute each of the
following:

(a) Frequency response H(ω)

(b) Poles and zeros of the system

(c) LCCDE description of the system

(d) Impulse response h(t)

Section 3-11: Partitions of Responses

3.49 Compute the following system responses for the
circuit shown in Fig. P3.49 given that x(t) = 25 cos(3t) u(t),
R = 250 k
, C = 1μF, and the capacitor was initially charged
to 2 V:

(a) Zero-input response.

(b) Zero-state response.

(c) Transient response.

(d) Steady-state response.

(e) Natural response.
∗(f) Forced response.

+
_

+
_ y(t)x(t)

R

C

Figure P3.49: Circuit for Problems 3.49 and 3.50.

∗3.50 If the capacitor in the circuit of Fig. P3.49 is initially
charged to y(0) volts, instead of 2V, for what value of y(0) is the
transient response identically equal to zero (i.e., no transient)?

3.51 For the circuit in Fig. P3.51, compute the steady-state
unit-step response for i(t) in terms of R.

+
_

+
_

10 mH

1 μFx(t)

R

υ(t)

i(t)

Figure P3.51: Circuit for Problems 3.51 to 3.53.
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3.52 In the circuit of Fig. P3.51, let i(0) = 1 mA.

(a) Compute the resistance R so that the zero-input response
has the form

i(t) = Ae−20000t u(t)+ Be−5000t u(t)

for some constants A and B.

(b) Using the resistance R from (a), compute the initial
capacitor voltage υ(0) so that the zero-input response is
i(t) = Be−5000t u(t) for some constant B.

3.53 In the circuit of Fig. P3.51, i(0) = 0.

(a) Compute the resistance R so that the zero-input response
has the form

i(t) = Ae−2000t u(t)+ Be−50000t u(t)

for some constants A and B.

(b) Using the resistance R from (a), show that no initial
capacitor voltage υ(0) will make the zero-input response
be i(t) = Be−50000t u(t) for some constant B.

3.54 An LTI system is described by the LCCDE

N∑
i=0

aN−i
diy

dt i
= K

M∑
j=0

bM−j
dj x

dtj

with a0 = b0 = 1 and initial conditions

y(0) = y0; dy

dt

∣∣∣∣
t=0

= y1; . . . dy
N−1

dtN−1

∣∣∣∣
t=0

= yN−1.

(a) Derive an explicit expression for y(t) that exhibits the
Laplace transforms of the zero-state response and zero-
input response as two separate terms.

(b) Apply your result to

d2y

dt2
+ 4

dy

dt
+ 3y(t) = 0

with initial conditions y(0) = 2 and dy
dt

∣∣∣
t=0

= −12.

3.55 The impulse response of a strictly proper LTI system
with N distinct poles {pi} has the form

h(t) =
N∑
i=1

Ciepi t u(t)

for some constants {Ci}. Its input x(t) has the form

x(t) =
n∑
i=1

Bieqi t u(t)

for some constants {Bi} and {qi}. If all of the {pi ,qi} are distinct,
show that the output y(t) has the form

y(t) =
n∑
i=1

Bi H(qi ) eqi t u(t)

︸ ︷︷ ︸
FORCED: Like x(t)

+
N∑
i=1

Ci X(pi ) epi t u(t)

︸ ︷︷ ︸
NATURAL: Like h(t)

.

This exhibits the forced and natural responses of the system as
two separate sums of terms.



“book” — 2016/3/15 — 6:56 — page 131 — #1

4 Applications of the
Laplace Transform

Contents
Overview, 132

4-1 s-Domain Circuit Element Models, 132
4-2 s-Domain Circuit Analysis, 134
4-3 Electromechanical Analogues, 140
4-4 Biomechanical Model of a Person

Sitting in a Moving Chair, 146
4-5 Op-Amp Circuits, 149
4-6 Configurations of Multiple Systems, 154
4-7 System Synthesis, 157
4-8 Basic Control Theory, 160
4-9 Temperature Control System, 167
4-10 Amplifier Gain-Bandwidth Product, 171
4-11 Step Response of a Motor System, 174
4-12 Control of a Simple Inverted

Pendulum on a Cart, 178
Summary, 183
Problems, 183

Objectives

Learn to:

� Use s-domain circuit element models to analyze
electric circuits.

� Use electromechanical analogues to simulate and
analyze mechanical systems.

� Use op-amp circuits to implement systems.

� Develop system realizations that conform to
specified transfer functions.

� Employ feedback control techniques to improve
system performance and stability

Head: m4

v1 = vx

vx

v2

v3

v4

Upper torso: m3

k3 b3

k2 b2

k1 b1

Middle torso: m2

Lower torso: m1

Seat

The Laplace-transform tools learned in the previous chapter are
now applied to model and solve a wide variety of mechanical
and thermal systems, including how to compute the movement
of a passenger’s head as the car moves over curbs and other
types of pavements, and how to design feedback loops to control
motors and heating systems.
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Overview

Having learned the basic properties of LTI systems in
Chapter 2 and how to use the Laplace transform to analyze
linear, constant-coefficient differential equations (LCCDEs)
in Chapter 3, we are now ready to demonstrate how these
mathematical techniques can be applied to analyze the behavior
of specified systems or to design a system’s configuration so it
will behave in a desired way.

First, we develop the concept of s-domain circuits. These
are like phasors in circuit analysis, except that they can be
used with any type of input (not just sinusoidal sources),
and they can incorporate non-zero initial conditions. Next,
we show that spring-mass-damper-based mechanical systems
can be modeled as electrical circuits using electromechanical
analogues. By so doing, circuit analysis techniques can be
applied to analyze and synthesize mechanical systems. By
way of an example, we use electromechanical analogues to
analyze a biomechanical model of a sitting person subjected
to a sinusoidal chair motion.

Next, we review basic op-amp circuits for summation,
differentiation, and integration. We then show how op-amps can
be used to implement series, parallel, and feedback connection
of systems. We then use op-amps for system synthesis: Given a
transfer function, synthesize an op-amp circuit that implements
the transfer function.

Motivated by the non-invertibility of many systems, we
derive the basics of control theory, in which negative feedback
is used to make a system behave in a desired way. This includes
stabilizing an unstable system and speeding up the response of
a stable system. We derive physical models and apply feedback
control to temperature control systems, motor control systems,
and an inverted pendulum on a moving cart.

4-1 s-Domain Circuit Element Models

The s-domain technique can be used to analyze circuits excited
by sources with many types of waveforms—including pulse,
step, ramp, and exponential—and provides a complete solution
that incorporates both the steady-state and transient components
of the overall response.

� The s-domain transformation of circuit elements
incorporates initial conditions associated with any energy
storage that may have existed in capacitors and inductors
at t = 0−. �

Resistor in the s-domain

Application of the Laplace transform to Ohm’s law,

LLL[υ] = LLL[Ri], (4.1)

leads to
V = RI, (4.2)

where by definition,

V = LLL[υ] and I = LLL[i]. (4.3)

Hence, for the resistor, the correspondence between the time
and s-domains is

υ = Ri V = RI. (4.4)

V and I are functions of s; the s-dependence is not expressed
explicitly to keep the notation simple.

Inductor in the s-domain

For R, the form of the i–υ relationship remained invariant
under the transformation to the s-domain. That is not the case
for L and C. Application of the Laplace transform to the i–υ
relationship of the inductor,

LLL[υ] = LLL
[
L
di

dt

]
, (4.5)

gives
V = L[sI − i(0−)], (4.6)

where i(0−) is the current that was flowing through the inductor
at t = 0−. The time-differentiation property (#6 in Table 3-1)
was used in obtaining Eq. (4.6). The correspondence between
the two domains is expressed as

υ = L
di

dt
V = sLI − L i(0−). (4.7)

In the s-domain, an inductor is represented by an impedance
ZL = sL, in series with a dc voltage source given by L i(0−)
or (through source transformation) in parallel with a dc current
source i(0−)/s, as shown in Table 4-1. Note that the current I
flows from (−) to (+) through the dc voltage source (if i(0−)
is positive).

Capacitor in the s-domain

Similarly,

i = C
dυ

dt
I = sCV − C υ(0−), (4.8)
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Table 4-1: Circuit models for R, L, and C in the s-domain.

Time-Domain s-Domain

Resistor

i

R υ

I

VR

υ = Ri V = RI

Inductor

iL

L υL

IL

VL

sL

+
_

L iL(0−)

OR

IL

VLsL iL(0−)
s

υL = L
diL

dt

iL = 1

L

t∫
0−
υL dt

′ + iL(0
−)

VL = sLIL − L iL(0−) IL = VL

sL
+ iL(0−)

s

Capacitor

iC

C υC

IC

VC+

_
υC(0−)

s

1
sC

OR

IC

VC
1

sC C υC(0−)

iC = C
dυC

dt

υC = 1

C

t∫
0−
iC dt + υC(0

−)
VC = IC

sC
+ υC(0−)

s
IC = sCVC − C υC(0−)

where υ(0−) is the initial voltage across the capacitor. The
s-domain circuit models for the capacitor are available in
Table 4-1.

Impedances ZR, ZL, and ZC are defined in the s-domain in
terms of voltage to current ratios, under zero initial conditions

[i(0−) = υ(0−) = 0]:

ZR = R, ZL = sL, ZC = 1

sC
. (4.9)
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Concept Question 4-1: In the s-domain, initial conditions
associated with capacitors and inductors are represented
by equivalent voltage sources or current sources. Are
such voltage sources connected in series with the 
circuit element or in parallel with it? What about 
equivalent current sources, how are they connected? 
(See        )

Concept Question 4-2: The s-domain circuit model for
an inductor accounts for the initial current flowing through
the inductor, but not the initial voltage across it. Is that an 
issue? (See        )

Exercise 4-1: Convert the circuit in Fig. E4-1 into the
s-domain.

Figure E4-1

R1

R2

C

L

+
_υs(t)

iL

υC

Answer:

R1

R2
LiL(0−)

sL

+
_Vs

+_

1
sC CυC(0−)

(See S2 )

4-2 s-Domain Circuit Analysis

Circuit laws and analysis tools used in the time domain are
equally applicable in the s-domain. They include Kirchhoff
voltage law (KVL) and Kirchhoff current law (KCL);
voltage and current division; source transformation; source
superposition; and Thévenin and Norton equivalent circuits.
Execution of the s-domain analysis technique entails the
following four steps:

Solution Procedure: s-Domain Technique

Step 1: Transform the circuit from the time domain to
the s-domain.

Step 2: Apply KVL, KCL, and the other circuit tools to
obtain an explicit expression for the voltage or current of
interest.

Step 3: If necessary, expand the expression into partial
fractions (Section 3-5).

Step 4: Use the list of transform pairs given in
Tables 3-2 and 3-3 and the list of properties in Table 3-1
(if needed) to transform the partial fraction to the time
domain.

This process is illustrated through Examples 4-1 to 4-4,
involving circuits excited by a variety of different waveforms.

Example 4-1: Interrupted Voltage Source

The circuit shown in Fig. 4-1(a) is driven by an input voltage
source υin(t), and its output is taken across the 3-� resistor.
The input waveform is depicted in Fig. 4-1(b): It starts out as
a 15 V dc level that had existed for a long time prior to t = 0,
it then experiences a momentary drop down to zero volts at
t = 0, followed by a slow recovery towards its earlier level.
The waveform of the output voltage is shown in Fig. 4-1(c).
Analyze the circuit to obtain an expression for υout(t), in order
to confirm that the waveform in Fig. 4-1(c) is indeed correct.

Solution: Before transforming the circuit to the s-domain, we
should always evaluate it at t = 0−, to determine the voltages
across all capacitors and currents through all inductors at
t = 0−. Until t = 0, the circuit was in a static state because
υin(t) had been a constant 15V dc source for a long time. Hence,
the voltage across the capacitor is constant, and therefore,
the current through it is zero. Similarly, the current through
the inductor is constant and the voltage across it is zero.
Accordingly, the circuit condition at t = 0− is as depicted is
Fig. 4-1(d), where C is replaced with an open circuit and L
replaced with a short circuit.A simple examination of the circuit
reveals that

υC(0
−) = 9 V, iL(0

−) = 3 A, and υout(0
−) = 9 V. (4.10)

Next, we need to transform the circuit in Fig. 4-1(a) to the
s-domain. The voltage waveform is given by

υin(t) =
{

15 V for t < 0,

15(1 − e−2t ) u(t)V for t ≥ 0.
(4.11)
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(a) Time domain

R1 = 2 Ω

R3 = 3 Ω
R2 = 5 Ω

C = 0.1 F

L = 2 H a

b

υin(t) υout(t)
+
_

+

_

(d) At t = 0−

(e) s-domain

a

b

Vin(s) Vout

+

_

2

3

5

+
_

+
_

L iL(0−) = 6

υC(0−)
=

+_

I1

I2

s

1
sC

sL = 2s

9
s

=
10
s

(b) Waveform of υin(t)

(c) Waveform of υout(t)

Input

Output

15(1 − e−2t) V

0 1 2 3
0

5

10

υin (V)

t (s)

15

a

b

υout(0−)

+

_

2 Ω

15 V 3 Ω

5 Ω
+
_

iL(0−) = 3 A

υC(0−) = 9 V@ t = 0−

υout (V)

t (s)
0 1 2 3

5

6

7

8

10

9

Figure 4-1: Circuit for Example 4-1.

With the help of Table 3-2, the corresponding s-domain
function for t ≥ 0 is given by

Vin(s) = 15

s
− 15

s + 2
. (4.12)

The s-domain circuit is shown in Fig. 4-1(e), in which L and C
are represented by their s-domain models in accordance with
Table 4-1, namely,

L iL(0−)L sL 2s

s-DomainTime Domain
6 V

= ,+_+_

iL IL

and

υC(0−)/sC 1/sC 10/s 9/s
= .+ _ + _

ICiC
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By inspection, the mesh-current equations for loops 1 and 2 are
given by

(
2 + 5 + 10

s

)
I1 −
(

5 + 10

s

)
I2 = Vin − 9

s
(4.13)

and

−
(

5 + 10

s

)
I1 +
(

3 + 5 + 2s + 10

s

)
I2 = 9

s
+ 6. (4.14)

After replacing Vin(s) with the expression given by Eq. (4.12),
simultaneous solution of the two algebraic equations leads to

I2 = 42s3 + 162s2 + 306s + 300

s(s + 2)(14s2 + 51s + 50)

= 42s3 + 162s2 + 306s + 300

14s(s + 2)(s2 + 51s/14 + 50/14)
. (4.15)

The roots of the quadratic term in the denominator are

s1 = 1

2

⎡
⎣−51

14
−
√(

51

14

)2

− 4 × 50

14

⎤
⎦ = −1.82 − j0.5,

(4.16a)
and

s2 = −1.82 + j0.5. (4.16b)

Hence, Eq. (4.15) can be rewritten in the form

I2 = 42s3 + 162s2 + 306s + 300

14s(s + 2)(s + 1.82 + j0.5)(s + 1.82 − j0.5)
.

(4.17)
The expression for I2 is now ready for expansion in the form of
partial fractions:

I2 = A1

s
+ A2

s + 2
+ B

s + 1.82 + j0.5
+ B∗

s + 1.82 − j0.5
,

(4.18)
with

A1 = sI2|s=0

= 42s3 + 162s2 + 306s + 300

14(s + 2)(s2 + 51s/14 + 50/14)

∣∣∣∣
s=0

= 3, (4.19a)

A2 = (s + 2)I2|s=−2

= 42s3 + 162s2 + 306s + 300

14s(s2 + 51s/14 + 50/14)

∣∣∣∣
s=−2

= 0, (4.19b)

and

B = (s + 1.82 + j0.5)I2|s=−1.82−j0.5

= 42s3 + 162s2 + 306s + 300

14s(s + 2)(s + 1.82 − j0.5)

∣∣∣∣
s=−1.82−j0.5

= 5.32e−j90◦
. (4.19c)

Inserting the values of A1, A2, and B into Eq. (4.18) leads to

I2 = 3

s
+ 5.32e−j90◦

s + 1.82 + j0.5
+ 5.32ej90◦

s + 1.82 − j0.5
. (4.20)

For the first term, entry #2 in Table 3-2 leads to inverse Laplace
transform

3

s
3 u(t),

and from property #3 of Table 3-3, we have

Aejθ

s + a + jb
+ Ae−jθ

s + a − jb
2Ae−at cos(bt − θ) u(t).

(4.21)

WithA = 5.32, θ = −90◦, a = 1.82, and b = 0.5, the inverse
Laplace transform corresponding to the expression given by
Eq. (4.20) is

i2(t) = [3 + 10.64e−1.82t cos(0.5t + 90◦)] u(t)
= [3 − 10.64e−1.82t sin 0.5t] u(t)A, (4.22)

and the corresponding output voltage is

υout(t) = 3i2(t) = [9 − 31.92e−1.82t sin 0.5t] u(t)V. (4.23)

The waveform of υout(t) shown in Fig. 4-1(c) was (indeed)
generated using this expression. Note that υout(t) consists of a
steady-state component of 9 V and an exponentially decaying
transient component that goes to zero as t → ∞.

Example 4-2: ac Source with a dc Bias

Repeat the analysis of the circuit shown in Fig. 4-1(a), but
change the waveform of the voltage source into a 15 V dc level
that has existed for a long time in combination with a 20 V ac
signal that starts at t = 0, as shown in Fig. 4-2(a).
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(a) Waveform of υin(t)

(b) Waveform of υout(t)

Output

35

−5

0 5 10 15 20

υin (V)

15

15 + 20 sin(4t)Input

t (s)

10

5 10 15 20

9 V
5

15

0

υout (V)

t (s)

Figure 4-2: Input and output waveforms for the circuit in
Fig. 4-1 (Example 4-2).

Solution*:

υin(t) =
{

15 V, for t < 0

[15 + 20 sin 4t] u(t)V, for t ≥ 0.
(4.24)

In view of entry #9 in Table 3-2, the s-domain counterpart of
υin(t) is

Vin(s) = 15

s
+ 20ω

s2 + ω2 = 15

s
+ 80

s2 + 16
, (4.25)

where we replaced ω with 4 rad/s. For t ≤ 0−, the voltage
waveform is the same as it was before in Example 4-1, namely
15V, so initial conditions remain as before (Fig. 4-1(d)), as does
the circuit configuration in the s-domain (Fig. 4-1(e)). The only

*MATLAB/MathScript solution is available on book website.

quantity that has changed is the expression for Vin(s). Rewriting
Eq. (4.13), with Vin(s) as given by Eq. (4.25), leads to

(
7 + 10

s

)
I1 −
(

5 + 10

s

)
I2 = Vin − 9

s

= 15

s
+ 80

s2 + 16
− 9

s

= 6s2 + 80s + 96

s(s2 + 16)
. (4.26)

Equation (4.14) remains unchanged as

−
(

5 + 10

s

)
I1 +
(

3 + 5 + 2s + 10

s

)
I2 = 9

s
+ 6. (4.27)

Simultaneous solution of Eqs. (4.26) and (4.27) leads to

I2 = 42s4 + 153s3 + 1222s2 + 3248s + 2400

14s(s2 + 16)(s2 + 51s/14 + 50/14)
=

42s4 + 153s3 + 1222s2 + 3248s + 2400

14s(s + j4)(s − j4)(s + 1.82 + j0.5)(s + 1.82 − j0.5)
,

(4.28)

where we expanded the two quadratic terms in the denominator
into a product of four simple-pole factors.

Partial fraction representation takes the form:

I2 = A1

s
+ B1

s + j4
+ B∗

1

s − j4
+ B2

s + 1.82 + j0.5

+ B∗
2

s + 1.82 − j0.5
, (4.29)

with

A1 = sI2|s=0 =
42s4 + 153s3 + 1222s2 + 3248s + 2400

14(s + j4)(s − j4)(s + 1.82 + j0.5)(s + 1.82 − j0.5)

∣∣∣∣
s=0

= 3, (4.30a)

B1 = (s + j4)I2|s=−j4 = 0.834 157.0◦ , (4.30b)

and

B2 = (s + 1.82 + j0.5)I2|s=−1.82−j0.5 = 0.79 14.0◦ .
(4.30c)
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Hence, I2 becomes

I2 = 3

s
+ 0.834ej157◦

s + j4
+ 0.834e−j157◦

s − j4

+ 0.79ej14◦

s + 1.82 + j0.5
+ 0.79e−j14◦

s + 1.82 − j0.5
. (4.31)

With the help of entry #3 in Table 3-3, conversion to the time
domain gives

i2(t) = [3 + 1.67 cos(4t − 157◦)

+ 1.58e−1.82t cos(0.5t − 14◦)] u(t)A, (4.32)

and the corresponding output voltage is

υout(t) = 3 i2(t)

= [9 + 5 cos(4t − 157◦)

+ 4.73e−1.82t cos(0.5t − 14◦)] u(t)V. (4.33)

The profile of υout(t) is shown in Fig. 4-2(b): In response to
the introduction of the ac signal at the input at t = 0, the output
consists of a dc term equal to 9 V, plus an oscillatory transient
component (the last term in Eq. (4.33)) that decays down to
zero over time, and a steady-state oscillatory component that
continues indefinitely.

Another approach for analyzing the circuit is by applying the
source-superposition method, wherein the circuit is analyzed
twice: once with the 15 V dc component alone and a second
time with only the ac component that starts at t = 0. The first
solution would lead to the first term in Eq. (4.33). For the ac
source, we can apply phasor-analysis, but the solution would
have yielded the steady-state component only.

� The advantage of the Laplace transform technique is
that it can provide a complete solution that automatically
includes both the transient and steady-state components
and would do so for any type of excitation. �

Example 4-3: Circuit with a Switch

Determine iL(t) in the circuit of Fig. 4-3 for t ≥ 0.

Solution: We start by examining the state of the circuit at
t = 0− (before closing the switch). Upon replacing L with a

(a) Time-domain

V0

R1

R2

R3

L

iL

C

12 Ω

2 H

8 Ω
4 Ω

24 V
0.2 F

t = 0

+
_

(b) Circuit at t = 0−

(c) s-domain

V0

R1

R2

R3

L C

12 Ω

8 Ω
4 Ω

24 V
+
_

υC(0−) = 12 V

iL(0−) = 1 A

iL

+
_

+
_

12

4

2

2s

+
_

5
s

12
s

24
s

I1 I2

Figure 4-3: Circuit for Example 4-3.

short circuit and C with an open circuit, as portrayed by the
configuration in Fig. 4-3(b), we establish that

iL(0
−) = 1 A, υC(0

−) = 12 V. (4.34)

For t ≥ 0, the s-domain equivalent of the original circuit
is shown in Fig. 4-3(c), where we have replaced R2 with
a short circuit, converted the dc source into its s-domain
equivalent, and in accordance with the circuit models given
in Table 4-1, converted L and C into impedances, each with its



“book” — 2016/3/15 — 6:56 — page 139 — #9

4-2 S-DOMAIN CIRCUIT ANALYSIS 139

own appropriate voltage source. By inspection, the two mesh
current equations are given by

(4 + 12 + 2s)I1 − (12 + 2s)I2 = 24

s
+ 2, (4.35)

− (12 + 2s)I1 +
(

12 + 2s + 5

s

)
I2 = −2 − 12

s
. (4.36)

Simultaneous solution of the two equations leads to

I1 = 12s2 + 77s + 60

s(4s2 + 29s + 40)
(4.37a)

and

I2 = 8(s + 6)

4s2 + 29s + 40
. (4.37b)

The associated inductor current IL is

IL = I1 − I2 = 4s2 + 29s + 60

s(4s2 + 29s + 40)
= 4s2 + 29s + 60

4s(s + 1.85)(s + 5.4)
,

(4.38)
which can be represented by the partial fraction expansion

IL = A1

s
+ A2

s + 1.85
+ A3

s + 5.4
. (4.39)

The values of A1 to A3 are obtained from

A1 = sIL|s=0 = 60

40
= 1.5, (4.40a)

A2 = (s + 1.85)IL|s=−1.85

= 4s2 + 29s + 60

4s(s + 5.4)

∣∣∣∣
s=−1.85

= −0.76, (4.40b)

and

A3 = (s + 5.4)IL|s=−5.4 = 0.26. (4.40c)

Hence,

IL = 1.5

s
− 0.76

s + 1.85
+ 0.26

s + 5.4
, (4.41)

and the corresponding time-domain current is

iL(t) = [1.5 − 0.76e−1.85t + 0.26e−5.4t ] u(t)A. (4.42)

Example 4-4: Lowpass Filter Response to a

Rectangular Pulse

Given the RC circuit shown in Fig. 4-4(a), determine the output
response to a 1 s long rectangular pulse. The pulse amplitude
is 1 V. This is a repeat of Example 2-4, which was analyzed
in Chapter 2 by applying the convolution method in the time
domain.

Solution: With R = 0.5 M� and C = 1 μF, the product is
RC = 0.5 s. Voltage division in the s-domain (Fig. 4-4(b))
leads to

H(s) = Vout(s)
Vin(s)

= 1/sC
R + 1/sC

= 1/RC

s + 1/RC
= 2

s + 2
.

(4.43)

(a) RC lowpass filter

0

1 V

1 s

+

_

+
_
+
_υin(t) = υout(t)

0.5 MΩ

1 μF

(b) s-domain

(c) Output response

+

_

+
_
+
_Vin(s) Vout(s)

R

1
sC

1.0

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5

V
υin(t)

υout(t)

t (s)

Figure 4-4: Example 4-4.
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The rectangular pulse is given by

υin(t) = [u(t)− u(t − 1)] V, (4.44)

and with the help of Table 3-2, its s-domain counterpart is

Vin(s) =
[

1

s
− 1

s
e−s
]

V. (4.45)

Hence,

Vout(s) = H(s) Vin(s) = 2(1 − e−s)

[
1

s(s + 2)

]
. (4.46)

In preparation for transformation to the time domain, we expand
the function inside the square bracket into partial fractions:

1

s(s + 2)
= A1

s
+ A2

s + 2
, (4.47)

with

A1 = s
[

1

s(s + 2)

]∣∣∣∣
s=0

= 1

2
,

A2 = (s + 2)

[
1

s(s + 2)

]∣∣∣∣
s=−2

= −1

2
.

Incorporating these results gives

Vout(s) = 1

s
− 1

s + 2
− 1

s
e−s + 1

s + 2
e−s. (4.48)

From Table 3-2, we deduce that

u(t)
1

s
,

e−2t u(t)
1

s + 2
,

u(t − 1)
1

s
e−s,

and

e−2(t−1) u(t − 1)
1

s + 2
e−s.

Hence,

υout(t) =
[
[1 − e−2t ] u(t)− [1 − e−2(t−1)] u(t − 1)

]
V.

(4.49)
Figure 4-4(c) displays the temporal response of υout(t).

Exercise 4-2: Compute the s-domain impedance of a
series RLC circuit with zero initial conditions. Simplify
the expression to a ratio of polynomials.

Answer:

Z(s) = R + sL+ 1

sC
= s2 + (R/L)s + 1/(LC)

s/L
.

(See S2 )

4-3 Electromechanical Analogues

In this section, we show that mechanical systems consisting
of springs, masses, and dampers can be mapped to an
equivalent electrical system consisting of inductors, capacitors,
and resistors. The electrical system can then be solved using
s-domain circuit analysis. We then apply this to a biomechanical
model of a human sitting on a chair subjected to an applied
motion (e.g., a vehicle moving on an uneven pavement).

4-3.1 A Revealing Example

Let us revisit the car spring-mass-damper system analyzed
earlier in Section 2-9 and diagrammed again in Fig. 4-5(a).
We will shortly demonstrate that this shock-absorber system
is mathematically equivalent to the RLC circuit shown in
Fig. 4-5(b). Equivalency stems from the fact that the mechanical
and electrical systems are characterized by LCCDEs of identical
form.

Figure 4-6 depicts a car moving horizontally at a constant
speed vz over a pavement with height profile x(z), where z is the
direction of travel. The height profile appears to the car’s tires
as a time-dependent vertical displacement x(t) with associated
vertical velocity

vx = dx

dt
. (4.50)

We shall call vx(t) the input vertical velocity experienced by
the tire as it moves over the pavement. The car, including the
shock absorber, is the system, and the vertical velocity of the
car’s body, vy(t), is the output response. To keep the analysis
simple, we are assuming that all four tires experience the same
pavement profile, which obviously is not always true for the
front and back tires.
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(a) Mechanical system

(b) Electrical system

Coil with
spring 
constant k

Shock absorber
with damping 
coefficient b

Pavement

y(t)

x(t)

Fc

FdFs

iL

iR

L

R
C

iC

+
_υx(t) υy(t)

υx − υy

CAR
Mass 4m 

Figure 4-5: The electrical circuit in (b) is an exact analogue of
the shock-absorber system in (a).

For the purpose of our electromechanical analogy, we offer
the following specifications:

Mechanical system

• vx(t) is the vertical velocity of the tire (input signal).

• vy(t) is the vertical velocity of the car (output response).

Electrical system

• υx(t) is the voltage of voltage source (input signal).

• υy(t) is the voltage across the capacitor (output response).

x(z)
x

z

vy

vz

vx

ˆ

Figure 4-6: Car moving with horizontal speed vz along the z
direction over a pavement with height profile x(z). The motion
of the car over the pavement imparts a vertical velocity vx(t) on
the car wheel. In response, the car’s body experiences a vertical
velocity vy(t).

Consistent with our earlier treatment in Section 2-9.1, we
ascribe a positive polarity to a force when it is pointing upwards.

Comparison

The two derivations leading to the LCCDEs given by Eqs. (4.54)
and (4.58) are mathematically identical. Accordingly, we draw
the parallels outlined in Table 4-2. By applying these parallels,
we can construct electrical circuits to represent mechanical
systems and then apply circuit analysis techniques to determine
the output response of the mechanical systems to specified input
excitations.

4-3.2 Analogue Models

Building on the simple example of the preceding subsection,
we will now generalize the analogy to more complex systems.
We start with the following definitions:

• An SMD system is a mechanical system consisting entirely
of springs, masses, and dampers.

• An RLC system is an electrical system consisting entirely
of resistors, inductors, and capacitors (no dependent
sources or op amps).

� SMD systems can be modeled in terms of equivalent
RLC systems. “Equivalent” means their mathematical
behavior is the same, even though the physical quantities
are different. So in analyzing an RLC system, we are also
implicitly analyzing an SMD system. �
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Mechanical System Electrical System

The forces exerted on the car’s body (Fig. 4-5(a)) by the
spring and damper are Fs and Fd, respectively; both depend
on the relative velocity (vy − vx). The inertial force Fc
depends only on the velocity of the car’s body, vy . With x̂
denoting a unit vector pointing upwards, the three forces are
given by

Fs = −k(y − x)x̂ =
⎧⎨
⎩k

t∫
0

[vx(τ )− vy(τ )] dτ
⎫⎬
⎭ x̂,

(4.51a)

Fd = −b d

dt
(y − x)x̂ = b(vx − vy)x̂, (4.51b)

and

Fc = m
d2y

dt2
x̂ = m

dvy
dt

x̂, (4.51c)

where k is the spring constant, b is the damping coefficient
of the shock absorber, andm is one-fourth of the car’s mass.
The force balance equation is

Fc = Fs + Fd (4.52)

or, equivalently,

−k
t∫

0

[vx(τ )−vy(τ )] dτ−b(vx−vy)+m dvy
dt

= 0. (4.53)

Upon differentiating all terms with respect to t and then
rearranging them so that those involving the input vx(t)
appear on the right-hand side and those involving the output
response vy(t) appear on the left, we have

m
d2vy
dt2

+ b
dvy
dt

+ kvy = b
dvx
dt

+ kvx. (4.54)

In the circuit of Fig. 4-5(b), currents iR and iL through
the resistor and inductor depend on the voltage difference
(υx −υy), whereas current iC through the capacitor depends
on υy only. The three currents are given by

iL = 1

L

t∫
0

[υx(τ )− υy(τ )] dτ, (4.55a)

iR = 1

R
(υx − υy), (4.55b)

and

iC = C
dυy

dt
, (4.55c)

Note the symmetry between the expressions given by
Eq. (4.51) and those given by Eq. (4.55). From the KCL,
we have

iC = iL + iR (4.56)

or, equivalently,

− 1

L

t∫
0

[υx(τ )− υy(τ )] dτ − 1

R
(υx − υy)+ C

dυy

dt
= 0.

(4.57)
Upon differentiating all terms with respect to t and then
rearranging them so that those involving the input source
υx(t) appears on the right-hand side and those involving the
output response υy(t) appear on the left, we have

C
d2υy

dt2
+ 1

R

dυy

dt
+ 1

L
υy = 1

R

dυx

dt
+ 1

L
υx. (4.58)
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Table 4-2: Mechanical-electrical analogue.

Mechanical Electrical

• Force F Current i
F is positive when pointing upwards i is positive when entering positive voltage terminal of

device

• Vertical velocity v Voltage υ
v is positive when car or tire υ’s positive terminal is where i enters device
is moving upwards

• Mass m (1/4 of car’s mass) Capacitance C

Fc = m
dvy
dt

iC = C
dυy

dt

• Spring constant k 1/L: Inverse of inductance

Fs = k

t∫
0

(vx − vy) dτ iL = 1

L

t∫
0

(υx − υy) dτ

• Damping coefficient b 1/R: Inverse of resistance (conductance)

Fd = b(vx − vy) iR = 1

R
(υx − υy)

• Fc = Fs + Fd iC = iL + iR

Example 4-5: Mechanical System

The mechanical system in Fig. 4-7(a) consists of a spring-
damper-mass sequence connected to a platform that sits over a
hydraulic lift. The lift was used to raise the platform by 4 m at a
constant speed of 0.5 m/s. Determine the corresponding vertical
speed and displacement of the massm, given thatm = 150 kg,
k = 1200 N/m, and b = 200 N·s/m.

Solution: We start by constructing an equivalent electrical
circuit; the series spring-damper-mass is represented by a
resistor, inductor, and capacitor in series, with the combination
driven by a voltage source υx(t). The output is voltage υy(t)
across the capacitor (Fig. 4-7(b)).

We then transform the time-domain circuit into the s-domain
as shown in Fig. 4-7(c). Voltage division gives

Vy = VxZC

ZR + ZL + ZC

= 1/(sm)
1
b

+ s
k

+ 1
sm

Vx = k/m

s2 + k
b

s + k
m

Vx = 8

s2 + 6s + 8
Vx.

(4.59)

The input excitation Vx is the Laplace transform of the input
velocity vx(t). Given that the lift moved at a constant speed of
0.5 m/s over a distance of 4 m, which corresponds to a travel
time of 4/0.5 = 8 s, vx(t) is a rectangle waveform given by

vx(t) = 0.5[u(t)− u(t − 8)] m/s. (4.60)

Using entries #2 and #2a in Table 3-2, the Laplace transform
of vx(t) is

Vx = 0.5

s
− 0.5

s
e−8s. (4.61)

Hence,

Vy = 4

s(s2 + 6s + 8)
− 4e−8s

s(s2 + 6s + 8)

= 4

s(s + 2)(s + 4)
− 4e−8s

s(s + 2)(s + 4)
. (4.62)
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SMD-RLC Analysis Procedure

Step 1: Replace each mass with a capacitor with one
terminal connected to a node and the other to ground.

Step 2: Replace each spring with an inductor with
L = 1/k, where k is the spring’s stiffness coefficient.

• If the spring connects two masses, its equivalent
inductor connects to their equivalent capacitors at
their non-ground terminals.

• If the spring connects a mass to a stationary surface,
its equivalent inductor should be connected between
the capacitor’s non-ground terminal and ground.

• If one end of the spring connects to a moving surface,
the corresponding terminal of its equivalent inductor
should be connected to a voltage source.

Step 3: Replace each damper with a resistor with
R = 1/b, where b is the damper’s damping coefficient.
Connection rules are the same as for springs.

Step 4: Analyze the RLC circuit using the s-domain
technique described in Section 4-2.

The solution of the RLC circuit provides expressions
for the voltages across capacitors, corresponding to the
velocities of their counterpart masses in the mechanical
system. Displacement of a mass or its acceleration can be
obtained by integrating or differentiating its velocity v(t),
respectively.

We will label the first term Vy1 and expand it into partial
fractions:

Vy1 = 4

s(s + 2)(s + 4)
= A1

s
+ A2

s + 2
+ A3

s + 4
. (4.63)

Application of the procedure outlined in Section 3-5.1 leads to

A1 = s Vy1

∣∣
s=0 = 4

2 × 4
= 0.5,

A2 = (s + 2) Vy1

∣∣
s=−2 = 4

(−2)× 2
= −1,

and

A3 = (s + 4) Vy1

∣∣
s=−4 = 4

(−4)× (−2)
= 0.5.

Hence,

Vy1 = 0.5

s
− 1

s + 2
+ 0.5

s + 4
, (4.64)

and its inverse Laplace transform is

vy1(t) = [0.5 − e−2t + 0.5e−4t ] u(t). (4.65)

The second term in Eq. (4.62) is identical with the first term
except for the multiplication factor (−e−8s). From property #3a
in Table 3-2 we surmise that its time-domain equivalent is the
same as that of the first term, but delayed by 8 s and multiplied
by (−1). Accordingly,

vy2(t) = −[0.5 − e−2(t−8) + 0.5e−4(t−8)] u(t − 8), (4.66)

and

vy(t) = vy1(t)+ vy2(t). (4.67)

Figure 4-7 displays plots of vy(t), the vertical velocity of
mass m, and its vertical displacement

y(t) =
t∫

0

vy(t) dτ. (4.68)

Concept Question 4-3:What are the electrical analogues
of springs, masses, and dampers? (See        )

Concept Question 4-4: After computing the node 
voltages of the equivalent RLC system, what do you need 
to do to complete the analysis of the mechanical system?
(See        )

Exercise 4-3: A mass is connected by a spring to a
moving surface. What is its electrical analogue? Answer:

A series LC circuit driven by a voltage source, the same
as the circuit in Fig. 4-7(b), but without the resistor.
(See S2 )



“book” — 2016/3/15 — 6:56 — page 145 — #15

4-3 ELECTROMECHANICAL ANALOGUES 145

(a) Series system

Mass vertical velocity

Mass vertical displacement

(b) Equivalent circuit (d) Vertical velocity vy(t)

(c) s-domain circuit (e) Vertical displacement y(t)

Hydraulic lift

vy

vx

b

m

k

C = m

R = 1/b L = 1/k

+
_υx(t) υy(t)

vy (m/s)

t (s)
20

0
0.1
0.2
0.3
0.4
0.5

6 8 10 124

ZR = 1/b,  ZL = s/k,  ZC = 1/sm

+
_Vx Vy

ZR ZL

ZC

y (m)

t (s)
20

0
1
2
3
4
5

6 8 10 124

Figure 4-7: Mechanical system and its equivalent circuits (Example 4-5).

Exercise 4-4: What do you expect the impulse response
of the system in Exercise 4-3 to be like?

Answer: Oscillatory, with no damping (no resistor).
(See S2 )

Exercise 4-5: In the SMD system shown in Fig. E4-5,
vx(t) is the input velocity of the platform and vy(t) is the
output velocity of massm. Draw the equivalent s-domain
circuit.

vy(t)

vx(t)

200 kg

N·s
m500 N

m1500

Figure E4-5



“book” — 2016/3/15 — 6:56 — page 146 — #16

146 CHAPTER 4 APPLICATIONS OF THE LAPLACE TRANSFORM

Answer:

Vx(s) Vy(s)

+

_

+
_

1
sC =

1
sm =

1
200s

R = 1
b = 1

500

sL = s
k = s

1500

(See S2 )

Exercise 4-6: In the SMD system shown in Fig. E4-6,
vx(t) is the input velocity of the platform and vy(t) is the
output velocity of massm. Draw the equivalent s-domain
circuit.

vy(t)

vx(t)

200 kg

N
m300 N·s

m500 N
m1500

Figure E4-6

Answer:

Vx(s) Vy(s)

+

_

+
_

1
sC =

1
sm =

1
200s

R = 1
b = 1

500

sL = s
k = s

1500

s
300

(See S2 )

4-4 Biomechanical Model of a Person
Sitting in a Moving Chair

We now apply an electromechanical analogue to a biome-
chanical model of a person sitting in a car chair subject to
vertical motions as the car moves over an uneven pavement.
The model shown in Fig. 4-8 divides the body above the car seat
into four sections with masses m1 to m4.† Adjacent sections
are connected by a parallel combination of a spring and a
damper. The springs represent bones, including the spine; the
displacement allowed by a bone is roughly proportional to the
applied force, and the stiffness k of the spring corresponds to
the proportionality factor. Soft tissue, which basically is a thick
fluid, is modeled as a damper. The model is used to assess the
risk of lower back disorders caused by driving trucks or similar
heavy equipment. The input to the system is the vertical velocity
of the chair, and the output is the vertical velocity of the head
(if it exceeds certain limits, spinal injury may occur).

We use the following notation:

Biomechanical system

• xi(t) is the vertical displacement of mass i, with
i = 1, 2, 3, 4.

• vi (t) = dxi/dt is the vertical velocity of mass i.

• v1(t) = vx(t), where vx(t) is the vertical velocity of the
car seat (lower torso section is connected directly to car
seat).

• ki is the stiffness of the spring connecting mass i to mass
i + 1, with i = 1, 2, 3.

• bi is the damping factor of the damper connecting mass i
to mass i + 1, with i = 1, 2, 3.

Electrical analogue

• Voltages υi(t) correspond to vi (t) with υ1(t) = υx(t)

where υx(t) is a voltage source; its s-domain equivalent
is Vx ,

• Spring with ki Inductor with Li = 1/ki ,

• Damper with bi Resistor with Ri = 1/bi ,

• Mass mi Capacitor with Ci = mi .

†T. R. Waters, F. Li, R. L. Huston and N. K. Kittusamy, “Biomechanical
Modeling of Spinal Loading Due to Jarring and Jolting for Heavy Equipment
Operators,” Proceedings of the XVth Triennial Congress of the International
Ergonomics Association and 7th Joint Conference of Ergonomics Society of
Korea/Japan Ergonomics Society, Seoul, Korea, Aug. 24–29, 2003.
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(a) Series system

(b) Electrical circuit analogue (time domain)

+
_υx(t)

υ1

υ4(t)

R1 = 1/b1

L1 = 1/k1
C1 = m1

υ2
R2 = 1/b2

L2 = 1/k2
C2 = m2

υ3 υ4
R3 = 1/b3

L3 = 1/k3
C3 = m3

C4 = m4

(c) s-domain circuit

+
_Vx

V1

ZR1
 = 1/b1

ZC1
 = 1/sm1

ZL1
 = s/k1

V2

ZR2
 = 1/b2

ZC2
 = 1/sm2

ZL2
 = s/k2

V3 V4

V4

ZR3
 = 1/b3

ZC3
 = 1/sm3

ZC4
 = 1/sm4

ZL3
 = s/k3

Head: m4

v1 = vx

vx

v2

v3

v4

Upper torso: m3

k3 b3

k2 b2

k1 b1

Middle torso: m2

Lower torso: m1

Seat

Figure 4-8: Biomechanical model of a person subjected to vertical motion.

The circuit in Fig. 4-8(b) is an analogue of the biomechanical
model in part (a). Each mass is represented by a capacitor with
one of its terminals connected to ground; adjoining masses

are connected by a parallel combination of a resistor and an
inductor; and the excitation is provided by voltage source υx(t),
representing the vertical velocity of the car seat vx(t).
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The s-domain equivalent circuit is shown in Fig. 4-8(c). Its
node equations are

V1 = Vx, (4.69a)

− V1

(
b1 + k1

s

)
+ V2

(
b1 + k1

s
+ b2 + k2

s
+ sm2

)

− V3

(
b2 + k2

s

)
= 0, (4.69b)

− V2

(
b2 + k2

s

)
+ V3

(
b2 + k2

s
+ b3 + k3

s
+ sm3

)

− V4

(
b3 + k3

s

)
= 0, (4.69c)

and

− V3

(
b3 + k3

s

)
+ V4

(
b3 + k3

s
+ sm4

)
= 0. (4.69d)

To save space, we replace V1 with Vx , and introduce the
abbreviations

ai = bi + ki

s
, for i = 1, 2, 3. (4.70)

We then cast the node equation in matrix form as

⎡
⎣a1 + a2 + sm2 −a2 0

−a2 a2 + a3 + sm3 −a3
0 −a3 a3 + sm4

⎤
⎦
⎡
⎣V2

V3
V4

⎤
⎦ =
⎡
⎣a1Vx

0
0

⎤
⎦ .

(4.71)
In Eq. (4.71), Vx represents the Laplace transform of the input
vertical velocity imparted by the car seat onto mass m1 (lower
torso), and V4, which is the Laplace transform of the output
response, represents the vertical velocity of the head.

Example 4-6: Car Driving over a Curb

For the biomechanical model represented by Eq. (4.71),
compute and plot the head’s vertical velocity as a function of
time in response to the car going over a curb 1 cm in height.
Assume m1 = 8.164 kg, m2 = 11.953 kg, m3 = 11.654 kg,

m4 = 5.018 kg (representing average values for an adult
human), bi = 90 N·s/m, and ki = 3500 N/m for i = 1, 2, 3.‡

Solution: We will assume that the vertical movement of the
chair seat mimics that of the car tires (i.e., no damping is
provided by the shock absorbers). The seat’s 1 cm vertical
displacement is then

x(t) = 0.01 u(t) (m),

and the associated vertical velocity is

vx(t) = dx

dt
= 0.01 δ(t).

This input signal corresponds to a voltage source υx(t)with the
same expression and a Laplace transform

Vx = LLL[vx(t)] = 0.01.

When the input to a system is an impulse function, its output
is equal to the system’s impulse response h(t). Hence, in the
present case, the desired output, v4(t), is

v4(t) = 0.01 h(t) (4.72)

with h(t) being the solution based on Eq. (4.71) with Vx = 1.
Upon:

(a) setting Vx = 1 in Eq. (4.71),

(b) solving the system of equations to obtain an expression
for V4,

(c) applying partial fraction expansion to convert the
expression into a form amenable to transformation to the
time domain, and

(d) using the applicable Laplace transform pairs in Tables 3-2
and 3-3, we obtain the result

h(t) = 3.22e−15.2t cos(30.83t − 37.5◦) u(t)

+ 8.65e−7.95t cos(23.56t + 127.3◦) u(t)

+ 11.5e−1.08t cos(9.10t − 76.5◦) u(t). (4.73)

‡V. M. Zatsiorsky, Kinetics of Human Motion, Human Kinetics, Champaign
IL, 2002, p. 304. M. Fritz, “An Improved Biomechanical Model for Simulating
the Strain of the Hand-Arm System under Vibration Stress,” J. Biomechanics
24(12), 1165–1171, 1991.
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v4 (m/s)
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0.15
Head Vertical Velocity

−0.10

Figure 4-9: Vertical velocity of the head in response to a car
driving over a curb (Example 4-6).

A plot of the head’s vertical velocity, v4(t) = 0.01 h(t), is
displayed in Fig. 4-9. It is approximately a decaying sinusoid

with a first peak at 0.12 m/s (see S2
for more details).

Example 4-7: Wavy Pavement Response

Use the biomechanical model of Example 4-6 to determine the
time variation of the head’s vertical velocity when the seated
person is riding in a vehicle over a wavy surface that imparts a
vertical velocity on the seat given by vx(t) = cos 10t (m/s).

Solution: According to Eq. (2.118), a sinusoidal input signal
A cos(ωt + φ) generates an output response

y(t) = A|H(jω)| cos(ωt + θ + φ).

In the present case,A = 1 m/s, φ = 0, ω = 10 rad/s, y(t) is the
output v4(t), and |H(jω)| and θ are the magnitude and phase
angle of H(s), when evaluated at s = jω. After replacing s with
jω in Eqs. (4.70) and (4.71), solving the system of equations
leads to

H(jω) = V4(jω) = 4.12 −116.1◦ .

Hence,

v4(t) = 4.12 cos(10t − 116.1◦) m/s.

Note that the head’s vertical velocity has an amplitude 4.12
times that of the chair’s vertical velocity! This means that the
body is a poor damping system at this angular frequency.

Exercise 4-7: What is the amplitude of the head
displacement for the person in Example 4-7, if the seat
displacement is x1(t) = 0.02 cos(10t) (m)?

Answer:

v1(t) = dx1/dt

= −0.2 sin(10t) = 0.2 cos(10t + 90◦) (m/s);
v4(t) = 0.2 × 4.12 cos(10t + 90◦ − 116.1◦)

= 0.824 cos(10t − 26.1◦) (m/s);

x4(t) =
t∫

−∞
v4(τ ) dτ = 0.0824 sin(10t − 26.1◦) (m);

amplitude = 8.24 cm. (See S2 )

4-5 Op-Amp Circuits

A system design process usually starts by defining the desired
performance specifications of the system, such as its gain,
frequency response, sensitivity to certain parameters, and
immunity to noise interference, among others. As we will see
in this and later chapters, these specifications can be used to
establish a functional form for the transfer function of the
desired system, H(s). The next step is to construct a physical
system with an input-output response that matches the desired
H(s). The physical system may be electrical, mechanical,
chemical, or some combination of different technologies. When
electrical systems are constructed to process signals or control
other systems, it is common practice to use operational-
amplifier circuits whenever possible, because they can be used
in a modular mode to design a wide variety of system transfer
functions.

Operational amplifiers (op amps for short) usually are
covered in introductory circuits courses. An op amp is
represented by the triangular symbol shown in Fig. 4-10 where
five voltage node terminals are connected.

Op-Amp Terminals

υυυn inverting (or negative) input voltage
υυυp noninverting (or positive) input voltage
−Vdc negative dc power supply voltage
+Vdc positive dc power supply voltage
υυυo output voltage
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υo

+Vdc

−Vdc

+

υn

υp

ip = 0

in = 0
(Ro = 0)

(Ri =    )8

+

_

Figure 4-10: Ideal op-amp model.

By way of a review, the ideal op-amp model is characterized
by the following properties:

(a) Infinite input resistance: Ri ≈ ∞
(b) Zero output resistance: Ro ≈ 0 (so long as any load that

gets connected between υo and ground is at least 1 k� or
greater)

(c) Zero input-current constraint: ip = in = 0

(d) Zero input-voltage constraint: υp − υn = 0 (or, equiva-
lently, υp = υn).

(e) Output voltage saturation constraint: υo is bounded
between −Vdc and +Vdc.

Application of the ideal op-amp constraints greatly facilitates
the analysis and design of op-amp circuits.

� In forthcoming discussions involving op amps, we
shall assume that the positive and negative power supply
voltages have equal magnitudes (which is not universally
the case), so a single voltage rail is sufficient in op-amp
diagrams. Moreover, in op-amp circuits where no voltage
rails are indicated at all, the assumption is that the signal
magnitudes at the op-amp output terminals are well below
the saturation level |Vdc|, so there is no need to show a
voltage rail explicitly. �

4-5.1 Basic Inverting Amplifier

The s-domain op-amp circuit shown in Fig. 4-11 includes an
input impedance Zi and a feedback impedance Zf . At node Vn,
using the KCL gives

I1 + I2 + In = 0

Inverting Amplifier

Circuit

Block diagram

(a)

(b)

Ip = 0

In = 0

RL

I1
I2

Vp

Vn

+
- +

−

+
_

Zf

Zi

Vi

Vi(s) Vo(s)

Vo

− (Zf /Zi)

H(s) = −Zf

Zi

Figure 4-11: Inverting amplifier circuit and its block-diagram
equivalent in the s-domain.

or, equivalently,

Vn − Vi

Zi
+ Vn − Vo

Zf
+ In = 0. (4.74)

In view of the current constraint (In = 0), Eq. (4.74) leads to

H(s) = Vo(s)
Vi(s)

= −Zf

Zi
. (4.75a)

Because of the minus sign in Eq. (4.75a), this circuit is called
an inverting amplifier, and its gain is equal to the ratio of the
feedback impedance to that of the input impedance.

For the special case where both Zi and Zf are simply resistors
Ri andRf , the circuit becomes a simple inverting amplifier with

H(s) = −Rf

Ri
(resistive impedances). (4.75b)
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s-domain

Time domain

Vi(s) Vo(s)

Gd = −RC

Gds

υo(t)υi(t) Gd
d
dt

RC Differentiator

RL

R

C
_

+
+
_
+
_Vi

Vo

Figure 4-12: Differentiator circuit.

4-5.2 Differentiator

If the input impedance is a capacitor C and the feedback
impedance is a resistor R, the inverting amplifier circuit
becomes as shown in Fig. 4-12, and its transfer function
simplifies to

Hd(s) = − R

1/sC
= −RCs.

This can be rearranged into the compact form

Hd(s) = Gds (differentiator), (4.76)

where Gd is a differentiator gain-constant given by

Gd = −RC. (4.77)

This circuit is called a differentiator because multiplication
by s in the s-domain is equivalent to differentiation in the time
domain (under zero initial conditions).

 s-domain

Time domain

Gi = −1/RC

RC Integrator

RL

R

C

Vi

Vout
_

+
+
_
+
_

Vi(s) Vo(s)Gi
s

υo(t)υi(t) Gi ∫ υi(t) dt
 t
 

0

Figure 4-13: Integrator circuit.

4-5.3 Integrator

Reversing the locations of R and C in the differentiator circuit
leads to the integrator circuit shown in Fig. 4-13. Its transfer
function is

H(s) = −1/sC
R

=
(

− 1

RC

)
1

s

or, equivalently,

Hi(s) = Gi

(
1

s

)
(integrator) (4.78)

with an integrator gain constant

Gi = − 1

RC
. (4.79)
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 Vo

 V1

 V2

 V3

 G1

 G2

 G3

R1 Rf

Vo

V1
Vn

+

−
R2V2

R3V3

∑

Vo = G1V1 +G2V2 +G3V3

G1 = −Rf

R1
, G2 = −Rf

R2
, G3 = −Rf

R3

Figure 4-14: Inverting summer.

This circuit is called an integrator because integration in the time
domain is equivalent to multiplication by 1/s in the s-domain.

4-5.4 Summer

The two preceding circuits provide tools for multiplication and
division by s in the s-domain. We need a third circuit in order
to construct transfer functions, namely, the summing amplifier
shown in Fig. 4-14. Application of KCL analysis at node Vn
leads to

Vo(s) = −Rf

R1
V1 − Rf

R2
V2 − Rf

R3
V3

= G1V1 +G2V2 +G3V3 (4.80)

with

G1 = −Rf

R1
, G2 = −Rf

R2
, and G3 = −Rf

R3
. (4.81)

The summing amplifier circuit is extendable to any number of
input voltages.

Example 4-8: One-Pole Transfer Function

Derive the transfer function H(s) = Vo(s)/Vi(s) for the op-amp
circuit shown in Fig. 4-15, given thatRi = 10 k�, Rf = 20 k�,
and Cf = 25 μF.

_

+

Cf

Rf

Ri

Zf 

Zi 

Vo
Vi +

_

+
_

Figure 4-15: Op-amp circuit of Example 4-8.

Solution: The basic structure of the circuit is identical with
the generic inverting op-amp circuit of Fig. 4-11, except that in
the present case Zf represents the parallel combination of Rf
and Cf and Zi = Ri.

Hence,

Zf = Rf ‖
(

1

sCf

)
=
[

1

Rf
+ sCf

]−1

= Rf

1 + RfCf s
,

and

H(s) = −Zf

Zi
= −
(
Rf

Ri

)[
1

1 + RfCf s

]

= −
(

1

RiCf

)[
1

s + 1/(RfCf)

]
.

The transfer function has no zeros and only one pole given
by

p = − 1

RfCf
. (4.82a)

In terms of p, H(s) can be written as

H(s) = G

(
1

s − p

)
(4.82b)

with
G = − 1

RiCf
. (4.82c)

For the specified element values, we have

p = − 1

2 × 104 × 25 × 10−6 = −2,

G = − 1

104 × 25 × 10−6 = −4,
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Table 4-3: Op-amp circuits and their block-diagram representations.

d. Inverting Summer

e. One-Pole Transfer Function

+
+

−V1
Vo

+

− −

R1

V2
R2

V3
R3

Rf

Vo

V1

V2

V3

∑
G1

G2

G3

Vo =  G1V1 + G2V2 + G3V3

= −G1 , ,
R1

Rf = −G3 R3

Rf= −G2 R2

Rf

Vo+
Vi

+
+

− −

Vi Vo

+

−

Rf

Cf

Ri

,

s − p
G

= −G
RiCf

1 = −p
RfCf

1

c. Inverting Amplifier

Vo+
Vi

Ri

+
+

− −

Rf

+

− 

Vi −Rf /Ri Vo

a. Basic Inverting Amp

+
+

−Zi

Zf

Vi
Vo+

+

− −

Vi −Zf /Zi Vo

b. Integrator

Vo+
Vi

+
+

− −

R

+

−

C

= −

Vi Vo
1
sGi

Gi
1

RC

and

H(s) = −4

(
1

s + 2

)
.

System performance often is specified in terms of the
locations of the poles and zeros of its transfer function in the s-

domain. The op-amp circuits of Table 4-3 are examples of basic
modules that can be combined together to form the desired
transfer function. In practice, it is advisable to avoid circuits
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whose transfer function corresponds to differentiation in the
time domain, because (as illustrated by Example 3-12) such
circuits are vulnerable to amplification of high-frequency noise
that may accompany the input signal. A circuit that performs
time differentiation has a term of the form s or (s+a) in its trans-
fer function. Hence, in forthcoming sections, we will synthesize
transfer functions using only the types of circuits in Table 4-3.

Concept Question 4-5: Why is it preferable to use
integrators rather than differentiators when using op-amp 
circuits to model desired transfer functions? (See        )

Exercise 4-8: Obtain the transfer function of the op-amp
circuit shown in Fig. E4-8. (The dc supply voltage
Vdc = ±10 V means that an op amp has a positive dc
voltage of 10 V and a separate negative dc voltage of
−10 V.)

υi
υout1 υout2

+

_
+

_

Vdc = ±10 V
Vdc = ±10 V

5 kΩ

4 μF
5 μF

1 MΩ

Figure E4-8

Answer: H(s) = 10/s2. (See S2 )

4-6 Configurations of Multiple
Systems

More often than not, real systems are composed of several
subsystems—each characterized by its own transfer function.
The linear feature of LTI systems allows us to combine
multiple systems in various ways, including the three common
configurations shown in Fig. 4-16.

H1(s) H2(s) H1(s) H2(s)X(s) Y(s) Y(s)
Z(s)

X(s)

(a) Two cascaded systems

H1(s)

H2(s)

H1(s) + H2(s)X(s) Y(s) Y(s)X(s)

(b) Two parallel systems

∑

H1(s)

H2(s)

X(s)
E(s)

Y(s) Y(s)X(s)

(c) Negative feedback system

∑

Subtractor
−

+
1 + H1(s) H2(s)

H1(s)

Figure 4-16: Three common configurations for combining multiple subsystems together.
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X1 X1

X2
X2

Y = X1 − X2 Y = X1 − X2

Subtractor Summer

−

+ +

+
∑∑

−1

Figure 4-17: A subtractor is equivalent to a summer with one of its inputs preceded by an inverter.

(a) Cascade configuration

The combined transfer function H(s) of two cascaded systems
(connected in series) is

H(s) = Y(s)
X(s)

= Y(s)
Z(s)

· Z(s)
X(s)

= H1(s) H2(s), (4.83)

(series configuration)

where Z(s) defines an intermediary signal in between the two
systems (Fig. 4-16(a)).

(b) Parallel configuration

In Fig. 4-16(b), input X(s) serves as the input to two separate
systems, H1(s) and H2(s). The sum of their outputs is Y(s).
Hence,

H(s) = Y(s)
X(s)

= H1(s) X(s)+ H2(s) X(s)
X(s)

= H1(s)+ H2(s).

(parallel configuration) (4.84)

(c) Feedback configuration

If a sample of the output Y(s) is fed back (returned) through a
system with transfer function H2(s) to a summer that subtracts
it from input X(s), the output of the summer is the intermediary
(error) signal

E(s) = X(s)− Y(s) H2(s). (4.85)

Moreover, E(s) is related to Y(s) by

Y(s) = E(s) H1(s). (4.86)

Solving the two equations for Y(s) and then dividing by X(s)
leads to

H(s) = Y(s)
X(s)

= H1(s)
1 + H1(s) H2(s)

. (4.87)

(negative feedback)

The configuration depicted by the diagram in Fig. 4-16(c) is
called negative feedback because it involves subtracting a copy
of the output from the input. Subtraction can be realized by using
a difference amplifier circuit (which we have not covered) or
by using the combination of a summer and inverter as shown in
Fig. 4-17.

Example 4-9: Circuit Transfer Function

Determine the overall transfer function H(s) = Y(s)/X(s) of
the circuit in Fig. 4-18. Element values are R = 100 k� and
C = 5 μF.

Solution: Through comparison with the circuit configurations
we examined earlier, we recognize that the circuit involving
Op amp #1 in Fig. 4-18 is an inverting summer with two input
channels, both with absolute gain constants of 1 (because the
input and feedback resistors are the same). Hence, in the block
diagram of Fig. 4-18(b), the inverting summer is shown with
gains of −1. The circuit that uses Op amp #2 is an integrator
with

H1(s) =
(

− 1

RC

)
1

s
=
(

− 1

105 × 5 × 10−6

1

s

)
= −2

s
.

The last op-amp circuit is an inverter with

H2(s) = −0.2R

R
= −0.2.



“book” — 2016/3/15 — 6:56 — page 156 — #26

156 CHAPTER 4 APPLICATIONS OF THE LAPLACE TRANSFORM

+

R

R

R C

0.2R

R

R

(a)

+

−
Op 
Amp 2

X(s)

+

Op 
Amp 1

−

+

Op 
Amp 3

−

Y(s)

Summer Integrator

Inverter

(b)

X(s)
E(s)

Op Amp 1 Op Amp 2

Op Amp 3

E(s)

Y(s)

−0.2Y(s)

∑

−

−
H1 = − 2s

H2 = −0.2

Figure 4-18: Circuit for Example 4-9 and its equivalent block-diagram representation.

The output of the inverter is [−0.2Y(s)], and the output of the
inverting summer is

E(s) = −X(s)− [−0.2Y(s)] = −X(s)+ 0.2Y(s).

Also,

Y(s) = H1(s) E(s) = −2

s
[−X(s)+ 0.2Y(s)].

Solving for Y(s) and then dividing by X(s) leads to

H(s) = Y(s)
X(s)

= 2

s + 0.4
.

Exercise 4-9: How many op amps are needed (as a
minimum) to implement a system with transfer function
H(s) = b/(s + a) where a, b > 0?

Answer: Two are needed: a one-pole configuration with
a = 1/(RfCf) and b = 1/(RiCf) and an inverter with
G = −1. (See S2 )
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4-7 System Synthesis

Consider a scenario where we are asked to design a notch filter
to remove signals at a specific frequency because such signals
cause undesirable interference. In another scenario, we may be
asked to design a feedback control system to maintain the speed
of a motor constant or to control a room’s heating system so
as to keep the temperature at the value selected by the user. In
these and many other system design scenarios, we translate the
specifications into poles and zeros, and then we use the locations
of those poles and zeros to synthesize a transfer function H(s).
(This latter step was covered in Section 3-10.) The prescribed
transfer function H(s) can then guide the construction of an
analog system using op-amp circuits.

� The formal procedure for creating a modular
block diagram representing H(s) wherein the individual
modules are summers, integrators, and inverters is called
system realization. �

4-7.1 Direct Form I (DFI) Topology

Several topologies are available to realize a transfer function
H(s) [i.e., to convert it into a real system], of which the most
straightforward is called the direct form I (DFI) realization.
Even though the system realized by implementing the DFI is
not as efficient (in terms of circuit complexity) as that realized
by the DFII topology covered in the next subsection, we will
examine it anyway, because it serves as a useful reference for
comparison with other realization topologies.

Recall from Eq. (3.127) that a transfer function can be
expressed as the ratio of two polynomials. Hence, the most
general form of a transfer function H(s) is

H(s) =
∑m
i=0 bm−i si∑n
i=0 an−i si

,

where some of the constant coefficients may be zero. To
illustrate the DFI procedure, we will implement it for a function
with m = n = 3 and b3 = 0 as in

H(s) = b0s3 + b1s2 + b2s
s3 + a1s2 + a2s + a3

, (4.88)

where we have already divided all terms by a0 so as to make the
coefficient of s3 in the denominator unity. The first step in the

procedure entails rewriting the expression in terms of inverse
powers of s:

H(s) = b0s3 + b1s2 + b2s
s3 + a1s2 + a2s + a3

· 1/s3

1/s3

=
(
b0 + b1

s
+ b2

s2

)⎛⎜⎝ 1

1 + a1

s
+ a2

s2 + a3

s3

⎞
⎟⎠

= H1(s) H2(s), (4.89)

with

H1(s) = b0 + b1

s
+ b2

s2 (4.90a)

and

H2(s) =
(

1 + a1

s
+ a2

s2 + a3

s3

)−1
. (4.90b)

Because H(s) represents an LTI system, the commutative
property allows us to realize H(s) in either of two sequences:
H1(s) followed by H2(s) or in reverse order. The two sequences
are outlined in Fig. 4-19; DFI starts by realizing H1(s) first,
whereas DFII starts by realizing H2(s) first. The difference may
seem inconsequential, but as we will see when we compare the
two topologies in Section 4-7.2, the number of circuit modules
required by DFII is about half of that required by DFI.

In Fig. 4-19(a), Z1(s) is an intermediate signal representing
the output of H1(s). Construction of the expression defining
H1(s) requires three types of algebraic operations, namely,
addition, multiplication by constant coefficients, and division
by s. Figure 4-20 shows a configuration that utilizes these

H1(s)
Z1(s)

Z2(s)

X(s) Y(s)

Y(s)

(a) DFI realization topology

H2(s)

H2(s)X(s)

(b) DFII realization topology

H1(s)

Figure 4-19: In the DFI process, H1(s) is realized ahead of
H2(s), whereas the reverse is the case for the DFII process.
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X(s) Y(s)∑b0

1
s

1
s

b1

1
s

b2

∑

1
s

1
s

−a2

∑

−a3

∑

−a1

∑

123 123
H1(s)

Z1(s)

H2(s)

Figure 4-20: Direct Form I (DFI) realization of H(s).

algebraic steps to generate Z1(s) from X(s), thereby realizing
transfer function H1(s). Note that generating term b2/s2

involves multiplication by (1/s) twice and is followed with
multiplication by b2.

The form of H1(s) given by Eq. (4.90a) made its
realization straightforward; all that was needed was addition,
multiplication, and division by s (which is equivalent to
integration in the time domain). That is not the case for the
expression of H2(s) given by Eq. (4.90b), so we need to
manipulate the realization process to create a form similar to
that of H1(s). To that end, we use Y(s) = H2(s) Z1(s) to solve
for Z1(s):

Z1(s) = Y(s)
H2(s)

=
(

1 + a1

s
+ a2

s2 + a3

s3

)
Y(s). (4.91)

Next, we rearrange the expression into

Y(s) = Z1(s)−
(a1

s
+ a2

s2 + a3

s3

)
Y(s). (4.92)

Even though Y(s) appears on both sides of Eq. (4.92), its form
allows us to realize H2(s), as shown by the right-hand segment
of Fig. 4-20. The fact that Y(s) is needed on the right-hand side
of Eq. (4.92) to calculate Y(s) on the left-hand side means that
it is a feedback process similar to that used in most op-amp
circuits. We should note that the operations represented in the
flow diagram of Fig. 4-20 include five summers, six amplifiers,
and five integrators.

4-7.2 Direct Form II (DFII)

Reversing the implementation order of H1(s) and H2(s) and
defining an intermediate signal Z2(s) in between them gives

Z2(s) = H2(s) X(s), (4.93a)

Y(s) = H1(s) Z2(s), (4.93b)

which combine into

Y(s) = H1(s) H2(s) X(s).

Following the recipes introduced in Section 4-7.1 in connection
with the DFI process, H1(s) and H2(s) can be implemented
as shown in Fig. 4-21(a). The configuration uses separate
integrators for H1(s) and H2(s). The number of required
operations is identical with those needed to implement the DFI
process shown in Fig. 4-20. However, since the integrators for
both H1(s) and H2(s) are fed by Z2(s), they can serve to supply
the necessary signals to both H1(s) and H2(s), as shown in
Fig. 4-21(b). Consequently, only three integrators are needed
instead of five.

Example 4-10: One-Pole Transfer Function

Develop a realization and implement it using op-amp circuits
for the transfer function

H(s) = 20

s + 5
. (4.94)
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Figure 4-21: Direct Form II realization of H(s) using (a) separate integrators and (b) common integrators.

Solution:

Method 1: One-pole circuit

The form of H(s) matches Eq. (4.82b) of the one-pole op-amp
circuit shown in Table 4-3(e). The gain of the op-amp circuit is
negative, however, so we need to add an inverter either ahead or
after the one-pole circuit. Our solution is displayed in Fig. 4-22.

The circuit contains three elements (Ri, Rf , and Cf ), yet we
need to satisfy only the two conditions given by Eqs. (4.82a
and c):

p = − 1

RfCf
= −5,

and
1

RiCf
= 20.

+
X(s) Z(s)

Y(s)

+

− −

+

−

X(s)Z(s) = s + 5
−20

2 μF

25 kΩ

100 kΩ

+
++

−

10 kΩ

10 kΩ

Z(s)Y(s)= −

Figure 4-22: Method 1 solution for Example 4-10.
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We arbitrarily choseRf = 100 k�, which led toCf = 2μF and
Ri = 25 k�. For the inverter, we chose the input and feedback
resistors to have the same value of 10 k�, thereby introducing
a gain factor of −1.

Method 2: Direct Form II topology

After dividing the numerator and denominator of H(s) by s,
the input-output relationship is rewritten using an intermediary
signal Z2(s) as

Z2(s) =
(

1

1 + 5/s

)
X(s) (4.95a)

and

Y(s) =
(

20

s

)
Z2(s). (4.95b)

Following the recipe outlined in Section 4-7.2, we rearrange
Eq. (4.95a) to the form

Z2(s) = X(s)− 5

s
Z2(s). (4.96)

Implementation of Eqs. (4.95b) and (4.96) leads to the flow
diagram shown in Fig. 4-23(a). Parts (b) and (c) of the figure
depict the op-amp symbolic diagram and the detailed circuit
implementation, respectively.

4-7.3 Parallel Realization Process

The DFI and DFII processes are two among several different
approaches used to realize system transfer functions. The
parallel realization process relies on expressing the transfer
function as a sum of partial fractions. Consider, for example,
the transfer function

H(s) = s2 + 17s + 20

s(s2 + 6s + 5)
. (4.97)

Application of partial fraction expansion (Chapter 3) allows us
to express H(s) as

H(s) = 4

s
− 1

s + 1
− 2

s + 5
. (4.98)

The three terms can be added together using the parallel
configuration shown in Fig. 4-24(a). The first term can be
implemented by an integrator circuit, and the second and third
terms can be implemented by one-pole circuits. Additionally,
inverters are needed in some branches to switch the polarity.

These considerations lead to the circuit in Fig. 4-24(b) as a
viable implementation.

We conclude this section by noting that multiple topologies
are available for realizing a system’s transfer function H(s).
The choice of one approach over another usually involves
such considerations as the number of op-amp circuits required,
vulnerability to noise amplification, and sensitivity of the
overall topology to small variations in element values of its
constituent circuits.

Concept Question 4-6: Why is Direct Form II superior
to Direct Form I? (See        )

Exercise 4-10: Using Direct Form II, determine how
many integrators are needed to realize the system with
transfer function

H(s) = 2s3 + 3s2 + 4s + 5

s3 + 8s2 + 7s + 6
.

Answer: 3. (See S2 )

4-8 Basic Control Theory

“Without control systems there could be no manufacturing, no
vehicles, no computers, no regulated environment—in short,
no technology. Control systems are what make machines, in
the broadest sense of the term, function as intended.” This
statement appears in the opening introduction to the classic
book on Feedback Control Theory by Doyle et al.

The basic idea of feedback is to take a sample of the
output signal and feed it back into the input. It is called
positive feedback if it increases the strength of the input
signal and negative feedback if it decreases it. A student who
has completed a course on circuit analysis will most likely
have learned about feedback in connection with operational
amplifiers. Application of negative feedback offers a trade-off
between circuit gain and dynamic range of the input signal.
On the other hand, positive feedback causes the op amp to
saturate at its power supply voltage. Such a circuit is known as
a Schmitt trigger and is used extensively in digital electronics.
Another (undesirable) example of positive feedback is when the
microphone (input signal) in a public address system is placed
too close to one or more of the system’s speakers (output),
thereby picking up part of the output signal, amplifying it again,
and causing the sound to squeal!

Our discussion will be limited to the use of negative feedback
to regulate the behavior of a system or improve its stability.
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Figure 4-23: Method 2 solution for Example 4-10.
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+

−

+

−

+
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(b) Op-amp circuit implementation

Figure 4-24: Parallel realization and op-amp circuit implementation for H(s) = (s2 + 17s + 20)/[s(s2 + 6s + 5)].

Common examples include cruise control in cars, controlling
the operation of a heater or air conditioning system to maintain
the temperature in a room or house at a specified level, and
rudder control in aircraft, as well as a seemingly endless list of
applications to mechanical, electrical, chemical, and biological
systems.

The block diagram in Fig. 4-25 illustrates the basic operation
of a feedback system configured to maintain a room’s
temperature at Tref , which is the temperature selected by a
human. The room temperature measured by a thermistor, Tm,
is compared with and subtracted from Tref by a summer. If the
difference (Tref − Tm) exceeds a minimum threshold (such as
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+ _Σ Heater Room
temperature

Temperature
sensor

Desired temperature
e(t)

Measured
temperature

Error signal

Feedback

Tref

Tm

Figure 4-25: Using feedback to control the temperature in a
room.

0.5 ◦C), the corresponding error signal e(t) will instruct the
heater to turn on. When (Tref − Tm) drops below 0.5 ◦C, the
error signal will instruct the heater to stop generating hot air.

4-8.1 Closed-Loop Transfer Function

In the absence of feedback, a system is said to be operating
in an open-loop mode; in Fig. 4-26(a), H(s) is called the
open-loop transfer function. In a closed-loop mode, a copy
of output signal Y(s) is used to modify input signal X(s), as
diagrammed in Fig. 4-26(b). The feedback path includes a
system characterized by a feedback transfer function G(s)with
input Y(s) and output G(s) Y(s). The output of the summer is
an error signal E(s) given by

E(s) = X(s)− G(s) Y(s) , (4.99)

X(s) Y(s)System
H(s)

(a) Open-loop system

(b) Closed-loop system:

+
_X(s)

E(s)
Y(s)

Y(s)G(s) Y(s)

Σ System
H(s)

Feedback
system
G(s)

Error signal

Feedback loop

Q(s) = Y(s)
X(s)

= H(s)
1 + G(s) H(s)

Figure 4-26: Open-loop and closed-loop systems.

and the overall system output is

Y(s) = H(s) E(s) = H(s)[X(s)− G(s) Y(s)],

which leads to

Y(s) = H(s) X(s)
1 + G(s) H(s)

. (4.100)

The output-to-input ratio of the closed-loop system is called
the closed-loop transfer function Q(s). From Eq. (4.100), we
obtain

Q(s) = Y(s)
X(s)

= H(s)
1 + G(s) H(s)

. (4.101)

Negative feedback requires that G(s) be a positive quantity,
but it imposes no restrictions on its magnitude or functional
form. In the absence of feedback [G(s) = 0], Eq. (4.101)
reduces to Q(s) = H(s).

We also should note that, whereas the introduction of
feedback can alter the poles of the system, it has no effect on
its zeros unless G(s) has poles. In its most general form, H(s)
is the ratio of two polynomials:

H(s) = N(s)
D(s)

. (4.102)

Its zeros and poles are the roots of N(s) = 0 and D(s) = 0,
respectively. Inserting Eq. (4.102) into Eq. (4.101) leads to

Q(s) = N(s)/D(s)
1 + G(s) N(s)/D(s)

= N(s)
D(s)+ G(s) N(s)

. (4.103)

� We observe that the zeros of Q(s) are determined by
N(s), which is the same as for H(s), but the presence of
G(s) in the denominator of Eq. (4.103) allows us to alter
the locations of the poles of H(s).As we shall demonstrate
in future sections, this ability to move the locations of the
poles of a system’s transfer function is a powerful tool in
many practical applications. �
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Figure 4-27: Q(s) = Y(s)/X(s) ≈ 1/H(s) if K H(s) � 1.

4-8.2 Constructing Inverse System

Suppose we have a physical system with transfer function
H(s) and we want to construct its inverse. Mathematically, we
simply invert the expression for H(s), but how do we physically
construct a system with transfer function H′(s) = 1/H(s) from
the physical system H(s)? One way to realize the inverse system
is to construct the feedback loop shown in Fig. 4-27 in which
the original system H(s) is placed in the negative feedback
branch of the loop and a constant multiplier K is placed in the
forward branch. Replacing H(s) withK and G(s) with H(s) in
Eq. (4.101) leads to

Q(s) = K

1 +K H(s)
. (4.104)

If we choose the constant multiplier to have a large gain such
that K H(s) � 1, Eq. (4.104) reduces to

Q(s) ≈ 1

H(s)
= H′(s). (4.105)

Thus, with the proper choice ofK , the overall feedback system
behaves like the inverse of the open-loop system H(s).

4-8.3 System Stabilization

As we discussed earlier in Section 3-8, a system is unstable
unless all the poles of its transfer function H(s) are in the open
left-hand plane (OLHP) of the s-domain. Feedback can be used
to stabilize an otherwise unstable system. We will demonstrate
the stabilization process through two examples.

(a) Proportional feedback in first-order system

Consider the first-order system characterized by

H(s) = A

s − p1
with p1 > 0. (4.106)

The open-loop transfer function H(s) has a single pole at
s = p1, and since p1 > 0, the pole resides in the RHP of the

s-domain. Hence, the system is unstable. If we place the system
in the feedback loop of Fig. 4-26 with G(s) = K (proportional
feedback), Eq. (4.101) becomes

Q(s) = H(s)
1 + G(s) H(s)

= A/(s − p1)

1 + KA

s − p1

= A

s − p1 +KA
.

(4.107)
The introduction of the last term in the denominator allows
us to convert an unstable open-loop system H(s) into a stable
closed-loop system Q(s) by selecting the value of K so that

KA > p1.

An important feature of this condition is that we do not need to
know the exact value of the pole p1 to stabilize the system. In
practice, the value of the pole p1 is often not known exactly, so
an unstable pole p1 cannot be canceled by a zero at p1. Using
feedback, this is not a problem: We need merely to choose K
conservatively to ensure thatKA > p1, even if we do not know
p1 or A exactly.

Example 4-11: First-Order Stabilization

Choose the value of the feedback-loop constant K so that the
pole of H(s) = (s+3)/(s−2)moves from 2 to its diametrically
opposite location in the OLHP, namely, −2.

Solution: With proportional feedback, G(s) = K , which
leads to

Q(s) = H(s)
1 +K H(s)

= (s + 3)/(s − 2)

1 +K
(s + 3)

(s − 2)

· s − 2

s − 2

= s + 3

(K + 1)

[
s + 3K − 2

K + 1

] .

To move the pole of H(s) from +2 to a pole at −2 (Fig. 4-28)
for Q(s), it is necessary that

3K − 2

K + 1
= 2.

Solving for K gives
K = 4,

which in turn leads to

Q(s) = 0.2
s + 3

s + 2
.

To appreciate the significance of the stabilization gained from
the application of feedback, let us examine the step response of
the system with and without feedback.
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Pole of Q(s) Pole of H(s)

32

Figure 4-28: (Example 4-11).

1. Without feedback

For an input step function x(t) = u(t) and corresponding
Laplace transform X(s) = 1/s, the step response is y1(t) and
the Laplace transform of y1(t) is

Y1(s) = H(s) X(s) = 1

s
(s + 3)

(s − 2)
.

Through application of partial fraction expansion, Y1(s)
becomes

Y1(s) = −1.5

s
+ 2.5

s − 2
.

Conversion to the time domain, facilitated by entries #2 and 3
in Table 3-2, gives

y1(t) = −1.5u(t)+ 2.5e2t u(t).

As t → ∞, so does y1(t). This result confirms that H(s)
represents a BIBO unstable system.

2. With feedback

For a feedback system with closed-loop transfer function Q(s),
repetition of the earlier steps leads to

Y2(s) = Q(s) X(s) = 1

s
· 0.2

s + 3

s + 2
= 0.3

s
− 0.1

s + 2
,

and

y2(t) = 0.3u(t)− 0.1e−2t u(t).

Because of the feedback loop, the exponent of the second term
is negative, so as t → ∞, y2(t) → 0.3. Hence, the system is
BIBO stable.

Poles for b > 0Poles for b < 0 j   b

−j   b

|b|− |b|

Figure 4-29: Poles of H(s) = (s + a)/(s2 + b) for b > 0 and
b < 0 (zero at −a not shown).

(b). Proportional feedback in second-order system

1. Open loop (without feedback)

Suppose we are given a second-order system with

H(s) = s + a

s2 + b
(open-loop). (4.108)

The poles of H(s) are the roots of its denominator. Setting

s2 + b = 0 (4.109)

gives
s = ±√|b| for b < 0,

s = ±j√b for b > 0.
(4.110)

If b > 0, the poles reside on the imaginary axis, as shown in
Fig. 4-29, which makes the system BIBO unstable. If b < 0,
the poles reside on the real axis, with one of them in the
RHP. Hence, the system is again unstable. In summary, H(s) is
unstable for all values of b.

2. Closed loop (with feedback)

Our task is to use feedback control to stabilize the system given
by Eq. (4.108). We will consider four cases of the real-valued
constants a and b, each of which may be either positive or
negative. Employing a feedback system with a constantK gives

Q(s) = H(s)
1 +K H(s)

= (s + a)/(s2 + b)

1 +K
s + a

s2 + b

= s + a

s2 +Ks + (Ka + b)
(closed-loop). (4.111)
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The poles of Q(s) are the roots of its denominator:

s2 +Ks + (Ka + b) = 0. (4.112)

The two roots of this quadratic equation will reside in the open
left half-plane if and only if the linear and constant terms are
positive. That is, if and only if

K > 0 and Ka + b > 0. (4.113)

We therefore requireK > 0 regardless of the values of a and b.
Additional constraints apply to satisfy the second condition, as
follows:

(1) a > 0 and b > 0

If a and b are greater than zero, the second condition of
Eq. (4.113) is automatically satisfied, and the closed-loop
system is BIBO stable.

(2) a < 0 and b > 0

If only b is greater than zero, the closed-loop system is BIBO
stable if (in addition to K > 0) b > −aK . Equivalently, the
conditions can be combined into

0 < K <
b

|a| .

(3) a > 0 and b < 0

If only a is greater than zero, the closed-loop system is BIBO
stable if

K >
|b|
a
.

(4) a < 0 and b < 0

If both a and b have negative values, the closed-loop system is
always unstable, since Ka + b < 0.

Example 4-12: Second-Order Stabilization

Given a system with H(s) = 3/(s2 + 4), determine if/how it
can be stabilized by a feedback loop with (a) proportional
feedback [G(s) = K], and (b) proportional-plus-derivative
(PD) feedback [G(s) = K1 +K2s].

Solution:
(a) For G(s) = K , we obtain

Q(s) = H(s)
1 +K H(s)

= 3/(s2 + 4)

1 +K

(
3

s2 + 4

) = 3

s2 + (3K + 4)
.

The denominator of Q(s) is identical in form with that of
Eq. (4.108). Hence, the use of a feedback loop with a constant-
gain function K is insufficient to realize stabilization.

(b) Using PD feedback with G(s) = K1 +K2s leads to

Q(s) = H(s)
1 + (K1 +K2s) H(s)

= 3/(s2 + 4)

1 + (K1 +K2s)
(

3

s2 + 4

)

= 3

s2 + 3K2s + (3K1 + 4)
.

The poles of Q(s) will have negative real parts (i.e., they
will reside in the OLHP) only if all constant coefficients in the
denominator of Q(s) are real and positive. Equivalently,K1 and
K2 must satisfy the conditions

K1 > −4

3
, K2 > 0,

in order for the closed-loop system to be stable.

Concept Question 4-7: In control applications, why do
we usually use negative, not positive, feedback?
(See        )

Concept Question 4-8: Why is using a zero to cancel an
unstable pole a bad idea? (See        )

Exercise 4-11: What is the minimum value of the
feedback factor K needed to stabilize a system with
transfer function H(s) = 1/[(s + 3)(s − 2)]?
Answer: K > 6. (See S2 )

Exercise 4-12: What values of K can stabilize a system
with transfer function

H(s) = 1

(s − 3)(s + 2)
?

Answer: None. (See S2 )
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Figure 4-30: Heating coil used to raise the temperature of the
interior space of a container relative to the temperature of its
outside surroundings, T0.

4-9 Temperature Control System

The box shown in Fig. 4-30 represents a container whose initial
interior temperature is the same as the ambient temperature T0
of the exterior space surrounding the container. The box might
contain a bacterial culture whose growth rate depends on its
temperature, a chemical compound whose synthesis requires
careful temperature control, or any space whose temperature
is to be monitored and controlled. The goal is to design an
actuator system that uses an adjustable heat source affixed to
an interior wall of the container to raise the container’s interior
temperature from T0 to a selectable final value T∞ and to do
so fairly quickly. We will examine two system configurations
for realizing the stated goal: one without feedback (open-loop
mode) and another with feedback (closed-loop mode). Before
we do so, however, we will derive the LCCDE relating the heat
flow supplied by the heater to the temperature of the container’s
interior, T (t).

4-9.1 Heat Transfer Model

The heat transfer quantities of interest are the following:

• T0 = ambient temperature of the box’s exterior space, and
also the initial temperature of its interior space.

• T∞ = the final temperature to which the interior space will
be raised (selected by the operator).

• 	T = T∞ − T0 = desired temperature rise.

• T (t) = temperature of the container’s interior space as a
function of time with T (0) = T0 and T (∞) = T∞.

• T (t) = T (t)− T0 = temperature of container’s interior
relative to the ambient temperature. That is, T (t) is
a temperature deviation with initial and final values
T (0) = 0 and T (∞) = T∞ − T0.

• Q = enthalpy (heat content in joules) of the interior space
of the container (including its contents), defined relative
to that of the exterior space. That is, Q = 0 represents
the equilibrium condition when T = T0 or, equivalently,
T = 0.

• C = heat capacity of the container’s interior space,
measured in joules/ ◦C.

• R = thermal resistance of the interface (walls) between
the container’s interior and exterior measured in ◦C per
watt ( ◦C/W).

• q = dQ
dt

= the rate of heat flow in joules/s or, equivalently,
watts (W).

The amount of heat required to raise the temperature of the
container’s interior by T is

Q = CT . (4.114)

The rate of heat flow q is analogous to electric current i in
electric circuits. For the scenario depicted in Fig. 4-31:

• qin = rate of heat flow supplied by the source.

• qlost = rate of heat flow loss to the outside through the
walls.

• qabs = rate of heat flow absorbed by the air and contents
of the container’s interior, raising their temperature.

For an interface with thermal resistance R,

qlost = T − T0

R
= T
R

i = υ

R
. (4.115)

In an electrothermal analogue, temperature deviation T is
equivalent to voltage υ (referenced to ground) in an electric
circuit. Hence, Eq. (4.115) is the analogue of Ohm’s law.
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(a) Open-loop heating system

Step response without feedback

(b) Step response
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Figure 4-31: Heating system (a) configuration (no feedback) and (b) associated step response for a selected temperature rise of 3 ◦C.

Differentiating Eq. (4.114) shows that the rate of heat flow
absorbed by the container’s interior is equal to the increase of
its heat content:

qabs = dQ

dT
= C

dT
dt

i = C
dυ

dt
, (4.116)

which is analogous to the i-υ relationship for a capacitor.
Conservation of energy dictates that, analogous to KCL,

qabs + qlost = qin

or, equivalently,

C
dT
dt

+ T
R

= qin(t). (4.117)

The electrical analogue of the thermal circuit consists of a
parallel RC circuit connected to a current source qin(t), as
shown in Fig. 4-31(a).
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4-9.2 Step Response without Feedback

In Fig. 4-31(a), the exterior ambient temperatureT0 is measured
by a temperature sensor, and the desired final temperature T∞
is selected by the user. The difference between the two
temperatures, 	T = (T∞ − T0), is multiplied by a constant
scaling factor G0 whose output provides the electric current
necessary to heat the coil.As we will see shortly, the value ofG0
is selected such that after closing the switch the temperature
T (t) will rise from T0 to an asymptotic level T∞. Closing the
switch is equivalent to establishing a step-function input:

qin(t) = 	T G0 u(t). (4.118)

If we divide all terms in Eq. (4.117) by C and define

a = 1

RC
,

the differential equation assumes the form

dT
dt

+ aT = 1

C
qin(t). (4.119)

For qin(t) as given by Eq. (4.118), the solution of this first-order
differential equation with initial condition T0 is

T (t) = 	T G0

aC
[1 − e−at ] u(t).

By selecting the scaling factor to be

G0 = aC,

and making the substitutions T (t) = T (t)− T0 and
	T = T∞ − T0, the expression for T (t) reduces to

T (t)− T0 = (T∞ − T0)[1 − e−at ] u(t).
(without feedback)

(4.120)

As t → ∞, T (t) → T∞, which satisfies the requirement
that the temperature inside the container should rise from
T0 to T∞. Figure 4-31(b) displays a plot of Eq. (4.120) for
	T = 3 ◦C and a = 10−2 s−1. The constant a, which is the
reciprocal of the product of C (the heat capacity of the air and
interior of the container) and R (the thermal resistance of the
container’s walls), is the inverse of the time constant of the
circuit, τc. Hence, τc = 100 s, which means that it takes about

4.6τc = 460 s = 7.67 minutes for the temperature to rise to
99% of the ultimate rise of 3 ◦C. Since the value of a is
constrained by physical attributes of the system, it is not
possible to speed up the heating response time of the system
as currently configured. Next, we will show how to shorten the
effective time constant of the system through the application of
feedback.

4-9.3 Step Response with Feedback

Through the use of a temperature sensor placed inside the
container, we can measure the inside temperature T (t), as
shown in Fig. 4-32. Upon subtracting T0 from T (t), we
generate the temperature deviation T (t), to serve as input to
a proportional feedback transfer functionK . In preparation for
incorporating the feedback loop, we convert symbols to our
standard signals and systems notation and transform them to
the s-domain:

T (t) = y(t) Y(s),

1

C
qin(t) = x(t) X(s).

The s-domain equivalent of Eq. (4.119) is then

s Y(s)+ a Y(s) = X(s)

from which we obtain the transfer function

H(s) = Y(s)
X(s)

= 1

s + a
(without feedback). (4.121)

This is the transfer function of the heating system without
feedback. Upon incorporating the heating system into a negative
feedback loop, as shown in Fig. 4-32(a), we obtain the closed-
loop transfer function

Q(s) = H(s)
1 +K H(s)

= 1/(s + a)

1 +K/(s + a)
= 1

s + (a +K)
= 1

s + b
,

(with proportional feedback) (4.122a)

where
b = a +K. (4.122b)

For the step-function input given by Eq. (4.118), the system
input is

x(t) = 1

C
qin(t) =

(
	TG0

C

)
u(t).
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(a) Closed-loop mode heating system
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Figure 4-32: Heating system (a) configuration (with feedback) and (b) associated step response for a selected temperature rise of 3 ◦C.

The Laplace transform of x(t) is

X(s) =
(
	T G0

C

)
1

s
,

and the output step response is

Y(s) = Q(s) X(s) =
(
	T G0

C

)
1

s(s + b)
.

Partial fraction expansion leads to

Y(s) =
(
	T G0

bC

)[
1

s
− 1

s + b

]
, (4.123)

which has the inverse Laplace transform

T (t) = 	T G0

bC
[1 − e−bt ] u(t). (4.124)
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By selecting the scaling factor to be

G0 = bC,

and making the substitution T (t) = T (t)− T0 and
	T = T∞ − T0, the expression for T (t) reduces to

T (t)− T0 = (T∞ − T0)[1 − e−bt ] u(t).
(with feedback)

(4.125)

We observe that Eq. (4.125) is identical in form with Eq. (4.120),
except for an important difference, namely the coefficient of
the exponential term. The introduction of the feedback loop
changes the coefficient from a to b = a +K , as evident in
Eq. (4.122a).

Figure 4-32(b) displays T (t) for both the open-loop
(no-feedback) and closed-loop (with-feedback) modes, with
a = 10−2 s−1 and K = 4 × 10−2 s−1. Whereas without feed-
back it takes 7.67 minutes for T (t) to rise to within 1% of 3 ◦C,
it takes only 20% of that time (1.53 min) to reach that level
when feedback is used with K = 4a.

Can we make K larger and speed the process even more?
The answer is yes, as long as the coil can tolerate the initial
current (at t = 0) flowing through it, which is proportional to
the amplitude of the input step function. That amplitude is	T a
for the open-loop mode, as compared with	T b = 	T (a+K)
for the closed-loop mode.

Concept Question 4-9: What is the thermal analogue of 
capacitance? What is the electrical analogue of an oven 
warming up? (See        )

Exercise 4-13:What is the time constant of an oven whose
heat capacity is 20 J/ ◦C and thermal resistance is 5 ◦C/W?

Answer: 100 s. (See S2 )

Exercise 4-14: What is the closed-loop time constant
when feedback with K = 0.04 s−1 is used on the oven
of Exercise 4-13?

Answer: 20 s. (See S2 )

Exercise 4-15: Use LabVIEW Module 4.1 to compute
the oven temperature responses shown in Fig. 4-32, using
values given in the text.

Answer:

4-10 Amplifier Gain-Bandwidth
Product

4-10.1 Open-Loop Mode

According to the manufacturer’s specification sheet, the popular
μA741 op amp has a dc gain of 106 dB (equivalently,
G0 = 2 × 105) and a half-power bandwidth of 8 Hz
(equivalently, an angular frequency ωc = 2π × 8 ≈ 50 rad/s).
This means that, when operated in open-loop mode, the op
amp’s gain |G(ω)| has a spectrum that starts atG0 = 2×105 at
ω = 0 and then decreases asymptotically with increasing ω in
a manner similar to that shown in Fig. 4-33. The gain function
|G(ω)| represents the ratio of the output voltage Vo to the input
voltage Vi, so the power ratio is equal to |G(ω)|2. The specified
value of 50 rad/s for the half-power angular frequencyωc means
that

|G(50)|2
G2

0

= 1

2
(4.126)

or

|G(50)| = G0√
2

= 0.707G0, (4.127)

as noted in Fig. 4-33. The frequency response of G(ω) is
modeled by the function

G(ω) = Vo

Vi
= G0

1 + jω/ωc
(4.128)
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Module 4.1 Oven Temperature Response The input can be a step, ramp, or sinusoid. The RC time constant of the
oven, the desired temperature change T , the period of the sinusoidal input, the slope of the ramp input, and the gain K of the
feedback are all selectable parameters.

withG0 = 2 × 105 and ωc = 50 rad/s. At ω = ωc, Eq. (4.128)
satisfies the half-power condition given by Eq. (4.126), and at
ω = 0, it satisfies G(0) = G0.

The product of G0 and ωc is called the amplifier’s gain-
bandwidth product:

GBP = G0ωc = 2 × 105 × 50 = 107 (open-loop mode).

4-10.2 Closed-Loop Mode

When part of the output signal Vo is fed back to the negative
terminal of the input side of the op amp, the circuit operation is
equivalent to the feedback configuration shown in Fig. 4-33(b)
with

K = Ri

Rf
. (4.129)

The frequency response function of the closed-loop system is

Q(ω) = G(ω)
1 +K G(ω)

= G0/(1 + jω/ωc)

1 + KG0

1 + jω/ωc

= G0ωc

jω + (ωc +G0ωcK)

= 107

jω + (50 + 107K)
. (4.130)

If K = 0, which corresponds to no feedback, the closed-loop
expression given by Eq. (4.130) reduces to the open-loop mode
described by Eq. (4.128).
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Figure 4-33: Op-amp frequency response for open- and closed-loop modes.

To observe the effect of feedback, we present in Fig. 4-33(c)
plots of |Q(ω)| for four values of K , namely K = 0, 0.01, 0.1,
and 1. We observe that as the value of K is increased from 0
(no feedback) to 1, the dc gain decreases, but the bandwidth
increases. By rewriting Eq. (4.130) in a form similar to that of
Eq. (4.128), namely,

Q(ω) = 107/(50 + 107K)

1 + jω/(50 + 107K)
, (4.131)

we deduce from the numerator and the second term in the
denominator that the closed-loop dc gain and half-power



“book” — 2016/3/15 — 6:56 — page 174 — #44

174 CHAPTER 4 APPLICATIONS OF THE LAPLACE TRANSFORM

bandwidth are, respectively,

G′
0 = 107

50 + 107K
≈ 1

K
(closed-loop dc gain),

ω′
c = (50 + 107K) ≈ 107K (closed-loop bandwidth).

Hence, the gain-bandwidth product remains

GBP = G′
0ω

′
c = 107 (closed-loop mode).

The implication of this result (the gain-bandwidth product is a
constant) is that feedback provides a mechanism for trading off
gain for bandwidth, and vice versa. The degree of trade-off is
controlled by the value of K (equivalently, the ratio Ri/Rf ).

Another advantage accrued by the use of feedback is the
reduced sensitivity to dc gain variations. If changes in the op
amp’s environmental temperature were to cause its dc gain G0
to increase from 2 × 105 to 4 × 105, for example, in open-
loop mode the ×2 increase will be reflected in the level of the
output voltage Vo, which may distort the signal passing through
the op-amp circuit or cause problems in succeeding circuits.
In contrast, when feedback is used to increase the circuit’s
bandwidth, which means that K � 50 × 10−7, the expression
given by Eq. (4.130) simplifies to

Q(ω) ≈ 107

jω + 107K
.

At the usable part of the spectrum corresponding toω  107K ,
Q(ω) becomes

Q(ω) ≈ 1

K
(ω  107K),

which is independent of the dc gain G0, thereby providing
immunity to dc gain variations with temperature.

Concept Question 4-10: How does feedback provide
immunity to op-amp dc gain variations with temperature?
(See        )

Exercise 4-16: In open-loop mode, an op-amp circuit has
a gain of 100 dB and half-power bandwidth of 32 Hz.
What will the gain and bandwidth be in closed-loop mode
with K = 0.01?

Answer: 40 dB and 32 kHz. (See S2 )

reference plane

z

θ

ω

ˆ

Figure 4-34: Motor with a shaft rotating at angular velocity ω.

4-11 Step Response of a Motor System

Motors are used in a seemingly endless list of applications,
from power tools and household appliances, to motorbikes,
automobiles, and jet engines. Their basic principle of operation
relies on converting electrical energy into mechanical energy to
rotate a shaft that, in turn, rotates an object of interest, such as
a wheel or a drill bit (Fig. 4-34).

In this section, we examine two different types of motor
applications, which from a system perspective can be classified
as open-loop and closed-loop configurations. In the open-loop
configuration, an applied voltage causes the motor’s shaft to
rotate at a proportional angular velocity ω. An example is the
electric drill. An example of the closed-loop configuration is a
telescope pointing system in which the objective is not to rotate
the telescope continuously, but rather to rotate its direction
quickly and smoothly from whatever initial direction it was
pointing along to a new specified direction associated with the
location of a particular star of interest.

4-11.1 Motor Model

Figure 4-35 is a simplified equivalent circuit of a motor driven
by an external voltage source υ(t). The motor consists of two
coils called its stator and rotor. The flow of current through
its stator, which remains stationary, induces a magnetic field in
the space occupied by the rotor, which in turn induces a torque
τ(t), causing the rotor to rotate. A load attached to the rotor
shaft rotates at the angular velocity of the shaft, ω.

In the equivalent circuit of Fig. 4-35, resistance R accounts
for the resistances of the voltage source and the motor coils,
and υemf(t) is an induced electromotive force (voltage) called
“back emf” because it acts in opposition to the applied voltage
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+
_

+
_ υemf(t)υ(t)

i(t)R

Figure 4-35: Equivalent circuit of a motor driven by a voltage
source υ(t).

υ(t). The inductance associated with the coils has been ignored.
The loop equation is

υ(t)− υemf − R i(t) = 0. (4.132)

By Faraday’s law, the induced emf is directly proportional to
the angular velocityω, which by definition is the time derivative
of the shaft rotation angle θ . That is,

υemf(t) = c1ω = c1
dθ

dt
, (4.133)

where c1 is a motor-specific constant.
By Ampère’s law, the induced magnetic field is proportional

to the current i(t). Moreover, the torque is proportional to the
magnetic-field strength. Hence, current and torque are linearly
related as

τ(t) = c2 i(t), (4.134)

where c2 is another motor-specific constant.Also, the rotational
version of the force equation (f = ma) is

τ(t) = J
d2θ

dt2
, (4.135)

where J is the moment of inertia of the load attached to the
rotor shaft. Combining Eqs. (4.134) and (4.135) leads to

i(t) = J

c2

d2θ

dt2
. (4.136)

Inserting Eqs. (4.133) and (4.136) into Eq. (4.132) leads to

d2θ

dt2
+ a

dθ

dt
= b υ(t), (4.137)

where a = (c1c2)/(RJ ) and b = c2/(RJ ). From here on
forward, we treat a and b as positive-valued system constants
related to the physical characteristics of the motor. Our task is
to examine the second-order LCCDE given by Eq. (4.137) with

υ(t) = input signal

and

θ(t) = output response (measured in radians
relative to a reference plane (Fig. 4-34)).

4-11.2 Open-Loop Configuration

The s-domain counterpart of Eq. (4.137) is

s2 θθθ(s)+ as θθθ(s) = bV(s), (4.138)

and the motor transfer function is

H(s) = θθθ(s)
V(s)

= b

s2 + as
= b

s(s + a)
. (4.139)

The transfer function has a pole at s = 0 and another at s = −a.
Consequently, a motor is an unstable system because according
to our discussion in Section 3-7, a system is BIBO unstable if
its transfer function has a pole at the origin in the s-domain.
Physically, this conclusion makes sense, because applying a
constant voltage to the motor will cause it to rotate its shaft
at a constant rate, increasing its angle θ(t) indefinitely. This
assertion can be verified by calculating y(t) in response to
a step input υ(t) = u(t) or, equivalently, V(s) = 1/s. From
Eq. (4.139), the step response is

θθθ(s) = H(s) V(s) = b

s(s + a)
· 1

s
= b

s2(s + a)
. (4.140)

Partial fraction expansion gives

θθθ(s) = b/a

s2 − b/a2

s
+ b/a2

s + a
, (4.141)

and using Table 3-2, the time-domain counterpart of θθθ(s) is

θ(t) = b

a2 [at − 1 + e−at ] u(t) (radians). (4.142)

The rotational angular velocity of the shaft is

ωrad/s = dθ

dt
= b

a
(1 − e−at ) u(t) (rad/s). (4.143)

Converting ω in (rad/s) to revolutions per minute (with 1
revolution = 2π radians) gives

ωrev/m = 60

2π
ωrad/s = 30b

πa
(1 − e−at ) u(t). (4.144)

If the motor is designed such that a ≈ 3 or greater, the second
term becomes negligible compared to the first within 1 second
or less, thereby simplifying the result to

ωrev/m ≈ 30b

πa
(t > 3/a seconds). (4.145)

Through proper choice of the motor physical parameters, the
ratio b/a can be selected to yield the desired value for ω.

In summary, when a motor is operated in an open-loop
configuration, the application of a step voltage causes the shaft
to reach a constant angular velocity ω within a fraction of a
second (if a > 3).
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(a) Telescope system

(b) Block diagram
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Figure 4-36: Telescope (Courtesy of Telescopes.com).

4-11.3 Closed-Loop Configuration

The telescope automatic pointing system shown in Fig. 4-36(a)
uses two motors: one to rotate the telescope in elevation and
another to rotate it in azimuth. Its global positioning system
(GPS) determines the telescope’s coordinates, and its computer
contains celestial coordinates for a large number of stars and

galaxies. When a particular star is selected, the computer
calculates the angular rotations that the shafts of the two motors
should undergo in order to move the telescope from its initial
direction to the direction of the selected star. Our goal is to
demonstrate how feedback can be used to realize the required
rotation automatically. We will limit our discussion to only one
of the motors.

The feedback loop is shown in Fig. 4-36(b). A magnetic
sensor positioned close to the motor’s shaft measures the
angular velocity ω. Since ω = dθ/dt and differentiation in the
time domain is equivalent to multiplication by s in the s-domain,
the s-domain quantity measured by the sensor is

�(s) = s θθθ(s). (4.146)

To perform the desired feedback, we need to feed K θθθ(s) into
the negative terminal of the summer. Hence, an integrator circuit
with transfer function K/s is used in the feedback arm of the
loop. The net result of the process is equivalent to using a
feedback loop with G(s) = K . Consequently, the closed-loop
transfer function is

Q(s) = H(s)
1 +K H(s)

. (4.147)

Use of Eq. (4.139) for H(s) leads to

Q(s) = b/(s2 + as)
1 +Kb/(s2 + as)

= b

s2 + as + bK
. (4.148)

The expression for Q(s) can be rewritten in the form

Q(s) = b

(s − p1)(s − p2)
, (4.149)

where poles p1 and p2 are given by

p1 = −a
2

+
√(a

2

)2 − bK , (4.150a)

p2 = −a
2

−
√(a

2

)2 − bK . (4.150b)

By choosingK > 0, we ensure that the poles p1 and p2 are in
the open left half-plane, thereby guaranteeing BIBO stability.

The step response is obtained by calculating θθθ(s) for
υ(t) = u(t) or, equivalently, V(s) = 1/s:

θθθ(s) = Q(s) V(s) = b

s(s − p1)(s − p2)
. (4.151)
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Partial fraction expansion leads to the following equivalent
expression for θθθ(s):

θθθ(s) =
(

b

p1p2

)
1

s
+ b

p1(p1 − p2)
· 1

(s − p1)

+ b

p2(p2 − p1)
· 1

(s − p2)
. (4.152)

Its time-domain equivalent is

θ(t) =
[

b

p1p2
+ b

p1(p1 − p2)
ep1t + b

p2(p2 − p1)
ep2t

]
u(t).

(4.153)
If p1 and p2 are both in the open left half-plane, the second
and third term will decay to zero as a function of time, leaving
behind

lim
t→∞ θ(t) = b

p1p2
. (4.154)

Use of the expressions for p1 and p2 given by Eq. (4.150) in
Eq. (4.154) leads to

lim
t→∞ θ(t) = 1

K
. (4.155)

If the magnitude of K is on the order of inverse seconds, the
final value of θ(t) is approached very quickly. This final value is
equal to the total angular rotation required to move the telescope
from its original direction to the designated new direction.

Note that Eq. (4.154) can also be obtained directly from
Eq. (4.148) using the final value theorem of the Laplace
transform. Application of property #12 in Table 3-1 gives

lim
t→∞ θ(t) = lim

s→0
s θθθ(s) = s

b

s(s2 + as + bK)

∣∣∣∣
s=0

= 1

K
(4.156)

provided the system is BIBO stable. The open-loop system given
by Eq. (4.139) is BIBO-unstable because one of the poles is
at the origin. But the closed-loop system is stable if K > 0.
Moreover, the closed-loop steady-state unit step response is
θ(∞) = 1/K , independent of a and b.

Example 4-13: Stabilization of Telescope Pointing

System

The system parameters of a telescope pointing system given by
Eq. (4.139) are a = 3 and b = 6. Using a proportional-plus-
derivative (PD) feedback transfer function G(s) = K1 +K2s,
choose K1 and K2 so that the closed-loop system is critically
damped with both poles at −6. Also determine the size of the
step input required for θ(∞) = 28.65◦ = 0.5 rad.

Solution: For G(s) = K1 +K2s, the closed-loop transfer
function is

Q(s) = H(s)
1 + (K1 +K2s) H(s)

= 6/(s2 + 3s)

1 + (K1 +K2s)
(

6

s2 + 3s

) ·
[

s2 + 3s
s2 + 3s

]

= 6

s2 + 3s + 6(K1 +K2s)

= 6

s2 + (3 + 6K2)s + (6K1)
. (4.157)

The polynomial in the closed-loop system is
s2 + (3 + 6K2)s + 6K1. The problem statement specifies
that the poles of the closed-loop system should be −6 and −6,
which means the polynomial should be (s + 6)2. Hence, we
must choose K1 and K2 so that

(s+6)2 = s2 +12s+36 = s2 + (3+6K2)s+ (6K1). (4.158)

Equating coefficients leads to K1 = 6 and K2 = 1.5. An
analysis similar to Eq. (4.156) shows that the steady-state
unit-step response is 1/K1 = 1/6, independent of a and b.
Since x(t) = u(t) leads to θ(∞) = 1/6, the scaling property
of LTI systems shows that x(t) = 3u(t) would lead to
θ(∞) = 3/6 = 0.5 rad, as required.

Concept Question 4-11: How do we compute the 
steady-state step response without performing partial 
fraction expansion? (See        )

Exercise 4-17: Compute the steady-state step response
lim
t→∞ ystep(t) for the BIBO stable system with transfer

function

H(s) = 2s2 + 3s + 4

5s3 + 6s2 + 7s + 8
.

Answer: lim
t→∞ ystep(t) = 0.5. (See S2 )

Exercise 4-18: In Example 4-13, suppose a = 101,
b = 100 andK1 = 1. ComputeK2 so that the closed-loop
system is critically damped using PD feedback.

Answer: K2 = −0.81; h(t) = 100te−10t u(t).
(See S2 )
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4-12 Control of a Simple Inverted
Pendulum on a Cart

The inverted pendulum is a good illustration of how the
feedback control theory developed in this chapter is applied to a
(simplified) real-world problem. Topics involved in the control
of an inverted pendulum include: (1) linearization of a nonlinear
system into an LTI system, so that LTI system theory can be
applied to solving the problem; (2) stability analysis of the open-
loop system, which turns out to be unstable; (3) realization
of the inadequacy of proportional and PD feedback for this
particular problem, and (4) introduction of PI (proportional-
plus-integral) control to secure the necessary stability.

The inverted pendulum on a cart is a very crude model of a
Segway r© people mover. Hence, the analysis to follow illustrates
some of the control and stability issues associated with the
operation of the Segway system.

4-12.1 Basic Physics of Inverted Pendulum

The simplest form of the inverted pendulum is depicted in
Fig. 4-37, where we define the following variables:

• Input x(t) is the back-and-forth position of the cart.

• Output θ(t) is the angle made with the vertical.

• Pendulum has length L and mass m, all at its end. The
pendulum thus has moment of inertia mL2.

• The pendulum has a frictionless hinge at its base.

We note in passing that a pendulum having its mass distributed
evenly over its length (instead of all of it at its end) has moment
of inertia 1

3mL
2, not mL2.

There are three torques around the pendulum hinge acting on
the mass m at the end of the pendulum.

(a) The torque mLg sin(θ) due to gravity on the mass.

(b) The torque −mL cos(θ) (d2x/dt2) due to the motion of
the cart. Note that forward motion of the cart makes the
pendulum tend to swing backwards.

(c) The torque mL2(d2θ/dt2) due to angular acceleration of
the pendulum.

Equating these torques around the pendulum hinge gives

mL2 d
2θ

dt2
= mLg sin(θ)−mL cos(θ)

d2x

dt2
, (4.159)

where g = 9.8 m · s−2 is the acceleration of gravity, and the
angle θ has units of radians.

(b) Diagram

(a) Inverted pendulum on wheels

x(t)

θ(t) L

m

Figure 4-37: Inverted pendulum on a cart and its (simplified)
equivalent diagram (Courtesy of Chalmers University of
Technology).

4-12.2 Linearization

Equation (4.159) is clearly a non-linear system. We linearize
the system about θ = 0, so that we can apply the techniques
for LTI systems. Position θ = 0 means that the pendulum is
vertical, so the assumption that θ is small is equivalent to the
assumption that the pendulum is close to vertical.
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The power series expansions for sine and cosine are given by

sin(θ) = θ − θ3

3! + · · · ≈ θ if θ  1 (4.160a)

and

cos(θ) = 1 − θ2

2! + · · · ≈ 1 if θ  1. (4.160b)

Note that θ is in radians. To illustrate that these are indeed
good approximations, consider the case θ = 0.2 rad, which
corresponds to a deviation of 11◦ from the vertical. The values
of sin(0.2) and cos(0.2) are

sin(0.2) = 0.1987 ≈ 0.2,

cos(0.2) = 0.9801 ≈ 1.

Substituting the truncated power series given by Eq. (4.160)
into the non-linear system given by Eq. (4.159) gives

mL2 d
2θ

dt2
= mLg θ(t)−mL(1)

d2x

dt2
. (4.161)

Finally, dividing by mL2 leads to the linearized equation

d2θ

dt2
= g

L
θ(t)− 1

L

d2x

dt2
. (4.162)

This system model is LTI; in fact, it is an LCCDE. To compute
its transfer function, we transform the differential equation to
the s-domain:

s2 θθθ(s) = g

L
θθθ(s)− 1

L
s2 X(s). (4.163)

Solving for θθθ(s) and then dividing by X(s) gives

H(s) = θθθ(s)
X(s)

= − s2/L

s2 − g/L
. (4.164)

The system has poles at ±√
g/L. Since one of these is in the

right half-plane, the system is unstable. Physically, this makes
sense: Any departure of the pendulum from the vertical will
make it swing farther away from the vertical, until it crashes
into a horizontal position on the cart. This initial perturbation
could come from a tiny vibration or a tiny breeze that moves
the cart slightly, as the following example demonstrates.

Example 4-14: Open-Loop Inverted Pendulum

A cart carrying an inverted pendulum of length 61.25 cm is
suddenly moved 1 mm. Compute its response.

Solution: Inserting L = 61.25 cm and g = 9.8 m · s−2 into
Eq. (4.164) gives

H(s) = −s2/0.6125

s2 − 9.8/0.6125
= −1.633s2

s2 − 16
. (4.165)

A sudden movement of length 1 mm means that the input
x(t) = 0.001u(t). Its Laplace transform is X(s) = 0.001/s, and
the corresponding response is

θθθ(s) = H(s) X(s) = −1.633s2

s2 − 16

0.001

s
= −0.001633s

s2 − 16
.

(4.166)
Partial fraction expansion gives

θθθ(s) = −0.001633s
(s − 4)(s + 4)

= −0.000817

s − 4
+ −0.000817

s + 4
.

(4.167)
The inverse Laplace transform of θθθ(s) is

θ(t) = −0.000817(e4t + e−4t ) u(t). (4.168)

The pendulum topples over in less than two seconds, since
−0.000817e8 = −2.435 rad = −139.5◦ < −90◦.

Note that forward motion of the cart makes the pendulum fall
backwards. That is why the angle θ(t) < 0.

4-12.3 Control Using Proportional Feedback

We try to stabilize the system using feedback: The cart position
x(t) is moved back and forth in an attempt to keep the pendulum
from tipping over, like balancing a broomstick on a finger
by moving the finger in response to the perceived angle the
broomstick makes with the vertical. “Proportional” feedback
means feeding backK θ(t) to the input, as we have seen before
in Section 4-11.

Physically, the output θ(t) can be measured by placing one
terminal of a rheostat on the hinge and the other terminal on
the pendulum. The resistance of the tapped rheostat is directly
proportional to θ(t)+ π

2 . If θ(t) = −π
2 , then the resistance is
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zero, and if θ(t) = π
2 the resistance is maximum. The resistance

can then be used to control a motor attached to the cart wheels,
to control the cart position x(t).

Recall that the equation for proportional feedback control is

Q(s) = H(s)
1 +K H(s)

. (4.169)

Substituting H(s) into this feedback equation gives

Q(s) = H(s)
1 +K H(s)

= − s2/L

s2 − g/L

/(
1 −K

s2/L

s2 − g/L

)

= − s2/L

s2 − g/L−Ks2/L
= −s2

(L−K)s2 − g
. (4.170)

Note that in proportional feedback, Kθ is added to input x(t),
and since x(t) is measured in units of length, K has units
of length/radian. If K < L the system will continue to be
unstable. But if K > L, the poles are pure imaginary, namely
±j√g/(K − L), in which case the natural response of the
system will be oscillatory: The best we can do is to keep
the pendulum swinging back and forth, while keeping the
amplitude of its swings from getting too large!

Example 4-15: Inverted Pendulum Control Using

Proportional Feedback

This is a repeat of Example 4-14, but with proportional
feedback. A cart carrying an inverted pendulum of length
61.25 cm is suddenly moved 1 mm. Compute its response if
proportional feedback is used with K = 122.5 cm/rad.

Solution: InsertingL = 61.25 cm,K = 122.5 cm/radian, and
g = 9.8 m · s−2 into the closed-loop transfer function Q(s)
gives

Q(s) = −s2

(L−K)s2 − g

= −s2

(0.6125 − 1.225)s2 − 9.8
= 1.633s2

s2 + 16
. (4.171)

t (s)

θ (milliradian)
Proportional feedback

PI feedback

−2

−1

0

1

1 2 3 4

2

Figure 4-38: Inverted pendulum response to input 0.001u(t)
using proportional and proportional-plus-integral (PI) feedback.

A sudden movement of length 1 mm means that the input
x(t) = 0.001u(t). Its Laplace transform is X(s) = 0.001/s, and

θθθ(s) = Q(s) X(s) = 1.633s2

s2 + 16
× 0.001

s
= 0.001633s

s2 + 16
.

(4.172)
The inverse Laplace transform of θθθ(s) is

θ(t) = 0.001633 cos(4t) u(t). (4.173)

The pendulum swings back and forth with period
2π/4 = 1.571 s and amplitude 0.001633 radians = 0.094◦,
which is small enough to support the assumption that the linear
model is applicable.

The response θ(t) is plotted in Fig. 4-38.

4-12.4 Control Using PD Feedback

Having seen the results of using proportional feedback, we now
introduce proportional-plus-derivative (PD) feedback with

G(s) = K1 +K2s, (4.174)

so that the feedback depends on both the angle θ(t) and its
derivative dθ/dt (angular velocity). The angular velocity dθ/dt
can be measured directly using a magnetic sensor, as was done
previously with the motor. The closed-loop transfer function
Q(s) is then

Q(s) = H(s)
1 + G(s) H(s)

= − s2/L

s2 − g/L

/(
1 − (K1 +K2s)

s2/L

s2 − g/L

)

= −s2

(L−K1)s2 −K2s3 − g
. (4.175)
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The denominator of Q(s) is a cubic polynomial, so there will
be three poles. With two arbitrary constants, K1 and K2, to
determine three poles, one might think that the closed-loop
system can always be stabilized. But this is not true.

� A cubic polynomial in which the coefficient of the s-
term is zero and the coefficients of other terms are real
and non-zero must have at least one root with positive real
part. �

Hence the closed-loop system can never be stabilized using
PD control!

4-12.5 Control Using PI Feedback

Since neither proportional nor PD control can stabilize the
inverted pendulum, let us now try something new: proportional-
plus-integral (PI) feedback, wherein

G(s) = K1 + K2

s
. (4.176)

Now the feedback depends on both the angle θ(t) and its integral∫ t
0 θ(t

′) dt ′. The integral can be computed using an op-amp
integrator circuit. The closed-loop transfer function Q(s) is then

Q(s) = H(s)
1 + G(s) H(s)

= − s2/L

s2 − g/L

/(
1 − (K1 +K2/s)

s2/L

s2 − g/L

)

= − s2

(L−K1)s2 −K2s − g
. (4.177)

The denominator of Q(s) is now a quadratic polynomial, so it
has only two poles. With two arbitrary constants,K1 andK2, to
determine two poles, we can not only stabilize the closed-loop
system, but we can also place its poles anywhere we want!

Example 4-16: Inverted Pendulum Control Using PI

Feedback

A cart carrying an inverted pendulum of length 61.25 cm is
suddenly moved 1 mm. Compute its response if PI feedback is
used with K1 = 122.5 cm/rad and K2 = 490 cm s−1/rad.

Solution: Inserting L = 61.25 cm, K1 = 122.5 cm/rad,
K2 = 490 cm s−1/rad, and g = 9.8 m s−2 into the closed-loop
transfer function Q(s) gives

Q(s) = −s2

(L−K1)s2 −K2s − g

= −s2

(0.6125 − 1.225)s2 − 4.9s − 9.8
= 1.633s2

s2 + 8s + 16
.

(4.178)

A sudden movement of length 1 mm means that the input
x(t) = 0.001u(t). Its Laplace transform is X(s) = 0.001/s, and

θθθ(s) = Q(s) X(s)

= 1.633s2

s2 + 8s + 16
× 0.001

s
= 0.001633s

(s + 4)2
. (4.179)

To enable obtaining the inverse Laplace transform, we rewrite
θθθ(s) by expressing s as s = (s + 4)− 4:

θθθ(s) = 0.001633s
(s + 4)2

= 0.001633(s + 4)

(s + 4)2
− 0.006532

(s + 4)2
.

The inverse Laplace transform of θθθ(s) is

θ(t) = 0.001633(1 − 4t)e−4t u(t). (4.180)

The response (shown in Fig. 4-38) not only decays to zero, but
it is critically damped for this choice of K2.

Concept Question 4-12: What assumption about angle θ 
was made in order to linearize the inverted pendulum 
system? (See        )

Concept Question 4-13: What is the difference between
PD and PI feedback? (See        )

Exercise 4-19: Using proportional feedback with
K = L+ 0.2, compute the response to input

x(t) = 0.01 u(t).

Answer: y(t) = 0.05 cos(7t) u(t). (See S2 )

Exercise 4-20: Using PI feedback, show that the closed-
loop system is stable if K1 > L and K2 > 0.

Answer: (See S2 ).
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Module 4.2 Inverted Pendulum Response The input can be a step, ramp, or sinusoid. The period of the sinusoidal 
input and the gain of the feedback (K for proportional control, and K1 and K2 for PI control), are selectable parameters. 
Waveforms of the input and angular response are displayed.

Exercise 4-21: Using PI feedback with

K1 = L+ 0.2,

select the value of K2 so that the closed-loop system is
critically damped.

Answer: K2 = 2.8. (See S2 )

Exercise 4-22: Use LabVIEW Module 4.2 to compute 
the inverted pendulum responses shown in Fig. 4-38. 

Answer:
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Summary

Concepts

• The Laplace transform can be used to analyze any causal
LTI system, even if the system has non-zero initial
conditions.

• Many mechanical systems can be modeled in terms of
electromechanical analogues.

• Op-amp circuits can be used to develop system
realizations that conform to specified transfer functions.

• Feedback control can be employed to improve system
performance and stability.

Mathematical and Physical Models
s-Domain Impedance (no initial conditions)

ZR = R, ZL = sL, ZC = 1

sC
Configurations of Multiple Systems

Series H(s) = H1(s) H2(s)
Parallel H(s) = H1(s)+ H2(s)

Negative Feedback H(s) = H1(s)
1 + H1(s) H2(s)

Motor s-domain Model

s2 θθθ(s)+ as θθθ(s) = b V(s)

Important Terms Provide definitions or explain the meaning of the following terms:

closed loop
damper
DFI
DFII
electromechanical analogue
feedback control
gain-bandwidth product

inverse system
inverted pendulum
inverter
negative feedback
open loop
parallel configuration
proportional feedback

proportional-plus-derivative
(PD) feedback

proportional-plus-integral
(PI) feedback

Schmitt trigger
series configuration
SMD

subtractor
summer
system realization
transfer function

PROBLEMS

Sections 4-1 and 4-2: s-domain Analysis

∗4.1 Determine υ(t) in the circuit of Fig. P4.1 given that
υs(t) = 2u(t) V, R1 = 1 �, R2 = 3 �, C = 0.3689 F, and
L = 0.2259 H.

C

R2R1

Lυυs(t)

iL(t)
+
_

Figure P4.1: Circuit for Problems 4.1 and 4.2.

∗
Answer(s) in Appendix F.

4.2 Determine iL(t) in the circuit in Fig. P4.1 given that
υs(t) = 2u(t), R1 = 2 �, R2 = 6 �, L = 2.215 H, and
C = 0.0376 F.

4.3 Determine υout(t) in the circuit in Fig. P4.3 given that
υs(t) = 35u(t) V, υC1(0

−) = 20 V, R1 = 1 �, C1 = 1 F,
R2 = 0.5 �, and C2 = 2 F.

+

_
υs(t)

R1

C1 C2 R2 υout

υC1

+
_

Figure P4.3: Circuit for Problem 4.3.
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4.4 Determine iL(t) in the circuit of Fig. P4.4 for t ≥ 0 given
that the switch was opened at t = 0, after it had been closed for
a long time, υs = 12 mV, R0 = 5�, R1 = 10�, R2 = 20�,
L = 0.2 H, and C = 6 mF.

12 mV

R0 R1 R2

CL

iL
t = 0+

_

Figure P4.4: Circuit for Problems 4.4 and 4.5.

4.5 Repeat Problem 4.4, but assume that the switch had been
open for a long time and then closed at t = 0. Retain the dc
source at 12 mV and the resistors at R0 = 5 �, R1 = 10 �,
and R2 = 20 �, but change L to 2 H and C to 0.4 F.

4.6 Determine iL(t) in the circuit of Fig. P4.6 given that
R1 = 2 �, R2 = 1/6 �, L = 1 H, and C = 1/13 F. Assume
no energy was stored in the circuit segment to the right of the
switch prior to t = 0.

C L
t = 0

2 V

iL
R2R1

+
_

Figure P4.6: Circuit for Problem 4.6.

∗4.7 Determine υC2(t) in the circuit of Fig. P4.7 given that
R = 200 �, C1 = 1 mF, and C2 = 5 mF.

50 δ(t) V

R
C1

C2 υC2

+
_

Figure P4.7: Circuit for Problem 4.7.

4.8 Determine iL(t) in the circuit of Fig. P4.8 given that
before closing the switch, υC(0−) = 24 V. Also, the element
values are R = 1 �, L = 0.8 H, and C = 0.25 F.

R L
t = 0

υC

iL

Figure P4.8: Circuit for Problem 4.8.

4.9 Determine υout(t) in the circuit of Fig. P4.9 given that
υs(t) = 11u(t)V, R1 = 2�, R2 = 4�, R3 = 6 �, L = 1 H,
and C = 0.5 F.

+

_

R1
C

L

R3

R2
+
_ υoutυs(t)

Figure P4.9: Circuit for Problem 4.9.

4.10 Determine iL(t) in the circuit of Fig. P4.10 for t ≥ 0
given that R = 3.5 �, L = 0.5 H, and C = 0.2 F.

iL

L

C

R

7 V
+
_

t = 0

Figure P4.10: Circuit for Problem 4.10.
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4.11 Apply mesh-current analysis in the s-domain to
determine iL(t) in the circuit of Fig. P4.11 given that
υs(t) = 44u(t)V, R1 = 2�, R2 = 4�, R3 = 6�, C = 0.1 F,
and L = 4 H.

R3

iL

R2 C

L

R1

+
_υs(t)

Figure P4.11: Circuit for Problem 4.11.

4.12 The voltage source in the circuit of Fig. P4.12 is given
by υs(t) = [10−5u(t)] V. Determine iL(t) for t ≥ 0 given that
R1 = 1 �, R2 = 3 �, L = 2 H, and C = 0.5 F.

R1 R2

LC
+
_υs(t)

iL

Figure P4.12: Circuit for Problems 4.12 and 4.16.

∗4.13 The current source in the circuit of Fig. P4.13 is given
by is(t) = [10u(t)+ 20δ(t)] mA. Determine υC(t) for t ≥ 0
given that R1 = R2 = 1 k� and C = 0.5 mF.

+

_

R2

CR1
+
_ υCis(t)

iC

Figure P4.13: Circuit for Problems 4.13 and 4.15.

4.14 The circuit in Fig. P4.14 is excited by a 10 V, 1 s long
rectangular pulse. Determine i(t) given that R1 = 1 �,
R2 = 2 �, and L = 1/3 H.

0

10 V

1 s

υs(t) =

i(t)

+
_ R2

R1

L

Figure P4.14: Circuit for Problem 4.14.

4.15 Repeat Problem 4.13, after replacing the current source
with a 10 mA, 2 s long rectangular pulse.

4.16 Analyze the circuit shown in Fig. P4.12 to determine
iL(t), in response to a voltage excitation υs(t) in the form of a
10 V rectangular pulse that starts at t = 0 and ends at t = 5 s.
The element values are R1 = 1 �, R2 = 3 �, L = 2 H, and
C = 0.5 F.

4.17 The current source in the circuit of Fig. P4.17 is given
by is(t) = 6e−2t u(t) A. Determine iL(t) for t ≥ 0 given that
R1 = 10 �, R2 = 5 �, L = 0.6196 H, and LC = 1/15 s.

is(t) R1 R2

iL

L

C

Figure P4.17: Circuit for Problems 4.17 and 4.18.

4.18 Given the current-source waveform displayed in
Fig. P4.18, determine iL(t) in the circuit of Fig. P4.17 given
thatR1 = 10�, R2 = 5�, L = 0.6196 H, and LC = 1/15 s.

is(t)

t

6 A

6e−2t

0
0

Figure P4.18: Waveform for Problem 4.18.
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∗4.19 The current source shown in the circuit of Fig. P4.19 is
given by the displayed waveform. Determine υout(t) for t ≥ 0
given that R1 = 1 �, R2 = 0.5 �, and L = 0.5 H.

is(t)

t

1.5 A

0.5 A
1 A ω = 4 rad/s

+

_

L

R2R1is(t) υout(t)

Figure P4.19: Circuit for Problem 4.19 and current waveform
for Problems 4.19 and 4.20.

4.20 If the circuit shown in Fig. P4.20 is excited by the current
waveform is(t) shown in Fig. P4.19, determine i(t) for t ≥ 0
given that R1 = 10 �, R2 = 5 �, and C = 0.02 F.

is(t)

i(t)

R1 R2C

Figure P4.20: Circuit for Problems 4.20 to 4.22.

4.21 If the circuit shown in Fig. P4.20 is excited by current
waveform is(t) = 36te−6t u(t) mA, determine i(t) for t ≥ 0
given that R1 = 2 �, R2 = 4 �, and C = (1/8) F.

4.22 If the circuit shown in Fig. P4.20 is excited by a current
waveform given by is(t) = 9te−3t u(t)mA, determine i(t) for
t ≥ 0 given that R1 = 1 �, R2 = 3 �, and C = 1/3 F.

Sections 4-3 and 4-4: Electromechanical Analogues

4.23 In the SMD system shown in Fig. P4.23, vx(t) and vy(t)
are the input velocity of the platform surface and output velocity
of the 100 kg mass, respectively.

N·s
m

vy(t)

vx(t)

100 kg

1000

Figure P4.23: SMD system of Problem 4.23.

(a) Draw the equivalent s-domain circuit.
∗(b) Determine the system transfer function.

(c) Compute the impulse response.

(d) Determine the frequency response.

(e) Compute the response to the rectangular pulse
vx(t) = [5u(t)− 5u(t − 0.2)] (m/s).

4.24 In the SMD system shown in Fig. P4.24, vx(t) is the
input velocity of the platform and vy(t) is the output velocity
of the 200 kg mass.

N
m

vy(t)

vx(t)

200 kg

1800

Figure P4.24: SMD system of Problem 4.24.

(a) Draw the equivalent s-domain circuit.

(b) Determine the system transfer function.
∗(c)   Compute the impulse response.

(d) Determine the frequency response.

(e) Compute the response to the sinusoid

vx(t) = cos(3t) u(t) (m/s).
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4.25 In the SMD system shown in Fig. P4.25, vx(t) is the
input velocity of the platform and vy(t) is the output velocity
of the 200 kg mass.

N·s
m

vy(t)

vx(t)

200 kg

400 N·s
m600

Figure P4.25: SMD system of Problem 4.25.

(a) Draw the equivalent s-domain circuit.

(b) Determine the system transfer function.

(c) Compute the impulse response.

(d) Determine the frequency response.

(e) Compute the response to the decaying exponential
vx(t) = e−5t u(t) (m/s).

4.26 In the SMD system shown in Fig. P4.26, vx(t) is the
input velocity of the platform and vy(t) is the output velocity
of the 200 kg mass.

N·s
m

vy(t)

vx(t)

200 kg

600 N·s
m500 N

m1500

Figure P4.26: SMD system of Problem 4.26.

(a) Draw the equivalent s-domain circuit.

(b) Determine the system transfer function.

(c) Compute the impulse response.

(d) Determine the frequency response.

(e) Compute the response to the step vx(t) = u(t) (m/s).

4.27 In the SMD system shown in Fig. P4.27, vx(t) is the
input velocity of the platform and vy(t) is the output velocity
of the 200 kg mass.

vy(t)

vx(t)

200 kg

N·s
m400N

m200

Figure P4.27: SMD system of Problem 4.27.

(a) Draw the equivalent s-domain circuit.

(b) Determine the system transfer function.

(c) Compute the impulse response.

(d) Determine the frequency response.

(e) Let vx(t) = cos(ωt). At what frequency ω does
vy(t) = vx(t), i.e., output = input?

4.28 In the SMD system shown in Fig. P4.28, vx(t) is the
input velocity of the platform and vy(t) is the output velocity
of the 300 kg mass.

N·s
m

vy(t)

vx(t)

200 kg

300 kg

300

N·s
m200

N·s
m600

Figure P4.28: SMD system of Problem 4.28.

(a) Draw the equivalent s-domain circuit.
∗(b) Determine the system transfer function.

(c) Compute the impulse response.

(d) Determine the frequency response.
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4.29 In the SMD system shown in Fig. P4.29, vx(t) is the
input velocity of the platform and vy(t) is the output velocity
of the 100 kg mass.

vy(t)

vx(t)

100 kg

100 kg

N
m100

N
m100

Figure P4.29: SMD system of Problem 4.29.

(a) Draw the equivalent s-domain circuit.

(b) Determine the system transfer function.

(c) Compute the impulse response.

(d) Determine the frequency response.

(e) Let vx(t) = cos(ωt).At what frequencyω does vy(t) blow
up?

4.30 In the SMD system shown in Fig. P4.30, vx(t) is the
input velocity of the platform and vy(t) is the output velocity
of the 100 kg mass.

vy(t)

vx(t)

100 kg

100 kg

N
m100

N
m100

N·s
m100

N·s
m100

Figure P4.30: SMD system of Problem 4.30.

(a) Draw the equivalent s-domain circuit.

(b) Determine the system transfer function.

(c) Determine the frequency response. Hint: Use two node
equations.

Section 4-5: Op-Amp Circuits

4.31 For the circuit shown in Fig. P4.31, determine
(a) H(s) = Vo/Vs and (b) h(t) given that R1 = 1 k�,
R2 = 4 k�, and C = 1 μF.

+

_
VoVs

R2

R1

C

+

_

+
_

Figure P4.31: Op-amp circuit for Problem 4.31.

∗4.32 For the circuit shown in Fig. P4.32, determine
(a) H(s) = Vo/Vs and (b) h(t) given that R1 = R2 = 100 �
and C1 = C2 = 1 μF.

+

_
VoVs

R2R1
C1

C2

+

_

+
_

Figure P4.32: Op-amp circuit for Problem 4.32.

4.33 In the circuit shown in Fig. P4.32,

υi(t) = 10u(t) mV,

VCC = 10 V for both op amps, and the two capacitors had no
charge prior to t = 0. Analyze the circuit and plot υout1(t) and
υout2(t) using the Laplace transform technique.

υi
υout1 υout2

+

_
+

_

Vdc = ±10 V
Vdc = ±10 V

5 kΩ

4 μF
5 μF

1 MΩ

Figure P4.33: Circuit for Problem 4.33 and 4.34.
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4.34 Repeat Problem 4.33 retaining all element val-
ues and conditions but changing the input voltage to
υi(t) = 0.4te−2t u(t).

Sections 4-6 and 4-7: System Configurations

∗4.35 Draw the Direct Form II realization of the LTI system

d2y

dt2
+ 2

dy

dt
+ 3y(t) = 4

d2x

dt2
+ 5

dx

dt
+ 6x(t).

4.36 Draw the Direct Form II realization of the LTI system
with transfer function

H(s) = 3s2 + 4s + 5

s2 + 6s + 7
.

4.37 Draw the Direct Form II realization of the LTI system
with poles {−1,−4}, zeros {−2,−3}, and H(0) = 1.5, where
H(s) is its transfer function.

4.38 Draw the Direct Form II realization of the LTI system
that has the impulse response

h(t) = δ(t)+ e−t u(t)+ e−2t u(t).

4.39 Draw the Direct Form II realization of the LTI system
described by

d2y

dt2
+ 2

dy

dt
+ 3y(t) = x(t).

4.40 Draw the Direct Form II realization of an LTI system
whose frequency response is

Ĥ(ω) = (4 − 6ω2)+ j5ω

(2 − ω2)+ j3ω
.

Section 4-8: Control Systems

4.41 An unstable LTI system has the impulse response
h(t) = et u(t)− e−5t u(t). For proportional feedback with
G(s) = K , compute K to realize the following:

(a) The closed-loop system has poles {−1,−3}.
(b) The closed-loop system is critically damped.

4.42 An unstable LTI system has the impulse response
h(t) = cos(4t) u(t). For proportional feedback with
G(s) = K , compute K to realize the following:

∗(a) The closed-loop system has poles {−2,−8}.
(b) The closed-loop system is critically damped.

4.43 An unstable LTI system has the impulse response h(t) =
sin(4t) u(t).

(a) Show that proportional feedback (G(s) = K) cannot
BIBO-stabilize the system.

(b) Show that derivative feedback (G(s) = Ks) can stabilize
the system.

(c) Using derivative control, chooseK so that the closed-loop
system is critically damped.

4.44 An unstable LTI system has the impulse response
h(t) = e3t u(t)− e2t u(t).

(a) Show that proportional feedback (using G(s) = K) cannot
BIBO-stabilize the system.

(b) Show that derivative feedback (G(s) = Ks) can stabilize
the system, but the closed-loop system has a pole
p ≥ −√

6, so its step response is slow.

(c) Show that proportional-plus-derivative feedback control,
(G(s) = K1 +K2s), can be used to put both closed-loop
poles at −10. Compute K1 and K2 to accomplish this.

4.45 The impulse response of a first-order actuator is
h(t) = ae−at u(t). The 3 dB frequency is the frequency at
which the gain is down 3 dB. Show that with proportional
feedback the following occurs:

(a) The product of the time constant and the 3 dB frequency
is independent of K .

(b) The product of the dc gain and the 3 dB frequency is
independent of K .

4.46 Show that derivative control G(s) = Ks does not alter
the steady-state step response.

4.47 A BIBO-stable LTI system with transfer function H(s)
has a step response ystep(t). The steady-state step response is
yss = lim

t→∞ ystep(t). Show that yss = H(0).
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4.48 An unstable LTI system is described by the LCCDE

d2y

dt2
− 2

dy

dt
+ 5y(t) = x(t).

Using proportional plus derivative feedback with
G(s) = K1 +K2s, compute K1 and K2 to realize the
following:

(a) The closed-loop system is BIBO stable and critically
damped.

(b) The closed-loop steady state step response

lim
t→∞ ystep(t) = 0.01.

4.49 The feedback system configuration shown in Fig. P4.49
is called the compensator feedback configuration. It is used
often in control systems. Note that G(s) now appears just before
the system, rather than in the feedback loop.

(a) Show that the closed-loop transfer function is

Q(s) = G(s) H(s)
1 + G(s) H(s)

.

(b) What happens to Q(s) when G(s) = K → ∞?

(c) Let H(s) = N(s)/D(s). Show that the closed-loop poles
are still the roots of

D(s)+ G(s) N(s) = 0,

in agreement with Eq. (4.104), if G(s) is a polynomial.

_X(s) Y(s)H(s)G(s)

Figure P4.49: System configuration for Problem 4.49.

Section 4-9: Temperature Control

4.50 An oven has the following specifications: heat capacity
= 2000 J/◦C, thermal resistance = 0.1 ◦C/watt, ambient
temperature = 20 ◦C, and desired temperature = 350 ◦C.

(a) How long will it take the oven to reach 340 ◦C, without
feedback?

(b) If feedback control is used, what value ofK is required to
reduce that time to 1 minute?

4.51 An oven has the following specifications: heat capacity
= 2000 J/ ◦C, thermal resistance = 0.15 ◦C/watt, ambient
temperature = 20 ◦C, and desired temperature = 300 ◦C.

(a) How long will it take the oven to reach 290 ◦C, without
feedback?

(b) If feedback control is used, what value ofK is required to
reduce that time to 1 minute?

∗4.52 An oven is to be heated from 20 ◦C to 340 ◦C in 60 s. If
its time constant is 300 s and no feedback is used, to what T∞
should its input be set?

4.53 An oven is to be heated from 20 ◦C to 340 ◦C in 1 s. If
its time constant is 300 s and no feedback is used, to what T∞
should its input be set?

4.54 The desired temperature for an oven is 400 ◦C. However,
to minimize the amount of time the oven is on, it is made to
switch on and off, as shown in Fig. P4.54, so as to maintain
the temperature between 380 ◦C and 420 ◦C. When the oven is
on, its heat source would heat it up to T∞ = 550 ◦C, if it were
to stay on forever. The oven’s time constant is 190 s and its
ambient temperature is 20 ◦C. Compute the time durations TON
and TOFF so that the oven temperature stays between 380 ◦C
and 420 ◦C.

TONTOFFTON

T∞

t

Figure P4.54: Oven temperature control (Problems 4.54 and
4.55).

4.55 The desired temperature for an oven is 300 ◦C. However,
to minimize the amount of time the oven is on, it is made to
switch on and off, as shown in Fig. P4.54, with TON = TOFF,
so as to maintain the temperature between 290 ◦C and 310 ◦C.
The oven’s time constant is 280 s and its ambient temperature
is 20 ◦C. When the oven is on, its heat source would heat it up
to T∞, if it were to stay on forever. Compute the oven setting T∞
so that the oven temperature stays between 290 ◦C and 310 ◦C.

Section 4-11: Motor System Control

4.56 A motor has transfer function H(s) = b/[s(s + a)] for
known constants a, b > 0.

(a) Show that the step response blows up.

(b) Show that by using proportional feedback, the motor can
be BIBO-stabilized.
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(c) Show that if and only if K = 1, then the steady-state
response error is zero.

∗4.57 A motor has transfer function H(s) = 3/[s(s+3)]. Show
that PD feedback control G(s) = K1 +K2s can be used to
place both closed-loop poles at −30. Compute K1 and K2 to
accomplish this.

4.58 An unstable system has transfer function

H(s) = 1

(s − 1)(s − 2)(s + 6)
= 1

s3 + 3s2 − 16s + 12
.

Show that PD feedback control G(s) = K1 +K2s can be used
to place all three closed-loop poles at −1. ComputeK1 andK2
to accomplish this.

4.59 Show that the system described by the LCCDE

d3y

dt3
+ a

d2y

dt2
+ b

dy

dt
+ c y(t) = x(t)

cannot be stabilized by PD control unless a > 0.

Section 4-12: Inverted Pendulum

4.60 A cart carrying an inverted pendulum of length 20 cm
suddenly moves one Angstrom (10−10 m). How long does it
take it to topple over?

4.61 A cart carrying an inverted pendulum of length
20 cm suddenly moves 1 cm. Compute its response if PI
control G(s) = K1 +K2/s is used with K1 = 40 cm/rad and
K2 = 1000 cm · s−1/rad.

4.62 A cart carries an inverted pendulum of length 20 cm.
PI control G(s) = K1 +K2/s with K1 = 40 cm/rad is used.
Compute K2 in cm·s−1/rad so that its impulse response is
critically damped.

4.63 A cart carries an inverted pendulum of length 20 cm. PI
control G(s) = K1 +K2/s is used. ComputeK1 in cm/rad and
K2 in cm·s−1/rad so that its impulse response has a double pole
at −1.

LabVIEW Module 4.1

4.64

(a) Use LabVIEW Module 4.1 with a step input, a desired
temperature change (T ) of 5.0, a thermal time constant
RC = 100, and no feedback. Plot the oven temperature
response.

(b) Repeat part (a) using feedback with K = 0.1. What is the
most significant difference between your answers to parts
(a) and (b)?

4.65

(a) Use LabVIEW Module 4.1 with a sinusoidal input of
period 300, desired temperature change (T ) of 5.0, thermal
time constant RC = 100, and no feedback. Plot the oven
temperature response.

(b) Repeat part (a) using feedback with K = 0.2. What are
the differences in gain and phase between your answers to
parts (a) and (b)?

(c) Repeat part (a) but change the period to 100.

(d) Repeat part (c) using feedback with K = 0.2. What are
the differences in gain and phase between your answers to
parts (c) and (d)?

LabVIEW Module 4.2

4.66 For a step input, display the response using PI control 
with K1 = 1 and K2 = 0.7. Describe the response. What would 
the response be if K2 = 0?

4.67 For a step input, using PI control, choose from among 
the allowed K1 and K2 values that make the response return to 
zero most quickly. Display the response.

4.68 For a step input, using PI control and K1 = 2, choose 
the smallest value of K2 that eliminates the overshoot. Display 
the response.

4.69 For a sinusoidal input with period 0.5, display the 
response using P control with K = 0.7. Explain the form of 
the response as forced plus natural responses.

4.70 For a sinusoidal input with period 0.5, display the 
response using PI control with K1 = 0.7 and K2 = 10. Explain 
the form of the response as forced plus natural responses. Hint: 
Also display the step response in the same window.

4.71 For a sinusoidal input with period 0.5, using PI control, 
choose the allowed K1 and K2 values that minimize the transient 
response. Display the response.
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Objectives

Learn to:

� Apply the phasor-domain technique to analyze systems
driven by sinusoidal excitations.

� Express periodic signals in terms of Fourier series.

� Use Fourier series to analyze systems driven by
continuous periodic signals.

� Apply Parseval’s theorem to compute the power or
energy contained in a signal.

� Compute the Fourier transform of nonperiodic signals
and use it to analyze the system response to nonperiodic
excitations.

t

x(t)

Time Domain

Frequency Domain

ω

X(ω)

Time-domain signals have frequency domain spectra.
Because many analysis and design projects are easier to
work with in the frequency domain, the ability to easily
transform signals and systems back and forth between
the two domains will prove invaluable in succeeding
chapters.
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Overview

Akin to the Laplace transform technique of Chapters 3 and 4, the
phasor-domain technique is particularly suitable for analyzing
systems when excited by sinusoidal waveforms. Through a
phasor-domain transformation, the time-domain differential
equations describing the system get transformed into algebraic
equations. The solution is then transformed back to the time
domain, yielding the same solution that would have been
obtained had the original time-domain differential equations
been solved entirely in the time domain. Even though the
procedure involves multiple steps, it avoids the complexity
of solving differential equations containing sinusoidal forcing
functions.

As a periodic function with period T0, a sinusoidal signal
shares a distinctive property with all other members of the
family of periodic functions, namely the periodicity property
given by

x(t) = x(t + nT0), (5.1)

where n is any integer. Given this natural connection between
sinusoids and other periodic functions, can we somehow
extend the phasor-domain solution technique to non-sinusoidal
periodic excitations? The answer is yes, and the process for
realizing it is facilitated by two enabling mechanisms: the
Fourier theorem and the superposition principle. The Fourier
theorem makes it possible to mathematically characterize any
periodic excitation in the form of a sum of multiple sinusoidal
harmonics, and the superposition principle allows us to apply
phasor analysis to calculate the circuit response due to each
harmonic and then to add all of the responses together, thereby
realizing the response to the original periodic excitation. The
first half of this chapter aims to demonstrate the mechanics of
the solution process, as well as to explain the physics associated
with the system response to the different harmonics.

The second half of the chapter is devoted to the Fourier
transform, which is particularly useful for analyzing systems
excited by nonperiodic waveforms, such as single pulses or step
functions. As we will see in Section 5-11, the Fourier transform
is related to the Laplace transform of Chapter 3 and has the
same form under certain circumstances, but the two techniques
are generally distinct (as are their conditions of applicability).

5-1 Phasor-Domain Technique

Any sinusoidally time-varying function x(t) of angular
frequency ω, representing a system excitation or response, can
be expressed in the form

x(t) = Re[ X︸︷︷︸
phasor

ejωt ], (5.2)

where X is a time-independent constant called the phasor
counterpart of x(t). Thus, x(t) is defined in the time
domain, while its counterpart X is defined in the phasor
domain. To distinguish phasor quantities from their time-
domain counterparts, phasors are always represented by bold
letters in this book.

In general, the phasor-domain quantity X is complex,
consisting of a magnitude |X| and a phase angle φ:

X = |X|ejφ. (5.3)

Using this expression in Eq. (5.2) gives

x(t) = Re[|X|ejφejωt ]
= Re[|X|ej (ωt+φ)]
= |X| cos(ωt + φ). (5.4)

Application of the Re operator allows us to transform sinusoids
from the phasor domain to the time domain. The reverse
operation, namely to specify the phasor-domain equivalent of
a sinusoid, can be ascertained by comparing the two sides of
Eq. (5.4). Thus, for a voltage υ(t) with phasor counterpart V,
the correspondence between the two domains is as follows:

Time Domain Phasor Domain

υ(t) = V0 cosωt V = V0, (5.5a)

υ(t) = V0 cos(ωt + φ) V = V0e
jφ. (5.5b)

If φ = −π/2,

υ(t) = V0 cos(ωt − π/2) V = V0e
−jπ/2. (5.6)

Since cos(ωt−π/2) = sinωt and e−jπ/2 = −j , it follows that

υ(t) = V0 sinωt V = −jV0. (5.7)

Differentiation

Given a sinusoidal signal i(t) with a corresponding phasor I,

i(t) = Re[Iejωt ], (5.8)

the derivative di/dt is given by

di

dt
= d

dt
[Re(Iejωt )]

= Re

[
d

dt
(Iejωt )

]

= Re[ jωI︸︷︷︸
phasor

ejωt ], (5.9)
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where in the second step we interchanged the order of the two
operators, Re and d/dt , which is justified by the fact that the
two operators are independent of one another, meaning that
taking the real part of a quantity has no influence on taking its
time derivative and vice versa. We surmise from Eq. (5.9) that

di

dt
jωI. (5.10)

� Differentiation of a sinusoidal time function i(t) in the
time domain is equivalent to multiplication of its phasor
counterpart I by jω in the phasor domain. �

Integration

Similarly, ∫
i dt ′ =

∫
Re[Iejωt ′ ] dt ′

= Re

[∫
Iejωt

′
dt ′
]

= Re

[
I
jω︸︷︷︸

phasor

ejωt
]
, (5.11)

or ∫
i dt ′ I

jω
. (5.12)

� Integration of i(t) in the time domain is equivalent to
dividing its phasor I by jω in the phasor domain. �

Table 5-1 provides a summary of some time functions and their
phasor-domain counterparts.

Example 5-1: Sinusoidal Excitation

Given a system characterized by the differential equation

d2y

dt2
+ a

dy

dt
+ by = x(t),

with a = 300, b = 5 × 104, and

x(t) = 10 sin(100t + 60◦),

use the phasor-domain technique to determine y(t).

Table 5-1: Time-domain sinusoidal functions x(t) and
their cosine-reference phasor-domain counterparts X, where
x(t) = Re [Xejωt ].

x(t) X

A cosωt A

A cos(ωt + φ) Aejφ

−A cos(ωt + φ) Aej(φ±π)

A sinωt Ae−jπ/2 = −jA
A sin(ωt + φ) Aej(φ−π/2)

−A sin(ωt + φ) Aej(φ+π/2)

d

dt
[A cos(ωt + φ)] jωAejφ∫
A cos(ωt ′ + φ) dt ′ 1

jω
Aejφ

Solution:

Step 1: Convert x(t) to cosine format

x(t) = 10 sin(100t + 60◦)
= 10 cos(100t + 60◦ − 90◦)
= 10 cos(100t − 30◦).

Step 2: Define phasor-domain counterparts for all
time-dependent variables

x(t) = 10 cos(100t − 30◦) X = 10e−j30◦

y(t) Y

dy

dt
jωY

d2y

dt2
(jω)2Y

Step 3: Transform differential equation to the phasor
domain

(jω)2Y + jωaY + bY = 10e−j30◦
.
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Step 4: Solve for quantity of interest

Y = 10e−j30◦

b − ω2 + jωa

= 10e−j30◦

5 × 104 − 104 + j102 × 300

= 10e−j30◦

104(4 + j3)

= 10−3e−j30◦

5ej36.87◦ = 0.2 × 10−3e−j66.87◦
.

Step 5: Transform solution to the time domain

y(t) = Re[Yejωt ]
= Re[0.2 × 10−3e−j66.87◦

ej100t ]
= 0.2 × 10−3 cos(100t − 66.87◦).

5-2 Fourier Series Analysis Technique

By way of introducing the Fourier series analysis technique, let
us consider the RL circuit shown in Fig. 5-1(a), which is excited
by the square-wave voltage waveform shown in Fig. 5-1(b). The
waveform amplitude is 3 V and its period T0 = 2 s. Our goal is
to determine the output voltage response, υout(t). The solution
procedure consists of three basic steps.

Step 1: Express the periodic excitation in terms of Fourier
harmonics

According to the Fourier theorem (which we will introduce
and examine in detail in Section 5-3), the waveform shown in
Fig. 5-1(b) can be represented by the series

υs(t) = 12

π

(
cosω0t − 1

3
cos 3ω0t + 1

5
cos 5ω0t − · · ·

)
,

(5.13)
where ω0 = 2π/T0 = 2π/2 = π (rad/s) is the fundamental
angular frequency of the waveform. Since our present objective
is to outline the solution procedure, we will accept that the
infinite-series representation given by Eq. (5.13) is indeed
equivalent to the square wave of Fig. 5-1(b). The series consists
of cosine functions of the form cosmω0t , with m assuming
only odd values (1, 3, 5, etc.). Thus, the series contains only
odd harmonics of ω0. The coefficient of the mth harmonic is
equal to 1/m (relative to the coefficient of the fundamental),
and its polarity is negative if m = 3, 7, . . . , and positive if

(a) RL circuit

(b) Square-wave excitation

Input

Output

R = 4 Ω

L = 2/π H

+

_

+
_υs(t) υout(t)

(c) Output response

υs (V)

t (s)

t (s)

−1 21

−3

3 T0

υout (V)

−2

−1
0

0 1 2 3

−4

2

4

Figure 5-1: RL circuit excited by a square wave, and
corresponding output response.

m = 5, 9, . . . . In view of these properties, we can replace m
with (2n− 1) and cast υs(t) in the form

υs(t) = 12

π

∞∑
n=1

(−1)n+1 1

2n− 1
cos(2n− 1)πt V. (5.14)

In terms of its first few components, υs(t) is given by

υs(t) = υs1(t)+ υs2(t)+ υs3(t)+ · · · (5.15)
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with

υs1(t) = 12

π
cosω0t V, (5.16a)

υs2(t) = − 12

3π
cos 3ω0t V, (5.16b)

and

υs3(t) = 12

5π
cos 5ω0t V, etc. (5.16c)

In the phasor domain, the counterpart of υs(t) is given by:

Vs = Vs1 + Vs2 + Vs3 + · · · (5.17)

with

Vs1 = 12

π
V, @ ω = ω0, (5.18a)

Vs2 = − 12

3π
V, @ ω = 3ω0, (5.18b)

and

Vs3 = 12

5π
V, @ ω = 5ω0, etc. (5.18c)

Phasor voltages Vs1 , Vs2 , Vs3 , etc. are the counterparts ofυs1(t),
υs2(t), υs3(t), etc., respectively.

Step 2: Determine output responses to input harmonics

For the circuit in Fig. 5-1(a), input voltage Vs1 acting alone
would generate a corresponding output voltage Vout1 . In the
phasor domain, the impedance of the inductor is ZL = jωL.
Keeping in mind that Vs1 corresponds to υs1(t) atω = ω0 = π ,
voltage division gives

Vout1 =
(

R

R + jω0L

)
Vs1

= 4

4 + jπ × 2
π

· 12

π
= 3.42 −26.56◦ , (5.19)

with a corresponding time-domain voltage

υout1(t) = Re[Vout1e
jω0t ]

= 3.42 cos(ω0t − 26.56◦) (V). (5.20)

Similarly, at ω = 3ω0 = 3π ,

Vout2 = R

R + j3ω0L
Vs2

= 4

4 + j3π × 2
π

·
(

− 12

3π

)
= −0.71 −56.31◦ (V),

(5.21)

and

υout2(t) = Re[Vout2e
j3ω0t ]

= −0.71 cos(3ω0t − 56.31◦)V. (5.22)

In view of the harmonic pattern expressed in the form
of Eq. (5.14), for the harmonic at angular frequency
ω = (2n− 1)ω0,

Voutn = 4

4 + j (2n− 1)π × 2
π

· (−1)n+1 12

π(2n− 1)

= (−1)n+1 24

π(2n− 1)
√

4 + (2n− 1)2

· − tan−1[(2n− 1)/2] V. (5.23)

The corresponding time domain voltage is

υoutn(t) = Re[Voutne
j (2n−1)ω0t ]

= (−1)n+1 24

π(2n− 1)
√

4 + (2n− 1)2

· cos

[
(2n− 1)ω0t − tan−1

(
2n− 1

2

)]
V,

(5.24)

with ω0 = π rad/s.

Step 3: Apply the superposition principle to determine
υout(t)

According to the superposition principle, if υout1 is the output
generated by a linear circuit when excited by an input
voltage υs1 acting alone, and if similarly υout2 is the output
due to υs2 acting alone, then the output due to the combination
of υs1 and υs2 acting simultaneously is simply the sum of υout1
and υout2 . Moreover, the principle is extendable to any number
of sources. In the present case, the square-wave excitation
is equivalent to a series of sinusoidal sources υs1 , υs2 , . . . ,
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generating corresponding output voltages υout1 , υout2 , . . . .
Consequently,

υout(t) =
∞∑
n=1

υoutn(t)

=
∞∑
n=1

(−1)n+1 24

π(2n− 1)
√

4 + (2n− 1)2

· cos

[
(2n− 1)ω0t − tan−1

(
2n− 1

2

)]

= 3.42 cos(ω0t − 26.56◦)
− 0.71 cos(3ω0t − 56.31◦)
+ 0.28 cos(5ω0t − 68.2◦)+ · · · V, (5.25)

with ω0 = π rad/s.
We note that the fundamental component of υout(t) has

the dominant amplitude and that the higher the harmonic, the
smaller its amplitude. This allows us to approximate υout(t) by
retaining only a few terms, such as up to n = 10, depending
on the level of desired accuracy. The plot of υout(t) displayed
in Fig. 5-1(c), which is based only on the first 10 terms, is
sufficiently accurate for most practical applications.

The foregoing three-step procedure, which is equally
applicable to any linear system excited by any realistic periodic
function, relied on the use of the Fourier theorem to express the
square-wave pattern in terms of sinusoids. In the next section,
we will examine the attributes of the Fourier theorem and how
we may apply it to any periodic function.

Concept Question 5-1: The Fourier-series technique
is applied to analyze circuits excited by what type of 
functions? (See        )

Concept Question 5-2: How is the angular frequency of
the nth harmonic related to that of the fundamental ω0?
How is ω0 related to the period T of the periodic 
function? (See        )

Concept Question 5-3:What steps constitute the Fourier-
series solution procedure? (See        )

5-3 Fourier Series Representations

In 1822, the French mathematician Jean Baptiste Joseph Fourier
developed an elegant formulation for representing periodic
functions in terms of a series of sinusoidal harmonics. The
representation is known today as the Fourier series, and the

formulation is called the Fourier theorem. To guarantee that a
periodic function x(t) has a realizable Fourier series, it should
satisfy a set of requirements known as the Dirichlet conditions,
which we shall discuss in Section 5-10.3. Fortunately, any
periodic function generated by a real system will automatically
meet these conditions, and therefore we are assured that its
Fourier series does indeed exist.

The Fourier theorem states that a periodic function x(t) of
period T0 can be expanded in any of the following three forms:

x(t) = a0 +
∞∑
n=1

[an cos(nω0t)+ bn sin(nω0t)] (5.26a)

(sine/cosine representation)

= c0 +
∞∑
n=1

cn cos(nω0t + φn) (5.26b)

(amplitude/phase representation)

=
∞∑

n=−∞
xnejnω0t , (5.26c)

(exponential representation)

where ω0 = 2π/T0 is the fundamental angular frequency
in rad/s. The fundamental frequency, measured in Hz, is
f0 = 1/T0. The first two representations can be used only if
x(t) is real-valued, whereas the exponential representation can
be used for complex-valued x(t) as well.

• The constant terms a0 and c0 are equal and both are called
dc (direct current) or average terms, since they have a
frequency of zero Hz and are the average value of x(t).

• The n = 1 terms [a1 cos(ω0t)+ b1 sin(ω0t) and
c1 cos(ω0t + φ1)] are called fundamentals. The period
of the fundamental term is T0, the same as the period of
x(t).

• The terms

an cos(nω0t)+ bn sin(nω0t)

and
cn cos(nω0t + φn)

are called the nth harmonics. The frequency of the nth
harmonic is n/T0 Hz.

• In music theory, harmonics are called overtones, since they
add richness to the single-frequency sound of a simple
tone.

• The {an, bn, cn, xn} are called Fourier coefficients.
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Here are three ways to think about Fourier series:

1. A Fourier series is a mathematical version of a prism; it
breaks up a signal into different frequencies, just as a prism
(or diffraction grating) breaks up light into different colors
(which are light at different frequencies).

2. A Fourier series is a mathematical depiction of adding
overtones to a basic note to give a richer and fuller sound.
It can also be used as a formula for synthesis of sounds
and tones.

3. A Fourier series is a representation of x(t) in terms of
orthogonal functions.

5-4 Computation of Fourier Series
Coefficients

5-4.1 Sine / Cosine Representation

According to Eq. (5.26a), the sine/cosine representation of a
periodic function x(t) is given by

x(t) = a0 +
∞∑
n=1

[an cos(nω0t)+ bn sin(nω0t)].

(sine/cosine representation) (5.27)

Its Fourier coefficients are determined by evaluating integral
expressions involving x(t), namely,

a0 = 1

T0

T0∫
0

x(t) dt,

an = 2

T0

T0∫
0

x(t) cos(nω0t) dt,

and bn = 2

T0

T0∫
0

x(t) sin(nω0t) dt.

(5.28a)

(5.28b)

(5.28c)

Table 5-2: Trigonometric integral properties for any integers
m and n with n �= 0 and m �= 0. The integration period
T0 = 2π/ω0, and angles φ, φ1, and φ2 are any time-independent
constants.

Property Integral

1

T0∫
0

sin(nω0t + φ) dt = 0

2

T0∫
0

cos(nω0t + φ) dt = 0

3

T0∫
0

sin(nω0t + φ1) sin(mω0t + φ2) dt = 0

n �= m

4

T0∫
0

cos(nω0t + φ1) cos(mω0t + φ2) dt = 0

n �= m

5

T0∫
0

sin(nω0t + φ1) cos(mω0t + φ2) dt = 0

6

T0∫
0

sin2(nω0t + φ) dt = T0/2

7

T0∫
0

cos2(nω0t + φ) dt = T0/2

Even though the indicated limits of integration are from 0
to T0, the expressions are equally valid if the lower limit is
changed to t0 and the upper limit to (t0+T0), for any value of t0.
In some cases, the evaluation is easier to perform by integrating
from −T0/2 to T0/2.

To verify the validity of the expressions given by Eq. (5.28),
we will make use of the trigonometric integral properties listed
in Table 5-2.

dc Fourier Component a0

The average value of a periodic function is obtained by
integrating it over a complete period T0 and then dividing the
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integral by T0. Applying the definition to Eq. (5.27) gives

1

T0

T0∫
0

x(t) dt = 1

T0

T0∫
0

a0 dt

+ 1

T0

T0∫
0

[ ∞∑
n=1

[an cos(nω0t)+ bn sin(nω0t)]
]
dt

= a0 + 1

T0

T0∫
0

a1 cos(ω0t) dt

+ 1

T0

T0∫
0

a2 cos(2ω0t) dt + · · ·

+ 1

T0

T0∫
0

b1 sin(ω0t) dt

+ 1

T0

T0∫
0

b2 sin(2ω0t) dt + · · · . (5.29)

According to property #1 in Table 5-2, the average value of a
sine function is zero, and the same is true for a cosine function
(property #2). Hence, all of the terms in Eq. (5.29) containing
cos nω0t or sin nω0t will vanish, leaving behind

1

T0

T0∫
0

x(t) dt = a0, (5.30)

which is identical with the definition given by Eq. (5.28a).

an Fourier Coefficients

Multiplication of both sides of Eq. (5.27) by cosmω0t (with
m being any integer value equal to or greater than 1) followed
with integration over [0, T0] yields

T0∫
0

x(t) cos(mω0t) dt =
T0∫

0

a0 cos(mω0t) dt

+
T0∫

0

∞∑
n=1

an cos(nω0t) cos(mω0t) dt

+
T0∫

0

∞∑
n=1

bn sin(nω0t) cos(mω0t) dt.

=
∞∑
n=1

an

T0∫
0

cos(nω0t) cos(mω0t) dt

+
∞∑
n=1

bn

T0∫
0

sin(nω0t) cos(mω0t) dt. (5.31)

On the right-hand side of Eq. (5.31):

(1) the term containing a0 is equal to zero (property #2 in
Table 5-2),

(2) all terms containing bn are equal to zero (property #5), and

(3) all terms containing an are equal to zero (property #4),
except when m = n, in which case property #7 applies.

Hence, after eliminating all of the zero-valued terms and then
setting m = n in the two remaining terms, we have

T0∫
0

x(t) cos(nω0t) dt = an
T0

2
, (5.32)

which proves Eq. (5.28b).

bn Fourier Coefficients

Similarly, if we were to repeat the preceding process, after
multiplication of Eq. (5.27) by sinmω0t (instead of cosmω0t),
we would conclude with a result affirming the validity of
Eq. (5.28c).

To develop an appreciation for how the components of the
Fourier series add up to represent the periodic waveform,
let us consider the square-wave voltage waveform shown in
Fig. 5-2(a). Over the period extending from −T0/2 to T0/2,
x(t) is given by

x(t) =

⎧⎪⎨
⎪⎩

−A for − T0/2 < t < −T0/4,

A for − T0/4 < t < T0/4,

−A for T0/4 < t < T0/2.

If we apply Eq. (5.28) with integration limits [−T0/2, T0/2] to
evaluate the Fourier coefficients and then use them in Eq. (5.27),
we end up with the series

x(t) =
∞∑
n=1

4A

nπ
sin
(nπ

2

)
cos

(
2nπt

T0

)

= 4A

π
cos

(
2πt

T0

)
− 4A

3π
cos

(
6πt

T0

)

+ 4A

5π
cos

(
10πt

T0

)
− · · · .
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(a) Original waveform

(b) First term of Fourier series

(c) Fourier series with 3 terms

Fourier series
with only 1 term

x(t)

t

−A

A

0
−T0/2 T0/2

−A

A
x(t)

t0
−T0/2 T0/2

(d) Fourier series with 10 terms

(e) Fourier series with 100 terms

−A

A

x(t)

t0
−T0/2 T0/2

−A

A
x(t)

t0
−T0/2 T0/2

x(t)

t

−A

A

0
−T0/2 T0/2

Figure 5-2: Comparison of the square-wave waveform with its
Fourier series representation using only the first term (b), the
sum of the first three (c), ten (d), and 100 terms (e).

Alone, the first term of the series provides a crude
approximation of the square wave (Fig. 5-2(b)), but as we
add more and more terms, the sum starts to better resemble
the general shape of the square wave, as demonstrated by the
waveforms in Figs. 5-2(c) to (e).

(a) Original

(b) nmax = 1

(c) nmax = 2

(d) nmax = 10

(e) nmax = 100

t (s)
−4 840

10

20
x(t)

t (s)
−4 840

20
x(t)

t (s)
−4 840

10

x(t)
20

t (s)
−4 840

10

x(t)
20

t (s)
−4 840

10

20
x(t)

Figure 5-3: Sawtooth waveform: (a) original waveform, (b)–(e)
representation by a truncated Fourier series with nmax = 1, 2,
10, and 100, respectively.

Example 5-2: Sawtooth Waveform

Express the sawtooth waveform shown in Fig. 5-3(a) in terms
of a Fourier series, and then evaluate how well the original
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waveform is represented by a truncated series in which the
summation stops when n reaches a specified truncation number
nmax. Generate plots for nmax = 1, 2, 10, and 100.

Solution: The sawtooth waveform is characterized by a period
T0 = 4 s and ω0 = 2π/T0 = π/2 (rad/s). Over the waveform’s
first cycle (t = 0 to t = 4 s), its amplitude variation is given by

x(t) = 5t, for 0 ≤ t ≤ 4 s.

Application of Eq. (5.28) yields

a0 = 1

T0

T0∫
0

x(t) dt = 1

4

4∫
0

5t dt = 10,

an = 2

T0

T0∫
0

x(t) cos(nω0t) dt

= 2

4

4∫
0

5t cos
(nπ

2
t
)
dt = 0,

and

bn = 2

T0

T0∫
0

x(t) sin(nω0t) dt

= 2

4

4∫
0

5t sin
(nπ

2
t
)
dt = − 20

nπ
.

Upon inserting these results into Eq. (5.27), we obtain
the following complete Fourier series representation for the
sawtooth waveform:

x(t) = 10 − 20

π

∞∑
n=1

1

n
sin
(nπ

2
t
)
.

Thenmax-truncated series is identical in form with the complete
series, except that the summation is terminated after the index n
reachesnmax. Figures 5-3(b) through (e) display the waveforms
calculated using the truncated series with nmax = 1, 2, 10, and
100. As expected, the addition of more terms improves the
accuracy of the Fourier-series representation, but even with only
10 terms (in addition to the dc component), the truncated series
appears to provide a reasonable approximation of the original
waveform.

Concept Question 5-4: Is the Fourier-series representa-
tion given by Eq. (5.27) applicable to a periodic function 
that starts at t = 0 (and is zero for t < 0)? (See        )

Concept Question 5-5: What is a truncated series?
(See        )

Exercise 5-1: Obtain the Fourier-series representation for
the waveform shown in Fig. E5-1.

x(t)

−4 −2

−10

t (s)
2 40

0

10

Figure E5-1

Answer:

x(t) =
∞∑
n=1

[
20

n2π2 (1 − cos nπ) cos
nπt

2

+ 10

nπ
(1 − cos nπ) sin

nπt

2

]
.

(See S2 )

5-4.2 Amplitude and Phase Representation

In the sine/cosine Fourier-series representation given by
Eq. (5.27), at each value of the integer index n, the summation
contains the sum of a sine term and a cosine term, both at angular
frequency nω0. The sum can be converted into a single sinusoid
as follows. For n �= 0,

an cos nω0t + bn sin nω0t = cn cos(nω0t + φn), (5.33)

where cn is called the amplitude of the nth harmonic and
φn is its associated phase. The relationships between (cn, φn)
and (an, bn) are obtained by expanding the right-hand side of
Eq. (5.33) in accordance with the trigonometric identity

cos(x + y) = cos x cos y − sin x sin y. (5.34)
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Thus,

an cos(nω0t)+ bn sin(nω0t)

= cn cosφn cos(nω0t)− cn sin φn sin(nω0t).

(5.35)

Upon equating the coefficients of cos(nω0t) and sin(nω0t) on
one side of the equation to their respective counterparts on the
other side, we have for n �= 0

an = cn cosφn and bn = −cn sin φn, (5.36)

which can be combined to yield the relationships

cn =
√
a2
n + b2

n

and

φn =

⎧⎪⎪⎨
⎪⎪⎩

− tan−1
(
bn

an

)
, an > 0

π − tan−1
(
bn

an

)
, an < 0

(5.37)

In complex vector form, we have

cn φn = an − jbn. (5.38)

In view of Eq. (5.33), the sine/cosine Fourier-series representa-
tion of x(t) can be rewritten in the alternative amplitude/phase
format

x(t) = c0 +
∞∑
n=1

cn cos(nω0t + φn),

(amplitude/phase representation)

(5.39)

where we renamed a0 as c0 for the sake of notational
consistency. Associated with each discrete frequency harmonic
nω0 is an amplitude cn and phase φn.

A line spectrum of a periodic signal x(t) is a visual depiction
of its Fourier coefficients, cn and φn. Its amplitude spectrum
consists of vertical lines located at discrete values along the
ω-axis, with a line of height c0 located at dc (ω = 0), another
of height c1 at ω = ω0, a third of height c2 at ω = 2ω0, and
so on. Similarly, the phase spectrum of x(t) consists of lines
of lengths proportional to the values of φn with each located at
its corresponding harmonic nω0. Line spectra show at a glance

which frequencies in the spectrum of x(t) are most significant
and which are not.

The line spectra associated with cn and φn are called one-
sided line spectra because they are defined for only non-
negative values of nω0, which follows from the definition of the
amplitude/phase representation given by Eq. (5.39), wherein
the summation is over only positive values of n. This is to
distinguish it from two-sided line spectra associated with the
exponential representation introduced later in Section 5-4.3.

� Note that c0 < 0 if a0 < 0. Some books define
c0 = |a0| and φ0 = π if a0 < 0. In this book we define
c0 = a0 for simplicity. �

Example 5-3: Line Spectra

Generate and plot the amplitude and phase spectra of the
periodic waveform displayed in Fig. 5-4(a).

Solution: The periodic waveform has a period T0 = 2 s.
Hence, ω0 = 2π/T0 = 2π/2 = π rad/s, and the functional
expression for x(t) over its first cycle along the positive t-axis
is

x(t) =
{

1 − t, for 0 < t ≤ 1 s

0, for 1 ≤ t ≤ 2 s.

The dc component of x(t) is given by

c0 = a0 = 1

T0

T0∫
0

x(t) dt = 1

2

1∫
0

(1 − t) dt = 0.25,

which is equal to the area under a single triangle divided by the
period T0 = 2 s.

For the other Fourier coefficients, evaluation of the
expressions given by Eqs. (5.28b and c) leads to

an = 2

T0

T0∫
0

x(t) cos(nω0t) dt

= 2

2

1∫
0

(1 − t) cos(nπt) dt

= 1

nπ
sin(nπt)

∣∣1
0

−
[

1

n2π2 cos(nπt)+ t

nπ
sin(nπt)

]∣∣∣∣
1

0

= 1

n2π2 [1 − cos nπ ],
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(a) Periodic waveform

(b) Amplitude spectrum

(c) Phase spectrum

x(t)

t (s)
−1−2 10

0
3

1

2

ω
ω0 2ω0 3ω0 4ω0 5ω0

ω0 2ω0 3ω0 4ω0 5ω0

0.25
0.2

0.38

0.16
0.11

0.08 0.06

0

0.4

cn

c1

c2
c3

c4 c5

c0

ω

ϕn

ϕ2ϕ1 ϕ3 ϕ5ϕ4

90o

−90o
−57.5o

−90o −90o−78o −83o

Figure 5-4: Periodic waveform of Example 5-3 with its
associated line spectra.

and

bn = 2

T0

T0∫
0

x(t) sin(nω0t) dt

= 2

2

1∫
0

(1 − t) sin(nπt) dt

= − 1

nπ
cos(nπt)

∣∣1
0

−
[

1

n2π2 sin(nπt)− t

nπ
cos(nπt)

]∣∣∣∣
1

0

= 1

nπ
.

By Eq. (5.37), the harmonic amplitudes and phases are given
by

cn =
√
a2
n + b2

n

=
[(

1

n2π2 [1 − cos nπ ]
)2

+
(

1

nπ

)2
]1/2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
4

n4π4 + 1

n2π2

)1/2

for n = odd,

1

nπ
for n = even,

and

φn = − tan−1 bn

an

= − tan−1
(

nπ

[1 − cos nπ ]
)

=
{

− tan−1
(nπ

2

)
for n = odd

−90◦ for n = even.

The values of cn and φn for the first three terms are

c1 = 0.38, φ1 = −57.5◦,
c2 = 0.16, φ2 = −90◦,
c3 = 0.11, and φ3 = −78◦.

Spectral plots of cn and φn are shown in Figs. 5-4(b) and (c),
respectively.
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Exercise 5-2: Obtain the line spectra associated with the
periodic function of Exercise 5-1.

Answer:

cn = [1 − cos(nπ)] 20

n2π2

√
1 + n2π2

4

and

φn = − tan−1
(nπ

2

)
.

(See S2 )

5-4.3 Exponential Representation

Another Fourier series representation of periodic signals x(t)
uses complex exponential functions ejnω0t . As is often the case
in this book, using complex exponential functions instead of
sinusoids reduces the amount of algebra.

The exponential representation of a periodic signal x(t) is

x(t) =
∞∑

n=−∞
xnejnω0t .

(exponential representation)

(5.40)

where the Fourier series coefficients xn are now complex
numbers computed using

xn = 1

T0

T0∫
0

x(t) e−jnω0t dt. (5.41)

As with the other two representations, any interval of length T0
may be used as the interval of integration, since the integrand
is periodic with period T0. If x(t) is real-valued, the following
conjugate symmetry relation is applicable:

x−n = x∗
n (x(t) real). (5.42)

The exponential representation is considerably simpler than
the previous representations:

• Only a single formula is needed to compute all of the
Fourier series coefficients xn, compared with the three
formulas of Eq. (5.28) for the sine/cosine representation
and the two additional formulas in Eq. (5.37) for the
amplitude/phase representation.

• Complex periodic signals can be represented using the
exponential representation, but not with either of the
sinusoidal representations.

The reasons for using complex exponential functions are
twofold. First, the orthogonality of ejnω0t for integers n enables
the use of the simple formula given by Eq. (5.41) for computing
the coefficients xn. Second, the completeness of ejnω0t for
integers n means that any periodic function x(t) satisfying
the Dirichlet conditions discussed in Section 5-10.3 can be
represented using Eq. (5.40). The mathematics of completeness
are beyond the scope of this book, but the orthogonality of
ejnω0t for integers n can be derived immediately. First, suppose
m �= n. Then

T0∫
0

ejmω0t e−jnω0t dt =
T0∫

0

ej (m−n)ω0t dt

= ej (m−n)ω0t

j (m− n)ω0

∣∣∣∣∣
T0

0

= 0, (5.43)

because ej (m−n)ω00 = 1 and

ej (m−n)ω0T0 = ej2π(m−n) = 1.

If m = n, then we have

T0∫
0

ejnω0t e−jnω0t dt =
T0∫

0

1 dt = T0. (5.44)

Combining these two results, we have

T0∫
0

ejmω0t e−jnω0t dt =
{
T0 if m = n,

0 if m �= n.
(5.45)

The formula given by Eq. (5.41) for the coefficients xn
then follows from multiplying the complex exponential
representation in Eq. (5.40) by e−jmω0t and integrating from
0 to T0. The process leads to

T0∫
0

x(t) e−jmω0t dt =
T0∫

0

∞∑
n=−∞

xnejnω0t e−jmω0t dt. (5.46)
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Interchanging the order of integration and summation gives

T0∫
0

x(t) e−jmω0t dt =
∞∑

n=−∞
xn

T0∫
0

ej (n−m)ω0t dt. (5.47)

In view of Eq. (5.45), Eq. (5.47) simplifies to

T0∫
0

x(t) e−jmω0t dt = T0xm, (5.48)

because the only nonzero term in the summation is the one with
n = m. Dividing both sides by T0 and replacingmwith n leads
to Eq. (5.41).

Example 5-4: Complex Exponential Representation of

Square Wave

Define the periodic signal x(t) for all integers k as

x(t) =
{
π/4 for kπ < t < (k + 1)π,

−π/4 for (k − 1)π < t < kπ.
(5.49)

Solution: Signal x(t) is a square wave (Fig. 5-6(e)) that jumps
between π

4 and −π
4 at times that are integer multiples of π . Its

amplitude is A = π
4 and its period T0 = 2π , so

ω0 = 2π

T0
= 2π

2π
= 1.

The coefficients xn of its exponential representation can be
computed using Eq. (5.41) as

xn = 1

2π

π∫
0

π

4
e−jnt dt + 1

2π

2π∫
π

−π
4
e−jnt dt

=
{

−j/(2n) for n odd,

0 for n even.
(5.50)

This is because e−jnπ = 1 for n even and −1 for n odd. The
exponential representation can be written out as

x(t) = −j
2
ejt + −j

6
ej3t + −j

10
ej5t + · · ·

+ j

2
e−j t + j

6
e−j3t + j

10
e−j5t + · · · (5.51)

The top row includes terms for n = 1, 3, 5 . . . and the bottom
row includes terms for n = −1,−3,−5 . . . . The dc (n = 0)
term is zero, as expected, since x(t) clearly has an average
value of zero.

Recalling that

sin(x) = ejx − e−jx

2j
= −j e

jx − e−jx

2
,

the exponential representation can be rewritten in sine/cosine
form as

x(t) = sin(t)+ 1

3
sin(3t)+ 1

5
sin(5t)+ · · · , (5.52)

which in this case is simpler than the exponential representation,
as it takes advantage of x(t) being an odd function.

The exponential representation can also be derived from the
sine/cosine representation. According to Eq. (5.27), a periodic
function of periodT0 and corresponding fundamental frequency
ω0 = 2π/T0 can be represented by the series

x(t) = a0 +
∞∑
n=1

[an cos(nω0t)+ bn sin(nω0t)]. (5.53)

Sine and cosine functions can be converted into complex
exponentials via Euler’s identity:

cos(nω0t) = 1

2
(ejnω0t + e−jnω0t ), (5.54a)

and

sin(nω0t) = 1

j2
(ejnω0t − e−jnω0t ). (5.54b)

Upon inserting Eqs. (5.54a and b) into Eq. (5.53), we have

x(t) =

a0 +
∞∑
n=1

[
an

2
(ejnω0t + e−jnω0t )+ bn

j2
(ejnω0t − e−jnω0t )

]

= a0 +
∞∑
n=1

[(
an − jbn

2

)
ejnω0t +

(
an + jbn

2

)
e−jnω0t

]

= a0 +
∞∑
n=1

[xnejnω0t + x−ne−jnω0t ], (5.55)
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Table 5-3: Fourier series representations for a real-valued periodic function x(t).

Cosine/Sine Amplitude/Phase Exponential

x(t) = a0 +
∞∑
n=1

[an cos(nω0t)+ bn sin(nω0t)] x(t) = c0 +
∞∑
n=1

cn cos(nω0t + φn) x(t) =
∞∑

n=−∞
xnejnω0t

a0 = 1

T0

T0∫
0

x(t) dt cne
jφn = an − jbn xn = |xn|ejφn ; x−n = x∗

n; φ−n = −φn

an = 2

T0

T0∫
0

x(t) cos nω0t dt cn =
√
a2
n + b2

n |xn| = cn/2; x0 = c0

bn = 2

T0

T0∫
0

x(t) sin nω0t dt φn =
{

− tan−1(bn/an), an > 0

π − tan−1(bn/an), an < 0
xn = 1

T0

T0∫
0

x(t) e−jnω0t dt

a0 = c0 = x0; an = cn cosφn; bn = −cn sin φn; xn = 1
2 (an − jbn)

where we introduced the complex coefficients

xn = an − jbn

2
and x−n = an + jbn

2
= x∗

n. (5.56)

As the index n is incremented from 1 to ∞, the second term in
Eq. (5.55) generates the series

x−1e
−jω0t + x−2e

−j2ω0t + · · · ,

which can also be generated by xnejnω0t with n decremented
from −1 to −∞. This equivalence allows us to express x(t) in
the compact exponential form:

x(t) =
∞∑

n=−∞
xnejnω0t , (5.57)

where

x0 = a0 = c0 = |x0|ejφ0 , (5.58)

and the range of n has been expanded to (−∞,∞). For all
coefficients xn, including x0, it is easy to show that

xn = 1

T0

T0/2∫
−T0/2

x(t) e−jnω0t dt. (5.59)

� Even though the integration limits indicated in
Eq. (5.59) are from −T0/2 to T0/2, they can be chosen
arbitrarily so long as the upper limit exceeds the lower
limit by exactly T0. �

For easy reference, Table 5-3 provides a summary of
the relationships associated with all three Fourier-series
representations introduced in this chapter, namely the sine/
cosine, amplitude/phase, and complex exponential.

The exponential representation given by Eq. (5.57) is
characterized by two-sided line spectra because in addition
to the dc value at ω = 0, the magnitudes |xn| and phases φn
are defined at both positive and negative values of ω0 and its
harmonics.

It is easy to understand what a positive value of the angular
frequencyωmeans, but what does a negative angular frequency
mean? It does not have a physical meaning; defining ω along
the negative axis is purely a mathematical convenience.

The single-sided line spectra of the amplitude/phase
representation given by Eq. (5.39) and the two-sided
exponential representation given by Eq. (5.57) are interrelated.
For a real-valued periodic function x(t) with fundamental
angular frequency ω0:

(a) The amplitude line spectrum is a plot of amplitudes cn at
ω = 0 (dc value) and at positive, discrete values of ω, namely
nω0 with n a positive integer. The outcome is a single-sided
spectrum similar to that displayed in Fig. 5-5(a).
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(c) One-sided phase spectrum (d) Two-sided phase spectrum

(a) Amplitude spectrum (b) Magnitude spectrum

ω
ω0 2ω0 3ω0

0.25
0.2

0.38

0.16
0.11

0

0.4

cn

c1

c2
c3

c0

ω
ω0−ω0 2ω0−2ω0 3ω0−3ω0

0.25
0.190.19

0.080.08
0.0550.055

0

|xn|

|x1||x−1|

|x−2||x−3| |x2| |x3|

x0

ω0 2ω0 3ω0
ω

ϕn

ϕ2ϕ1 ϕ3

90o

−90o
−57.5o

−90o −78o

ω0 2ω0 3ω0
ω

ϕn

ϕ2ϕ1

ϕ−1

ϕ−2ϕ−3

ϕ3

90o

−90o
−57.5o

57.5o

−90o

90o

−78o

78o

−ω0−2ω0−3ω0

Figure 5-5: Comparison of one-sided line spectra of cnejφn (left side) with two-sided line spectra of xn = |xn|ejφn .

(b) The magnitude line spectra is a plot of magnitudes |xn|
at ω = 0 (dc value) and at both positive and negative values
of ω0 and its harmonics. The outcome is a two-sided spectrum
as shown in Fig. 5-5(b).

(c) The two-sided magnitude spectrum has even symmetry
about n = 0 (i.e., |xn| = |x−n|), and the magnitudes of xn are
half the corresponding amplitudes cn. That is, |xn| = cn/2,
except for n = 0 in which case |x0| = |c0|.

(d) The phase line spectrum φn is single-sided, whereas the
phase line spectrum of xn is two-sided. The right half of the two-
sided phase spectrum (Fig. 5-5(d)) is identical with the one-
sided phase spectrum of the amplitude/phase representation
(Fig. 5-5(c)).

(e) The two-sided phase spectrum has odd symmetry about
n = 0 (because φ−n = −φn), as illustrated by Fig. 5-5(d).
However, if a0 < 0, then φ0 = π , in which case φn would no
longer be an odd function of n.

Exercise 5-3: A periodic signal x(t) has the exponential
Fourier series

x(t) = (−2 + j0)+ (3 + j4)ej2t + (1 + j)ej4t

+ (3 − j4)e−j2t + (1 − j)e−j4t .

Compute its cosine/sine and amplitude/phase Fourier
series representations.
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(e) dc and odd symmetry

(a) dc symmetry only (b) dc and even symmetry (cos 2πt/T0)

x(t)

−A

−T0 T0

2T0

A

t
T0/2

0
0

dc symmetry only
x(t)

t

−A

−T0/2 T0

A

T0/20
0

dc and even symmetry only

(d) dc and odd symmetry (sin 2πt/T0)

(c) Even symmetry

Even symmetry only
x(t)

−T0 T0

A

t
T0/20

0
−T0/2

dc and odd symmetry only

t

x(t)

T0

A

0
0

−A

T0/2−T0/2

dc and odd symmetry only

x(t)

−A

T0

A

tT0/2
0

0−T0/2−T0

Figure 5-6: Periodic functions with various combinations of symmetry.

Answer: Amplitude/phase representation:

x(t) = −2 + 10 cos(2t + 53◦)+ 2
√

2 cos(4t + 45◦).

Cosine/sine representation:

x(t) = −2 + 6 cos(2t)− 8 sin(2t)

+ 2 cos(4t)− 2 sin(4t).

(See S2 )

5-4.4 Symmetry Considerations

Some functions may exhibit dc symmetry, wherein the area
under their waveforms above the t-axis is equal to that below
the t-axis. Consequently, a0 = c0 = 0. Examples include the
functions in parts (a), (b), (d), and (e) of Fig. 5-6. Other forms
of symmetry include even and odd symmetry, as displayed by
some of the periodic functions in Fig. 5-6.
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5-4.5 Fourier Coefficients of Even Functions

Recall from Chapter 1 that an even function has the property that
x(t) = x(−t). Even symmetry allows us to simplify Eqs. (5.28)
to the following expressions:

Even Symmetry: x(t) = x(−t)

a0 = 2

T0

T0/2∫
0

x(t) dt

an = 4

T0

T0/2∫
0

x(t) cos(nω0t) dt (5.60)

bn = 0

cn = |an|, φn =
{

0 if an > 0

180◦ if an < 0

The expressions for a0 and an are the same as given earlier by
Eq. (5.28a and b), except that the integration limits are now
over half of a period and the integral has been multiplied by a
factor of 2. The simplification is justified by the even symmetry
of x(t). As was stated in connection with Eq. (5.28), the only
restriction associated with the integration limits is that the upper
limit has to be greater than the lower limit by exactly T0. Hence,
by choosing the limits to be [−T0/2, T0/2] and then recognizing
that the integral of x(t) over [−T0/2, 0] is equal to the integral
over [0, T0/2], we justify the changes reflected in the expression
for a0. A similar argument applies to the expression for an
based on the fact that multiplication of an even function x(t)
by cos nω0t , which itself is an even function, yields an even
function.

The rationale for setting bn = 0 for all n relies on the fact
that multiplication of an even function x(t) by sin nω0t , which
is an odd function, yields an odd function, and integration of an
odd function over [−T0/2, T0/2] is always equal to zero. This
is because the integral of an odd function over [−T0/2, 0] is
equal in magnitude, but opposite in sign, to the integral over
[0, T0/2].

5-4.6 Fourier Coefficients of Odd Functions

An odd function has the property that x(−t) = −x(t). Odd
symmetry allows us to simplify the expressions for the Fourier
coefficients.

Odd Symmetry: x(t) = −x(−t)

a0 = 0 an = 0

bn = 4

T0

T0/2∫
0

x(t) sin(nω0t) dt (5.61)

cn = |bn| φn =
{

−90◦ if bn > 0

90◦ if bn < 0

Selected waveforms are displayed in Table 5-4 together with
their corresponding Fourier series expressions.

Example 5-5: M-Periodic Waveform

Evaluate the Fourier coefficients of the M-periodic waveform
shown in Fig. 5-7(a),

Solution: The M waveform is even-symmetrical, its period is
T0 = 4 s, ω0 = 2π/T0 = π/2 rad/s, and its functional form
over the positive half period is

x(t) =
{

1
2 (1 + t) 0 ≤ t ≤ 1 s,

0 1 < t ≤ 2 s.

Application of Eq. (5.60) yields

a0 = 2

T0

T0/2∫
0

x(t) dt

= 2

4

1∫
0

1

2
(1 + t) dt,= 0.375,

an = 4

T0

T0/2∫
0

x(t) cos(nω0t) dt

= 4

4

1∫
0

1

2
(1 + t) cos(nω0t) dt

= 2

nπ
sin

nπ

2
+ 2

n2π2

(
cos

nπ

2
− 1

)
,

and

bn = 0.
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Table 5-4: Fourier series expressions for a select set of periodic waveforms.

Waveform Fourier Series

1. Square Wave

x(t)

t

−A
−T0

A
0

−T0/2 T0/2 T0

x(t) =
∞∑
n=1

4A

nπ
sin
(nπ

2

)
cos

(
2nπt

T0

)

2. Time-Shifted Square
Wave

x(t)

t

−A

A
0

−T0/2 T0/2 T0−T0

x(t) =
∞∑
n=1
n=odd

4A

nπ
sin

(
2nπt

T0

)

3. Pulse Train

x(t)

t
−T0

τ
A
0
0 T0

x(t) = Aτ

T0
+

∞∑
n=1

2A

nπ
sin

(
nπτ

T0

)
cos

(
2nπt

T0

)

4. Triangular Wave

x(t)

t
A
0

−A
−T0/2 T0/2

x(t) =
∞∑
n=1
n=odd

8A

n2π2 cos

(
2nπt

T0

)

5. Shifted Triangular
Wave

x(t)

t
A
0

−A
−T0/2 T0/2

x(t) =
∞∑
n=1
n=odd

8A

n2π2 sin
(nπ

2

)
sin

(
2nπt

T0

)

6. Sawtooth

x(t)

t
A
0

−A
−T0 T0

x(t) =
∞∑
n=1

(−1)n+1 2A

nπ
sin

(
2nπt

T0

)

7. Backward Sawtooth

x(t)

t
−2T0 −T0

A

0 2T0T0

x(t) = A

2
+

∞∑
n=1

A

nπ
sin

(
2nπt

T0

)

8. Full-Wave Rectified
Sinusoid

x(t)

t
−T0 0 2T0T0

A
x(t) = 2A

π
+

∞∑
n=1

4A

π(1 − 4n2)
cos

(
2nπt

T0

)

9. Half-Wave Rectified
Sinusoid

x(t)

t
−T0/2 0 T0T0/2 3T0/2

A
x(t) = A

π
+ A

2
sin

(
2πt

T0

)
+

∞∑
n=2
n=even

2A

π(1 − n2)
cos

(
2nπt

T0

)

Since bn = 0, we have for n �= 0

cn = |an|, φn =
{

0 if an > 0,

180◦ if an < 0.

Figures 5-7(b) and (c) display the amplitude and phase line
spectra of the M-periodic waveform, and parts (d) through
(f) display, respectively, the waveforms based on the first five
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(a) M waveform

x(t)

t
−1−2−3−4−5 10

0
3 4 5

1

2

0.5

(b) Amplitude spectrum

ω

ω
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0.2

0.43
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0.1

0.23

0.12

0

0.5
0.4

0.3

0.1
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c1
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c3 c4 = 0 c5

c0 (d) 5 terms

(f) 1000 terms

Gibbs
phenomenon

Amplitude
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(e) 10 terms
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0

0.5

1

0
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(c) Phase spectrum

0
2ω0 4ω0

ϕn

ϕ2

ϕ1 = 0 ϕ4 = 0 ϕ5 = 0

ϕ3

ω0 3ω0 5ω0

180o 180o 180o Phase

Figure 5-7: Plots for Example 5-5.

terms, the first ten terms, and the first 1000 terms of the Fourier
series.

As expected, the addition of more terms in the Fourier
series improves the overall fidelity of the reproduced
waveform. However, no matter how many terms are
included in the series representation, the reproduction
cannot duplicate the original M-waveform at points of

discontinuity, such as when the waveform jumps from
zero to one. Discontinuities generate oscillations. Increasing
the number of terms (adding more harmonics) reduces
the period of the oscillation, and ultimately the oscilla-
tions fuse into a solid line, except at the discontinuities
[see expanded view of the discontinuity at t = −3 s in
Fig. 5-7(f)].
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� As nmax approaches ∞, the Fourier series representa-
tion will reproduce the original waveform with perfect
fidelity at all non-discontinuous points, but at a point
where the waveform jumps discontinuously between two
different levels, the Fourier series will converge to a level
half-way between them. �

At t = 1 s, 3 s, 5 s, . . . , the Fourier series will converge
to 0.5. This oscillatory behavior of the Fourier series in the
neighborhood of discontinuous points is called the Gibbs
phenomenon.

Example 5-6: Waveform Synthesis

Given that waveform x1(t) in Fig. 5-8(a) is represented by the
Fourier series

x1(t) =
∞∑
n=1

4A

nπ
sin
(nπ

2

)
cos

(
2nπt

T0

)
,

(a) x1(t)

x1(t)

t

−A

A

0
−T0/2 T0/2

(c) x3(t)

x3(t)

t

−A

A

0
−T0/2 T0/2

(b) x2(t)

x2(t)

t

B

0
−T0/2 T0/2

Figure 5-8: Waveforms for Example 5-6.

generate the Fourier series corresponding to the waveforms
displayed in Figs. 5-8(b) and (c).

Solution: Waveforms x1(t) and x2(t) are similar in shape and
have the same period, but they also exhibit two differences: (1)
the dc value of x1(t) is zero because it has dc symmetry, whereas
the dc value of x2(t) is B/2, and (2) the peak-to-peak value of
x1(t) is 2A, compared with only B for x2(t). Mathematically,
x2(t) is related to x1(t) by

x2(t) = B

2
+
(
B

2A

)
x1(t)

= B

2
+

∞∑
n=1

2B

nπ
sin
(nπ

2

)
cos

(
2nπt

T0

)
.

Comparison of waveform x1(t) with waveform x3(t) reveals
that the latter is shifted by T0/4 along the t-axis relative to
x1(t). That is,

x3(t) = x1

(
t − T0

4

)

=
∞∑
n=1

4A

nπ
sin
(nπ

2

)
cos

[
2nπ

T0

(
t − T0

4

)]
.

Examination of the first few terms of x3(t) demonstrates that
x3(t) can be rewritten in the simpler form as

x3(t) =
∞∑
n=1
n is odd

4A

nπ
sin

(
2nπt

T0

)
.

Concept Question 5-6: For the cosine/sine and 
amplitude/phase Fourier series representations, the 
summation extends from n = 1 to n = ∞. What are the 
limits on the summation for the complex exponential 
representation? (See        )

Concept Question 5-7: What purpose is served by the
symmetry properties of a periodic function? (See        )

Concept Question 5-8: What distinguishes the phase 
angles φn of an even-symmetrical function from those of 
an odd-symmetrical function? (See        )
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Concept Question 5-9: What is the Gibbs phenomenon?
(See        )

Exercise 5-4: (a) Does the waveform x(t) shown in
Fig. E5-4 exhibit either even or odd symmetry? (b) What
is the value of a0? (c) Does the function y(t) = x(t)− a0
exhibit either even or odd symmetry?

Figure E5-4

x(t)

t (s)
−3−4 1

0
0 4 5 6

3

1

−1

2

−1−2 32

Answer: (a) Neither even nor odd symmetry,
(b) a0 = 1, (c) odd symmetry. (See S2 )

5-5 Circuit Analysis with Fourier
Series

Given the tools we developed in the preceding section for how
to express a periodic function in terms of a Fourier series,
we will now examine how to analyze linear circuits when
excited by periodic voltage or current sources. The method
of solution relies on the application of the phasor-domain
technique that we introduced in Section 5-1.A periodic function
can be expressed as the sum of cosine and sine functions with
coefficients an and bn and zero phase angles, or expressed as
the sum of only cosine functions with amplitudes cn and phase
angles φn. The latter form is amenable to direct application of
the phasor-domain technique, whereas the former will require
converting all sin(nω0t) terms into cos(nω0t − 90◦) before
implementation of the phasor-domain technique.

Even though the basic solution procedure was outlined earlier
in Section 5-2, it is worth repeating it in a form that incorporates
the concepts and terminology introduced in Section 5-4. To that
end, we shall use υs(t) [or is(t) if it is a current source] to denote
the input excitation and υout(t) [or iout(t)] to denote the output
response for which we seek a solution.

Solution Procedure:
Fourier Series Analysis

Step 1: Express υs(t) in terms of an amplitude/phase
Fourier series:

υs(t) = a0 +
∞∑
n=1

cn cos(nω0t + φn) (5.62)

with cn φn = an − jbn.

Step 2: Determine the generic transfer function of the
circuit at frequency ω:

H(ω) = Vout when υs = 1 cosωt. (5.63)

Step 3: Write down the time-domain solution:

υout(t) = a0 H(ω = 0)

+
∞∑
n=1

cn Re{H(ω = nω0) e
j (nω0t+φn)}.

(5.64)

For each value of n, coefficient cnejφn is associated with
frequency harmonic nω0. Hence, in Step 3, each harmonic
amplitude is multiplied by its corresponding ejnω0t before
application of the Re{ } operator.

Example 5-7: RC Circuit

Determine υout(t) when the circuit in Fig. 5-9(a) is excited by
the voltage waveform shown in Fig. 5-9(b). The element values
are R = 20 k� and C = 0.1 mF.

Solution:

Step 1: The period of υs(t) is 4 s. Hence, ω0 = 2π/4 = π/2
rad/s, and by Eq. (5.28), we have

a0 = 1

T

T∫
0

υs(t) dt = 1

4

1∫
0

10 dt = 2.5 V,

an = 2

4

1∫
0

10 cos
nπ

2
t dt = 10

nπ
sin

nπ

2
V,
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(b) Source waveform

(a) RC circuit

Input

Output

C

R

+

_

+
_υs(t) υout(t)

(c) υout(t)

t (s)
−1−2−3−4 10

0
3 4 5

10 V

2

υs(t)

−2−3 −1−4 0
t (s)

42 3 5

5 V

1 V

1

υout(t)

Figure 5-9: Circuit response to periodic pulses.

bn = 2

4

1∫
0

10 sin
nπ

2
t dt = 10

nπ

(
1 − cos

nπ

2

)
V,

and

cn φn = an − jbn = 10

nπ

[
sin

nπ

2
− j

(
1 − cos

nπ

2

)]
.

The values of cn φn for the first four terms are

c1 φ1 = 10
√

2

π
−45◦ ,

c2 φ2 = 10

π
−90◦ ,

c3 φ3 = 10
√

2

3π
−135◦ ,

and

c4 φ4 = 0.

Step 2: In the phasor domain, the impedance of a capacitor
is ZC = 1/(jωC). By voltage division, the generic phasor-
domain transfer function of the circuit is

H(ω) = Vout (with Vs = 1)

= 1

1 + jωRC

= 1√
1 + ω2R2C2

e−j tan−1(ωRC)

= 1√
1 + 4ω2

e−j tan−1(2ω),

where we used RC = 2 × 104 × 10−4 = 2 s.

Step 3: The time-domain output voltage is

υout(t) =

2.5 +
∞∑
n=1

Re

⎧⎨
⎩cn 1√

1 + 4n2ω2
0

ej [nω0t+φn−tan−1(2nω0)]
⎫⎬
⎭ .

Using the values of cn φn determined earlier for the first four
terms and replacing ω0 with its numerical value of π/2 rad/s,
the expression becomes

υout(t) = 2.5

+ 10
√

2

π
√

1 + π2
cos

[
πt

2
− 45◦ − tan−1(π)

]

+ 10

π
√

1 + 4π2
cos[πt − 90◦ − tan−1(2π)]

+ 10
√

2

3π
√

1 + 9π2
cos

[
3πt

2
− 135◦ − tan−1(3π)

]
· · ·

= 2.5 + 1.37 cos

(
πt

2
− 117◦

)
+ 0.5 cos(πt − 171◦)

+ 0.16 cos

(
3πt

2
+ 141◦

)
· · · V.

The voltage response υout(t) is displayed in Fig. 5-9(c), which
was computed using the series solution given by the preceding
expression with nmax = 1000.
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(b) Source waveform

(a) RC circuit

(c) υout(t)

+
_υs

υ1 υ2 υ3

υoutRRR

C C C

Stage 1 Stage 2 Stage 3

+

_

t (s)
−1 1

1

2

υs(t)

0
0

Input

t (s)

−0.5

0.5

−1

−1 1 2

υout(t)

0

Output

Figure 5-10: Circuit and plots for Example 5-7.

Example 5-8: Three-Stage RC Circuit

Application of KCL to the three-stage RC circuit of Fig. 5-10(a)
and defining x = ωRC leads to

H(ω) = Vout

Vs
= x3

(x3 − 5x)+ j (1 − 6x2)
.

Determine the output response to the periodic waveform shown
in Fig. 5-10(b), given that RC = 1 s.

Solution:

Step 1: With T = 1 s, ω0 = 2π/T = 2π rad/s, and υs(t) = t

over [0, 1], we have

a0 = 1

T

T∫
0

υs(t) dt =
1∫

0

t dt = 0.5,

an = 2

1

1∫
0

t cos 2nπt dt

= 2

[
1

(2nπ)2
cos 2nπt + t

2nπ
sin 2nπt

]∣∣∣∣
1

0
= 0,

bn = 2

1

1∫
0

t sin 2nπt dt

= 2

[
1

(2nπ)2
sin 2nπt − t

2nπ
cos 2nπt

]∣∣∣∣
1

0

= − 1

nπ
,

and

cn φn = 0 − jbn = 0 + j
1

nπ
= 1

nπ
90◦ V.

Step 2: With RC = 1 and x = ωRC = ω, H(ω) becomes

H(ω) = ω3

(ω3 − 5ω)+ j (1 − 6ω2)
.

Step 3: With ω0 = 2π rad/s, H(ω = 0) = 0, and
cn = [1/(nπ)]ej90◦

, the time-domain voltage is obtained by
multiplying each term in the summation by its corresponding
ejnω0t = ej2nπt , and then taking the real part of the entire
expression:

υout(t) =
∞∑
n=1

Re

{
8n2π2

[(2nπ)((2nπ)2 − 5)+ j (1 − 24n2π2)]

· ej (2nπt+90◦)
}
.

Evaluating the first few terms of υout(t) leads to

υout(t) = 0.25 cos(2πt + 137◦)+ 0.15 cos(4πt + 116◦)
+ 0.10 cos(6πt + 108◦)+ · · · .

A plot of υout(t) with 100 terms is displayed in Fig. 5-10(c).
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Concept Question 5-10:What is the connection 
between the Fourier-series solution method and the 
phasor-domain solution technique? (See        )

Exercise 5-5: The RL circuit shown in Fig. E5-5(a)
is excited by the square-wave voltage waveform of
Fig. E5-5(b). Determine υout(t).

Figure E5-5

+

_

+
_ υout(t)υs(t)

R

L

(b)

(a)

t (s)0
0

1

3

υs (V)

1
−1

−1
2

Answer:

υout(t) =
∞∑
n=1
n is odd

4L√
R2 + n2π2L2

cos(nπt + θn);

θn = − tan−1
(
nπL

R

)
.

(See S2 )

5-6 Parseval’s Theorem for Periodic
Waveforms

As was noted in Section 1-5, power and energy are standard
properties ascribed to signals, whether electrical or not.
Parseval’s theorem states that we can compute the average
power of a signal in either the time or frequency domains and

obtain the same result. As a prelude to demonstrating Parseval’s
theorem, we will review the requisite integral properties of
sinusoids.

5-6.1 Average Power of Sinusoid

(a) Real Sinusoid x1(t) = A cos(nω0t + φ)

For ω0 �= 0 and n a positive integer, the average power of x1(t)

is

Px1 = 1

T0

T0∫
0

|x1(t)|2 dt

= 1

T0

T0∫
0

A2 cos2(nω0t + φ) dt = A2

2
. (5.65)

The final step was made possible by property #7 in Table 5-2.

(b) Complex Exponential x2(t) = Aej(ω0t+φ)

The average power of x2(t) is

Px2 = 1

T0

T0∫
0

|x2(t)|2 dt

= 1

T0

T0∫
0

|A2| dt = |A|2. (5.66)

5-6.2 Average Power of Sum of Sinusoids

Let x(t) and y(t) be two periodic signals given by

x(t) = cn cos(nω0t + φn) (5.67a)

and

y(t) = cm cos(mω0t + φm), (5.67b)

where m and n are dissimilar integers. From the arguments
of their cosine functions, we deduce that x(t) has a period
T1 = T0/n and y(t) has a period T2 = T0/m, where T0 is the
period associated with the fundamental angular frequency ω0
(i.e., T0 = 2π/ω0). Hence, the average power of x(t) is

Px = 1

T1

T1∫
0

|x(t)|2 dt. (5.68)
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Since the average power of a periodic function over its period T1
is the same as that performed over multiple periods, we can
replace T1 with the fundamental period T0 = nT1. Hence,
Eq. (5.68) becomes

Px = 1

T0

T0∫
0

|x(t)|2 dt

= 1

T0

T0∫
0

c2
n cos2(nω0t + φn) dt = c2

n

2
. (5.69a)

Similarly, for signal y(t) alone,

Py = 1

T0

T0∫
0

c2
m cos2(mω0t + φm) dt = c2

m

2
. (5.69b)

For the sum of the two periodic signals, x(t)+y(t), the average
can be performed over the period T0 since it is a multiple of both
T1 and T2. Thus,

Px+y = 1

T0

T0∫
0

|x(t)+ y(t)|2 dt

= 1

T0

T0∫
0

[x(t)+ y(t)][x(t)+ y(t)]∗ dt

= 1

T0

T0∫
0

|x(t)|2 dt + 1

T0

T0∫
0

|y(t)|2 dt

+ 1

T0

T0∫
0

[x(t) y∗(t)] + [x∗(t) y(t)] dt.

The first two terms are both known from Eq. (5.69). By property
#4 in Table 5-2, the third term becomes

1

T0

T0∫
0

2cncm cos(nω0t + φn) cos(mω0t + φm) dt = 0.

Hence,

Px+y = c2
n

2
+ c2

m

2
. (5.70)

� The average power of the sum of two periodic signals
is equal to the sum of their individual powers, if the sum
also is periodic. �

5-6.3 Application to Fourier Series

Extending the preceding results to the three Fourier-series
representations (Table 5-3) of a periodic signal x(t) leads to
the following three formulas for Px :

Px = 1

T0

T0∫
0

|x(t)|2 dt = a2
0 +

∞∑
n=1

(a2
n + b2

n)/2,

(5.71a)

Px = 1

T0

T0∫
0

|x(t)|2 dt = c2
0 +

∞∑
n=1

c2
n/2, (5.71b)

Px = 1

T0

T0∫
0

|x(t)|2 dt =
∞∑

n=−∞
|xn|2. (5.71c)

The three expressions convey equivalent statements of
Parseval’s theorem, which asserts that the total average power
of a periodic signal is equal to its dc power (a2

0 = c2
0 = |x0|2)

plus the average ac power associated with its fundamental
frequencyω0 and its harmonic multiples. The ac power fraction
is the ratio of the average ac power to the total average power
(dc + ac).

Example 5-9: Sawtooth Waveform

Verify Parseval’s theorem for the periodic sawtooth waveform
shown in Fig. 5-3(a), whose first cycle is given by x(t) = 5t
for 0 ≤ t ≤ 4 s.

Solution: (a) Direct integration gives

Px = 1

4

4∫
0

(5t)2 dt = 400

3
.

(b) From Example 5-2, the Fourier-series representation of
the sawtooth waveform is

x(t) = 10 − 20

π

∞∑
n=1

1

n
sin
(nπ

2
t
)
.
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With a0 = 10, an = 0 for all n, and bn = − 20
nπ

, application of
Eq. (5.71a) leads to

Px = a2
0 +

∞∑
n=1

(a2
n + b2

n)/2

= 100 +
∞∑
n=1

400

2n2π2

= 100 + 200

π2

∞∑
n=1

1

n2 = 400

3
,

where we used the infinite series

∞∑
n=1

1

n2 = π2

6
.

The direct-computation result for Px is identical with the value
provided by Parseval’s theorem.

5-6.4 Inner-Product Version of Parseval’s
Theorem

Suppose periodic signals x(t) and y(t) have exponential
Fourier-series representations given by

x(t) =
∞∑

n=−∞
xnejnω0t (5.72a)

and

y(t) =
∞∑

m=−∞
ymejmω0t , (5.72b)

where different indices n and m were used for the sake of
distinction. The average value of the inner product x(t) y∗(t)
is

Pxy∗ = 1

T0

T0∫
0

x(t) y∗(t) dt

= 1

T0

T0∫
0

∞∑
n=−∞

xnejnω0t
∞∑

m=−∞
y∗
me

−jmω0t dt

=
∞∑

n=−∞

∞∑
m=−∞

xny∗
m

1

T0

T0∫
0

ej (n−m)ω0t dt. (5.73)

Application of Euler’s identity to the complex exponential
inside the integral leads to

1

T0

T0∫
0

ej (n−m)ω0t dt = 1

T0

T0∫
0

cos[(n−m)ω0t] dt

+ j

T0

T0∫
0

sin[(n−m)ω0t] dt

=
{

0 if m �= n,

1 if m = n.
(5.74)

Hence, in the double summation, only the terms n = m are non-
zero, in which case Eq. (5.73) reduces to the inner-product
version of Parseval’s theorem:

Pxy∗ = 1

T0

T0∫
0

x(t) y∗(t) dt =
∞∑

n=−∞
xny∗

n. (5.75)

For the particular case where xn = yn, Eq. (5.75) reduces to
the average power version of Parseval’s theorem given by
Eq. (5.71c).

5-7 Fourier Transform

The Fourier series is a perfectly suitable construct for
representing periodic functions, but what about nonperiodic
functions? The pulse-train waveform shown in Fig. 5-11(a)
consists of a sequence of rectangular pulses, each of width
τ = 2 s. The period T0 = 4 s. In part (b) of the same figure,
the individual pulses have the same shape as before, but T0 has
been increased to 7 s. So long as T0 is finite, both waveforms are
amenable to representation by Fourier series, but what would
happen if we let T0 → ∞, ending up with the single pulse
shown in Fig. 5-11(c)? Can we then represent the no-longer
periodic pulse by a Fourier series? We will shortly discover
that as T0 → ∞, the summation in the Fourier series evolves
into a continuous integral, which we call the Fourier transform,
or frequency transform.

� When representing signals, we apply the Fourier-series
representation if the signal is periodic, and we use the
Fourier transform representation if it is nonperiodic. �
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(a) τ = 2 s,  T0 = 4 s

(b) τ = 2 s,  T0 = 7 s

A

t (s)
−2−4−6−8 4 6 820

τ T0

A

t (s)
−2−4−6−8 4 6 820

τ T0

A

t (s)
−1 10

τ
(c) τ = 2 s,  T0 8

+ 8− 8

Figure 5-11: The single pulse in (c) is equivalent to a periodic
pulse train with T0 = ∞.

Does that mean that we can use both the Laplace-transform
(Chapter 3) and the Fourier-transform techniques to analyze
circuits containing nonperiodic sources, and if so, which of the
two transforms should we use, and why? We will address these
questions later (Section 5-11), after formally introducing the
Fourier transform and discussing some of its salient features.

5-7.1 Line Spectrum of Pulse Train

As a prelude to introducing the Fourier transform, we shall
examine the character of the magnitude line spectrum of a train
of pulses as we increase the separation between adjacent pulses.
The three waveforms of interest are displayed on the left-hand
side of Fig. 5-12.

Over a period T extending from −T0/2 to T0/2,

x(t) =
{
A for − τ/2 ≤ t ≤ τ/2,

0 otherwise.

With the integration domain chosen to be from −T0/2 to T0/2,
Eq. (5.59) gives

xn = 1

T0

T0/2∫
−T0/2

x(t) e−jnω0t dt

= 1

T0

τ/2∫
−τ/2

Ae−jnω0t dt

= A

−jnω0T0
e−jnω0t

∣∣∣∣
τ/2

−τ/2

= 2A

nω0T0

[
ejnω0τ/2 − e−jnω0τ/2

2j

]
. (5.76)

The quantity inside the square bracket matches the form of one
of Euler’s formulas, namely,

sin θ = ejθ − e−jθ

2j
. (5.77)

Hence, Eq. (5.76) can be rewritten in the form

xn = 2A

nω0T0
sin(nω0τ/2)

= Aτ

T0

sin(nω0τ/2)

(nω0τ/2)
= Aτ

T0
sinc(nω0τ/2), (5.78)

where in the last step we introduced the sinc function, defined
as*

sinc(θ) = sin θ

θ
. (5.79)

Among the important properties of the sinc function are the
following:

(a) When its argument is zero, the sinc function is equal to 1;

sinc(0) = sin(θ)

θ

∣∣∣∣
θ=0

= 1. (5.80)

Verification of this property can be established by applying
l’Hopital’s rule to Eq. (5.79) and then setting θ = 0.

*An alternative definition for the sinc function is
sinc(θ) = sin(πθ)/(πθ),

and it is used in signal processing and MATLAB. In this book, we use the
definition given by Eq. (5.79).
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T0 = 10 s

0
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1.5

0.5

−4 −2 0 2 4
nω0

|xn| T0 = 20 s

τ = 1 s
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τ = 1 s
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t (s)

t (s)

t (s)

−4 −2 0
0

1

2

1.5

0.5

2 4
nω0

|xn| Magnitude
spectra

T0 = 5 s

∆ω = 2π/T = 0.4π rad/s

∆ω = 2π/T0 = 0.2π rad/s

∆ω = 2π/T0 = 0.1π rad/s

Figure 5-12: Line spectra for pulse trains with T0/τ = 5, 10, and 20.

(b) Since sin(mπ) = 0 for any integer value ofm, the same is
true for the sinc function. That is,

sinc(mπ) = 0, m �= 0. (5.81)

(c) Because both sin θ and θ are odd functions, their ratio is
an even function. Hence, the sinc function possesses even

symmetry relative to the vertical axis. Consequently,

xn = x−n. (5.82)

Evaluation of Eq. (5.78), with A = 10, leads to the line
spectra displayed on the right-hand side of Fig. 5-12. The
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general shape of the envelope is dictated by the sinc function,
exhibiting a symmetrical pattern with a peak at n = 0, a
major lobe extending between n = −T0/τ and n = T0/τ ,
and progressively smaller-amplitude lobes on both sides. The
density of spectral lines depends on the ratio of T0/τ , so in the
limit as T0 → ∞, the line spectrum becomes a continuum.

5-7.2 Nonperiodic Waveforms

In connection with the line spectra displayed in Fig. 5-12, we
noted that as the periodT0 → ∞, the periodic function becomes
nonperiodic and the associated line spectrum evolves from one
containing discrete lines into a continuum. We will now explore
this evolution in mathematical terms, culminating in a definition
for the Fourier transform of a nonperiodic function. To that end,
we begin with the pair of expressions given by Eqs. (5.57) and
(5.59), namely,

x(t) =
∞∑

n=−∞
xnejnω0t (5.83a)

and

xn = 1

T0

T0/2∫
−T0/2

x(t ′) e−jnω0t
′
dt ′. (5.83b)

These two quantities form a complementary pair, with x(t)
defined in the continuous time domain and xn defined in the
discrete frequency domain nω0, with ω0 = 2π/T0. For a given
value of T0, the nth frequency harmonic is at nω0 and the next
harmonic after that is at (n+1)ω0. Hence, the spacing between
adjacent harmonics is

	ω = (n+ 1)ω0 − nω0 = ω0 = 2π

T0
. (5.84)

If we insert Eq. (5.83b) into Eq. (5.83a) and replace 1/T0 with
	ω/2π , we get

x(t) =
∞∑

n=−∞

⎡
⎢⎣ 1

2π

T0/2∫
−T0/2

x(t ′) e−jnω0t
′
dt ′

⎤
⎥⎦ ejnω0t 	ω.

(5.85)

As T0 → ∞, 	ω → dω, nω0 → ω, and the sum becomes a
continuous integral:

x(t) = 1

2π

∞∫
−∞

⎡
⎣ ∞∫
−∞

x(t ′) e−jωt ′ dt ′
⎤
⎦ ejωt dω. (5.86)

Given this new arrangement, we are now ready to offer formal
definitions for the Fourier transform X(ω) and its inverse
transform x(t):

X(ω) = F [x(t)] =
∞∫

−∞
x(t) e−jωt dt (5.87a)

and

x(t) = F−1[X(ω)] = 1

2π

∞∫
−∞

X(ω) ejωt dω, (5.87b)

where F [x(t)] is a short-hand notation for “the Fourier
transform of x(t),” and similarly F−1[X(ω)] represents the
inverse operation. Occasionally, we may also use the symbolic
form

x(t) X(ω).

� The reader should be aware that Fourier transforms
are defined differently in fields other than electrical
engineering. Mathematicians define the Fourier transform
using the integrand x(t) ejωt , instead of x(t) e−jωt . You
will encounter this definition when you take a course
in probability, since characteristic functions, which are
Fourier transforms of probability density functions, are
defined using x(t) ejωt . Sometimes, mathematicians use
the integrand (1/

√
2π) x(t) ejωt , so that the factor of 1

2π
in the inverse Fourier transform is split evenly between the
Fourier transform and its inverse. The computer program
Mathematica uses this definition to compute Fourier
transforms symbolically. Seismologists and geophysicists
use different definitions for time and for frequency. For
them, the 2-D Fourier transform of the 2-D signal z(x, t),
where z is displacement, x is depth, and t is time, is
defined using the integrand z(x, t) ej (ωt−kx), where k is
wavenumber (spatial frequency). This book will use the
integrand x(t) e−jωt exclusively. �
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(a) x(t)

t0

x(t)

A

−τ/2 τ/2

t
τA rect ( )

(b) |X(ω)|

2nd null

|X(ω)|

ω
−6π −4π −2π 2π 4π 6π0

2nd null

1st null 1st null

τ τ τ τ τ τ

Aτ

Signal

Spectrum

Figure 5-13: (a) Rectangular pulse of amplitudeA and width τ ;
(b) frequency spectrum of |X(ω)| for A = 5 and τ = 1 s.

Example 5-10: Rectangular Pulse

Determine the Fourier transform of the solitary rectangular
pulse shown in Fig. 5-13(a), and then plot its magnitude
spectrum, |X(ω)|, for A = 5 and τ = 1 s.

Solution: Application of Eq. (5.87a) with

x(t) = A rect(t/τ )

over the integration interval [−τ/2, τ/2] leads to

X(ω) =
τ/2∫

−τ/2
Ae−jωt dt

= A

−jω e−jωt
∣∣∣∣
τ/2

−τ/2

= Aτ
sin(ωτ/2)

(ωτ/2)
= Aτ sinc

(ωτ
2

)
. (5.88)

The sinc function was defined earlier in Eq. (5.79).
The frequency spectrum of |X(ω)| is displayed in

Fig. 5-13(b) for the specified values of A = 5 and τ = 1 s.
The nulls in the spectrum occur when the argument of the sinc
function is a multiple of ±π (rad/s), which in this specific case
correspond to ω equal to multiples of 2π (rad/s).

Concept Question 5-12:What is a sinc function and what
are its primary properties? Why is sinc(0) = 1?
(See        )

Concept Question 5-13: What is the functional form for 
the Fourier transform X(ω) of a rectangular pulse of 
amplitude 1 and duration τ ? (See        )

Exercise 5-6: For a single rectangular pulse of width τ ,
what is the spacing 	ω between first nulls? If τ is very
wide, will its frequency spectrum be narrow and peaked
or wide and gentle?

Answer: 	ω = 4π/τ . Wide τ leads to narrow
spectrum. (See S2 )

5-7.3 Convergence of the Fourier Integral

Not every function x(t) has a Fourier transform. The Fourier
transform X(ω) exists if the Fourier integral given by
Eq. (5.87a) converges to a finite number, or to an equivalent
expression, but, as we shall discuss shortly, it may also exist
even if the Fourier integral does not converge. Convergence
depends on the character of x(t) over the integration range
(−∞,∞). By character, we mean (1) whether or not x(t)
exhibits bounded discontinuities and (2) how x(t) behaves
as |t | approaches ∞. As a general rule, the Fourier integral
does converge if x(t) has no discontinuities and is absolutely
integrable. That is,

∞∫
−∞

|x(t)| dt < ∞. (5.89)

A function x(t) can still have a Fourier transform even if it has
discontinuities, so long as those discontinuities are bounded.
The step function A u(t) exhibits a bounded discontinuity at
t = 0 if A is finite.

The stated conditions for the existence of the Fourier
transform are sufficient but not necessary conditions. In
other words, some functions may still have transforms even
though their Fourier integrals do not converge. Among such
functions are the constant x(t) = A and the unit step function
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x(t) = A u(t), both of which represent important excitation
waveforms in linear systems. To find the Fourier transform of
a function whose transform exists but its Fourier integral does
not converge, we need to employ an indirect approach. The
approach entails the following ingredients:

(a) If x(t) is a function whose Fourier integral does not
converge, we select a second function xε(t) whose
functional form includes a parameter ε, which if allowed
to approach a certain limit makes xε(t) identical with x(t).

(b) The choice of function xε(t) should be such that its Fourier
integral does converge, and therefore, xε(t) has a definable
Fourier transform Xε(ω).

(c) By taking parameter ε in the expression for Xε(ω) to its
limit, Xε(ω) reduces to the transform X(ω) corresponding
to the original function x(t).

The procedure is illustrated through an example in Section
5-8.7.

5-8 Fourier Transform Properties

In this section, we shall develop fluency in how to move back
and forth between the time domain and the ω-domain. We will
learn how to circumvent the convergence issues we noted in
Section 5-7.3, and in the process, we will identify a number of
useful properties of the Fourier transform.

5-8.1 Linearity Property

If
x1(t) X1(ω)

and
x2(t) X2(ω),

then

K1 x1(t)+K2 x2(t) K1 X1(ω)+K2 X2(ω),

(linearity property) (5.90)

where K1 and K2 are constants. Proof of Eq. (5.90) is easily
ascertained through the application of Eq. (5.87a).

5-8.2 Scaling Property

If
x(t) X(ω),

and t is scaled by a real constant a, then

x(at)
1

|a| X
(ω
a

)
, for any a.

(scaling property)

(5.91)

To prove Eq. (5.91), we replace x(t) with x(at) in Eq. (5.87a),
which gives

F [x(at)] =
∞∫

−∞
x(at) e−jωt dt

=
∞∫

−∞
x(τ) e−j (ω/a)τ · 1

a
dτ

= 1

a
X
(ω
a

)
, for a > 0,

where we made the substitution τ = at . This result is valid only
if a is positive. Repetition of the process for a < 0 leads to

F [x(at)] = −1

a
X
(ω
a

)
, for a < 0.

The two results are combined in the form of Eq. (5.91).
The scaling property is illustrated graphically by the example

shown in Fig. 5-14. Part (a) of the figure displays a rectangular
pulse of unit amplitude and duration τ . Its corresponding
Fourier transform is given by Eq. (5.88) and labeled X1(ω).
A similar rectangular pulse (also of unit amplitude) is shown in
part (b) of Fig. 5-14, except that its duration is three times longer
(τ2 = 3τ ). Comparison of the waveforms and corresponding
Fourier transforms of the two pulses leads to the observations
listed in Table 5-5. The second pulse is a stretched-out version
of the first one with a scaling factor a = 3. Stretching the time
dimension by a factor of 3 leads to compression of the angular
frequency domain by the same factor. Moreover, preservation
of energy (as discussed in Section 5-9) leads to a three-fold
increase in the amplitude of the Fourier transform. These
conclusions affirm the mathematical statement embodied by
Eq. (5.91), which states the following:

� Time expansion of a signal x(t) to x(at) by an
expansion factor a < 1, leads to compression of its
spectrum X(ω) to X(ω/a); conversely, time compression
by a compression factor a > 1 leads to expansion of the
corresponding spectrum. �
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(a)

t0

1

x1(t)

−τ/2 τ/2

t0

1

x2(t)

−3τ/2 3τ/2

(b)

ω
0−4π

τ
−2π

τ
2π
τ

4π
τ

τ

X1(ω)

0−4π
3τ

3τ
−2π

3τ
2π

3τ
4π

ω

3τ

X2(ω)

Figure 5-14: Stretching x1(t) to get x2(t) entails stretching t by a factor of 3. The corresponding spectrum X2(ω) is a 3-times compressed
version of X1(ω).

5-8.3 Fourier Transform of δ(t − t0)

By Eq. (5.87a), the Fourier transform of δ(t − t0) is given by

X(ω) = F [δ(t − t0)] =
∞∫

−∞
δ(t − t0)e

−jωt dt

= e−jωt
∣∣∣
t=t0

= e−jωt0 . (5.92)

Hence,

δ(t − t0) e−jωt0 , (5.93)

and

δ(t) 1. (5.94)

Table 5-5: Comparison of two rectangular pulses.

Pulse x1(t) Pulse x2(t)

Amplitude 1 1
Pulse length τ1 = τ τ2 = 3τ

Fourier transform X1(ω) = τ sinc
(ωτ

2

)
X2(ω) = 3τ sinc

(
3ωτ

2

)
• Peak value τ 3τ

• null-null width
4π

τ

4π

3τ
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(a)

(b)

t0
0

x(t)

δ(t)

X(ω)

ω0
0

1

2π δ(ω)

X(ω)

ω0
0t0

0

1

x(t)

Figure 5-15: The Fourier transform of δ(t) is 1 and the Fourier
transform of 1 is 2π δ(ω).

Thus, a unit impulse function δ(t) generates a constant of unit
amplitude that extends over (−∞,∞) in the ω-domain, as
shown in Fig. 5-15(a),

t0

x(t)

−τ/2 τ/2

ω

X(ω)

0−τ/2 τ/2

X(ω)

ω
0−4π

τ
−2π

τ
2π
τ

4π
τ

τ

t

x(t)

0−4π
τ

−2π
τ

2π
τ

4π
τ

τ

Figure 5-16: Time-frequency duality: a rectangular pulse generates a sinc spectrum and, conversely, a sinc-pulse generates a rectangular
spectrum.

5-8.4 Shift Properties

By Eq. (5.87b), the inverse Fourier transform of
X(ω) = δ(ω − ω0) is

x(t) = F−1[δ(ω − ω0)]

= 1

2π

∞∫
−∞

δ(ω − ω0) e
jωt dω = ejω0t

2π
.

Hence,

ejω0t 2π δ(ω − ω0)

and

1 2π δ(ω).

(5.95a)

(5.95b)

Comparison of the plots in Fig. 5-15(a) and (b) demonstrates the
duality between the time domain and theω-domain:An impulse
δ(t) in the time domain generates a uniform spectrum in the
frequency domain; conversely, a uniform (constant) waveform
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in the time domain generates an impulse δ(ω) in the frequency
domain. By the same token, a rectangular pulse in the time
domain generates a sinc pattern in the frequency domain, and a
sinc pulse in the time domain generates a rectangular spectrum
in the frequency domain (Fig. 5-16).

It is straightforward to show that the result given by Eq. (5.95)
can be generalized to

ejω0t x(t) X(ω − ω0),

(frequency-shift property)

(5.96)

which is known as the frequency-shift property of the Fourier
transform. It states that multiplication of a function x(t) by
ejω0t in the time domain corresponds to shifting the Fourier
transform of x(t), X(ω), by ω0 along the ω-axis.

The dual of the frequency-shift property is the
time-shift property given by

x(t − t0) e−jωt0 X(ω).

(time-shift property)

(5.97)

5-8.5 Fourier Transform of cosω0t

By Euler’s identity,

cosω0t = ejω0t + e−jω0t

2
.

In view of Eq. (5.95a),

X(ω) = F
[
ejω0t

2
+ e−jω0t

2

]

= π δ(ω − ω0)+ π δ(ω + ω0).

Hence,

cosω0t π [δ(ω − ω0)+ δ(ω + ω0)], (5.98)

and similarly,

sinω0t jπ [δ(ω + ω0)− δ(ω − ω0)]. (5.99)

As shown in Fig. 5-17, the Fourier transform of cosω0t consists
of impulse functions at ±ω0.

X(ω)

cos ω0t
1

0
0

x(t) π δ(ω − ω0)

−ω0
−1

ω0

π δ(ω + ω0) π

t

Figure 5-17: The Fourier transform of cosω0t is equal to two
impulse functions—one at ω0 and another at −ω0.

5-8.6 Fourier Transform of Ae−at u(t), with
a > 0

The Fourier transform of an exponentially decaying function
that starts at t = 0 is

X(ω) = F [Ae−at u(t)] =
∞∫

0

Ae−at e−jωt dt

= A
e−(a+jω)t

−(a + jω)

∣∣∣∣∣
∞

0

= A

a + jω
.

Hence,

Ae−at u(t) A

a + jω
for a > 0. (5.100)

5-8.7 Fourier Transform of u(t)

The direct approach to finding X(ω) for the unit step function
leads to

X(ω) = F [u(t)] =
∞∫

−∞
u(t) e−jωt dt

=
∞∫

0

e−jωt dt

= e−jωt

−jω
∣∣∣∣
∞

0
= j

ω
(e−j∞ − 1),
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(a) Signum function

sgn(t)

t
1
0

−1

(b) Model for sgn(t)

sgn(t)

t
e−εt u(t)

eεt u(−t)

1
0

−1

Figure 5-18: The model shown in (b) approaches the exact
definition of sgn(t) as ε → 0.

which is problematic, because e−j∞ does not converge. To
avoid the convergence problem, we can pursue an alternative
approach that involves the signum function, defined by

sgn(t) = u(t)− u(−t). (5.101)

Shown graphically in Fig. 5-18(a), the signum function
resembles a step-function waveform (with an amplitude of two
units) that has been slid downward by one unit. Looking at the
waveform, it is easy to see that one can generate a step function
from the signum function as

u(t) = 1

2
+ 1

2
sgn(t). (5.102)

The corresponding Fourier transform is given by

F [u(t)] = F
[

1

2

]
+ 1

2
F [sgn(t)]

= π δ(ω)+ 1

2
F [sgn(t)], (5.103)

where in the first term we used the relationship given by
Eq. (5.95b). Next, we will obtain F [sgn(t)] by modeling the
signum function as

sgn(t) = lim
ε→0

[e−εt u(t)− eεt u(−t)], (5.104)

with ε > 0. The shape of the modeled waveform is shown in
Fig. 5-18(b) for a small value of ε.

Now we are ready to apply the formal definition of the Fourier
transform given by Eq. (5.87a):

F [sgn(t)] =
∞∫

−∞
lim
ε→0

[e−εt u(t)− eεt u(−t)]e−jωt dt

= lim
ε→0

⎡
⎣ ∞∫

0

e−(ε+jω)t dt −
0∫

−∞
e(ε−jω)t dt

⎤
⎦

= lim
ε→0

⎡
⎣ e−(ε+jω)t

−(ε + jω)

∣∣∣∣∣
∞

0

− e(ε−jω)t

ε − jω

∣∣∣∣∣
0

−∞

⎤
⎦

= lim
ε→0

[
1

ε + jω
− 1

ε − jω

]
= 2

jω
. (5.105)

Use of Eq. (5.105) in Eq. (5.103) gives

F [u(t)] = π δ(ω)+ 1

jω
.

Equivalently, the preceding result can be expressed in the form

u(t) π δ(ω)+ 1

jω
. (5.106)

Table 5-6 provides a list of commonly used time functions,
together with their corresponding Fourier transforms, and
Table 5-7 offers a summary of the major properties of
the Fourier transform, many of which resemble those we
encountered earlier in Chapter 3 in connection with the Laplace
transform.

Example 5-11: Fourier Transform Properties

Establish the validity of the time derivative and modulation
properties of the Fourier transform (#6 and #10 in Table 5-7).
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Table 5-6: Examples of Fourier transform pairs. Note that constant a ≥ 0.

x(t) X(ω) = F [x(t)] |X(ω)|
BASIC FUNCTIONS

1.
δ(t)

t
1 δ(t) 1

ω

1

1a. t
1

t0
δ(t − t0) e−jωt0

ω

1

2.
t

1
1 2π δ(ω)

ω
2π

3.
t

1
u(t) π δ(ω)+ 1/jω

ω
π

4. t
1

−1
sgn(t) 2/jω

ω

5.
τ

t

1
rect(t/τ ) τ sinc(ωτ/2) −2π 2π

τ τ
ω

τ

6.
t

e−t2/(2σ 2)

√
2πσ 2

e−ω2σ 2/2

ω

7a.
t

1 e−at u(t) 1/(a + jω)

ω
1/a

7b.
t

1 eat u(−t) 1/(a − jω)

ω
1/a

8. t
1 cosω0t π [δ(ω − ω0)+ δ(ω + ω0)] ωω0−ω0

ππ

9. t
1 sinω0t jπ [δ(ω + ω0)− δ(ω − ω0)] ωω0

−ω0

jπ

−jπ

ADDITIONAL FUNCTIONS

10. ejω0t 2π δ(ω − ω0)

11. te−at u(t) 1/(a + jω)2

12a. [e−at sinω0t] u(t) ω0/[(a + jω)2 + ω2
0]

12b. t
1 [sinω0t] u(t) (π/2j)[δ(ω − ω0)− δ(ω + ω0)] + [ω2

0/(ω
2
0 − ω2)]

13a. [e−at cosω0t] u(t) (a + jω)/[(a + jω)2 + ω2
0]

13b. t
1 [cosω0t] u(t) (π/2)[δ(ω − ω0)+ δ(ω + ω0)] + [jω/(ω2

0 − ω2)]
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Table 5-7: Major properties of the Fourier transform.

Property x(t) X(ω) = F [x(t)] =
∞∫

−∞
x(t) e−jωt dt

1. Multiplication by a constant K x(t) K X(ω)

2. Linearity K1 x1(t)+K2 x2(t) K1 X1(ω)+K2 X2(ω)

3. Time scaling x(at)
1

|a| X
(ω
a

)
4. Time shift x(t − t0) e−jωt0 X(ω)

5. Frequency shift ejω0t x(t) X(ω − ω0)

6. Time 1st derivative x′ = dx

dt
jω X(ω)

7. Time nth derivative
dnx

dtn
(jω)n X(ω)

8. Time integral

t∫
−∞

x(τ) dτ
X(ω)
jω

+ π X(0) δ(ω), where X(0) =
∞∫

−∞
x(t) dt

9. Frequency derivative tn x(t) (j)n
dnX(ω)
dωn

10. Modulation x(t) cosω0t
1
2 [X(ω − ω0)+ X(ω + ω0)]

11. Convolution in t x1(t) ∗ x2(t) X1(ω) X2(ω)

12. Convolution in ω x1(t) x2(t)
1

2π
X1(ω) ∗ X2(ω)

13. Conjugate symmetry X(−ω) = X∗(ω)

Solution:

Time Derivative Property

From Eq. (5.87b),

x(t) = 1

2π

∞∫
−∞

X(ω) ejωt dω. (5.107)

Differentiating both sides with respect to t gives

x′(t) = dx

dt
= 1

2π

∞∫
−∞

jω X(ω) ejωt dω.

� Differentiating x(t) in the time domain is equivalent to
multiplying X(ω) by jω in the frequency domain. �

Thus,

x′(t) jω X(ω).

(derivative property)

(5.108)

Time Modulation Property

We start by multiplying both sides of Eq. (5.107) by cosω0t

and, for convenience, we change the dummy variable ω to ω′:

x(t) cosω0t = 1

2π

∞∫
−∞

cosω0t X(ω′) ejω′t dω′.
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Applying Euler’s identity to cosω0t on the right-hand side leads
to

x(t) cosω0t

= 1

2π

∞∫
−∞

(
ejω0t + e−jω0t

2

)
X(ω′) ejω′t dω′

= 1

4π

[ ∞∫
−∞

X(ω′) ej (ω′+ω0)t dω′

+
∞∫

−∞
X(ω′) ej (ω′−ω0)t dω′

]
.

Upon making the substitution (ω = ω′+ω0) in the first integral,
and independently making the substitution (ω = ω′−ω0) in the
second integral, we have

x(t) cosω0t = 1

2

[
1

2π

∞∫
−∞

X(ω − ω0) e
jωt dω

+ 1

2π

∞∫
−∞

X(ω + ω0) e
jωt dω

]
,

which can be cast in the abbreviated form

x(t) cos(ω0t)
1

2
[X(ω − ω0)+ X(ω + ω0)].

(modulation property) (5.109)

Of course, this result can also be obtained by applying
Eq. (5.96) twice, once with ω0 and another with −ω0.
The modulation property is the foundational cornerstone of
frequency division multiplexing (FDM), which allows the
simultaneous transmission of several signals over the same
channel by allocating part of the available spectrum to each
of them. The details are covered in Section 6-12 on amplitude
modulation.

Concept Question 5-14: What is the Fourier transform
of a dc voltage? (See        )

Concept Question 5-15: “An impulse in the time domain
is equivalent to an infinite number of sinusoids, all with
equal amplitude.” Is this a true statement? Can one 
construct an ideal impulse function? (See        )

Exercise 5-7: Use the entries in Table 5-6 to determine
the Fourier transform of u(−t).
Answer: X(ω) = π δ(ω)− 1/jω. (See S2 )

Exercise 5-8:Verify the Fourier transform expression for
entry #10 in Table 5-6.

Answer: (See S2 )

5-9 Parseval’s Theorem for Fourier
Transforms

5-9.1 Signal Energy

Recall that Parseval’s theorem for the Fourier series stated that
the average power of a signal x(t) can be computed in either the
time or frequency domains. Parseval’s theorem for the Fourier
transform states that the energy E of a signal can be computed
in either the time or frequency domains. Specifically, we have

E =
∞∫

−∞
|x(t)|2 dt = 1

2π

∞∫
−∞

|X(ω)|2 dω. (5.110)

To demonstrate the validity of Eq. (5.110), we will perform
a few steps of mathematical manipulations, starting with

E =
∞∫

−∞
x(t) x∗(t) dt

=
∞∫

−∞
x(t)

⎡
⎣ 1

2π

∞∫
−∞

X∗(ω) e−jωt dω

⎤
⎦ dt, (5.111)

where x∗(t) was replaced with the inverse Fourier transform
relationship given by Eq. (5.87b). By reversing the order of
x(t) and X(ω), and reversing the order of integration, we have

E = 1

2π

∞∫
−∞

X∗(ω)

⎡
⎣ ∞∫
−∞

x(t) e−jωt dt

⎤
⎦ dω

= 1

2π

∞∫
−∞

X∗(ω) X(ω) dω, (5.112)



“book” — 2016/3/14 — 13:43 — page 231 — #40

5-9 PARSEVAL’S THEOREM FOR FOURIER TRANSFORMS 231

where we used the definition of the Fourier transform given by
Eq. (5.87a). The combination of Eqs. (5.111) and (5.112) can
be written as

E =
∞∫

−∞
|x(t)|2 dt = 1

2π

∞∫
−∞

|X(ω)|2 dω.

(Parseval’s theorem)

(5.113)

The inner-product version of Parseval’s theorem for the
Fourier transform is

∞∫
−∞

x(t) y∗(t) dt = 1

2π

∞∫
−∞

X(ω) Y∗(ω) dω. (5.114)

Its derivation follows the same steps leading to Eq. (5.113).

Example 5-12: Energy of Decaying Exponential

Compute the energy of the signal given by x(t) = e−at u(t) in
both the time and frequency domains, and show that they agree.
The exponent a is a positive real number.

Solution: From Table 5-4, the Fourier transform of
x(t) = e−at u(t) is X(ω) = 1/(a + jω).

Energy in time domain:

∞∫
0

|e−at |2 dt =
∞∫

0

e−2at dt = 1

2a
.

Energy in frequency domain:

1

2π

∞∫
−∞

∣∣∣∣ 1

a + jω

∣∣∣∣
2

dω = 1

2π

∞∫
−∞

1

a2 + ω2 dω = 1

2a
.

Hence, the energy is 1/(2a) in both domains.

5-9.2 Energy Spectral Density

Average power of periodic signal

If x(t) is a periodic signal of period T0, it can be expressed by
the Fourier series representation given by Eq. (5.40) as

x(t) =
∞∑

n=−∞
xnejnω0t , (5.115)

where ω0 = 2π/T0 and xn are the Fourier series coefficients
given by Eq. (5.41). The one-sided average power of x(t) at
frequency harmonic ωn = nω0 is

Pn1 = |xn|2.
(one-sided average power)

(5.116)

If x(t) is real-valued, it can also be expressed in terms of the
trigonometric Fourier series given by Eq. (5.39), namely

x(t) = c0 +
∞∑
n=1

cn cos(nω0t + φn). (5.117)

The average dc power is

P0 = c2
0, (5.118a)

and the two-sided average power of x(t) at frequency harmonic
ωn = nω0 (for n �= 0) is

Pn2 = c2
n

2
= 2|xn|2 for n �= 0.

(two-sided average power

for x(t) = real-valued)

(5.118b)

The factor of 2 accounts for the fact that a sinusoid
cn cos(nω0t + φn) has complex exponential components at
±nω0, so the two-sided average power is the sum of the two one-
sided powers, which are identical because x(t) is real-valued.
From Table 5-3, |xn| = cn/2, so 2|xn|2 = c2

n/2.
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Energy spectral density of nonperiodic signal

As noted in Section 5-7.2, if x(t) is nonperiodic, we should use
the Fourier transform (instead of the Fourier series) to represent
it. From Eq. (5.87a), the Fourier transform of x(t) is given by

X(ω) =
∞∫

−∞
x(t) e−jωt dt. (5.119)

It may be tempting to apply a definition analogous to that given
by Eq. (5.116) to describe the power or energy of a nonperiodic
signal at a given frequency ω0. Such a definition would assume
the form |X(ω0)|2, but it would not be correct. The energy at
a specific frequency is zero, because the total energy of x(t) is
an integral, not a sum, of components at various frequencies.

Instead, we define the one-sided energy spectral density of
x(t) at frequency ω0 as

E1(ω0) = 1

2π
|X(ω0)|2.

(one-sided energy spectral density)

(5.120)

Accordingly, the energy E carried by signal x(t) in the
frequency range between ω0 and ω0 + δω, in the limit as
δω → 0, is, by Parseval’s theorem, given by

E =
ω0+δω∫
ω0

E1(ω0) dω

= 1

2π

ω0+δω∫
ω0

|X(ω0)|2 dω = 1

2π
|X(ω0)|2 δω. (5.121)

The energy E is equal to the product of the energy spectral
density and the small frequency interval δω. It is analogous to
the definition of the massm contained in a small volume δV as
m = ρδV , where ρ is the mass density.

If x(t) is real-valued, then |X(ω0)| = |X(−ω0)|, in which
case we can define the two-sided energy spectral density as

E2(ω0) = 2E1(ω0) = 1

π
|X(ω0)|2.

(two-sided energy spectral density

for x(t) = real-valued)

(5.122)

Example 5-13: Energy Spectral Density

Compute the two-sided energy spectral density of the signal

x(t) = e−3t u(t)

at ω = 4 rad/s. Also compute the energy of x(t) contained in
the interval 4 < |ω| < 4.01 rad/s.

Solution: Application of the Fourier transform relation given
by Eq. (5.119) to x(t) leads to

X(ω) = 1

3 + jω
.

Since x(t) is real-valued, the two-sided energy at ω = 4 rad/s
is

E2 = 1

π
|X(4)|2 = 1

π

∣∣∣∣ 1

3 + j4

∣∣∣∣
2

= 1.27 × 10−2.

The total energy contained in the designated interval is

E = E2δω = 1.27 × 10−2 × 0.01 = 1.27 × 10−4.

Alternatively, we could have applied Parseval’s theorem to
compute E:

E = 1

2π

−4∫
−4.01

∣∣∣∣ 1

3 + jω

∣∣∣∣
2

dω + 1

2π

4.01∫
4

∣∣∣∣ 1

3 + jω

∣∣∣∣
2

dω

= 1.27 × 10−4.

5-10 Additional Attributes of the
Fourier Transform

5-10.1 Fourier Transforms of Periodic Signals

In filtering applications, we sometimes need to compute the
Fourier transform of a periodic signal expressed in terms of its
Fourier series. Consider a periodic signal x(t) characterized by
an exponential Fourier-series representation as

x(t) =
∞∑

n=−∞
xnejnω0t . (5.123)

Taking the Fourier transform of both sides gives

F {x(t)} =
∞∑

n=−∞
xn F

{
ejnω0t

}
. (5.124)
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According to entry #10 in Table 5-6, we have

F
{
ejω0t

}
= 2π δ(ω − ω0).

By extension, replacing ω0 with nω0 gives

F
{
ejnω0t

}
= 2π δ(ω − nω0). (5.125)

Using Eq. (5.125) in Eq. (5.124) leads to

F {x(t)} =
∞∑

n=−∞
xn2π δ(ω − nω0). (5.126)

�This result states that the Fourier transform of a periodic
signal with Fourier series coefficients xn and associated
frequencies ω = nω0 consists of impulses of areas 2πxn
at those frequencies. �

Example 5-14: Cosine Waveform

Compute the Fourier transform of

x(t) = 8 cos(3t + 2).

Solution:

(a) Method 1: Application of Eq. (5.126)

The fundamental angular frequency of x(t) isω0 = 3 rad/s, and
its period is T0 = 2π/ω0 = 2π/3 s. Given that x(t) is a simple
cosine function, we will initially represent it by the amplitude/
phase format

x(t) = c0 +
∞∑
n=1

cn cos(nω0t + φn).

Comparison of x(t) = 8 cos(3t+2)with the infinite summation
leads to the obvious conclusion that c0 = 0 and all terms of the
summation also are zero, except for n = 1. Moreover, c1 = 8,
ω0 = 3 rad/s, and φ1 = 2 rad. Using Table 5-4, we can convert
the representation to the exponential format by noting that

x1 = c1

2
ejφ1 = 8

2
ej2 = 4ej2,

x−1 = x∗
1 = 4e−j2.

Hence, the exponential Fourier series of x(t) is

x(t) = x1e
j3t + x−1e

−j3t = 4ej2ej3t + 4e−j2e−j3t ,

and by application of Eq. (5.126), the Fourier transform of x(t)
is

F [8 cos(3t + 2)] = 8πej2 δ(ω − 3)+ 8πe−j2 δ(ω + 3),

which states that in the Fourier frequency domain a cosine
waveform at angular frequency ω0 is represented by two
impulses: one at ω0 and another at −ω0, in agreement with
Eqs. (5.98) and (5.99).

(b) Method 2: Application of Eq. (5.95a)

Using the relation cos x = (ejx+e−jx)/2 and Eq. (5.95a) leads
to

F [8 cos(3t + 2)] = F [4ej2ej3t + 4e−j2e−j3t ]
= 4ej2 F [ej3t ] + 4e−j2 F [e−j3t ]
= 8πej2 δ(ω − 3)+ 8πe−j2 δ(ω + 3).

5-10.2 Conjugate Symmetry

According to the definition given by Eq. (5.87a), the Fourier
transform of a signal x(t) is given by

X(ω) =
∞∫

−∞
x(t) e−jωt dt. (5.127)

If x(t) is real valued, conjugating both sides gives

X∗(ω) =
∞∫

−∞
x(t) ejωt dt. (5.128)

Alternatively, if we replace ω with −ω in Eq. (5.127), we have

X(−ω) =
∞∫

−∞
x(t) ejωt dt, (5.129)

from which we conclude that

X(−ω) = X∗(ω).
(reversal property)

(5.130)

Consequently, for a real-valuedx(t), its Fourier transform X(ω)
exhibits the following symmetry properties:

(a) |X(ω)| is an even function (|X(ω)| = |X(−ω)|).
(b) arg[X(ω)] is an odd function

(arg[X(ω)] = −arg[X(−ω)]).
(c) If x(t) is real and an even function of time, X(ω) will be

purely real and an even function.

(d) If x(t) is real and an odd function of time, X(ω) will be
purely imaginary and an odd function.
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� Conjugate symmetry has important implications about
the properties of x(t) and its Fourier transform X(ω):

x(t) X(ω)
Real and even Real and even
Real and odd Imaginary and odd

Imaginary and even Imaginary and even
Imaginary and odd Real and odd

�

5-10.3 Dirichlet Conditions

At a meeting of the Paris Academy in 1807, Jean-Baptiste
Joseph Fourier first made the claim that any periodic function
can be expressed in terms of sinusoids. In response, Joseph
Lagrange stood up and said Fourier was wrong, which led to a
protracted argument between the two French mathematicians.
Eventually, the issue was settled by agreeing that a periodic
function x(t) of period T0 can be expanded in terms of
sinusoids if the following Dirichlet conditions, named after
Peter Gustav Lejeune Dirichlet, are fulfilled (these are sufficient,
not necessary):

• If over the period of length T0, x(t) has a finite number of
discontinuities, maxima, and minima,

• and x(t) is absolutely integrable, that is,

T0∫
0

|x(t)| dt < ∞, (5.131)

• then x(t) can be expanded in a Fourier series, and the
summation representing x(t) is pointwise convergent:

lim
N→∞

∣∣∣∣∣x(t)−
N∑

n=−N
xnejnω0t

∣∣∣∣∣ = 0 for all t,

(5.132)
which means that the summation converges to the true
value of x(t) at every point t where it is not discontinuous.

• Furthermore, at any discontinuity ti of x(t), the summation
converges to 1

2 [x(t+i )+ x(t−i )].
These sufficient (but not necessary) conditions for the

existence of a Fourier series of a periodic function are analogous
to those associated with the existence of the Fourier transform
of a nonperiodic function (Section 5-7.3). Consider the periodic
function

x(t) =
∞∑

n=−∞
x̃(t − nT0),

where T0 is the period of x(t) and x̃(t) is a single period of x(t).
If x̃(t) fails any of the conditions stated earlier, its periodic
parent, x(t), cannot be represented by a Fourier series. One
example is

x̃(t) = 1
T0

2
− t

for 0 < t < T0.

Because x̃(t) is not absolutely integrable and has an unbounded
discontinuity at t = T0/2, the Fourier series of x(t) does not
exist.

Another example is

x̃(t) = sin

(
1

t

)
for |t | < T0/2.

In this case, because x̃(t) has an infinite number of maxima and
minima, x(t) does not have a Fourier-series representation.

5-10.4 Gibbs Phenomenon

The Gibbs phenomenon refers to the overshoot behavior of
the Fourier series in the neighborhood of discontinuities. We
discussed it briefly in connection with Fig. 5-7, but it is
deserving of further elaboration. To that end, we reintroduce
in Fig. 5-19 the square-wave waveform of Fig. 5-2(a), along
with a plot of its Fourier-series representation computed
for nmax = 100 terms. A close examination of the Gibbs
phenomenon at the points in time at which the slope of x(t)
is discontinuous reveals that no matter how large nmax gets, the
height of the overshoot stays constant at 8.9% of the magnitude
of the jump at the discontinuity. However, the width (in t) over
which the overshoot is significant goes to zero as nmax → ∞.
This behavior satisfies the mean-square convergence condition
which pertains to the energy of the function rather than its
magnitude. The convergence condition requires that

lim
N→∞

T0∫
0

∣∣∣∣∣x(t)−
N∑

n=−N
xnejnω0t

∣∣∣∣∣
2

dt = 0. (5.133)

The pointwise convergence condition applies only at points
where x(t) is not discontinuous, whereas the mean-square
convergence condition integrates over the entire period,
including the discontinuities. Even though the overshoot itself
never goes to zero, the energy it represents does go to zero as
nmax → ∞ because the time duration over which the overshoot
exists goes to zero.
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(a) Original waveform

(b) Fourier series with 100 terms

-A

A

x(t)

t0
-T0/2 T0/2

x(t)

t

-A

A

0
-T0/2 T0/2

Gibbs phenomenon

Figure 5-19: Square-wave waveform and its Fourier-series
representation computed for nmax = 100 terms.

5-11 Phasor vs. Laplace vs. Fourier

Consider an LTI system characterized by an LCCDE with input
excitation x(t) and output response y(t). Beyond the time-
domain differential equation solution method, which in practice
can accommodate only first- and second-order systems, we have
available to us three techniques by which to determine y(t).

(a) The phasor-domain technique (Section 5-1).

(b) The Laplace transform technique (Chapters 3 and 4).

(c) The Fourier series and transform techniques (Chapter 5).

The applicability conditions for the three techniques,
summarized in Table 5-8, are governed by the duration and
shape of the waveform of the input excitation. Based on its
duration, an input signal x(t) is said to be:

(1) everlasting: if it exists over all time (−∞,∞),

(2) noncausal: if it starts before t = 0,

(3) causal: if it starts at or after t = 0.

Through a change of variables, it is always possible to time-
shift a noncausal signal that starts at a specific time t = −T
(where T > 0), so as to convert it into a causal signal. Hence,

in essence, we have only two time-duration categories, namely,
everlasting and causal.

In real life, there is no such thing as an everlasting signal.
When we deal with real signals and systems, there is always a
starting point in time for both the input and output signals.
In general, an output signal consists of two components, a
transient component associated with the initial onset of the
input signal, and a steady state component that alone remains
after the decay of the transient component to zero. If the input
signal is sinusoidal and we are interested in only the steady
state component of the output response, it is often convenient
to regard the input signal as everlasting, even though, strictly
speaking, it cannot be so. We regard it as such because we
can then apply the phasor-domain technique, which is easier to
implement than the other two techniques.

According to the summary provided in Table 5-8:

• If x(t) is an everlasting sinusoid, the phasor-domain
technique is the solution method of choice.

• If x(t) is an everlasting periodic signal, such as a
square wave or any repetitive waveform that can be
represented by a Fourier series, then by virtue of the
superposition principle, the phasor-domain technique can
be used to compute the output responses corresponding
to the individual Fourier components of the input signal,
and then all of the output components can be added up to
generate the total output.

• If x(t) is a causal signal, the Laplace transform technique
is the preferred solution method. An important feature of
the technique is that it can accommodate non-zero initial
conditions of the system, if they exist.

• If x(t) is everlasting and its waveform is nonperiodic, we
can obtain y(t) by applying either the bilateral Laplace
transform (Section 3-9) or the Fourier transform. For
input signals x(t) whose Laplace transforms do not exist
but their Fourier transforms do, the Fourier transform
approach becomes the only viable option, and the converse
is true for signals whose Fourier transforms do not exist
but their Laplace transforms do.

The Laplace transform operates in the s-domain, wherein an
LTI system is described in terms of its transfer function H(s),
where s = σ + jω is represented by a complex plane with real
and imaginary axes along σ and jω. The Fourier transform
operates along the jω-axis of the s-plane, corresponding to
σ = 0, and an LTI system is described by its frequency
response H(ω). In Section 3-9, we demonstrated that for causal
systems excited by everlasting sinusoidal signals,

H(ω) = H(s)|s=jω . (5.134)
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Table 5-8: Methods of solution.

Input x(t)

Duration Waveform Solution Method Output y(t)

Everlasting Sinusoid Phasor Domain Steady State Component
(no transient exists)

Everlasting Periodic Phasor Domain and Fourier Series Steady State Component
(no transient exists)

Causal, x(t) = 0, for t < 0 Any Laplace Transform (unilateral) Complete Solution
(can accommodate non-zero initial conditions) (transient + steady state)

Everlasting Any Bilateral Laplace Transform Complete Solution
or Fourier Transform (transient + steady state)

The Fourier Transform
(a) For a signalx(t), its Fourier transform is its frequency

spectrum X(ω).

(b) For a system, the Fourier transform of its impulse
response h(t) is the system’s frequency response
H(ω).

5-12 Circuit Analysis with Fourier
Transform

As was mentioned earlier, the Fourier transform technique can
be used to analyze circuits excited by either one-sided or two-
sided nonperiodic waveforms, so long as the circuit has no initial
conditions. The procedure, which is analogous to the Laplace
transform technique, with s replaced by jω, is demonstrated
through Example 5-15.

Example 5-15: RC Circuit

The RC circuit shown in Fig. 5-20(a) is excited by a
voltage source υs(t). Apply Fourier analysis to determine
iC(t) if: (a) υs = 10u(t), (b) υs(t) = 10e−2t u(t), and (c)
υs(t) = 10+5 cos 4t , all measured in volts. The element values
are R1 = 2 k�, R2 = 4 k�, and C = 0.25 mF. The intent of
this example is to demonstrate the solution procedure when
using the Fourier transform technique. For all three excitations,
the same results can be obtained using the Laplace transform
technique, and for excitation (c) the phasor-domain technique
is also applicable and easy to implement.

(a) Time domain

+
_υs(t)

iC(t)

R2 C

R1

(b) ω-domain

+
_Vs(ω)

IC

R2

R1

1
jωC

Figure 5-20: Circuits for Example 5-15.

Solution:

Step 1: Transfer Circuit to ω-Domain

In the frequency domain circuit shown in Fig. 5-20(b), Vs(ω)

is the Fourier transform of υs(t).

Step 2: Determine H(ω) = IC(ω)/Vs(ω)

Application of source transformation to the circuit in
Fig. 5-20(b), followed with current division, leads to

H(ω) = IC(ω)

Vs(ω)
= jω/R1

R1 + R2

R1R2C
+ jω

= j0.5ω × 10−3

3 + jω
. (5.135)



“book” — 2016/3/14 — 13:43 — page 237 — #46

5-12 CIRCUIT ANALYSIS WITH FOURIER TRANSFORM 237

Step 3: Solve for IC(ω) and iC(t)

(a) Input υs(t) = 10u(t):

The corresponding Fourier transform, per entry #3 in Table 5-6,
is

Vs(ω) = 10π δ(ω)+ 10

jω
,

and the corresponding current is

IC(ω) = H(ω) Vs(ω)

= j5πω δ(ω)× 10−3

3 + jω
+ 5 × 10−3

3 + jω
.

The inverse Fourier transform of IC(ω) is given by

iC(t) = 1

2π

∞∫
−∞

j5πω δ(ω)× 10−3

3 + jω
ejωt dω

+ F−1
[

5 × 10−3

3 + jω

]
,

where we applied the formal definition of the inverse Fourier
transform to the first term—because it includes an impulse—
and the functional form to the second term, because we intend
to use look-up entry #7 in Table 5-6. Accordingly,

iC(t) = 0 + 5e−3t u(t) mA. (5.136)

(b) Input υs(t) = 10e−2t u(t):

By entry #7 in Table 5-6, we have

Vs(ω) = 10

2 + jω
.

and the corresponding current IC(ω) is given by

IC(ω) = H(ω) Vs(ω)

= j5ω × 10−3

(2 + jω)(3 + jω)
.

Application of partial fraction expansion (Section 3-5) gives

IC(ω) = A1

2 + jω
+ A2

3 + jω
,

with

A1 = (2 + jω) IC(ω)|jω=−2

= j5ω × 10−3

3 + jω

∣∣∣∣
jω=−2

= −10 × 10−3

and

A2 = (3 + jω) IC(ω)|jω=−3

= j5ω × 10−3

2 + jω

∣∣∣∣
jω=−3

= 15 × 10−3.

Hence, we obtain

IC(ω) =
( −10

2 + jω
+ 15

3 + jω

)
× 10−3

and
iC(t) = (15e−3t − 10e−2t ) u(t) mA. (5.137)

(c) Input υs(t) = 10 + 5 cos 4t :

By entries #2 and #8 in Table 5-6,

Vs(ω) = 20π δ(ω)+ 5π [δ(ω − 4)+ δ(ω + 4)],

and the capacitor current is

IC(ω) = H(ω) Vs(ω)

= j10πω δ(ω)× 10−3

3 + jω

+ j2.5π × 10−3
[
ω δ(ω − 4)

3 + jω
+ ω δ(ω + 4)

3 + jω

]
.

The corresponding time-domain current is obtained by applying
Eq. (5.87b):

iC(t) = 1

2π

∞∫
−∞

j10πω δ(ω)× 10−3ejωt dω

3 + jω

+ 1

2π

∞∫
−∞

j2.5πω × 10−3

3 + jω
δ(ω − 4) ejωt dω

+ 1

2π

∞∫
−∞

j2.5πω × 10−3

3 + jω
δ(ω + 4) ejωt dω

= 0 + j5 × 10−3ej4t

3 + j4
− j5 × 10−3e−j4t

3 − j4

= 5 × 10−3

(
ej4t ej36.9◦

5
+ e−j4t e−j36.9◦

5

)

= 2 cos(4t + 36.9◦) mA. (5.138)
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Exercise 5-9: Determine the voltage across the capacitor,
υC(t), in Fig. 5-20(a) of Example 5-15, for each of the
three voltage waveforms given in its example statement.

Answer: (a) υC(t) = 10
3 + 20

3 (1 − e−3t ) u(t)V,
(b) υC(t) = 20(e−2t − e−3t ) u(t)V,
(c) υC(t) = [ 20

3 + 2 cos(4t − 36.9◦)
]

V. (See S2 )

5-13 The Importance of Phase
Information

A sinusoidal waveform given by

x(t) = A cos(ω0t + φ) (5.139)

is characterized by three parameters, namely its amplitudeA, its
angular frequency ω0 (with ω0 = 2πf0), and its phase angle φ.
The role ofA is straightforward; it determines the peak-to-peak
swing of the waveform, and similarly, the role of f0 also is easy
to understand, as it defines the number of oscillations that the
waveform goes through in 1 second. What about φ? At first
glance, we might assign to φ a rather trivial role, because its
only impact on the waveform is to specify in what direction
and by how much the waveform is shifted in time relative to the
waveform of A cosω0t . Whereas such an assignment may be
quite reasonable in the case of the simple sinusoidal waveform,
we will demonstrate in this section that in the general case of
a more elaborate waveform, the phase part of the waveform
carries information that is equally important as that contained
in the waveform’s amplitude.

Let us consider the rectangular pulse shown in Fig. 5-21(a).
According to entry #5 in Table 5-6, the pulse and its Fourier
transform are given by

x(t) = rect

(
t

τ

)
X(ω) = τ sinc

(ωτ
2

)
, (5.140)

where τ is the pulse length and the sinc function is defined by
Eq. (5.79). By defining X(ω) as

X(ω) = |X(ω)|ej φ(ω), (5.141)

we determine that the phase spectrum φ(ω) can be ascertained
from

ej φ(ω) = X(ω)
|X(ω)| = sinc(ωτ/2)

| sinc(ωτ/2)| . (5.142)

The quantity on the right-hand side of Eq. (5.142) is always
equal to +1 or −1. Hence, φ(ω) = 0◦ when sinc(ωτ/2) is
positive and 180◦ when sinc(ωτ/2) is negative. The magnitude
and phase spectra of the rectangular pulse are displayed in
Figs. 5-21(b) and (c), respectively.

(a) Rectangular pulse

(b) Magnitude spectrum

(c) Phase spectrum

t0

1

x(t)

−τ/2 τ/2

Signal

|X(ω)|

ω
−6π −4π −2π 2π 4π 6π0

τ τ τ τ

τ

τ τ

Magnitude
spectrum

−6π −4π −2π 2π 4π 6π0
τ τ τ τ τ τ

�(ω)

ω

180�

Phase
spectrum

Figure 5-21: (a) Rectangular pulse, and corresponding (b)
magnitude spectrum and (c) phase spectrum.

5-13.1 2-D Spatial Transform

When the independent variable is t , measured in seconds, the
corresponding independent variable in the Fourier-transform
domain is ω, measured in rad/s. The (t, ω) correspondence
has analogies in other domains, such as the spatial domain.
In fact, in the case of planar images, we deal with two spatial
dimensions—rather than just one—which we shall label ξ
and η. Accordingly, the image intensity may vary with both ξ
and η and will be denoted x(ξ, η). Moreover, since x(ξ, η) is a
function of two variables, so is its Fourier transform, which we
will call the two-dimensional Fourier transform X(ω1, ω2),
where ω1 and ω2 are called spatial frequencies. If ξ and η
are measured in meters, ω1 and ω2 will have units of rad/m.
With digital images, ξ and η are measured in pixels, in which
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case ω1 and ω2 will have units of rad/pixel. Upon extending
the Fourier-transform definition given by Eq. (5.87) to the 2-D
case—as well as replacing the time dimension with spatial
dimensions—we have

X(ω1, ω2) = F [x(ξ, η)]

=
∞∫

−∞

∞∫
−∞

x(ξ, η) e−jω1ξ e−jω2η dξ dη

(2-D Fourier transform) (5.143a)

and

x(ξ, η) =
1

(2π)2

∞∫
−∞

∞∫
−∞

X(ω1, ω2) e
jω1ξ ejω2η dω1 dω2.

(2-D inverse Fourier transform) (5.143b)

By way of an example, let us consider the white square shown
in Fig. 5-22(a). If we assign an amplitude of 1 to the white part
of the image and 0 to the black part, the variation across the
image along the ξ -direction is analogous to that representing
the time-domain pulse of Fig. 5-21(a), and the same is true
along η. Hence, the white square represents the product of two
pulses, one along ξ and another along η, and is given by

x(ξ, η) = rect

(
ξ

�

)
rect

(η
�

)
, (5.144)

where � is the length of the square sides. Application of
Eq. (5.143a) leads to

X(ω1, ω2) = �2 sinc

(
ω1�

2

)
sinc

(
ω2�

2

)
. (5.145)

The magnitude and phase spectra associated with the expression
given by Eq. (5.145) are displayed in grayscale format in
Fig. 5-22(b) and (c), respectively. For the magnitude spectrum,
white represents the peak value of |X(ω1, ω2)| and black
represents |X(ω1, ω2)| = 0. The phase spectrum φ(ω1, ω2)

varies between −180◦ and 180◦, so the grayscale was defined
such that white corresponds to +180◦ and black to −180◦. The
tonal variations along ω1 and ω2 are equivalent to the patterns
depicted in Figs. 5-21(b) and (c) for the rectangular pulse.

5-13.2 Magnitude and Phase Spectra

Next, we consider two white squares, of different sizes and at
different locations, as shown in Fig. 5-23(a) and (d). The small

(a) White square image

(b) Magnitude image |X(ω1,ω2)|

(c) Phase image ϕ(ω1,ω2)

ω1

ω2

l ξ

η

ω1

ω2

Figure 5-22: (a) Grayscale image of a white square in a black
background, (b) magnitude spectrum, and (c) phase spectrum.

square is of side �s and its center is at (−Ls,+Ls), relative to the
center of the image. In contrast, the big square is of side �b and
located in the fourth quadrant with its center at (+Lb,−Lb).
Their corresponding functional expressions are

xs(ξ, η) = rect

(
ξ + Ls

�s

)
rect

(
η − Ls

�s

)
(5.146a)
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(a) Small square (b) |Xs(ω1,ω2)| (c) ϕs(ω1,ω2)

(d) Large square (e) |Xb(ω1,ω2)| (f) ϕb(ω1,ω2)

ω1

ω2

ω1ωx

ω2

Ls

η

ξ

Ls

ls

ωx

ω1 ω1

ω2 ω2

Lb

Lb
ξ

η

lb

Magnitude spectrum Phase spectrumImage

Figure 5-23: (a) Image of a small white square of dimension �s and center at (ξ, η) = (−Ls, Ls), (b) magnitude spectrum of small square,
(c) phase spectrum of small square, (d) image of a big white square of dimension �b and center at (Lb,−Lb), (e) magnitude spectrum of
large square, and (f) phase spectrum of large square.

and

xb(ξ, η) = rect

(
ξ − Lb

�b

)
rect

(
η + Lb

�b

)
. (5.146b)

In view of property #4 in Table 5-7, the corresponding 2-D
transforms are given by

Xs(ω1, ω2) = (5.147a)

�2
s e
jω1Ls sinc

(
ω1�s

2

)
e−jω2Ls sinc

(
ω2�s

2

)

and

Xb(ω1, ω2) = (5.147b)

�2
be

−jω1Lb sinc

(
ω1�b

2

)
ejω2Lb sinc

(
ω2�b

2

)
.

Associated with Xs(ω1, ω2) are magnitude and phase spectra
defined by

|Xs(ω1, ω2)|
and

ejφs(ω1,ω2) = Xs(ω1, ω2)

|Xs(ω1, ω2)| , (5.148)
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and similar definitions apply to the magnitude and phase of
Xb(ω1, ω2). The four 2-D spectra are displayed in Fig. 5-23.

5-13.3 Image Reconstruction

Figure 5-23 contains 2-D spectra |Xs|, φs, |Xb|, and φb. If we
were to apply the inverse Fourier transform to |Xs|ejφs , we
would reconstruct the original image of the small square, and
similarly, application of the inverse transform to |Xb|ejφb would
generate the image of the big square. Neither result would be
a surprise, but what if we were to “mix” magnitude and phase
spectra? That is, what would we get if in the reconstruction
process we were to apply the inverse Fourier transform to
|Xb|ejφs , which contains the magnitude spectrum of the big
square and the phase spectrum of the small square. Would we
still obtain a square, what size would it be, and where will
it be located? The result of such an experiment is displayed
in Fig. 5-24(a). We observe that the dominant feature in the
reconstructed image is still a square, but neither its size nor its
location match those of the square in Fig. 5-23(d). In fact, the
location corresponds to that of the small square in Fig. 5-23(a).
Similarly, in Fig. 5-24(b) we display the image reconstructed
by applying the inverse Fourier transform to |Xs|ejφb . In both
cases, the location of the square in the reconstructed image is
governed primarily by the phase spectrum.

Instead of squares, let us explore what happens when we
use more complex images. Figures 5-25(a) and (b) are images
of Albert Einstein and the Mona Lisa. The other two images
are reconstructions based on mixed amplitude/phase spectra.
The image in Fig. 5-25(c) was constructed using the magnitude
spectrum of the Einstein image and the phase spectrum of
the Mona Lisa image. Even though it contains the magnitude
spectrum of the Einstein image, it fails to reproduce an image
that resembles the original but successfully reproduces an image
with the likeness of the original Mona Lisa image. Thus, in this
case, the phase spectrum has proven to be not only important
but even more important than the magnitude information.
Further confirmation of the importance of phase information
is evidenced by the image in Fig. 5-25(d), which reproduces
a likeness of the Einstein image even though only the phase
spectrum of the Einstein image was used in the reconstruction
process.

5-13.4 Image Reconstruction Recipe

To perform a 2-D Fourier transform or an inverse transform on a
black-and-white image, you can use MATLAB r©, Mathematica,
MathScript, or similar software. The process entails the
following steps:

(b) −1[|Xs|e jϕb], reconstruction
uses magnitude of small square and
phase of big square.

(a) −1[|Xb|e jϕs], reconstruction
uses magnitude of big square and
phase of small square.

−

−

x

y

y

x

Figure 5-24: Reconstructed “mixed” images: (a) Although not
sharp, the location and size of the small square are governed
primarily by the phase information associated with the small
square; (b) the phase information of the big square defines its
location and approximate shape in the reconstructed image.

1. Your starting point has to be a digital image, so if your
image is a hard copy print, you will need to scan it to convert it
into digital format. Consisting ofM×N pixels, the digital image
is equivalent to anM×N matrix. Associated with an individual
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(a) Original Einstein image

(c) Reconstructed image based on Einstein
magnitude and Mona Lisa phase

(b) Original Mona Lisa image

(d) Reconstructed image based on Mona
Lisa magnitude and Einstein phase

Figure 5-25: In the reconstructed images, the phase spectrum exercised the dominant role, even more so than the magnitude spectrum.
[From A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proceedings of the IEEE, v. 69, no. 5, May 1981, pp. 529–541.]

pixel (m, n) is a grayscale intensity I (m, n). Indices m, n
define the location of a pixel along the vertical and horizontal
directions, respectively, which is the converse of the traditional
order used in defining 2-D continuous functions.

2. In MATLAB r© software, the commandfft(x) generates
the one-dimensional Fast Fourier transform of vector x, and
similarly,fft2(I)generates the two-dimensional fast Fourier
transform of matrixI. The outcome of the 2-D FFT is anM×N
matrix whose elements we will designate as

X(m, n) = A(m, n)+ jB(m, n),

where A(m, n) and B(m, n) are the real and imaginary parts
of X(m, n), respectively. In the frequency domain, coordinates
(m, n) represent frequencies ω1 and ω2, respectively.

3. The magnitude and phase matrices of the 2-D FFT can be
generated from

|X(m, n)| = [A2(m, n)+ B2(m, n)]1/2,

and

φ(m, n) = tan−1
[
B(m, n)

A(m, n)

]
.

4. To display the matrices associated with |X(m, n)| and
φ(m, n) as grayscale images with zero frequency located at
the center of the image (as opposed to having the dc component
located at the upper left corner of the matrix), it is necessary to
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apply the command fftshift to each of the images before
displaying it.

5. Reconstruction back to the spatial domain x(m, n) entails
using the command ifft2 on X(m, n).

6. If two images are involved, I1(m, n) and I2(m, n), with
corresponding 2-D FFTs X1(m, n) and X2(m, n), respectively,
reconstruction of a mixed transform composed of the magnitude

of one of the transforms and the phase of the other one
will require a prerequisite step prior to applying ifft2. The
artificial FFT composed of the magnitude of X1(m, n) and the
phase of X2(m, n), for example, is given by

X3(m, n) = |X1(m, n)| cosφ2(m, n)+j |X2(m, n)| sin φ2(m, n).

Summary

Concepts

• A periodic waveform of period T0 can be represented by
a Fourier series consisting of a dc term and sinusoidal
terms that are harmonic multiples of ω0 = 2π/T0.

• The Fourier series can be represented in terms of a
cosine/sine form, amplitude/phase form, and a complex
exponential form.

• Circuits excited by a periodic waveform can be analyzed
by applying the superposition theorem to the individual
terms of the harmonic series.

• Nonperiodic waveforms can be represented by a Fourier
transform.

• Upon transforming the circuit to the frequency domain,
the circuit can be analyzed for the desired voltage or
current of interest and then the result can be inverse
transformed to the time domain.

• The Fourier transform technique can be extended to two-
dimensional spatial images.

• The phase part of a signal contains vital information,
particularly with regard to timing or spatial location.

Mathematical and Physical Models
Fourier Series Table 5-3

Fourier Transform

X(ω) = F [x(t)] =
∞∫

−∞
x(t) e−jωt dt

x(t) = F−1[X(ω)]

= 1

2π

∞∫
−∞

X(ω) ejωt dω

sinc Function sinc(x) = sin x

x

Properties of Fourier Transform Table 5-7

2-D Fourier Transform

X(ω1, ω1) = F [x(ξ, η)]

=
∞∫

−∞

∞∫
−∞

x(ξ, η) e−jω1ξ e−jω2η dx dy

x(ξ, η) = 1

(2π)2

∞∫
−∞

∞∫
−∞

X(ω1, ω2) e
jω1ξ ejω2η dω1 dω2

Important Terms Provide definitions or explain the meaning of the following terms:

2-D Fourier transform
amplitude spectrum
dc component
even symmetry
fft
fftshift

Fourier coefficient
Fourier series
Fourier transform
frequency spectrum
fundamental angular frequency
Gibbs phenomenon

harmonic
line spectra
mixed signal circuit
nulls
odd symmetry
periodicity property

periodic waveform
phase spectrum
signum function
sinc function
spatial frequency
truncated series



“book” — 2016/3/14 — 13:43 — page 244 — #53

244 CHAPTER 5 FOURIER ANALYSIS TECHNIQUES

PROBLEMS

Section 5-1: Phasor-Domain Technique

5.1 A system is characterized by the differential equation

c1
dy

dt
+ c2y = 10 cos(400t − 30◦).

∗(a) Determine y(t), given that c1 = 10−2 and c2 = 3.

(b) Determine y(t), given that c1 = 10−2 and c2 = 0.3.

5.2 A system is characterized by the differential equation

c1
d2y

dt2
+ c2

dy

dt
+ c3y = A cos(ωt + φ).

Determine y(t) for the following:

(a) c1 = 10−6, c2 = 3 × 10−3, c3 = 3, A = 12, ω = 103

rad/s, and φ = 60◦.

(b) c1 = 5 × 10−4, c2 = 10−2, c3 = 1, A = 16, ω = 200
rad/s, and φ = −30◦.

(c) c1 = 5×10−6, c2 = 1, c3 = 106, A = 4, ω = 106 rad/s,
and φ = −60◦.

5.3 Repeat part (a) of Problem 5.2 after replacing the cosine
with a sine.

5.4 A system is characterized by

c1
d2y

dt2
+ c2

dy

dt
+ c3y =

A1 cos(ωt + φ1)+ A2 sin(ωt + φ2).

Determine y(t), given that c1 = 10−6, c2 = 3×10−3, c3 = 3,
A1 = 10, A2 = 20, ω = 103 rad/s, φ1 = 30◦, and φ2 = 30◦.
(Hint: Apply the superposition property of LTI systems.)

∗5.5 A system is characterized by

4 × 10−3 dy

dt
+ 3y = 5 cos(1000t)− 10 cos(2000t).

Determine y(t). (Hint: Apply the superposition property of LTI
systems.)

∗
Answer(s) in Appendix F.

Sections 5-3 and 5-4: Fourier Series

Follow these instructions for each of the waveforms in Problems
5.6 through 5.15.

(a) Determine if the waveform has dc, even, or odd symmetry.

(b) Obtain its cosine/sine Fourier series representation.

(c) Convert the representation to amplitude/phase format and
plot the line spectra for the first five non-zero terms.

(d) Convert the representation to complex exponential format
and plot the line spectra for the first five non-zero terms.

(e) Use MATLAB or MathScript to plot the waveform using a
truncated Fourier series representation with nmax = 100.

5.6 Waveform in Fig. P5.6 with A = 10.

f(t)

A

0
t (s)

−4 4 8

Figure P5.6: Waveform for Problem 5.6.

5.7 Waveform in Fig. P5.7 with A = 4.

f(t)

A

0
0 t (s)

−4 −2 2 4 6 8−6−8

Figure P5.7: Waveform for Problem 5.7.

5.8 Waveform in Fig. P5.8 with A = 6.

f(t)

A

0
0 t (s)

1 2 3−3 −2 −1

Figure P5.8: Waveform for Problem 5.8.
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∗5.9 Waveform in Fig. P5.9 with A = 10.

f(t)

A

0 1 2 3 4 65
0 t (s)

−4−6 −5 −3 −1−2

Figure P5.9: Waveform for Problem 5.9.

5.10 Waveform in Fig. P5.10 with A = 20.

f(t)
A

0 1 2 3 4 6 75
0 t (s)

−4−5 −3 −1

−A

−2−6

Figure P5.10: Waveform for Problem 5.10.

5.11 Waveform in Fig. P5.11 with A = 100.

f(t)
A

0
0 t (s)

2 4 6−6 −4 −2

Figure P5.11: Waveform for Problem 5.11.

5.12 Waveform in Fig. P5.12 with A = 4.

f(t)

−A

0 t (s)
−4−6−8 −2 2 4 6 8

Figure P5.12: Waveform for Problem 5.12.

5.13 Waveform in Fig. P5.13 with A = 10.

f(t)

−A

A

0 t (ms)
−3−4 −1 2 3−2 1 4

Figure P5.13: Waveform for Problem 5.13.

5.14 Waveform in Fig. P5.14 with A = 10.

f(t)

−A

−A/2

A

A/2

0 t (s)
−1 2 3−2 1 4

Figure P5.14: Waveform for Problem 5.14.

5.15 Waveform in Fig. P5.15 with A = 20.

f(t)

−A

A

0 t (s)
−4 −1 1 4−3 2 3−2

Figure P5.15: Waveform for Problem 5.15.

5.16 Obtain the cosine/sine Fourier-series representation for
f (t) = cos2(4πt), and use MATLAB/MathScript software to
plot it with nmax = 100.

5.17 Repeat Problem 5.16 for f (t) = sin2(4πt).
∗5.18 Repeat Problem 5.16 for f (t) = | sin(4πt)|.
5.19 Which of the six waveforms shown in Figs. P5.6 through
P5.11 will exhibit the Gibbs oscillation phenomenon when
represented by a Fourier series? Why?
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5.20 Consider the sawtooth waveform shown in Fig. 5-3(a).
Evaluate the Gibbs phenomenon in the neighborhood of t = 4 s
by plotting the Fourier-series representation with nmax = 100
over the range between 4.01 s and 4.3 s.

5.21 The Fourier series of the periodic waveform shown in
Fig. P5.21(a) is given by

f1(t) = 10 − 20

π

∞∑
n=1

1

n
sin

(
nπt

2

)
.

Determine the Fourier series of waveform f2(t) in
Fig. P5.21(b).

(a) f1(t)

t (s)
−4 840

20

f1(t)

f2(t)

(b) f2(t)

t (s)
−4

−20

840
0

20

Figure P5.21: Waveforms of Problem 5.21.

5.22 Let x(t) be a real-valued and periodic signal with period
T0 s and maximum frequency B Hz. The signal is known to
have a nonzero component at exactly B Hz.

(a) Show that x(t) can be expressed using an expression with
only 2BT0 + 1 constants.

(b) x(t) has period 0.1 s and maximum frequency 20 Hz. It has
the following known values: x(0.00) = 5, x(0.02) = 1,
x(0.04) = 3, x(0.06) = 2, and x(0.08) = 4. Determine an
explicit formula for x(t).

Section 5-5: Circuit Applications

5.23 The voltage source υs(t) in the circuit of Fig. P5.23
generates a square wave (waveform #1 in Table 5-4) with
A = 10 V and T = 1 ms.

(a) Derive the Fourier series representation of υout(t).

(b) Calculate the first five terms of υout(t) using

R1 = R2 = 2 k�, C = 1 μF.

(c) Plot υout(t) using nmax = 100.

+
_

υs(t)

R1

R2 C υout(t)
+
_

Figure P5.23: Circuit for Problem 5.23.

5.24 The current source is(t) in the circuit of Fig. P5.24
generates a sawtooth wave (waveform in Fig. 5-3(a)) with a
peak amplitude of 20 mA and a period T = 5 ms.

+

_
is(t) υout(t)R1

i1

i2 R2

C

Figure P5.24: Circuit for Problem 5.24.

(a) Derive the Fourier series representation of υout(t).

(b) Calculate the first five terms of υout(t) usingR1 = 500 �,
R2 = 2 k�, and C = 0.33 μF.

(c) Plot υout(t) and is(t) using nmax = 100.

∗5.25 The current source is(t) in the circuit of Fig. P5.25
generates a train of pulses (waveform #3 in Table 5-4) with
A = 6 mA, τ = 1 μs, and T = 10 μs.

is(t) R L

C

i(t)

Figure P5.25: Circuit for Problem 5.25.

(a) Derive the Fourier series representation of i(t).
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(b) Calculate the first five terms of i(t) using R = 1 k�,
L = 1 mH, and C = 1 μF.

(c) Plot i(t) and is(t) using nmax = 100.

5.26 Voltage source υs(t) in the circuit of Fig. P5.26(a) has
the waveform displayed in Fig. P5.26(b).

(a) Circuit

(b) Waveform

υs(t)

0
t (ms)

−1 1 2

2 V

10 V

υs(t)

R1 R2

L1 L2

i(t)
+
_

Figure P5.26: Circuit and waveform for Problem 5.26.

(a) Derive the Fourier series representation of i(t).

(b) Calculate the first five terms of i(t) using

R1 = R2 = 10 � and L1 = L2 = 10 mH.

(c) Plot i(t) and υs(t) using nmax = 100.

5.27 Determine the output voltage υout(t) in the circuit of
Fig. P5.27, given that the input voltage υin(t) is a full-wave
rectified sinusoid (waveform #8 in Table 5-4) with A = 120 V
and T = 1 μs.

+
_

υin(t)

L

C R υout(t)
+
_

Figure P5.27: Circuit for Problem 5.27.

(a) Derive the Fourier series representation of υout(t).

(b) Calculate the first five terms of υout(t) using R = 1 k�,
L = 1 mH, and C = 1 nF.

(c) Plot υout(t) and υin(t) using nmax = 100.

5.28

(a) Repeat Example 5-6, after replacing the capacitor with an
inductor L = 0.1 H and reducing the value of R to 1 �.

(b) Calculate the first five terms of υout(t).

(c) Plot υout(t) and υs(t) using nmax = 100.

5.29 Determine υout(t) in the circuit of Fig. P5.29, given that
the input excitation is characterized by a triangular waveform
(#4 in Table 5-4) with A = 24 V and T = 20 ms.

+
_

υs(t)

L

C
R υout(t)

+
_

Figure P5.29: Circuit for Problem 5.29.

(a) Derive Fourier series representation of υout(t).

(b) Calculate first five terms of υout(t) using R = 470 �,
L = 10 mH, and C = 10 μF.

(c) Plot υout(t) and υs(t) using nmax = 100.

5.30 A backward-sawtooth waveform (#7 in Table 5-4) with
A = 100 V and T = 1 ms is used to excite the circuit in
Fig. P5.30.

+

_

υs(t)

R1

R2
υout(t)

+
_

L
C

Figure P5.30: Circuit for Problem 5.30.

(a) Derive Fourier series representation of υout(t).

(b) Calculate the first five terms of υout(t) using R1 = 1 k�,
R2 = 100 �, L = 1 mH, and C = 1 μF.

(c) Plot υout(t) and υs(t) using nmax = 100.
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∗5.31 The circuit in Fig. P5.31 is excited by the source
waveform shown in Fig. P5.26(b).

υs(t)

i(t)
+
_

R1 R2

LC

Figure P5.31: Circuit for Problem 5.31.

(a) Derive Fourier series representation of i(t).

(b) Calculate the first five terms of υout(t) using
R1 = R2 = 100 �, L = 1 mH, and C = 1 μF.

(c) Plot i(t) and υs(t) using nmax = 100.

5.32 The RC op-amp integrator circuit of Fig. P5.32 excited
by a square wave (waveform #1 in Table 5-4) with A = 4 V
and T = 2 s.

+

_
+
_υs(t)

υout(t)
+

R1

R2

C

Figure P5.32: Circuit for Problem 5.32.

(a) Derive Fourier series representation of υout(t).

(b) Calculate the first five terms of υout(t) using R1 = 1 k�
and C = 10 μF.

(c) Plot υout(t) using nmax = 100.

5.33 Repeat Problem 5.32 after interchanging the locations
of the 1 k� resistor and the 10 μF capacitor.

Section 5-6: Average Power

5.34 The voltage across the terminals of a certain circuit and
the current entering into its (+) voltage terminal are given by

υ(t) = [4 + 12 cos(377t + 60◦)− 6 cos(754t − 30◦)] V,

i(t) = [5 + 10 cos(377t + 45◦)
+ 2 cos(754t + 15◦)] mA.

Determine the average power consumed by the circuit, and the
ac power fraction.

5.35 The current flowing through a 2 k� resistor is given by

i(t) = [5 + 2 cos(400t + 30◦)
+ 0.5 cos(800t − 45◦)] mA.

Determine the average power consumed by the resistor.

5.36 The current flowing through a 10 k� resistor is given by
a triangular waveform (#4 in Table 5-4) with A = 4 mA and
T = 0.2 s.

(a) Determine the exact value of the average power consumed
by the resistor.

(b) Using a truncated Fourier-series representation of the
waveform with only the first four terms, obtain an
approximate value for the average power consumed by
the resistor.

(c) What is the percentage of error in the value given in (b)?

∗5.37 The current source in the parallel RLC circuit of
Fig. P5.37 is given by

is(t) = [10 + 5 cos(100t + 30◦)− cos(200t − 30◦)] mA.

Determine the average power dissipated in the resistor given
that R = 1 k�, L = 1 H, and C = 1 μF.

is(t) RCL

Figure P5.37: Circuit for Problem 5.37.

5.38 A series RC circuit is connected to a voltage source
whose waveform is given by waveform #5 in Table 5-4, with
A = 12 V and T = 1 ms. Using a truncated Fourier-series
representation composed of only the first three non-zero terms,
determine the average power dissipated in the resistor, given
that R = 2 k� and C = 1 μF.

Sections 5-7 and 5-8: Fourier Transform

For each of the waveforms in Problems 5.39 through 5.48,
determine the Fourier transform.

5.39 Waveform in Fig. P5.39 with A = 5 and T = 3 s.
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f(t)

t (s)

A

T

Figure P5.39: Waveform for Problem 5.39.

5.40 Waveform in Fig. P5.40 with A = 10 and T = 6 s.

f(t)

t (s)

A

T/2−T/2

Figure P5.40: Waveform for Problem 5.40.

5.41 Waveform in Fig. P5.41 with A = 12 and T = 3 s.

f(t)

t (s)

A

T/3

A/3

2T/3

2A/3

T

Figure P5.41: Waveform for Problem 5.41.

5.42 Waveform in Fig. P5.42 with A = 2 and T = 12 s.

f(t)

t (s)

A

T/3

A/2

2T/3 T

Figure P5.42: Waveform for Problem 5.42.

5.43 Waveform in Fig. P5.43 with A = 1 and T = 3 s.

f(t)

t (s)

A

−A

T/30 2T/3 T

Figure P5.43: Waveform for Problem 5.43.

5.44 Waveform in Fig. P5.44 with A = 1 and T = 2 s.

f(t)

t (s)

A

T/2−T/2

A/2

Figure P5.44: Waveform for Problem 5.44.

5.45 Waveform in Fig. P5.45 with A = 3 and T = 1 s.

f(t)

t (s)

A

−A

−T−2T

2TT

Figure P5.45: Waveform for Problem 5.45.

5.46 Waveform in Fig. P5.46 with A = 5, T = 1 s, and α =
10 s−1.
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f(t)

t (s)

A(1 − e−αt )

T

Figure P5.46: Waveform for Problem 5.46.

∗5.47 Waveform in Fig. P5.47 with A = 10 and T = 2 s.

f(t)

t (s)

A
A cos(2πt/T)

T/4−T/4

Figure P5.47: Waveform for Problem 5.47.

5.48 Find the Fourier transform of the following signals with
A = 2, ω0 = 5 rad/s, α = 0.5 s−1, and φ0 = π/5.

(a) f (t) = A cos(ω0t − φ0), −∞ < t < ∞
(b) g(t) = e−αt cos(ω0t) u(t)

5.49 Find the Fourier transform of the following signals with
A = 3, B = 2, ω1 = 4 rad/s, and ω2 = 2 rad/s.

(a) f (t) = [A+ B sin(ω1t)] sin(ω2t)

(b) g(t) = A|t |, |t | < (2π/ω1)

5.50 Find the Fourier transform of the following signals with
α = 0.5 s−1, ω1 = 4 rad/s, and ω2 = 2 rad/s.

∗(a) f (t) = e−αt sin(ω1t) cos(ω2t) u(t)

(b) g(t) = te−αt , 0 ≤ t ≤ 10α

5.51 Using the definition of Fourier transform, prove that

F [t f (t)] = j
d

dω
F(ω).

5.52 Let the Fourier transform of f (t) be

F(ω) = A

(B + jω)
.

Determine the transforms of the following signals (usingA = 5
and B = 2):

(a) f (3t − 2)

(b) t f (t)

(c) d f (t)/dt

5.53 Let the Fourier transform of f (t) be

F(ω) = 1

(A+ jω)
e−jω + B.

Determine the Fourier transforms of the following signals (set
A = 2 and B = 1).

(a) f
(

5
8 t
)

(b) f (t) cos(At)

(c) d3f/dt3

5.54 Prove the following two Fourier transform pairs.

(a) cos(ωT ) F(ω) 1
2 [f (t − T )+ f (t + T )]

(b) sin(ωT ) F(ω) 1
2j [f (t + T )− f (t − T )]

5.55 Using only Fourier transform properties, show that

sin(10πt)

πt
[1 + 2 cos(20πt)] = sin(30πt)

πt
.

5.56 Show that the spectrum of

sin(20πt)

πt

sin(10πt)

πt

is zero for |ω| > 30π .

∗5.57 A square wave x(t) has the Fourier series given by

x(t) = sin(t)+ 1

3
sin(3t)+ 1

5
sin(5t)+ · · · .

Compute y(t) = x(t) ∗ 3e−|t | ∗ [sin(4t)/(πt)].
5.58 Let x(t) be any causal signal with Fourier transform
X(ω) = R(ω)+ jI (ω). Show that given either R(ω) or I (ω),
we can compute the other using the formulas:

I (ω) = − 1

π

∞∫
−∞

R(ω′)
ω − ω′ dω

′
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and

R(ω) = 1

π

∞∫
−∞

I (ω′)
ω − ω′ dω

′.

Hints: Conjugate symmetry, entry #4 in Table 5-6, and
Fig. 1-11. These are called the Kramers-Kronig relations
for a dielectric material with complex frequency-dependent
electrical permittivity X(ω).

5.59 A signal x(t) is narrowband if its spectrum X(ω) = 0
unless ω0 − δ < |ω| < ω0 + δ for some center frequency ω0
and bandwidth 2δ � ω0. Narrowband signals are used in radar,
sonar, and ultrasound.

This problem examines the effect of a system with frequency
response H(ω) on the narrowband signal x(t). Throughout this
problem, we assumeω0 −δ < |ω| < ω0 +δ. We linearize H(ω)
by writing H(ω) as

H(ω) = |H(ω)|ejθ(ω) ≈ |H(ω0)|e−j (θ0+θ1ω).

According to this model H(ω) has:

(1) Constant gain, |H(ω)| ≈ |H(ω0)|.
(2) Linear phase, θ(ω) = θ0 + θ1ω, where

θ1 = − dθ

dω

∣∣∣∣
ω=ω0

is defined to be the group delay of H(ω).

(a) Show that x(t) can be written as

x(t) = s(t) cos(ω0t),

where the spectrum of s(t) has a maximum frequency
δ � ω0. Thus, s(t) varies slowly compared to cos(ω0t).

(b) Plot the waveform of x(t) for s(t) = cos(2πt) and
ω0 = 20π rad/s.

(c) Write H(ω) ≈ H1(ω) H2(ω), where

H1(ω) = |H(ω0)|e−jθ0

and H2(ω) = e−jθ1ω. Compute the response y1(t) of
H1(ω) to the input x1(t) = s(t) ejω0t .

(d) Compute the response y2(t) of H2(ω) to the input y1(t),
the output from (c).

(e) Using (c) and (d), compute the response y(t) of H(ω) to
the original input x(t). Describe what the system does to
s(t) and to cos(ω0t) if input x(t) = s(t) cos(ω0t).

θ(ω0)

ω0 − δ ω0 + δ
θ(ω)

θ(ω) ≈ θ0 + θ1ω

ω

Figure P5.59: Phase response θ(ω) is approximately linear for
ω0 − δ < ω < ω0 + δ.

5.60 The modulated Gaussian pulse

x(t) = 1√
0.2π

e−(t−1)2/0.2 cos(100t)

is input into the RC circuit in Fig. 2-5(a), for whichRC = 0.01.
Compute the output y(t) using:

(a) the result of Problem 5.59, and

(b) numerical computation of h(t) ∗ x(t).
5.61 We use Laplace and Fourier transforms to solve the
partial differential equation

∂2u

∂x2 = 1

a

∂u

∂t
.

This is the Fokker-Planck equation, also known as the heat or
diffusion equation. The goal is to compute the density u(x, t)
at position x and time t for a thin slice of material injected into a
semiconductor base at x = 0 at t = 0. The material diffuses out
into the semiconductor base according to the diffusion equation
with initial condition (in t) u(x, 0) = δ(x) (initial slice) and
diffusion coefficient a.

(a) Take the Laplace transform in t of

∂2u

∂x2 = 1

a

∂u

∂t
,

with U(s, x) = LLL{u(x, t)}.
(b) Take the Fourier transform in x of the result. Use

wavenumber k instead of ω.

(c) Solve the result for

LLL{F{u(x, t)}} = U(k, s).

(d) Take the inverse Laplace transform of U(k, s).



“book” — 2016/3/14 — 13:43 — page 252 — #61

252 CHAPTER 5 FOURIER ANALYSIS TECHNIQUES

(e) Take the inverse Fourier transform of the result. The final
answer is a Gaussian function whose variance increases
linearly with time. This makes sense physically: the
injection spreads out in the semiconductor base.

(f) Change the initial condition from u(x, 0) = δ(x) to
u(x, 0) = g(x) for some non-impulse function g(x).

(g) Provide an explicit formula, using an integral, for the new
u(x, t) in terms of g(x).

5.62 We use Laplace and Fourier transforms to solve the
partial differential equation

∂2u

∂x2 − ∂2u

∂t2
= 0,

with initial conditions (in t) u(x, 0) = δ(x) and ∂u
∂t
(x, 0) = 0.

This is the wave equation. The impulse at position x = 0
propagates in both directions. The goal is to compute the field
u(x, t), at position x and time t .

(a) Take the Laplace transform in t of

∂2u

∂x2 − ∂2u

∂t2
= 0,

with U(s, x) = LLL{u(x, t)}.
(b) Take the Fourier transform in x of the result. Use

wavenumber k instead of ω.

(c) Solve the result for

LLL{F{u(x, t)}} = U(k, s).

(d) Take the inverse Laplace transform of U(k, s).

(e) Take the inverse Fourier transform of the result. The final
answer is an impulse that propagates in both the x and
−x directions. This makes sense physically: the impulse
at x = t = 0 spreads out as t increases.

(f) Change the initial condition from u(x, 0) = δ(x) to
u(x, 0) = g(x) for some non-impulse function g(x).

(g) Provide an explicit formula, using an integral, for the new
u(x, t) in terms of g(x).

5.63 Let p(t) be a pulse whose spectrum P(ω) �= 0 for
|ω| < πB. Let {x[n]} be a sequence of numbers to be
transmitted over a communications channel. The sequence of
weighted and delayed pulses x(t) = ∑∞

n=−∞ x[n] p(t − nTs)

is used to transmit a value of x[n] every Ts seconds over the
channel. If the frequency response of the channel H(ω) �= 0
for |ω| < πB, show that {x[n]} can be recovered from the
channel output ifBTs < 1. Hint: Use Fourier series and Fourier
transform.

Section 5-9: Parseval’s Theorem for Fourier Integral

5.64 If x(t) = sin(2t)/(πt), compute the energy of d2x/dt2.

5.65 Compute the energy of e−t u(t) ∗ sin(t)/(πt).

5.66 Show that

∞∫
−∞

sin2(at)

(πt)2
dt = a

π

if a > 0.

Section 5-12: Circuit Analysis with Fourier Transform

5.67 The circuit in Fig. P5.24 is excited by the source
waveform shown in Fig. P5.39.

(a) Derive the expression for υout(t) using Fourier analysis.

(b) Plot υout(t) using A = 5 V, T = 3 ms, R1 = 500 �,
R2 = 2 k�, and C = 0.33 μF.

(c) Repeat part (b) with C = 0.33 mF and comment on the
results.

5.68 The circuit in Fig. P5.24 is excited by the source
waveform shown in Fig. P5.40.

(a) Derive the expression for υout(t) using Fourier analysis.

(b) Plot υout(t) using A = 5 mA, T = 3 s, R1 = 500 �,
R2 = 2 k�, and C = 0.33 mF.
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Objectives

Learn to:

� Design lowpass, bandpass, highpass, bandreject,
notch, comb, Butterworth, and resonator filters
to remove noise or unwanted interference from
signals.

� Compute the spectra of modulated signals.

� Compute the sampling rates necessary to avoid
aliasing.

Filtered signal

Noisy signal

t

Noisy signal

t

Filtered signal

Noise filtering, modulation, frequency division multiplexing,
signal sampling, and many related topics are among those
treated in this chapter. These are examples of applications that
rely on the properties of the Fourier transform introduced in
Chapter 5.

253
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Overview

This chapter offers several examples of how Fourier series and
transforms are used to solve engineering problems.

• A musical instrument playing a single note is a good
example of the physical meaning (fundamental and
overtones) of a Fourier series. We show how a Fourier
series can be used to represent the sound of a trumpet. We
use an actual trumpet signal in this chapter and a discrete-
time version of it again in Chapter 8.

• Notch filters are systems used to remove sinusoidal
interference (an unwanted sinusoidal signal) from a
desired signal. We will design a system that eliminates
an unwanted tone from the trumpet signal. We discuss
the trade-off between frequency selectivity and impulse
response duration, and implementation of filters using op
amps.

• Comb filters are systems that remove periodic interference
(an unwanted periodic signal) from a desired signal. We
will design a system that eliminates one of two notes (one
of which is undesired) being played simultaneously by two
trumpets.

• Lowpass filtering is commonly used to reduce noise
attached to signals. We design a Butterworth filter to
remove some of the noise from a noisy trumpet signal.

• The trumpet signal has a line spectrum, not a continuous
spectrum. We use this information to design a resonator
filter that does a much better job of removing noise from
the noisy trumpet signal.

• Radio is familiar to all readers. We use a single property
(modulation) of the Fourier transform to derive the
analog communication techniques of frequency domain
multiplexing, amplitude modulation, SSB, and envelope
detection.

• In today’s world, most communication and signal
processing systems use discrete-time signal processing.
We apply the basic properties of Fourier series and
transforms to derive the sampling theorem, which
demonstrates that a continuous-time bandlimited signal
can be recovered from its samples if the sampling
rate is fast enough. We quickly discuss aliasing, non-
ideal sampling and reconstruction and the desirability of
oversampling. Chapters 7 to 10 examine discrete-time
signal processing in greater detail.

6-1 Filtering a 2-D Image

Associated with any time-varying signal x(t) is a Fourier
transform X(ω). Obvious examples include speech and music.
Filtering a signal entails passing it through an LTI system—
called a frequency filter, or filter for short—to modify its
spectrum so as to realize a desired outcome, such as removing
noise accompanying the signal or smoothing out its fast
(high frequency) variations. The spectrum may be discrete
(Fourier series) or continuous (Fourier transform), depending
on whether x(t) is periodic or not. The correspondence between
x(t) and X(ω) was the subject of Chapter 5.

As was noted earlier in Section 5-13, a two-dimensional
image with intensity variation x(ξ, η) is also a signal and it
has a corresponding spectrum X(ω1, ω2), where ω1 and ω2 are
spatial frequencies along the ξ and η directions. The purpose
of the present section is to develop some degree of intuitive
understanding for what actually happens to a signal when we
filter it.

To that end, we plan to compare a signal before filtering
it and after lowpass filtering, and also after highpass-filtering
it. Visually, it is much easier to demonstrate the consequences
of lowpass and highpass filtering using a spatial signal (i.e.,
an image) rather than an audio signal or other types of
signals. Our test image is shown in Fig. 6-1(a), and its 2-D
spectrum X(ω1, ω2) is displayed in Fig. 6-1(b). The center
of the spectrum corresponds to ω1 = ω2 = 0, and represents
the average intensity (dc value) across the entire image.
The immediate region surrounding the center of X(ω1, ω2)

represents the low-frequency variations, while the outer region
represents high-frequency variations. Low frequencies are
associated with basic structure in an image, while high
frequencies are associated with edges and sudden changes.

6-1.1 Lowpass Filtering

A lowpass filter retains low-frequency components and rejects
high-frequency components. By applying a window to the
spectrum of the original image, as depicted in Fig. 6-1(d), we
replace all spectral components outside the window with zero.
Upon performing an inverse Fourier transform on the spectrum
in Fig. 6-1(d), we obtain the image shown in Fig. 6-1(c). The
filtered image no longer contains the frequency components
responsible for fast variations, such as the edges of the letters.
Consequently, the image looks blurry. It continues to display
the basic structures of the letters, but not their edges.
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(a) Original image (b) 2-D spectrum of original image

FT

IFT

IFT

HPF

LPF

(c) Reconstructed image after lowpass filtering of original image (d) Spectrum of lowpass-filtered image

(e) Reconstructed image after highpass-filtering it (f ) Spectrum of highpass-filtered image

x

η

ξ

η

ξ

η

ξ

ω2

ω1

ω2

ω1

ω2

ω1

x

x

Figure 6-1: The images in (a), (c), and (e) are the original image, the lowpass-filtered version, and the highpass-filtered version. Their
corresponding spectra are displayed in (b), (d), and (f), respectively.

6-1.2 Highpass Filtering

If instead of replacing the outer region of the spectrum with zero,
we were to replace the central region in Fig. 6-1(b) with zero,
we would end up implementing a highpass filter to the image.

The spectrum is shown in Fig. 6-1(f), and the reconstructed
image is shown in Fig. 6-1(e).

In later sections of this chapter, we demonstrate how filters
are used to remove noise from a musical signal. The process is
similar to what we did with the spatial image, except that the
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musical signal is one-dimensional. In both cases, the filtering
action is performed in the frequency domain after Fourier
transforming the signals, which requires the availability of
the entire signal before we implement the transformation to
the frequency domain and the subsequent filtering and final
reconstruction back to the time or spatial domain. Thus, it is
not a real-time filtering process. A real-time filtering process
requires modifying a time-varying signal in the time domain,
instead of in the frequency domain.

6-2 Types of Filters

A frequency filter is characterized by a transfer function H(ω)—
also called its frequency response—that relates its input X(ω)
to its output Y(ω), as shown in Fig. 6-2. That is,

H(ω) = Y(ω)
X(ω)

. (6.1)

As a complex quantity, the transfer function H(ω) has a
magnitude (also called gain)—to which we will assign the
symbol M(ω)—and an associated phase angle φ(ω),

H(ω) = M(ω) ejφ(ω), (6.2)

where by definition, we have

M(ω) = |H(ω)| and φ(ω) = tan−1
{

Im[H(ω)]
Re[H(ω)]

}
. (6.3)

6-2.1 Terminology

� We often use the term “frequency” for both the angular
frequency ω and the circular frequency f = ω/2π .
Converting X(ω) to X(f ) entails replacing ω with 2πf
everywhere in the expression of X(ω). �

The four generic types of filters are: lowpass, highpass,
bandpass, and bandreject. To visualize the frequency response
of a transfer function, we usually generate plots of its magnitude
and phase angle as a function of frequency from ω = 0 (dc)

X(ω) Y(ω)
LTI System

H(ω)

Filter

Figure 6-2: Filter with transfer function H(ω).

to ω → ∞. Figure 6-3 displays typical magnitude responses
for the four aforementioned types of filters. Each of the four
filters is characterized by at least one passband and one
stopband. The lowpass filter allows low-frequency signals to
pass through essentially unimpeded, but blocks the transmission
of high-frequency signals. The qualifiers low and high are
relative to the corner frequency ωc (Fig. 6-3(a)), which we
shall define shortly. The high-pass filter exhibits the opposite
behavior, blocking low-frequency signals while allowing high
frequencies to go through. The bandpass filter (Fig. 6-3(c)) is
transparent to signals whose frequencies are within a certain
range centered at ω0, but cuts off both very high and very low
frequencies. The response of the bandreject filter provides the
opposite function to that of the bandpass filter; it is transparent
to low and high frequency signals and opaque to intermediate-
frequency signals.

Gain factor M0

All four spectral plots shown in Fig. 6-3 exhibit smooth patterns
as a function ofω, and each has a peak valueM0 in its passband.

� If M0 occurs at dc, as in the case of the lowpass filter,
it is called the dc gain; if it occurs at ω → ∞, it is called
the high-frequency gain; and for the bandpass filter, it is
called simply the gain factor. �

In some cases, the transfer function of a lowpass or highpass
filter may exhibit a resonance behavior that manifests itself in
the form of a peak in the neighborhood of the resonant frequency
of the circuit ω0, as illustrated in Fig. 6-4. Obviously, the peak
value at ω = ω0 exceeds M0, but we will continue to refer
to M0 as the dc gain of M(ω) because M0 is defined as the
reference level in the passband of the transfer function, whereas
the behavior of M(ω) in the neighborhood of ω0 is specific to
that neighborhood.

Corner frequency ωc

� The corner frequency ωc is defined as the angular
frequency at which M(ω) is equal to 1/

√
2 of the

reference peak value:

M(ωc) = M0√
2

= 0.707M0. (6.4)

�
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(c) Bandpass filter (d) Bandreject filter

(a) Lowpass filter (b) Highpass filter
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0
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1
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Figure 6-3: Typical magnitude frequency responses for the four types of filters.

Since M(ω) often is a voltage transfer function, M2(ω) is
the transfer function for power. The condition described by
Eq. (6.4) is equivalent to

M2(ωc) = M2
0

2
or P(ωc) = P0

2
. (6.5)

Hence, ωc is also called the half-power frequency. The
frequency responses of the lowpass and highpass filters shown
in Fig. 6-3(a) and (b) have only one half-power frequency
each, but the bandpass and bandreject responses have two
half-power frequencies each, ωc1 and ωc2 . Even though the
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2M0

M0

M

0
0 2ω0 3ω0ω0

ω

strong resonance

weak resonance

dc gain

Figure 6-4: Resonant peak in the frequency response of a
lowpass filter circuit.

actual frequency response of a filter is a gently varying curve,
it is usually approximated to that of an equivalent idealized
response, as illustrated in Fig. 6-3.

� The idealized version for the lowpass filter has
a rectangle-like envelope with a sudden transition at
ω = ωc. Accordingly, it also is called a brick-wall filter
and ωc is referred to as its cutoff frequency. These terms
also apply to the other three types of filters. �

Passband and stopband

The filter passband is the range ofω over which the filter passes
the input signal:

• 0 ≤ ω < ωc, for lowpass filter,

• ω > ωc, for highpass filter,

• ωc1 < ω < ωc2 , for bandpass filter,

• ω < ωc1 and ω > ωc2 , for bandreject filter. (6.6)

The stopband of the bandreject filter extends from ωc1 to ωc2

(Fig. 6-3(d)).

Bandwidth

For lowpass and bandpass filters, the bandwidth B denotes the
extent of the filter’s passband.

• B = ωc for lowpass filter (Fig. 6-3(a)).

• B = ωc2 − ωc1 for bandpass filter (Fig. 6-3(c)).

For highpass and bandreject filters, it is more appropriate to
describe the filter’s frequency response in terms of the rejection
bandwidth Brej.

• Brej = ωc for highpass filter (Fig. 6-3(b)).

• Brej = ωc2 − ωc1 for bandreject filter (Fig. 6-3(d)).

Per these definitions, B and Brej have units of rad/s, but
sometimes it is more convenient to define the bandwidths in
terms of the circular frequency f = ω/2π , in which caseB and
Brej are measured in Hz instead. For example, the bandwidth
of a lowpass filter with ωc = 100 rad/s is B = 100 rad/s, or
equivalently 100/2π = 15.92 Hz.

Resonant frequency ω0

� Resonance is a condition that occurs when the input
impedance or input admittance of a circuit containing
reactive elements is purely real, and the angular frequency
at which it occurs is called the resonant frequency ω0. �

Often, but not always, the transfer function H(ω) also is purely
real atω = ω0, and its magnitude is at its maximum or minimum
value.

Let us consider the two circuits shown in Fig. 6-5. The input
impedance of the RL circuit is simply

Zin1 = R + jωL. (6.7)

Resonance corresponds to when the imaginary part of Zin1 is
zero, which occurs at ω = 0. Hence, the resonant frequency of
the RL circuit is

ω0 = 0 (RL circuit). (6.8)

When ω0 = 0 (dc) or ∞, the resonance is regarded as a
trivial resonance because it occurs at the extreme ends of the
spectrum. This usually happens when the circuit has either an
inductor or a capacitor (but not both). A circuit that exhibits
only a trivial resonance, such as the RL circuit in Fig. 6-5(a),
is not considered a resonator.

If the circuit contains at least one capacitor and at least one
inductor, resonance can occur at intermediate values of ω. A
case in point is the series RLC circuit shown in Fig. 6-5(b). Its
input impedance is

Zin2 = R + j

(
ωL− 1

ωC

)
. (6.9)
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(a) First-order RL filter

+

_
+
−~Vs Zin1 VLL

R

+
_

(b) Series RLC circuit

+
_

+
−~Vs Zin2

VR

L

R

C

+
_

Figure 6-5: Resonance occurs when the imaginary part of the
input impedance is zero. For the RL circuit, Im [Zin1 ] = 0 when
ω = 0 (dc), but for the RLC circuit, Im [Zin2 ] = 0 requires that
ZL = −ZC , or ω2 = 1/LC.

At resonance (ω = ω0), the imaginary part of Zin2 is equal to
zero. Thus,

ω0L− 1

ω0C
= 0,

which leads to

ω0 = 1√
LC

(RLC circuit). (6.10)

So long as neither L nor C is zero or ∞, the transfer function
H(ω) = VR/Vs will exhibit a two-sided spectrum with a peak
at ω0, similar in shape to that of the bandpass filter response
shown in Fig. 6-3(c).

Roll-off rate Sg

Outside the passband, the rectangle-shaped idealized responses
shown in Fig. 6-3 have infinite slopes, but of course, the actual
responses have finite slopes. The steeper the slope, the more
discriminating the filter is, and the closer it approaches the
idealized response. Hence, the slope Sg outside the passband
(called the gain roll-off rate) is an important attribute of the
filter response.

6-2.2 RC Circuit Example

To illustrate the transfer-function concept with a concrete
example, let us consider the series RC circuit shown in
Fig. 6-6(a). Voltage source Vs is designated as the input phasor,
and on the output side we have designated two voltage phasors,
namely, VR and VC. We will examine the frequency responses
of the transfer functions corresponding to each of those two
output voltages.

Lowpass filter

Application of voltage division gives

VC = VsZC

R + ZC
= Vs/jωC

R + 1
jωC

. (6.11)

The transfer function corresponding to VC is

HC(ω) = VC

Vs
= 1

1 + jωRC
, (6.12)

where we have multiplied the numerator and denominator of
Eq. (6.11) by jωC to simplify the form of the expression.
In terms of its magnitude MC(ω) and phase angle φC(ω), the
transfer function is given by

HC(ω) = MC(ω) e
jφC(ω), (6.13)

with

MC(ω) = |HC(ω)| = 1√
1 + ω2R2C2

(6.14a)

and

φC(ω) = − tan−1(ωRC). (6.14b)

Frequency response plots for MC(ω) and φC(ω) are displayed
in Fig. 6-6(b). It is clear from the plot of its magnitude that the
expression given by Eq. (6.12) represents the transfer function
of a lowpass filter with a dc gain factor M0 = 1. At dc, the
capacitor acts like an open circuit, allowing no current to flow
through the loop, with the obvious consequence that VC = Vs.
At very high values of ω, the capacitor acts like a short circuit,
in which case the voltage across it is approximately zero.

Application of Eq. (6.5) allows us to determine the corner
frequency ωc:

M2
C(ωc) = 1

1 + ω2
cR

2C2 = 1

2
, (6.15)

which leads to

ωc = 1

RC
. (6.16)
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(b) Magnitude and phase angle of HC(ω) = VC / Vs

(a) RC circuit

Lowpass magnitude

(c) Magnitude and phase angle of HR(ω) = VR / Vs

+
_

+
−~Vs

VR

+
_ VC

R

C+
_

0
ω0

0.707

MC

1 0
ωc

ωc

ωc ωc

−π/4

−π/2

ω0

ϕC

0
ω0

1

0.707

MR

0

π/4

π/2

ω
0

ϕR

Lowpass phase

Highpass phaseHighpass magnitude

Figure 6-6: Lowpass and highpass frequency responses.

Highpass filter

The output across R in Fig. 6-6(a) leads to

HR(ω) = VR

Vs
= jωRC

1 + jωRC
. (6.17)

The magnitude and phase angle of HR(ω) are given by

MR(ω) = |HR(ω)| = ωRC√
1 + ω2R2C2

, (6.18a)
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Table 6-1: Correspondence between M and M [dB].

M M [dB]
10N 20N dB
103 60 dB
100 40 dB

10 20 dB
4 ≈ 12 dB
2 ≈ 6 dB
1 0 dB

0.5 ≈ −6 dB
0.25 ≈ −12 dB

0.1 −20 dB
10−N −20N dB

and

φR(ω) = π

2
− tan−1(ωRC). (6.18b)

Their spectral plots are displayed in Fig. 6-6(c).

6-2.3 Bode Plots

In the late 1930s, inventor Hendrik Bode (pronounced Boh-
dee) developed a graphical technique that has since become a
standard tool for the analysis and design of resonant circuits,
including filters, oscillators, and amplifiers. Bode’s technique,
which generates what we today call Bode plots or Bode
diagrams, relies on using a logarithmic scale for ω and on
expressing the magnitude of the transfer function in decibels
(dB):

M [dB] = 20 logM = 20 log |H|. (6.19)

The logarithm is in base 10. Note from Table 6-1 that 10N

becomes 20N in dB. A useful property of the log operator is
that the log of the product of two numbers is equal to the sum
of their logs. That is:

If G = XY G [dB] = X [dB] + Y [dB]. (6.20)

This result follows from

G [dB] = 20 log(XY) = 20 logX + 20 logY

= X [dB] + Y [dB].

By the same token,

If G = X

Y
G [dB] = X [dB] − Y [dB]. (6.21)

Conversion of products and ratios into sums and differences
will prove to be quite useful when constructing the frequency
response of a transfer function composed of the product of
multiple terms.

Exercise 6-1: Convert the following magnitude ratios to
dB: (a) 20, (b) 0.03, (c) 6 × 106.

Answer: (a) 26.02 dB, (b) −30.46 dB, (c) 135.56 dB.
(See S2 )

Exercise 6-2: Convert the following dB values to
magnitude ratios: (a) 36 dB, (b) −24 dB, (c) −0.5 dB.

Answer: (a) 63.1, (b) 0.063, (c) 0.94. (See S2 )

Example 6-1: RL Highpass Filter

For the series RL circuit shown in Fig. 6-7(a):

(a) Obtain an expression for the transfer function
H(ω) = Vout/Vs in terms of ω/ωc, where ωc = R/L.

(b) Determine the magnitudeM [dB], and plot it as a function
of ω on a log scale, with ω expressed in units of ωc.

(c) Determine and plot the phase angle of H(ω).

Solution:
(a) Voltage division gives

Vout = jωLVs

R + jωL
,

which leads to

H(ω) = Vout

Vs
= jωL

R + jωL
= j (ω/ωc)

1 + j (ω/ωc)
, (6.22)

with ωc = R/L.
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(a) RL circuit

+

_
Vs VoutL

R

(b) Magnitude plot (c) Phase plot
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20 dB
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             decade
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90o
90o

45o

−45o

−90o

+
_

2

2

1
1

Figure 6-7: Magnitude and phase plots of H(ω) = Vout/Vs.

(b) The magnitude of H(ω) is given by

M = |H(ω)| = (ω/ωc)

|1 + j (ω/ωc)| = (ω/ωc)√
1 + (ω/ωc)2

, (6.23)

and

M [dB] = 20 logM

= 20 log(ω/ωc)− 20 log[1 + (ω/ωc)
2]1/2

= 20 log(ω/ωc)︸ ︷︷ ︸
1

− 10 log[1 + (ω/ωc)
2]︸ ︷︷ ︸

2

. (6.24)

In the Bode-diagram terminology, the components of M [dB]
are called factors, so in the present case M [dB] consists of

two factors with the second one having a negative coefficient.
A magnitude plot is displayed on semilog graph paper with
the vertical axis in dB and the horizontal axis in (rad/s) on a
logarithmic scale. Figure 6-7(b) contains individual plots for
each of the two factors comprisingM [dB], as well as a plot for
their sum.

On semilog graph paper, the plot of log(ω/ωc) is a straight
line that crosses the ω-axis at (ω/ωc) = 1. This is because
log 1 = 0. At (ω/ωc) = 10, 20 log 10 = 20 dB. Hence,

20 log

(
ω

ωc

)
straight line with slope = 20
dB/decade and ω-axis cross-
ing at ω/ωc = 1.
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The second factor has a nonlinear plot with the following
properties:

Low-frequency asymptote

As (ω/ωc) ⇒ 0, −10 log

[
1 +
(
ω

ωc

)2
]

⇒ 0.

High-frequency asymptote

As (ω/ωc) ⇒ ∞, − 10 log

[
1 +
(
ω

ωc

)2
]

⇒ −20 log

(
ω

ωc

)
.

The plot of M [dB] is obtained by graphically adding together
the two plots of its individual factors (Fig. 6-7(b)). At low
frequencies (ω/ωc � 1), M [dB] is dominated by its first
factor; at ω/ωc = 1, M [dB] = −10 log 2 ≈ −3 dB; and at
high frequencies (ω/ωc 	 1), M [dB] → 0 because its two
factors cancel each other out. The overall profile is typical of the
spectral response of a highpass filter with a cutoff frequencyωc.

(c) From Eq. (6.22), the phase angle of H(ω) is

φ(ω) = 90◦︸︷︷︸
1

− tan−1
(
ω

ωc

)
︸ ︷︷ ︸

2

. (6.25)

The 90◦ component is contributed by j in the numerator and the
second term is the phase angle of the denominator. The phase
plot is displayed in Fig. 6-7(c).

6-2.4 Standard Form

When generating Bode magnitude and phase plots, the process
can be facilitated by casting the expression for H(ω) in a
standard form comprised of factors (either in the denominator
or numerator) of the form:

• K , where K is a constant,

• (jω/ωc1), where ωc1 is a constant,

• [1 + (jω/ωc2)], where ωc2 is a constant and the real part
is 1,

• [1 + (jω/ωc3)
2 + 2ξ(jω/ωc3)], where ωc3 and ξ are

constants and the non-ω part is 1.

The standard form may include second or higher orders of any
of the last three factors, such as (jω/ωc1)

2 or [1 + (jω/ωc2)]3.
In Eq. (6.22), H(ω)was cast in standard form by (a) dividing

the numerator and denominator by R so as to make the
real part of the denominator equal to 1 and (2) defining the
resultant coefficient ofω, namelyL/R, as 1/ωc. To illustrate the
conversion process for a more complicated expression, consider
the following sequence of steps:

H(ω) = (j10ω + 30)2

(5 + jω)(300 − 3ω2 + j60ω)

=
302
(

1 + j
ω

3

)2
5
(

1 + j
ω

5

)
300

(
1 − ω2

100
+ j

2ω

10

)

=
0.6
[
1 +
(
j
ω

3

)]2
(

1 + j
ω

5

) [
1 +
(
j
ω

10

)2 + 2
(
j
ω

10

)] .

Every factor in the final expression matches one of the standard-
form factors listed earlier. In the quadratic term, ξ = 1.

6-3 Passive Filters

Analog filters are of two types: passive and active.

� Passive filters are resonant circuits that contain only
passive elements (resistors, capacitors, and inductors). �

In contrast, active filters contain op amps, transistors, and/or
other active devices in addition to the passive elements.

The objective of this section is to examine the basic properties
of passive filters by analyzing their transfer functions. To that
end, we will use the series RLC circuit shown in Fig. 6-8 in
which we have designated four voltage outputs (namely, VR,
VL, and VC across the individual elements and VLC across
the combination of L and C). We will examine the frequency
responses of the transfer functions corresponding to all four
output voltages.

6-3.1 Bandpass Filter

The current I flowing through the loop in Fig. 6-9(a) is given
by

I = Vs

R + j (ωL− 1

ωC
)

= jωCVs

(1 − ω2LC)+ jωRC
, (6.26)
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Figure 6-8: Series RLC circuit.

where we multiplied the numerator and denominator by jωC
to simplify the form of the expression. The transfer function
corresponding to VR is

HBP(ω) = VR

Vs
= RI

Vs
= jωRC

(1 − ω2LC)+ jωRC
, (6.27)

where we added the subscript “BP” in anticipation of the fact
that HBP(ω) is the transfer function of a bandpass filter. Its
magnitude and phase angle are given by

MBP(ω) = |HBP(ω)| = ωRC√
(1 − ω2LC)2 + ω2R2C2

,

(6.28)
and

φR(ω) = 90◦ − tan−1
[

ωRC

1 − ω2LC

]
. (6.29)

According to the plot displayed in Fig. 6-9(b), MBP goes
to zero at both extremes of the frequency spectrum and
exhibits a maximum across an intermediate range centered
at ω0. Hence, the circuit functions like a bandpass (BP) filter,
allowing the transmission (through it) of signals whose angular
frequencies are close to ω0 and discriminating against those
with frequencies that are far away from ω0.

The general profile ofMBP(ω) can be discerned by examining
the circuit of Fig. 6-9(a) at specific values of ω. At ω = 0, the
capacitor behaves like an open circuit, allowing no current to
flow and no voltage to develop across R. As ω → ∞, it is the
inductor that acts like an open circuit, again allowing no current
to flow. In the intermediate frequency range when the value ofω
is such that ωL = 1/(ωC), the impedances of L and C cancel
each other out, reducing the total impedance of the RLC circuit
to R and the current to I = Vs/R. Consequently, VR = Vs and
HBP = 1. To note the significance of this specific condition, we
call it the resonance condition and we refer to the frequency at

(a) RLC circuit

+

_
Vs VR

ICL

R
+
_

B
ω0 2ω0 3ω0ωc1

ωc2

1

0.707

MBP

0
0

ω

Idealized

Magnitude

Phase

Actual

Bandpass

(b) MBP(ω)

(c) φBP(ω)

ω

−90o

0
3ω0ω0 2ω0

90o

ϕBP

Figure 6-9: Series RLC bandpass filter.

which it occurs as the resonant frequency ω0:

ω0 = 1√
LC

.

(resonant frequency)

(6.30)
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The phase plot in Fig. 6-9(c) conveys the fact that φBP is
dominated by the phase of C at low frequencies and by the
phase of L at high frequencies, and φBP = 0 at ω = ω0.

Filter bandwidth

The bandwidth of the bandpass filter is defined as the
frequency range extending between ωc1 and ωc2 , where ωc1

and ωc2 are the values of ω at which M2
BP(ω) = 0.5, or

MBP(ω) = 1/
√

2 = 0.707. The quantity M2
BP is proportional

to the power delivered to the resistor in the RLC circuit. At
resonance, the power is at its maximum, and at ωc1 and ωc2 the
power delivered to R is equal to 1/2 of the maximum possible.
That is why ωc1 and ωc2 are also referred to as the half-power
frequencies (or the 3 dB frequencies on a dB scale). Thus,

M2
BP(ω) = 1

2
@ ωc1 and ωc2 . (6.31)

Upon inserting the expression for MBP(ω) given by Eq. (6.28)
and carrying out several steps of algebra, we obtain the solutions

ωc1 = − R

2L
+
√(

R

2L

)2

+ 1

LC
, (6.32a)

and

ωc2 = R

2L
+
√(

R

2L

)2

+ 1

LC
. (6.32b)

The bandwidth is then given by

B = ωc2 − ωc1 = R

L
. (6.33)

Quality factor

� The quality factor of a circuit, Q, is an attribute
commonly used to characterize the degree of selectivity
of the circuit. �

Figure 6-10 displays frequency responses for three circuits, all
with the same ω0. The high-Q circuit exhibits a sharp response
with a narrow bandwidth (relative toω0), the medium-Q circuit
has a broader pattern, and the low-Q circuit has a pattern with
limited selectivity.

The formal definition of Q applies to any resonant system
and is based on energy considerations. For the RLC bandpass
filter,

Q = ω0

B
.

(RLC circuit)

(6.34)

Thus, Q is the inverse of the bandwidth B, normalized by the
center frequency ω0.

Table 6-2 provides a summary of the salient features of
the series RLC bandpass filter. For comparison, the table also
includes the corresponding list for the parallel RLC circuit.

Example 6-2: Two-Stage Bandpass Filter

Determine H(ω) = Vo/Vs for the two-stage BP-filter circuit
shown in Fig. 6-11. If Q1 = ω0L/R is the quality factor of a
single stage alone, what isQ2 for the two stages in combination,
given that R = 2 �, L = 10 mH, and C = 1 μF.

Solution: For each stage alone, we obtain

ω0 = 1√
LC

= 1√
10−2 × 10−6

= 104 rad/s

and

Q1 = ω0L

R
= 104 × 10−2

2
= 50.

The loop equations for mesh currents I1 and I2 are

−Vs + I1

(
jωL+ 1

jωC
+ R

)
− RI2 = 0

and

−RI1 + I2

(
2R + jωL+ 1

jωC

)
= 0.
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Figure 6-10: Examples of bandpass-filter responses.

Simultaneous solution of the two equations leads to

H(ω) = Vo

Vs
=

ω2R2C2

ω2R2C2 − (1 − ω2LC)2 − j3ωRC(1 − ω2LC)
=

ω2R2C2[ω2R2C2 − (1 − ω2LC)2 + j3ωRC(1 − ω2LC)]
[ω2R2C2 − (1 − ω2LC)2]2 + 9ω2R2C2(1 − ω2LC)2

.

Resonance occurs when the imaginary part of H(ω) is zero,
which is satisfied either when ω = 0 (which is a trivial

resonance) or whenω = 1/
√
LC . Hence, the two-stage circuit

has the same resonance frequency as a single-stage circuit.
Using the specified values of R, L, and C, we can calculate

the magnitude M(ω) = |H(ω)| and plot it as a function of ω.
The result is displayed in Fig. 6-11(b). From the spectral plot,
we have

ωc1 = 9963 rad/s, ωc2 = 10037 rad/s,

B2 = ωc2 − ωc1 = 10037 − 9963 = 74 rad/s,

and Q2 = ω0

B2
= 104

74
= 135,
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Table 6-2: Attributes of series and parallel RLC bandpass circuits.

RLC circuit
+

_
Vs VR

CL

R
+
_

+

_
Is VRCL R

+
_

Transfer function H = VR

Vs
H = VR

Is

Resonant frequency, ω0
1√
LC

1√
LC

Bandwidth, B
R

L

1

RC

Quality factor, Q
ω0

B
= ω0L

R

ω0

B
= R

ω0L

Lower half-power frequency, ωc1

[
− 1

2Q
+
√

1 + 1

4Q2

]
ω0

[
− 1

2Q
+
√

1 + 1

4Q2

]
ω0

Upper half-power frequency, ωc2

[
1

2Q
+
√

1 + 1

4Q2

]
ω0

[
1

2Q
+
√

1 + 1

4Q2

]
ω0

Notes: (1) The expression for Q of the series RLC circuit is the inverse of that for Q of the parallel circuit. (2)
For Q ≥ 10, ωc1 ≈ ω0 − B

2 , ωc2 ≈ ω0 + B
2 .

where B2 is the bandwidth of the two-stage BP-filter response.
The two-stage combination increases the quality factor from 50
to 135, and reduces the bandwidth from 200 rad/s to 74 rad/s.

6-3.2 Highpass Filter

Transfer function HHP(ω), corresponding to VL in the circuit
of Fig. 6-12(a), is given by

HHP(ω) = VL

Vs
= jωLI

Vs
= −ω2LC

(1 − ω2LC)+ jωRC
(6.35)

with a magnitude and phase angle of

MHP(ω) = ω2LC

[(1 − ω2LC)2 + ω2R2C2]1/2

= (ω/ω0)
2

{[1 − (ω/ω0)2]2 + [ω/(Qω0)]2}1/2 (6.36a)

and

φHP(ω) = 180◦ − tan−1
[

ωRC

1 − ω2LC

]

= 180◦ − tan−1
{

(ω/ω0)

Q[1 − (ω/ω0)2]
}
, (6.36b)

where ω0 and Q are defined by Eqs. (6.30) and (6.34),
respectively. Figure 6-12(b) displays logarithmic plots of
MHP [dB] for two values ofQ. BecauseMHP(ω) has a quadratic
pole, its slope in the stopband is 40 dB/decade.

6-3.3 Lowpass Filter

The voltage across the capacitor in Fig. 6-13(a) generates a
lowpass-filter transfer function given by

HLP(ω) = VC

Vs
= [1/(jωC)]I

Vs
= 1

(1 − ω2LC)+ jωRC
(6.37)
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Figure 6-11: Two-stage RLC circuit of Example 6-2.

with magnitude and phase angle given by

MLP(ω) = 1

[(1 − ω2LC)2 + ω2R2C2]1/2

= 1

{[1 − (ω/ω0)2]2 + [ω/(Qω0)]2}1/2 (6.38a)

and

φLP(ω) = − tan−1
(

ωRC

1 − ω2LC

)

= − tan−1
{

(ω/ω0)

Q[1 − (ω/ω0)2]
}
. (6.38b)

The spectral plots ofMLP [dB] shown in Fig. 6-13(b) are mirror
images of the highpass-filter plots displayed in Fig. 6-12(b).

6-3.4 Bandreject Filter

The output voltage across the combination of L and C

in Fig. 6-14(a), which generates a bandreject-filter transfer

(a) HHP = VL / Vs

+

_
Vs VL

ICR

L
+
_

(b) Magnitude spectrum

0.1ω0 10ω0

0

ω0
ω

MHP [dB]

10

20

−10

−20

−30

−40

Q = 10
(moderate
  resonance)

slope = 40 dB/decade

Passband

Stopband

Q = 2
(weak resonance)

Figure 6-12: Plots of MHP [dB] for Q = 2 (weak resonance)
and Q = 10 (moderate resonance).

function, is equal to Vs − VR:

HBR(ω) = VL + VC

Vs
= Vs − VR

Vs
= 1 − HBP(ω), (6.39)

where HBP(ω) is the bandpass-filter transfer function given by
Eq. (6.27). The spectral response of HBP passes all frequencies,
except for an intermediate band centered at ω0, as shown in
Fig. 6-14(b). The width of the stopband is determined by the
values of ω0 and Q.
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(a) HLP = VC / Vs

(b) Magnitude spectrum
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Figure 6-13: RLC lowpass filter.

6-3.5 Filter Order

� The order of a filter is equal to the absolute value of
the highest power of ω in its transfer function when ω is
in the filter’s stopband(s). The associated roll-off rate is
Sg = (20 × filter order) in dB/decade. �

Let us examine this definition for two circuit configurations.

First-order lowpass RC filter

The transfer function of the RC circuit shown in Fig. 6-15(a) is
given by

H1(ω) = VC

Vs
= 1/(jωC)

R + 1/(jωC)

= 1

1 + jωRC

= 1

1 + jω/ωc1

(first order), (6.40)

where we multiplied both the numerator and denominator by
jωC so as to rearrange the expression into a form in which ω
is normalized to the corner frequency given by

ωc1 = 1

RC
(RC filter). (6.41)

It is evident from the expression given by Eq. (6.40) that the
highest order of ω is 1, and therefore the RC circuit is a first-
order filter. Strict application of the definition for the order of
a filter requires that we evaluate the power of ω when ω is
in the stopband of the filter. In the present case, the stopband
covers the range ω ≥ ωc1 . When ω is well into the stopband
(ω/ωc1 	 1), Eq. (6.40) simplifies to

H1(ω) ≈ −jωc1

ω
(for ω/ωc1 	 1), (6.42)

which confirms the earlier conclusion that the RC circuit is
first-order. The corresponding roll-off rate is −20 dB/decade.

Second-order lowpass filter

For the RLC circuit shown in Fig. 6-15(c), we determined in
Section 6-2.3 that its transfer function is given by

H2(ω) = VC

Vs
= 1

(1 − ω2LC)+ jωRC
. (6.43)

The magnitude spectrum of the RLC lowpass filter was
presented earlier in Fig. 6-13(b), where it was observed
that the response may exhibit a resonance phenomenon in
the neighborhood of ω0 = 1/

√
LC, and that it decays with

Sg = −40 dB/decade in the stopband (ω ≥ ω0). This is
consistent with the fact that the RLC circuit generates a
second-order lowpass filter when the output voltage is taken
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(a) HBR = VLC / Vs
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(b) Spectral response
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Figure 6-14: Bandreject filter.

across the capacitor. In terms of our definition for the order of
a filter, in the stopband (ω2 	 1/LC), Eq. (6.43) reduces to

H2(ω) ≈ −1

ω2LC
(for ω 	 ω0), (6.44)

which assumes the form of a second-order pole.

Example 6-3: RLC Bandpass Filter

Is the RLC bandpass filter first-order or second-order?

Solution: To answer the question, we start by examining the
expression for the transfer function when ω is in the stopbands
of the filter. The expression for HBP(ω) is given by Eq. (6.27)
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Figure 6-15: Comparison of magnitude responses of the first-order RC filter and the second-order RLC filter.

as

HBP(ω) = jωRC

1 − ω2LC + jωRC
. (6.45)

For ω � ω0 and ω 	 ω0 (where ω0 = 1/
√
LC), the expres-

sion simplifies to

HBP(ω) ≈

⎧⎪⎨
⎪⎩
jωRC for ω � ω0 and ω � RC,

−jR
ωL

for ω 	 ω0.
(6.46)

At the low-frequency end, HBP(ω) is proportional to ω, and at
the high-frequency end, it is proportional to 1/ω. Hence, the
RLC bandpass filter is first-order, not second-order.

6-3.6 Real versus Idealized Filters

The higher the order of a real filter is, the steeper is its roll-off
rate Sg, and the closer it approaches the idealized brick-wall
spectrum. Can idealized filters be realized, and if not, how and
why do we use them? Because their spectra are discontinuous
at junctions between their passbands and stopbands, idealized
filters are not realizable. Nevertheless, they serve as convenient
models with which to analyze and/or synthesize applications of
interest, as an initial step prior to developing and implementing
approximate equivalents in the form of real filters.

Exercise 6-3: Determine the order of

H(ω) = Vout/Vs

for the circuit in Fig. E6-3.

Figure E6-3

+

_
Vs VoutR

+
_ L

CC

Answer:

H(ω) = jω3RLC2

ω2LC − (1 − ω2LC)(1 + jωRC)
,

which describes a highpass filter. In the stopband (very
small values of ω), H(ω) varies as ω3. Hence, it is third
order. (See S2 )
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6-4 Active Filters

The four basic types of filters we examined in earlier sections
(lowpass, highpass, bandpass, and bandreject) are all relatively
easy to design, but they do have a number of drawbacks.
Passive elements cannot generate energy, so the power gain of
a passive filter cannot exceed 1. Active filters (by comparison)
can be designed to provide significant gain in addition to
realizing the specified filter performance.A second drawback of
passive filters has to do with inductors. Whereas capacitors and
resistors can be easily fabricated in planar form on machine-
assembled printed circuit boards, inductors are generally more
expensive to fabricate and more difficult to integrate into the rest
of the circuit, because they are bulky and three-dimensional
in shape. In contrast, op-amp circuits can be designed to
function as filters without the use of inductors. The intended
operating-frequency range is an important determining factor
in choosing what type of filter is best to design and use. Op
amps generally do not perform reliably at frequencies above
1 MHz, so their use as filters is limited to lower frequencies.
Fortunately, inductor size becomes less of a problem above
1 MHz (because ZL = jωL, necessitating a smaller value forL
and, consequently, a physically smaller inductor), so passive
filters are the predominant type used at the higher frequencies.

� One of the major assets of op amp circuits is that
they can be easily cascaded together, both in series and
in parallel, to realize the intended function. Moreover,
by inserting buffer circuits between successive stages,
impedance mismatch and loading problems can be
minimized or avoided altogether. �

6-4.1 Single-Pole Lowpass Filter

According to Section 4-5, the input and output voltages of the
inverting op-amp circuit shown in Fig. 6-16(a) are related by

υout = −Rf

Rs
υs. (6.47)

Let us now transform the circuit into the frequency domain and
generalize it by replacing resistors Rs and Rf with impedances
Zs and Zf , respectively, as shown in Fig. 6-16(b). Further, let
us retain Zs as Rs, but specify Zf as the parallel combination
of a resistor Rf and a capacitor Cf . By analogy with Eq. (6.47),
the equivalent relationship for the circuit in Fig. 6-16(b) is

Vout = −Zf

Zs
Vs, (6.48)

(a) Inverting amplifier

(b) Phasor domain with impedances

υs

Rs

Rf

υout
+
_

+

_

+
_

Rs

Rf

Cf

Vout
Vs

Zf

Zs

+
_

+
_

+
_

Figure 6-16: Inverting amplifier functioning like a lowpass filter.

with

Zs = Rs, (6.49a)

Zf = Rf ‖
(

1

jωCf

)
= Rf

1 + jωRfCf
. (6.49b)

The transfer function of the circuit, which we will soon
recognize as that of a lowpass filter, is given by

HLP(ω) = Vout

Vs
= −Zf

Zs
= −Rf

Rs

(
1

1 + jωRfCf

)

= GLP

(
1

1 + jω/ωLP

)
, (6.50)

where

GLP = −Rf

Rs
and ωLP = 1

RfCf
. (6.51)

The expression for GLP is the same as that of the original
inverting amplifier, and ωLP is the cutoff frequency of the
lowpass filter. Except for the gain factor, the expression given
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Figure 6-17: Single-pole active highpass filter.

by Eq. (6.50) is identical in form with Eq. (6.40), the transfer
function of the RC lowpass filter. A decided advantage of the
active lowpass filter over its passive counterpart is that ωLP is
independent of both the input resistance Rs and any non-zero
load resistance RL that may be connected across the op amp’s
output terminals.

6-4.2 Single-Pole Highpass Filter

If in the inverting amplifier circuit, we were to specify the input
and feedback impedances as

Zs = Rs − j

ωCs
and Zf = Rf , (6.52)

as shown in Fig. 6-17, we would obtain the highpass filter
transfer function given by

HHP(ω) = Vout

Vs
= −Zf

Zs
= − Rf

Rs − j/(ωCs)

= GHP

[
jω/ωHP

1 + jω/ωHP

]
, (6.53)

where

GHP = −Rf

Rs
and ωHP = 1

RsCs
. (6.54)

The expression given by Eq. (6.53) represents a first-order
highpass filter with a cutoff frequencyωHP and a high frequency
gain factor GHP.

Concept Question 6-1: What are the major advantages
of active filters over their passive counterparts?
(See        )

Concept Question 6-2: Are active filters used mostly at
frequencies below 1 MHz or above 1 MHz? (See        )

Exercise 6-4: Choose values for Rs and Rf in the circuit
of Fig. 6-16(b) so that the gain magnitude is 10 and the
corner frequency is 103 rad/s, given that Cf = 1 μF.

Answer: Rs = 100 �, Rf = 1 k�. (See S2 )

6-4.3 Cascaded Active Filters

The active lowpass and highpass filters we examined thus
far—as well as other op-amp configurations that provide
these functions—can be regarded as basic building blocks that
can be easily cascaded together to create second- or higher-
order lowpass and highpass filters, or to design bandpass and
bandreject filters (Fig. 6-18).

� The cascading approach allows the designer to work
with each stage separately and then combine all of the
stages together to achieve the desired specifications. �

Moreover, inverting or noninverting amplifier stages can be
added to the filter cascade to adjust the gain or polarity of the
output signal, and buffer circuits can be inserted in-between
stages to provide impedance isolation, if necessary. Throughout
the multistage process, it is prudent to compare the positive and
negative peak values of the voltage at the output of every stage
with the op amp’s power supply voltages VCC and −VCC to
make sure that the op amp will not go into saturation mode.

Example 6-4: Third-Order Lowpass Filter

For the three-stage active filter shown in Fig. 6-19, generate
dB plots for M1, M2, and M3, where M1 = |V1/Vs|,
M2 = |V2/Vs|, and M3 = |V3/Vs|.
Solution: Since all three stages have the same values for Rf
and Cf , they have the same cutoff frequency

ωLP = 1

RfCf
= 1

104 × 10−9 = 105 rad/s.

The input resistance of the first stage is 10 �, but the input
resistances of the second and third stages are 10 k�. Hence,

G1 = −10k

10
= −103

and

G2 = G3 = −10k

10k
= −1.
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(a) Bandpass filter (b) Bandreject filter

Bandpass Filter Bandreject Filter

Bandstop

LP filter HP filterHP filter

M

ω
ωLP ωHP

Vs Vout

LP filter
with ωLP

HP filter 
with ωHP

Summing
amplifier

Bandpass

LP filter

M

ω
ωHP ωLP

Vs Vout
LP filter
with ωLP

HP filter
with ωHP

Figure 6-18: In-series cascade of a lowpass and a highpass filter generates a bandpass filter; in-parallel cascading generates a bandreject
filter.

Transfer function M1 is therefore given by

M1 =
∣∣∣∣V1

Vs

∣∣∣∣ = | G1

1 + jω/ωLP
| = 103√

1 + (ω/105)2
,

and

M1 [dB] = 20 log

[
103√

1 + (ω/105)2

]

= 60 dB − 10 log[1 + (ω/105)2].

The transfer function corresponding to V2 is

M2 =
∣∣∣∣V2

V1
· V1

Vs

∣∣∣∣ =
∣∣∣∣ G1

1 + jω/ωLP

∣∣∣∣
∣∣∣∣ G2

1 + jω/ωLP

∣∣∣∣
= 103

1 + (ω/105)2
,

and

M2 [dB] = 20 log

[
103

1 + (ω/105)2

]

= 60 dB − 20 log[1 + (ω/105)2].

Similarly,

M3 [dB] = 60 dB − 30 log[1 + (ω/105)2].

The three-stage process is shown in Fig. 6-19(b) in block
diagram form, and spectral plots of M1 [dB], M2 [dB], and
M3 [dB] are displayed in Fig. 6-19(c). We note that the gain
roll-off rate Sg is −20 dB for M1 [dB], −40 dB for M2 [dB],
and −60 dB for M3 [dB]. We also note that the −3 dB corner
frequencies are not the same for the three stages.

Concept Question 6-3: Why is it more practical to 
cascade multiple stages of active filters than to cascade 
multiple stages of passive filters? (See        )

Concept Question 6-4: What determines the gain factors
of highpass and lowpass op-amp filters? (See        )

Exercise 6-5: What are the values of the corner
frequencies associated with M1, M2, and M3 of
Example 6-4?

Answer: ωc1 = 105 rad/s, ωc2 = 0.64ωc1 = 6.4 × 104

rad/s, ωc3 = 0.51ωc1 = 5.1 × 104 rad/s. (See S2 )
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(b) Block diagram

(c) Transfer function plots

(a) Circuit diagram

Vs

V1

V3

+

_
+

_10 Ω
10 kΩ

10 kΩ
10 kΩ

1 nF
1 nF

+
_

V2

+

_
+

_

10 kΩ
10 kΩ

1 nF

V3Vs
V1

Lowpass
ωLP = 105 rad/s

G = −103

V2
Lowpass

ωLP = 105 rad/s
G = −1

Lowpass
ωLP = 105 rad/s

G = −1

dB

60

40

20

10

0

30

50

57

ω (rad/s)

ωc2

ωc1ωc3 105104 106 107

M1 [dB]

M3 [dB]

−20 dB/decade (1st order)

−60 dB/decade (3rd order)

M2 [dB]
−40 dB/decade (2nd order)

Figure 6-19: Three-stage lowpass filter and corresponding transfer functions.

6-5 Ideal Brick-Wall Filters

In past sections, the frequency responses of filters were plotted
as a function of only positive values ofω. Even though “negative
frequency” has no physical meaning, we find it mathematically

convenient to defineω over −∞ to ∞, just as we do with time t .
The Fourier transform of a time-domain signal is a frequency-
domain function that extends over both positive and negative
frequencies. The same is true for systems; a system with an
impulse response h(t) has frequency response H(ω), with the
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ω
−2πfc 2πfc0

1

|HLP(ω)|

Figure 6-20: Frequency response of brick-wall lowpass filter.

latter being the Fourier transform of the former. Fortunately,
for real systems, H(ω) enjoys conjugate symmetry. As noted
in connection with Eq. (2.109), conjugate symmetry means that

H(−ω) = H∗(ω) (conjugate symmetry)

(6.55)
or, equivalently, its magnitude |H(ω)| is an even function of ω
and its phase H(ω) is an odd function. Hence, if we know
H(ω) for ω ≥ 0, we can construct it for ω ≤ 0 as well. Plots
of H(ω) as a function of ω for ω ≥ 0 are one-sided frequency
responses, whereas plots over −∞ < ω < ∞ are two-sided
frequency responses. As we work with both one-sided and
two-sided spectra in future sections, it is important to keep the
implications of the conjugate-symmetry property in mind.

6-5.1 Brick-Wall Lowpass Filter

A brick-wall lowpass filter with cutoff frequency fc exhibits
the frequency response displayed in Fig. 6-20. That is,

HLP(ω) =
{

1 for |ω| < 2πfc,

0 for |ω| > 2πfc.
(6.56)

The name brick wall is associated with the abrupt change at
ω = ±2πfc, between its passband and reject bands. As will
be demonstrated in Example 6-5, a filter with such an abrupt
response is physically unrealizable.

Example 6-5: Lowpass Filtering of a Square Wave

A square wave given by

x(t) =
{
π/4 for 2nπ < t < (2n+ 1)π,

−π/4 for (2n− 1)π < t < 2nπ,
(6.57)

for all integer values of n is used as the input signal into a brick-
wall lowpass filter with a cutoff frequency of 1 Hz. Determine
(a) the output signal y(t) and (b) the impulse response of the
filter.

Solution:
(a) According to entry #2 in Table 5-4, a square wave of

amplitudeA = π/4 and period T = 2π is given by the Fourier
series

x(t) = sin(t)+1

3
sin(3t)+1

5
sin(5t)+1

7
sin(7t)+· · · , (6.58)

which consists of components at frequencies

f1 = 1

2π
= 0.16 Hz, f3 = 3

2π
= 0.48 Hz,

f5 = 5

2π
= 0.80 Hz, f7 = 7

2π
= 1.11 Hz, etc.

The brick-wall filter with a cutoff frequency fc = 1 Hz will
allow only the first three components to pass through. Hence,

y(t) = sin(t)+ 1

3
sin(3t)+ 1

5
sin(5t). (6.59)

(b) The impulse response h(t) of any filter can be computed
by taking the inverse Fourier transform of the filter’s frequency
response H(ω). For a brick-wall lowpass filter with cutoff
frequency fc, application of Eq. (5.87b) to Eq. (6.56) leads
to

hLP(t) = F−1 {HLP(ω)}

= sin(2πfct)

πt
= 2fc sinc(2πfct), (6.60)

where the sinc function was defined by Eq. (5.79) as
sinc(x) = [sin(x)]/x. A plot of the impulse response is
displayed in Fig. 6-21.

� Because hLP(t) is everlasting (exists over −∞ to +∞),
it is noncausal, which means that the brick-wall lowpass
filter cannot exist physically. �

However, it is possible to design realizable filters, such as the
Butterworth filter of Section 6-8, that can closely approximate
the brick-wall filter.
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Figure 6-21: Impulse response of brick-wall lowpass filter with
cutoff frequency fc.

6-5.2 Brick-Wall Bandpass Filter

A brick-wall bandpass filter has cutoff frequencies fc1 and fc2

and exhibits the frequency response shown in Fig. 6-22. Its
impulse response hBP(t) can be obtained by applying the
modulation property of the Fourier transform (Table 5-7)
which, when stated in terms of hLP(t) and its Fourier transform
HLP(ω), takes the form

hLP(t) cos(ω0t)
1

2
[HLP(ω − ω0)+ HLP(ω + ω0)].

(6.61)
The bandpass filter spectrum is equivalent to the sum
of two lowpass spectra with one shifted to the right by
2πf0 = π(fc2 +fc1) and another shifted to the left by the same
amount. Hence, if we define

f0 = 1

2
(fc2 + fc1) (6.62a)

and
fc = 1

2
(fc2 − fc1), (6.62b)

application of the modulation property—with hLP(t) as given
by Eq. (6.60)—leads to

hBP(t) = 2
sin(2πfct)

πt
cos(2πf0t)

= 2
sin[π(fc2 − fc1)t]

πt
cos[π(fc2 + fc1)t]

= 2(fc2 − fc1) sinc[π(fc2 − fc1)t] cos[π(fc2 + fc1)t].
(6.63)

If f0 = 0, the bandpass-filter frequency response collapses into
the sum of two identical lowpass-filter responses. Accordingly,
if we set f0 = 0 in Eq. (6.63), the expression for hBP(t) reduces
to 2hLP(t).

(a) Bandpass filter

ω
−2πfc1

−2πfc2
2πfc1

2πfc20

1

|HBP(ω)|

(c) Bandreject filter

ω
−2πfc1

−2πfc2
2πfc1

2πfc20

1

|HBR(ω)|

(b) Highpass filter

ω
−2πfc 2πfc0

1

|HHP(ω)|

Figure 6-22: Frequency responses of brick-wall bandpass,
highpass, and bandreject filters.

6-5.3 Brick-Wall Highpass Filter

The frequency response of the brick-wall highpass filter shown
in Fig. 6-22(b) is related to that of the lowpass filter by

HHP(ω) = 1 − HLP(ω).

The inverse Fourier transform of 1 is δ(t). Hence,

hHP(t) = δ(t)− hLP(t) = δ(t)− 2fc sinc(2πfct).

6-5.4 Brick-Wall Bandreject Filter

Similarly, the frequency response of a bandreject filter is

HBR(ω) = 1 − HBP(ω)
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and
hBR(t) = δ(t)− hBP(t),

where hBP(t) is given by Eq. (6.63).

Concept Question 6-5: How can we tell right away that
the impulse response of a brick-wall lowpass filter must 
be noncausal? (See        )

Concept Question 6-6: What property of the Fourier
transform can be used to obtain the impulse response
of a brick-wall bandpass filter from that of a brick-wall 
lowpass filter? (See        )

Exercise 6-6: Determine the output from a brick-wall
lowpass filter with a cutoff frequency of 0.2 Hz, given
that the input is the square wave given by Eq. (6.57).

Answer: y(t) = sin(t). (See S2 )

Exercise 6-7: Determine the output from a brick-wall
bandpass filter with fc1 = 0.2 Hz and fc2 = 1 Hz, given
that the input is the square wave given by Eq. (6.57).

Answer: y(t) = 1
3 sin 3(t)+ 1

5 sin 5(t). (See S2 )

6-6 Filter Design by Poles and Zeros

� The frequency response of a filter is governed—within
a multiplicative scaling constant—by the locations of the
poles and zeros of its transfer function H(s). �

The s-domain transfer function of an LTI filter with n poles
{pi , i = 1, 2, . . . , n} and m zeros {zi , i = 1, 2, . . . , m} is
given by Eq. (3.54b) as

H(s) = C

∏m
i=1(s − zi )∏n
i=1(s − pi )

, (6.64)

where C is a constant. For sinusoidal signals, we replace s with
jω to obtain the frequency response:

H(ω) = H(s)
∣∣
s=jω = C

∏m
i=1(jω − zi )∏n
i=1(jω − pi )

. (6.65)

As a complex function, H(ω) is characterized by two frequency
responses, a magnitude response (also called gain) M(ω) and
a phase response φ(ω). For the present, we will focus our

attention on M(ω), primarily because it alone controls which
frequencies of the input signal’s spectrum are emphasized,
attenuated, or eliminated altogether.

� We will consider only filters that satisfy the following
two conditions:

(a) Poles always occur in conjugate pairs, and the same
applies to zeros, thereby qualifying the system as a real
LTI system.

(b) Poles are always located in the open left half-plane
(OLHP) in the complex plane; this is a necessary and
sufficient condition for BIBO stability. �

This and succeeding sections aim to address the following
corollary questions:

(1) Filter analysis: How does the location of a pole or zero
in the complex plane affect a filter’s magnitude responseM(ω)?

(2) Filter design: Conversely, given a desired (ideal)
frequency response Mideal(ω), how should the locations of the
poles and zeros be selected so as to realize a filter with a
frequency responseM(ω) that closely approximatesMideal(ω)?

The answer to the first question should provide the insight
needed to develop design tools and approaches to address the
second question (at least partially).

6-6.1 Single-Zero Transfer Function

By initially analyzing how the spectrum ofM(ω) is influenced
by the locations of a single pair of conjugate zeros and then
repeating the process for a single pair of conjugate poles, we can
extend the results to transfer functions H(ω) with any number
of poles and zeros.

Consider an LTI system with conjugate zeros given by

{
z, z∗} = −α ± jω0. (6.66)

Both α and ω0 are positive real numbers. In the complex plane
(Fig. 6-23(a)), the conjugate zeros are symmetrically located
in the OLHP at a distance α from the jω-axis. Application of
Eq. (6.65) with C = 1 gives

M(ω) = |H(ω)|
= |jω − (−α + jω0)||jω − (−α − jω0)| = l1l2,

(6.67)

where l1 and l2 are the lengths of the two vectors from any
point (0, jω) to the two zeros at (−α, jω0) and (−α,−jω0).
Since C is just a scaling factor, setting it equal to 1 has no
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Figure 6-23: Magnitude spectrum for a single pair of conjugate zeros located at (−α ± jω0).

impact on the shape of the spectrum shown in Fig. 6-23(b).
The spectrum exhibits minima at approximately ω = ±ω0,
corresponding to the minimum value that l1 can assume,
namely α. As point (0, jω) is moved above or below point
(0, jω0), while remaining close to (0, jω0) on the jω-axis, l1
changes appreciably, but l2 does not. Consequently, the location
of the dip atω = ω0 is governed primarily by the location of the
zero in the upper half-plane, and the magnitude of the frequency
response at that point is

Mmin ≈ M(±ω0) = α(α2 + 4ω2
0)

1/2. (6.68)

Since the zeros are conjugate pairs, the magnitude spectrum is
symmetrical with respect to the vertical axis, with an identical
minimum at ω = −ω0.

Of particular interest in filter design is when α is zero or
very small in absolute magnitude relative to ω0, because then
Mmin ≈ 0. This corresponds to locating the conjugate zeros on
or very close to the jω-axis.

� Since the location of a zero does not impact system
stability, α may be positive, negative, or zero. �

6-6.2 Single-Pole Transfer Function

Now we consider a transfer function composed of a single pair
of conjugate poles given by

{
p, p∗} = −α ± jω0. (6.69)

The corresponding magnitude response from Eq. (6.65) with
C = 1 is

M(ω) = |H(ω)|

= 1

|jω − (−α + jω0)| · 1

|jω − (−α − jω0)| = 1

l1l2
.

(6.70)
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Figure 6-24: Magnitude spectrum for a single pair of conjugate poles.

Repetition of the analysis we performed in the preceding
subsection for the pair of conjugate zeros leads to the spectrum
shown in Fig. 6-24, where we observe peaks at approximately
ω = ±ω0. Their magnitudes are

Mmax ≈ M(±ω0) = 1

α(α2 + 4ω2
0)

1/2
. (6.71)

A stable system cannot have poles on or to the right of the
jω-axis. Hence, to generate a reasonably selective spectrum,
α should be positive and very small relative to ω0, placing the
poles near the jω-axis in the OLHP.

� If a system has zeros {ai ± jbi} and poles {ci ± jdi},
the magnitude of its frequency response,M(ω), will have
peaks at ω = ±di if |ci | is small, and dips at ω = ±bi if
|ai | is small. �

Example 6-6: Draped-Like Spectrum

Given a filter with zeros zi = {±j2, 0.1 ± j4}, poles
pi = {−0.5 ± j1, −0.5 ± j3, −0.5 ± j5}, and a scaling factor
C = 1, generate and plot its magnitude spectrum M(ω).

Solution: The locations of the two zero-pairs indicates that the
spectrum will exhibit minima at ω = ±2 rad/s and ±4 rad/s.
Similarly, the locations of the pole-pairs indicate maxima at
ω = ±1 rad/s, ±3 rad/s and ±5 rad/s. The complete expression
for M(ω) is

M(ω) = |(jω − j2)(jω + j2)|
× |(jω − 0.1 − j4)(jω − 0.1 + j4)|

×
∣∣∣∣ 1

(jω + 0.5 − j1)(jω + 0.5 + j1)

∣∣∣∣
×
∣∣∣∣ 1

(jω + 0.5 − j3)(jω + 0.5 + j3)

∣∣∣∣
×
∣∣∣∣ 1

(jω + 0.5 − j5)(jω + 0.5 + j5)

∣∣∣∣ .
The calculated spectrum displayed in Fig. 6-25 resembles a wire
draped over electrical poles atω = ±1 rad/s,ω = ±3 rad/s, and
ω = ±5 rad/s and pinned to the ground at ω = ±2 rad/s and
ω = ±4 rad/s. Hence, we use the nomenclature poles and zeros.

Concept Question 6-7: What effects do the locations of 
the poles and zeros of a system’s transfer function H(s) 
have on the system’s frequency response? (See        )
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Figure 6-25: Magnitude spectrum of a frequency response composed of 2 pairs of conjugate zeros and 3 pairs of conjugate poles
(Example 6-6).

Concept Question 6-8: Why is phase less important than
magnitude when designing filters? (See        )

Exercise 6-8: An LTI system has zeros at ±j3. What
sinusoidal signals will it eliminate?

Answer: A cos(3t + θ) for any constant A and θ .
(See S2 )

Exercise 6-9:An LTI system has poles at −0.1±j4. What
sinusoidal signals will it emphasize?

Answer: A cos(4t + θ) for any constant A and θ .
(See S2 )

6-7 Frequency Rejection Filters

Now that we understand the connection between the locations
of poles and zeros in the complex plane and the corresponding
general shape of the magnitude spectrum, we will briefly
explore how to design filters for practical applications. The
emphasis of the present section is on designing filters that reject

one or more bands of frequencies while passing all others. In
contrast, future sections will be oriented along the direction of
passing signals in specific bands, while rejecting all others.

6-7.1 Notch Filters: Removing Sinusoidal
Interference

Power lines outdoors and electrical wires in buildings often act
like antennas, radiating 60 Hz sinusoids into their surroundings.
Some of the radiated energy may get picked up by wires and
conductors in electronic circuits, causing interference with the
signals carried by those circuits. While proper circuit grounding
can reduce the interference problem, it may still be necessary
to block the 60 Hz interference from entering the circuit or to
remove it if it has already superimposed itself onto the signal.
If the signal spectrum is concentrated at frequencies well below
or well above 60 Hz, we can use a lowpass or highpass filter,
respectively, to remove the 60 Hz interference, but most realistic
signal spectra have frequency components on both sides of
60 Hz. In that case we seek a bandreject filter with a very narrow
bandstop centered at 60 Hz, as shown in Fig. 6-26. Because its
magnitude spectrum exhibits a narrow notch at 60 Hz, it is called
a 60 Hz notch filter. The ideal transfer function of a notch filter
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Figure 6-26: Magnitude spectrum of notch filter for removing
60 Hz interference.

is

Hideal(ω) =
{

1 for ω �= ±ω0,

0 for ω = ±ω0,
(6.72)

where ω0 = 2πf0 and f0 is the notch frequency.

(a) First attempt: Zeros only

To eliminate a sinusoidal input signal at an angular
frequency ω0, the filter’s transfer function should have
conjugate zeros at ±jω0. In our first design attempt, we
will construct a simplistic filter with zeros at ±jω0 (but no
other poles or zeros) and we shall denote its transfer function
Hzero(ω). With C = 1, Eq. (6.65) becomes

Hzero(ω) = (jω − jω0)(jω + jω0) = ω2
0 − ω2. (6.73)

From its magnitude spectrum displayed in Fig. 6-27(a), we
observe that the filter indeed rejects signals at ω = ±ω0, but
the response is anything but constant at other frequencies. In
fact Mzero(ω) → ∞ as |ω| → ∞. Clearly, this is not a viable
notch filter.

(b) Second attempt: Notch filter with parallel poles and
zeros

In addition to exhibiting nulls at ω = ±ω0, we would like the
magnitudeM(ω) to be a constant (flat) at all other frequencies.
This can be achieved by placing poles in parallel with and
very close to the zeros. To the zero at location (0, jω0) in the
complex plane, we add a parallel pole at location (−α, jω0),
as shown in Fig. 6-27(b), with α chosen to be positive (so the

pole is in the OLHP) and small in magnitude relative to ω0.
In Fig. 6-27(b), α = 0.1ω0. A similar pole placement is made
next to the zero at (0,−jω0). The significance of the ratio
α/ω0, which determines how closely a pole is located to its
neighboring zero, will be discussed later in this subsection.

The transfer function of this parallel pole/zero filter is

Hnotch(ω) = (jω − jω0)(jω + jω0)

(jω + α − jω0)(jω + α + jω0)
. (6.74)

The magnitude spectrum Mnotch(ω) is displayed in
Fig. 6-27(b) for α = 0.1ω0. Not surprisingly, Mnotch(ω)

does exhibit nulls at ω = ±ω0, but away from the immediate
vicinities of ω = ±ω0, the spectrum is essentially flat. This
is due to the fact that except in the immediate vicinities of
ω = ±ω0, the ratio of each zero/pole magnitude combination
is approximately 1, so long as α � ω0.

� In essence, each pole cancels the contribution of
its parallel zero, except at or near ω = ±ω0, thereby
generating the desired notch-filter spectrum. �

(c) The role of α

The selectivity of the notch-filter spectrum is dictated by the
parameter

β = tan−1
(
α

ω0

)
, (6.75)

where β is the angle shown in Fig. 6-28(a). To appreciate the
role of β, we show in Fig. 6-28(b) magnitude spectra for several
values of β from which it is evident that to generate a highly
selective notch filter (very narrow notch) β should be made
as small as possible. Since ω0 is the angular frequency of the
interfering signal to be removed by the notch filter, it is not a
selectable parameter, but α is. Hence, from the standpoint of
spectral selectivity, α should be selected so that α/ω0 � 1.

However, α plays another, equally important role that also
should be taken into consideration. In fact, this second role,
which has to do with the transient component of the impulse
response of the filter, favors a value for α large enough to insure
that the transient component of the output response decays
quickly after the introduction of the input signal (see Section
3-11).

To evaluate the general nature of the transient response to an
input signal, we obtain the transfer function of the notch filter
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Figure 6-27: Two attempts at designing a filter to reject ω0 = ±120π (rad/s); i.e., f0 = 60 Hz.

by replacing jω with s in Eq. (6.74),

Hnotch(s) = Hnotch(ω)|jω=s

= (s − jω0)(s + jω0)

(s + α − jω0)(s + α + jω0)

= s2 + ω2
0

(s + α)2 + ω2
0

= s2 + 2αs + α2 + ω2
0

(s + α)2 + ω2
0

− (2αs + α2)

(s + α)2 + ω2
0

= 1 − (2αs + α2)

(s + α)2 + ω2
0

, (6.76)

where in the last step, we applied the division relationship
given by Eq. (3.55) to convert H(s) from a proper rational
function (numerator and denominator of the same degree)
into a form Hnotch = 1 + G(s), where G(s) is a strictly
proper rational function (degree of numerator smaller than
that of denominator). Application of partial fraction expansion
followed by transformation to the time domain leads to the
impulse response:

hnotch(t) = δ(t)− Ae−αt cos(ω0t + θ) u(t) (6.77)

with

A =
[

4α2 + α4

ω2
0

]1/2

, and θ = tan−1
(
α

2ω0

)
. (6.78)
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Figure 6-28: Notch-filter magnitude spectra for various values of β.

Example 6-7: Rejecting an Interfering Tone

Design a notch filter to reject a 1 kHz interfering sinusoid. The
filter’s impulse response should decay to less than 0.01 within
0.1 s.

Solution: At 1 kHz,

ω0 = 2πf0 = 2π × 103 = 6283 rad/s.

To satisfy the impulse-response decay requirement, the value
of α should be such that the coefficient of the cosine term in
Eq. (6.77) is no larger than 0.01 at t = 0.1 s. That is,

(
4α2 + α4

ω2
0

)1/2

e−0.1α ≤ 0.01.

Solution of this inequality (using MATLAB or MathScript)
leads to α ≈ 100 s−1 and, in turn, to

β = tan−1
(
α

ω0

)
= tan−1

(
100

6283

)
= 0.9◦.

With bothω0 and α specified, we now can calculate and plot the
impulse response given by Eq. (6.77) (excluding the impulse
function), as shown in Fig. 6-29.

Note that although the maximum value of hnotch(t),
excluding the impulse, is 200, |hnotch(0.1)| = 0.009, which
is smaller than the specified value of 0.01. The magnitude
spectrum of this notch filter is essentially theβ = 1◦-plot shown
in Fig. 6-28(b).

Concept Question 6-9: Why do we need poles in a notch
filter? Why not just use zeros only? (See        )
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Figure 6-29: Impulse response of notch filter (Example 6-7), excluding the impulse.

Concept Question 6-10: Why is it not advisable in 
practice to select the real part of the notch filter’s poles 
to be extremely small? (See        )

Exercise 6-10: Design (specify the transfer function of) a
notch filter to reject a 50 Hz sinusoid. The filter’s impulse
response must decay to 0.005 within 6 seconds.

Answer:

H(s) = 1 − 2s + 1

s2 + 2s + 98697
.

(See S2 )

6-7.2 Comb Filters: Removing Periodic
Interference

Motors, generators, and air conditioners are examples of
systems that generate electromagnetic interference. Often,
the interference is periodic, occurring at a fundamental
frequencyf0 and its many harmonics. In many cases of practical
concern, the amplitude of a harmonic is inversely proportional
to its harmonic number, so to remove most of the interference,
we need to implement a series connection of notch filters with
notches at the fundamental frequency ω0 and a few of its
harmonics. Such a series connection of notch filters is called
a comb filter because its magnitude spectrum resembles the
teeth of a comb. An example is shown in Fig. 6-30.

� Each notch in the comb filter’s spectrum corresponds
to a conjugate pair of zeros in parallel with a conjugate
pair of poles. �

For notches at kω0, with k = 1, 2, . . . , n, H(ω) of Eq. (6.65)
assumes the form

Hcomb(ω) =
∏n

k=−n
k �=0

[
jω − jkω0

jω + α − jkω0

]
(6.79)

for C = 1.

Example 6-8: Comb Filter Design

Design a comb filter to reject a 1 kHz interfering signal and
its second harmonic. Generate plots of (a) the filter’s frequency
response and (b) impulse response (excluding the impulse). Use
α = 100 s−1.

Solution:
(a) To filter out ω0 = 2πf0 = 6283 rad/s and its harmonic

2ω0 = 12566 rad/s, we place:

• zeros at {±j6283, ± 12566}, and parallel

• poles at {−100 ± j6283, − 100 ± j12566}.
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Figure 6-30: Magnitude spectrum of a comb filter with n = 4 and α = 0.017ω0.

Implementation of Eq. (6.79) with n = 2 leads to

Hcomb(ω) =
(

ω2
0 − ω2

ω2
0 + α2 − ω2 + j2αω

)

·
(

4ω2
0 − ω2

4ω2
0 + α2 − ω2 + j2αω

)
(6.80)

with ω0 = 6283 rad/s and α = 100 s−1. A plot of
Mcomb(ω) = |Hcomb(ω)| is displayed in Fig. 6-31(a).

(b) Generating the impulse response of the comb filter
requires a straightforward (but rather lengthy) process. Hence,
we will only outline its steps.

Step 1: The expression for Hcomb(ω) should be converted
into Hcomb(s) by replacing jω with s everywhere in Eq. (6.80).

Step 2: Because Hcomb(s) is a proper, but not a strictly proper
rational function, a step of long division is necessary to convert
it into the form Hcomb(s) = 1 + G(s).

Step 3: Partial fraction expansion should be applied to
prepare G(s) for transformation to the time domain.

Step 4: Transformation of Hcomb(s) to the time domain
yields h(t), which is displayed in Fig. 6-31(b).

Concept Question 6-11: How are comb and notch filters
related? (See        )

Concept Question 6-12: Why do comb filters have that
name? (See        )

Exercise 6-11: Design a comb filter to eliminate periodic
interference with period = 1 ms. Assume that harmonics
above 2 kHz are negligible. Use α = 100 s−1.

Answer:

H(s) = s2 + (2000π)2

s2 + 200s + 104 + (2000π)2

× s2 + (4000π)2

s2 + 200s + 104 + (4000π)2
.

(See S2 )

6-7.3 Rejecting Bands of Frequencies

Next, we consider how to configure a filter to reject input signals
if their angular frequencies are within the range ωL < ω < ωH,
while passing all others. The ideal frequency response of such
a filter is displayed in Fig. 6-32.

A reasonable approximation to the ideal response can be
realized by extending the results of the single-frequency notch
filter to a continuous multi-frequency scenario. Over the range
from ωL to ωH, we place a string of closely spaced zeros along
the jω-axis, together with a parallel string of poles. Of course,
a similar arrangement is needed in the lower-half plane. The
process is illustrated in Fig. 6-33 for a stopband extending from
3 rad/s to 5 rad/s. Five equally spaced zeros and parallel poles are
placed across the designated stopband, with the poles displaced
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Figure 6-31: Magnitude spectrum and impulse response of comb
filter (Example 6-8).

from the jω-axis by a distance α = 0.5. The general shape of
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Figure 6-32: Magnitude response of ideal bandreject filter. The stopbands extend from ωL to ωH and −ωH to −ωL.

the magnitude spectrum does resemble the desired bandreject
response, but multiple ripples are observed in the stopbands.

Once ωL and ωH have been specified, the filter designer has
only two parameters to work with, namely α and n, where n is
the number of zero/pole conjugate pairs to be placed over the
specified stopband.

� Increasing n leads to better selectivity (steeper roll-off
at the stopband/passband boundaries) and lower ripple
amplitude in the stopband. In practice, this translates into
more cost and complexity. �

For a fixed value of n, the value of α is selected in a trade-
off between two competing attributes, selectivity and ripple
amplitude. Selectivity is inversely proportional to α, and so
is ripple amplitude.

6-8 Spectra of Musical Notes

When a musical instrument such as a trumpet or clarinet plays a
midrange musical note B, it produces a periodic acoustic signal
with a fundamental frequency f0 = 494 Hz, corresponding to
a period T = 1/f0 ≈ 2.0 ms.

The time waveform of an actual trumpet playing midrange
note B is plotted in Fig. 6-34(a). The vertical axis is the intensity
of the sound, and the horizontal axis is time in milliseconds. The
signal is clearly periodic with a period of about 2 ms. We will
refer to this sound as the trumpet signal x(t).

The computed magnitude spectrum of the trumpet signal,
M(ω), is plotted in Fig. 6-34(b). We will learn how to compute
this spectrum in Chapter 8. The computed magnitude spectrum
is a line spectrum, as the spectrum of a periodic signal should
be. However, the trumpet signal is not perfectly periodic,
since a human trumpet player cannot repeat the note perfectly.
Consequently, the spectrum in Fig. 6-34(b) is not a perfect



“book” — 2016/3/14 — 13:45 — page 288 — #36

288 CHAPTER 6 APPLICATIONS OF THE FOURIER TRANSFORM

−0.5

j4 rad/s

j2 rad/s

0

−j5 rad/s

−j4 rad/s

−j2 rad/s

−j3 rad/s

−j1 rad/s

j1 rad/s

j3 rad/s

j5 rad/s M(ω)

Roll-off
1

0.8

0.6

0.4

0.2

0
0−2 2 3 54 6 8

StopbandStopband
−4−5 −3−6−8

ω (rad/s)

Figure 6-33: Magnitude spectrum of bandreject filter.
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Figure 6-34: (a) Recorded sound signal of a trumpet playing
note B; (b) magnitude spectrum.

one-side line spectrum: the peaks have a “base” several hertz
wide, and a small “underbrush” of noise is manifested across
the spectrum.

It is also apparent that only eight harmonics are significant,
and that there is no zero frequency term (which would
be inaudible anyway). Hence, x(t) can be reasonably
approximated by the sum of only the first eight terms in its
Fourier series (amplitudes cn are the heights of the spikes).
Thus,

x(t) =
8∑
n=1

cn cos(2πnf0t + φn), (6.81)

where f0 = 494 Hz and cn and φn are the amplitude and
phase of the nth harmonic. In musical terminology, the term
c1 cos(2πf0t + φ1) is the fundamental, and the other terms
are the overtones that create the rich sound of the trumpet, as
compared with a simple tone.

The following example uses a comb filter to separate out the
sounds of two trumpets playing two notes simultaneously.

Example 6-9: Separating Two Simultaneously Played

Trumpet Notes

Given signals x1(t) and x2(t) of two trumpets playing notes
G and A simultaneously, design a comb filter that eliminates
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(b) Impulse response

(a) Magnitude spectra of trumpet and filter

f (Hz)

M( f )
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0.6

0.4

0.2

0
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t (s)

h(t)

Note G
Note A
Filter

Spectra

500 1000 1500 2000 2500 3000

0.1 0.2 0.3

Impulse response

Figure 6-35: (a) Magnitude spectra of trumpet signals and comb
filter; (b) impulse response of comb filter (Example 6-9).

the trumpet playing note A, while keeping the trumpet playing
note G. Compute and plot the comb filter’s impulse and
frequency responses. Choose α = 10 s−1 and n = 9. Notes G
and A have fundamental frequencies of 392 Hz and 440 Hz,
respectively.

Solution: The combined spectrum of x1(t) and x2(t)

consists of harmonics of 392 Hz and 440 Hz. The frequency

response of the desired comb filter is given by Eq. (6.79),
with ω0 = 2π × 440 = 2765 rad/s, α = 10 s−1, and n = 9.
MATLAB or MathScript implementation leads to the spectrum
displayed in Fig. 6-35(a), and repetition of the procedure
outlined in Example 6-8 leads to the impulse response shown in
Fig. 6-35(b). The comb filter clearly eliminates the harmonics
at 440 Hz, while preserving the harmonics at 392 Hz (note G)
(see S2 for more details).

6-9 Butterworth Filters

We now switch our emphasis from designing filters that reject
bands of frequencies to those that pass bands of frequencies.
We begin by designing realizable, near-ideal, lowpass filters.We
will then extend our treatment to encompass near-ideal highpass
and bandpass filters.

The ideal lowpass filter has the frequency response shown in
Fig. 6-36. However, as we had noted earlier in Section 6-4.1,
its impulse response is noncausal, and therefore the filter is
unrealizable.

� The Butterworth lowpass filter is a BIBO-stable
and causal LTI system with a frequency response that
approximates that of the ideal lowpass filter (Fig. 6-36). �

Its design implementation relies on arranging the poles of
its transfer function along the perimeter of a semicircle
in the complex plane. To gain an appreciation for the
advantages offered by such an arrangement, we will precede
our presentation of the Butterworth filter with analyses of two
elementary arrangements based on the lessons learned from
earlier sections.

M(ω)

0 ωc−ωc
ω

Figure 6-36: Magnitude response of ideal lowpass filter with
cutoff frequency ωc.
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Module 6.1 Notch Filter to Remove Sinusoid from Trumpet Signal This module adds a sinusoid to the waveform
of a trumpet playing note B. The amplitude and frequency of the sinusoidal interference are selectable, as are the parameters
of the notch filter. The module also allows the user to listen to the original, noisy, and filtered signals.

6-9.1 Elementary Arrangement 1: Vertical String
of Poles

A filter can be viewed either in terms of its passbands or of its
stopbands.A lowpass filter with a passband extending from −ωc
to ωc is also a rejection filter with stopbands defined by ω > ωc
andω < −ωc. If we were to approach the ideal lowpass filter as
a rejection filter, we would need to place an infinite number of
zeros along the jω-axis, extending from jωc to j∞, and from
−jωc to −j∞. Obviously, that is not a practical solution.

Alternatively, we can approach the filter design by
accentuating the magnitude spectrum in the passband. The route
to boosting the magnitude of H(ω) at a given frequency is to
place a pole at that frequency. Hence, it would seem intuitively

obvious to place a vertical string of poles in the OLHP between
−ωc andωc, as illustrated by the example shown in Fig. 6-37(a).
The vertical string’s five equally spaced poles are located at
(−α + jωc), (−α + jωc/2), (−α + j0), (−α − jωc/2), and
(−α − jωc). From Eq. (6.65), the corresponding frequency
response is

H(ω) = C
2∏

k=−2

⎛
⎜⎝ 1

jω + α − j
kωc

2

⎞
⎟⎠ . (6.82)

Even though the associated magnitude spectrum (Fig. 6-37(b))
favors frequencies in the −ωc to ωc range, the pattern includes
undesirable resonances at frequencies corresponding to the
locations of the poles in the complex plane.



“book” — 2016/3/14 — 13:45 — page 291 — #39

6-9 BUTTERWORTH FILTERS 291

Module 6.2 Comb Filter to Separate Two Trumpet Signals This module adds the waveforms of trumpets playing
notes G and A, and uses a comb filter to separate them. The module also allows the user to listen to the original (two trumpets)
and filtered (one trumpet) signals.

−α

jωc

−jωc

M(ω)

40

30

20

10

0
0 ωc 2ωc

ω
−2ωc −ωc

(a) Poles (b) Magnitude spectrum

Figure 6-37: Magnitude response of a lowpass filter characterized by a vertical string of closely spaced poles displaced from the vertical
axis by α = 0.1ωc. The scaling constant was set at C = ω5

c .
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jωc

−jωc

(a) Poles (b) Magnitude spectrum

M(ω)

3.0

2.5

2.0

1.5

1.0

0.5

0
0 ωc 2ωc

ω
−2ωc −ωc

Figure 6-38: Magnitude response of a lowpass filter characterized by a triangular array of poles and C = 1.5ω5
c .

6-9.2 Elementary Arrangement 2: Triangular
Pole Pattern

If, instead of arranging the poles along a vertical line, we were
to move the poles in the middle section further away from the
jω-axis to form the triangular pattern shown in Fig. 6-38(a),
we would end up with a magnitude spectrum that more closely
resembles the ideal lowpass spectrum, except for the local peaks
at ±ωc. Explorations on how to optimally place the filter’s
poles so as to generate a magnitude spectrum that most closely
approximates that of the ideal (brick-wall) lowpass filter can
lead to multiple specialized designs, including the Butterworth
and Chebyshev families of filters. We describe the Butterworth
filter next.

6-9.3 Arrangement 3: Butterworth Pole
Placement

In an n-pole Butterworth lowpass filter, the n poles are equally
spaced along the perimeter of a semicircle of radius ωc in
the OLHP, where ωc is the cutoff frequency in radians per
second. Figure 6-39 displays the pole arrangement and the
corresponding magnitude spectrum for n = 5. The spectrum
exhibits the general pattern desired for a lowpass filter, with
none of the resonances associated with the spectra in Figs. 6-37
and 6-38.

Pole locations

Pole locations of the Butterworth filter design depend on
whether n, the number of poles, is odd or even. An easy recipe
follows.

(a) s-plane pole locations for n = 5

(b) Magnitude spectrum

0.25ωc

0

0

0

0.5ωc

0.75ωc

ωc

−ωc

−0.5ωc

−0.4

−0.4
−0.2

−0.6

−0.8

−0.8

−1

−1

0.4 0.8 1

0.4
0.6

0.2

0.8
1

ωc−ωc

θ1 = 108°
θ2 = 144°
θ3 = 180°

θ4 = −144°
θ5 = −108°

p1p2

p3

p4

p5

θ2

0

0.4
0.6

0.2

0.8
1

M(ω)

0 ωc 2ωc
ω

−2ωc −ωc

Butterworth
spectrum

Figure 6-39: Butterworth lowpass filter with n = 5 and C = ω5
c .
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n = odd

Step 1:Around the full circle of radiusωc in the complex s plane,
distribute 2n equally spaced poles around the circle, starting
with the first pole at s = ωc; that is, at point (ωc + j0). The
spacing between adjacent poles should be

θ = 2π

2n
= π

n
(rad). (6.83)

The placement pattern should be symmetrical with respect to
both axes. An example is shown in Fig. 6-40(a) for n = 7.

Step 2: Discard all of the poles in the right half-plane.

n = even

Step 1: Around the full circle of radius ωc in the complex
s plane, distribute 2n equally spaced poles around the circle,
symmetrically arranged with respect to both axes. When n is
even, none of the poles lie on the real axis and the spacing
between adjacent poles is π/n radians. An example is shown
in Fig. 6-40(b) for n = 6.

Step 2: Discard all of the poles in the right half-plane.

Frequency response

To calculate the transfer function, we use only the poles in the
OLHP, and we denote their locations as

pi = −αi + jbi, for i = 1, . . . , n. (6.84)

In the OLHP, bi may be positive, negative, or zero, but αi is
always positive.

The associated Butterworth frequency response is

HLP(ω) = C
n∏
i=1

(
1

jω − pi

)
.

(Butterworth lowpass filter)

(6.85)

Computing the magnitude response (gain)

MLP(ω) = |HLP(ω)|
of an nth-order Butterworth filter is straightforward if we first
compute M2

LP(ω) and then take its square root. The complex
conjugate of Eq. (6.85) is

H∗
LP(ω) = C∗

n∏
i=1

1

−jω − p∗
i

= C∗(−1)n∏n
i=1(jω + p∗

i )
. (6.86)

(a) n = 7 poles

(b) n = 6 poles

jωc

ωc

−jωc

−ωc

π/7

θ θθ

θθ θ

θ θ

θ θ

θ θ

θ θ

θ = 360�/14 = 25.7�

θ θ

θ θ

jωc

ωc

−jωc

−ωc

π/6

θ θ

θ θ

θ
θ

θ

θ = 360�/12 = 30�

θ

Figure 6-40: Butterworth lowpass filter pole locations for even
and odd number of poles. Only the poles in the open left half-
plane (red) are used in transfer function expression.

Combining this with Eq. (6.85) gives

M2
LP(ω) = |HLP(ω)|2

= HLP(ω) H∗
LP(ω)

= CC∗(−1)n∏n
i=1(jω − pi )

∏n
i=1(jω + p∗

i )
. (6.87)
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From Eq. (6.84), we see that

pi = −αi + jbi, (6.88a)

−p∗
i = αi + jbi . (6.88b)

Each −p∗
i is the open right half-plane counterpart to an OLHP

Butterworth filter pole pi . Poles −p∗
i are the open right half-

plane poles discarded from the 2n poles equally spaced around
the circle of radius ωc.

(a) n = odd

First, consider the case where n is odd. The 2n poles are
equally spaced around the circle of radiusωc and have the forms
{ ωce

j2πi/(2n), i = 0, . . . , 2n− 1 }, as in Fig. 6-40(a). Each of
these poles, when raised to the power 2n, gives ω2n

c , since

(ωce
j2πi/(2n))2n = ω2n

c e
j2πi = ω2n

c .

The denominator of Eq. (6.87) is a polynomial in jω and its
roots are equally spaced around the circle of radius ωc. The
polynomial simplifies to

n∏
i=1

(jω − pi )
n∏
i=1

(jω + p∗
i ) = (jω)2n − ω2n

c . (6.89)

Equation (6.87) simplifies to

M2
LP(ω) = CC∗(−1)n∏n

i=1(jω − pi )
∏n
i=1(jω + p∗

i )

= |C|2(−1)n

(jω)2n − ω2n
c

= |C|2
ω2n + ω2n

c
, (6.90)

because for odd n, (−1)n = −1, and also j2n = −1.

(b) n = even

Next, consider the case where n is even. Now the 2n poles are
equally spaced around the circle of radius ωc, but they have the

forms {ωce
j2π(i+ 1

2 )/(2n), i = 0, . . . , 2n−1}, as in Fig. 6-40(b).
Each of these poles, when raised to the power 2n, gives −ω2n

c ,
since

(ωce
j2π(i+ 1

2 )/(2n))2n = ω2n
c e

j2πiejπ = −ω2n
c .

The denominator of Eq. (6.87)) simplifies to

n∏
i=1

(jω − pi )
n∏
i=1

(jω + p∗
i ) = (jω)2n + ω2n

c , (6.91)

and Eq. (6.87) becomes

M2
LP(ω) = CC∗(−1)n∏n

i=1(jω − pi )
∏n
i=1(jω + p∗

i )

= |C|2(−1)n

(jω)2n + ω2n
c

= |C|2
ω2n + ω2n

c
, (6.92)

since for even n we have (−1)n = j2n = 1.
The above derivation shows why the 2n poles equally spaced

around the circle of radius ωc must be placed at different,
although equally spaced, angles for even and odd n. In either
case, taking a square root gives

MLP(ω) = |C|√
ω2n + ω2n

c

= |C|
ωnc

· 1√
1 + (ω/ωc)2n

. (6.93)

(Butterworth lowpass filter)

The family of spectral plots shown in Fig. 6-41, calculated for
ωc = 1 rad/s, demonstrate how the filter’s selectivity (sharper
roll-off) increases with n. For ω 	 ωc, the roll-off rate is

Sg = −20n dB/decade. (6.94)

Butterworth filter properties

Butterworth filters are used extensively in many electronic
systems, primarily because they possess a number of highly
desirable properties. They are causal, BIBO-stable, and
realizable using op amps, or inductors and capacitors.
Implementation of the Butterworth lowpass filter is fairly
straightforward: For any order n and cutoff frequency ωc, it is
easy to determine the locations of its poles, the transfer function
HLP(s) has a simple form, and the magnitude spectrum is easy
to compute. The magnitude spectrum is flat at low frequencies,
and the dc gain is M0 = |C|/ωnc .

6-9.4 Butterworth Lowpass Filter Design

For jω = s, Eq. (6.85) becomes

HLP(s) = C
n∏
i=1

(
1

s − pi

)
. (6.95)

All poles are located at a radius ωc in the OLHP. Pole pi can
be written as

pi = −αi + jbi = ωce
jθi , (6.96)
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Figure 6-41: Butterworth lowpass filter for C = 1 and ωc = 1 rad/s; magnitude spectra for various values of the number of poles, n.

with pole angle θi given by

θi = 180◦ − tan−1
(
bi

|αi |
)
, (6.97)

as shown in Fig. 6-42. Since the magnitudes of all poles pi
are equal to ωc, the polynomial expansion of the denominator
in Eq. (6.95) will have terms with coefficients proportional
to ωc, ω

2
c , . . . , ω

n
c , which can lead to very large numbers.

Consider, for example, a 10th order filter with a cutoff frequency
of 1.6 MHz, or, equivalently, ωc = 2πfc ≈ 107 rad/s; the
largest coefficient in the polynomial will be on the order of
(107)10 = 1070 ! Working with polynomials with such large
numbers can be cumbersome. For this reason, Butterworth
filters usually are designed in two steps, as follows.

Step 1: Normalized transfer function H(sa)

Inserting Eq. (6.96) into Eq. (6.95), and then normalizing s by
dividing it by ωc, gives

HLP(s) = C
n∏
i=1

(
1

s − ωcejθi

)

= C
ωnc

n∏
i=1

⎛
⎜⎝ 1

s
ωc

− ejθi

⎞
⎟⎠

= C
ωnc

n∏
i=1

(
1

sa − ejθi

)
= C
ωnc

H(sa), (6.98)

jbi

−αi

θi

ωc

pi

pi = (−αi , jbi) = ωc e jθi

Figure 6-42: Pole location.

where sa is a normalized complex frequency,

sa = s
ωc

, (6.99)

and

H(sa) =
n∏
i=1

(
1

sa − ejθi

)
.

(normalized lowpass transfer function)

(6.100)

Transfer function H(sa) is a normalized transfer function,
representing an nth order Butterworth lowpass filter with a
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Table 6-3: Butterworth lowpass filter.

HLP(s) = C
ωnc

·
(

1

Dn(sa)

)∣∣∣∣
sa=s/ωc

; Dn(sa) = 1 +
n∑
i=1

aisi

Pole angles θi n a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

±135◦ 2 1.41 1
±120◦, 180◦ 3 2 2 1

±112.5◦, ±157.5◦ 4 2.61 3.41 2.61 1
±108◦, ±144◦, 180◦ 5 3.24 5.24 5.24 3.24 1

±105◦, ±135◦, ±165◦ 6 3.87 7.46 9.14 7.46 3.87 1
±102.9◦, ±128.6◦, ±154.3◦, 7 4.49 10.1 14.59 14.59 10.1 4.49 1

180◦
±101.3◦, ±123.8◦, ±146.3◦, 8 5.13 13.14 21.85 25.69 21.85 13.14 5.13 1

±168.8◦
±100◦, ±120◦, ±140◦, 9 5.76 16.58 31.16 41.99 41.99 31.16 16.58 5.76 1

±160◦, 180◦
±98◦, ±116◦, ±134◦, 10 6.39 20.43 42.8 64.88 74.23 64.88 42.8 20.43 6.39 1

±152◦, ±170◦

cutoff frequency of 1 rad/s and a dc gain of 1. Magnitude plots
of H(sa) are displayed in Fig. 6-41. Since H(sa) is equivalent
to HLP(s) with ωc = 1 rad/s, there is no longer a problem with
large-size coefficients in the polynomials. For reference and
convenience, we provide in Table 6-3 a list of the polynomial
expressions and associated values of pole angles θi for n = 1
to 10.

Step 2: Convert to HLP(s)

Once H(sa) has been defined for a specified filter of order n,
Eq. (6.98) can then be applied to obtain the expression for the
desired Butterworth lowpass filter with cutoff frequency ωc:

HLP(s) = C
ωnc

H(sa)

∣∣∣∣
sa=s/ωc

.

(denormalization)

(6.101)

Example 6-10: Third-Order LP Filter

Obtain the transfer function for a third-order Butterworth
lowpass filter with cutoff frequency of 103 rad/s and dc gain
of 10.

Solution: From Table 6-3 (or the recipe of Section 6-8.3), we
establish that the pole angles of a third-order filter are 180◦ and
±120◦. Hence, the normalized transfer function is

H(sa) = 1

(sa − ej180◦
)(sa − ej120◦

)(sa − e−j120◦
)

= 1

s3
a + 2s2

a + 2sa + 1
.

Next, we convert to HLP(s) with ωc = 103 rad/s:

HLP(s) = C
ω3

c
H(sa)

∣∣∣∣
sa=s/103

= C
109

1( s
103

)3 + 2
( s

103

)2 + 2
( s

103

)
+ 1

= C
s3 + (2 × 103)s2 + (2 × 106)s + 109 .

At dc, s = 0 and HLP(0) = C/109. To satisfy the condition that
the dc gain is 10, it is necessary that C = 1010.

Example 6-11: Op-Amp Realization

The circuit shown in Fig. 6-43 is known as the Sallen-Key op-
amp filter.
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+
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+
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+
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1
sC1

Z2 =
1

sC2

Figure 6-43: Sallen-Key circuit.

(a) Obtain the transfer function H(s) = Vo(s)/Vi(s).

(b) Obtain the transfer function of a second-order Butterworth
filter with cutoff frequency ωc = 103 rad/s and arbitrary
dc gain C.

(c) Match the transfer functions in (a) and (b) to specify the
values of R1, R2, C1, and C2.

Solution:
(a) At node Vx , KCL gives

Vx − Vi

R1
+ Vx − Vp

R2
+ Vx − V0

Z1
= 0, (6.102)

and since Vo = Vn = Vp, voltage division gives

Vx = Vo

(
R2 + Z2

Z2

)
. (6.103)

The combination of the two equations leads to

H(s) =
1

R1R2C1C2

s2 +
(

1

R1C1
+ 1

R2C1

)
s + 1

R1R2C1C2

. (6.104)

(b) For a second-order Butterworth lowpass filter,
θi = ±135◦ and the normalized transfer function is

H(sa) = 1

(sa − ej135◦
)(sa − e−j135◦

)
= 1

s2
a + 1.414sa + 1

.

(6.105)
The corresponding transfer function with ωc = 103 rad/s is

HLP(s) = C
ω2

c
H(sa)

∣∣∣∣
sa=s/103

= C
s2 + 1.414 × 103s + 106 .

(6.106)

(c) To match the expression of the Sallen-Key transfer
function given by Eq. (6.104) to the expression for the
Butterworth filter given by Eq. (6.106), we need to set

1

R1R2C1C2
= ω2

c = 106, C = 106,

1

R1C1
+ 1

R2C1
= 1.414ωc = 1.414 × 103.

Since we have four component values to specify (R1, R2, C1,
and C2) and only two constraints to satisfy, there are many
possible solutions. To come up with realistic values for resistors
and capacitors, we arbitrarily choose

R1 = R2 = 10 k�.

The choice leads to

C1 = 0.14 μF and C2 = 70.7 nF.

Higher-order filters

The procedure used in Example 6-11 for n = 2 can be extended
to higher even-order filters by building a cascade of Sallen-
Key op-amp filters, with each stage designed to match one
pair of conjugate poles. That is, if the n poles are located at
angles ±θ1,±θ2, . . . , then the first Sallen-Key op-amp stage is
designed to match angles ±θ1, the second stage to match angles
±θ2, and so on.

6-9.5 Butterworth Highpass Filter Design

A Butterworth highpass filter with cutoff frequency ωc can
be obtained from a Butterworth lowpass filter with the same
cutoff frequency by performing a transformation that maps s to
its reciprocal in the frequency domain. For sinusoidal signals,
s = jω, so such a transformation would map dc (ω = 0) for
HLP(s) to ∞ for HHP(s), and vice versa. The transformation
should be performed on the normalized transfer function H(sa).
The process is outlined by the following steps:

Step 1: For a specified value of n, obtain the lowpass filter
normalized transfer function H(sa), as given by Eq. (6.100).

Step 2: Generate a highpass filter normalized transfer
function H(sb) by replacing sa with sb = 1/sa :

H(sb) = H(sa)|sa=1/sb .

(lowpass-to-highpass transformation

of normalized transfer functions)

(6.107)
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Step 3: Convert H(sb) to the highpass filter transfer function
HHP(s) with cutoff frequency ωc by applying

HHP(s) = C
ωnc

H(sb)

∣∣∣∣
sb=s/ωc

.

(denormalization)

(6.108)

� Transfer function HHP(s) of a Butterworth highpass
filter of ordern and cutoff frequencyωc has the same poles
as that of HLP(s), the transfer function of a Butterworth
lowpass filter of the same order and with the same cutoff
frequency, but in addition, HHP(s), has n zeros, all located
at s = 0, whereas HLP(s) has none. �

Example 6-12: Third-Order HP Filter

Obtain the transfer function for a third-order highpass
Butterworth filter with cutoff frequency of 103 rad/s and a high-
frequency gain of 10.

Solution: From Example 6-10, the normalized transfer
function of the third-order lowpass Butterworth filter is given
by

H(sa) = 1

s3
a + 2s2

a + 2sa + 1
.

Transforming from lowpass to highpass entails replacing sa
with 1/sb. The result is

H(sb) = 1
1

s3
b

+ 2

s2
b

+ 2

sb
+ 1

= s3
b

1 + 2sb + 2s2
b + s3

b

.

Finally,

HHP(s) = C
ω3

c
H(sb)

∣∣∣∣
sb=s/ωc

= C
ω3

c

⎛
⎜⎜⎜⎝ s3/ω3

c

1 + 2s
ωc

+ 2s2

ω2
c

+ s3

ω3
c

⎞
⎟⎟⎟⎠

= C
ω3

c

(
s3

s3 + 2ωcs2 + 2ω2
c s + ω3

c

)
.

As s → ∞, HHP(s) → C/ωc
3. Hence, to have a high-frequency 

gain of 10 (with ωc = 103 rad/s), it is necessary that C = 1010. 
The final expression for the highpass transfer function is

HHP(s) = 10s3

s3 + (2 × 103)s2 + (2 × 106)s + 109 .

6-9.6 Butterworth Bandpass Filter Design

Earlier in Section 6-3.3, we illustrated how a bandpass filter can
be designed by cascading a lowpass filter and a highpass filter,
which gives

HBP(s) = HLP(s) HHP(s). (6.109)

If the bandpass filter is to have a lower cutoff frequency ωc1

and a higher cutoff frequency ωc2 , ωc1 should be assigned to
the highpass filter HHP(s) and ωc2 should be assigned to the
lowpass filter HLP(s).

Concept Question 6-13: What statement applies to the 
poles of a Butterworth filter of any order with a cutoff 
frequency of 1 rad/s? (See        )

Concept Question 6-14: Why is it more practical to
design a lowpass filter on the basis of poles rather than 
zeros? (See        )

Exercise 6-12: Where should the poles of a second-order
Butterworth lowpass filter be located, if its cutoff
frequency is 3 rad/s?

Answer: 3e±j135◦
. (See S2 )

Exercise 6-13: Where should the poles of a third-order
Butterworth lowpass filter be located, if its cutoff
frequency is 5 rad/s?

Answer: −5 and 5e±j120◦
. (See S2 )

6-10 Denoising a Trumpet Signal

6-10.1 Noisy Trumpet Signal

Noise may be defined as an unknown and undesired signal
xn(t) added to a desired signal x(t). One application of signal
processing is to reduce the noise component of a noisy signal
by filtering out as much of the noise as possible. To demonstrate
the filtering process, we will add noise to the trumpet signal, and
then explore how to design a filter to remove it. In real filtering
applications, the design of the filter depends on knowledge of
both the signal and noise spectra. For illustration purposes, we
will use a common noise model known as additive zero-mean
white Gaussian noise. We will examine this name term by term.

• Additive means the noise is added to the signal, as opposed
to multiplied by the signal. Some noise in images is
multiplicative. In this book, we limit our consideration
to additive noise.
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(a)  xn(t)

(b) Gaussian probability of xn amplitude
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Figure 6-44: Zero-mean white Gaussian noise has a time-
average value (xn)ave = 0 and its amplitude is described by a
Gaussian probability distribution.

• Zero-mean means that the average value of the noise
signal is zero. For a time-varying quantity, such as noise
xn(t), we assume its mean value is

(xn)ave = lim
T→∞

1

T

T/2∫
−T/2

xn(t) dt = 0. (6.110)

If the average value of the noise is non-zero and known,
then the mean value can be subtracted from the noisy
signal, leaving behind the same signal, plus zero-mean
noise.

• White means that the noise is random; its value at
any moment in time is independent of its value at any
other moment. That is, the noise signal is completely
unpredictable from one instant to another. The spectrum of
a white-noise signal extends across all frequencies; hence,
the term white.

• Gaussian means that at any instant in time, the
amplitude xn(t) is characterized by a Gaussian probability
distribution (Fig. 6-44(b)). The noise is most likely to be
small in amplitude (positive or negative), but also has a
small chance of being large.

6-10.2 Signal-to-Noise Ratio

Real signals are always accompanied by some amount of noise.
The degree to which the noise will interfere with the signal and
distort the information it is carrying depends (in part) on the
ratio of the signal power to that of the noise power. Recall
from Section 1-5 that the power carried by a signal x(t) is
p(t) = |x(t)|2. Similarly, noise power is pn(t) = |xn(t)|2.

The signal-to-noise ratio (SNR ) is defined as the ratio of
the time-average value of the signal power to that of the noise
power. Accordingly, by Eq. (1.34),

SNR = lim
T→∞

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

T

T/2∫
−T/2

|x(t)|2 dt

1

T

T/2∫
−T/2

|xn(t)|2 dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.111)

A large SNR means that the noise level is low, relative to the
signal level, and the interference it causes will be minor. On the
other hand, if SNR is low, it means that the noise level is high
(relative to that of the signal), in which case it can distort the
information content of the signal and reduce its reliability. With
a sound signal, noise would change the way we would hear it;
and with digital data, noise would introduce errors. In general,
for any particular coding scheme, bit error rate varies inversely
with SNR.

In practice, SNR is expressed in power dB:

SNR (dB) = 10 log[SNR]. (6.112)

Figure 6-45(a) represents a time profile of a noisy trumpet
signal given by

z(t) = x(t)+ xn(t), (6.113)

where x(t) and xn(t) are the trumpet and noise signals that were
introduced earlier in Figs. 6-34(a) and 6-44(a), respectively.
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Figure 6-45: Noisy trumpet signal (note B) and its magnitude
spectrum.

The signal-to-noise ratio is 13.8, or equivalently, 11.4 dB,
which was determined numerically by subjecting the available
profiles of x(t) and xn(t) to Eq. (6.111). This means that,
on average, the noise content of the noisy trumpet signal
[noise/(signal + noise)] is on the order of 8%. The trumpet
harmonics in Fig. 6-45(b) stick up over the noise spectrum like
dandelions sticking up over a grassy lawn. However, the valleys

(underbrush) of the signal profile are now much more ragged,
and even the peaks of the harmonics have changed slightly.

Note that the underbrush noise exists at frequencies well
beyond the trumpet sound’s eighth harmonic. This high-
frequency noise is responsible for the rapid perturbation
observed in the noisy signal profile of Fig. 6-45(a). In the next
subsection, we will show how to remove the high-frequency
noise components using a Butterworth lowpass filter.

6-10.3 Lowpass Filtering the Noisy Trumpet
Signal

Given that the trumpet signal is bandlimited to 3952 Hz (eighth
harmonic of the 494 Hz note B), we shall use a fifth-order
(n = 5) Butterworth lowpass filter with a cutoff frequency
fc = 4000 Hz. The filter’s magnitude and impulse responses
are displayed in Fig. 6-46. We note that the impulse response
becomes negligibly small after about 0.8 ms, which means that
the filter’s transient response will only affect the initial 0.8 ms
of the noisy signal’s time profile.

To obtain the lowpass-filtered noisy trumpet signal, we can
follow either of two paths.

(1) Multiply the spectrum of the Butterworth filter, HLP(f ),
by the spectrum of the noisy signal, Z(f ), to obtain the spectrum
of the filtered signal, Zf(f ),

Zf(f ) = HLP(f ) Z(f ), (6.114)

and then inverse transform Zf(f ) to get the filtered signal zf(t).
(2) Convolve the noisy signal z(t) with the filter’s impulse

response hLP(t) to get zf(t),

zf(t) = z(t) ∗ hLP(t). (6.115)

Either approach leads to the filtered noisy trumpet signal shown
in Fig. 6-47(a). For comparison, we have included in part (b)
of the same figure the original noise-free trumpet signal. We
observe that the Butterworth filter has indeed removed the
high-frequency part of the noise spectrum, but distortions
due to noise below 4000 Hz remain unaffected. That is, the
Butterworth filter has improved the quality of the input signal
significantly, but since it is a lowpass filter, it imparts no change
on either the signal or the noise below 4000 Hz (see S2 for more
details).

6-11 Resonator Filter

Were we to listen to the noise-free and the filtered noisy signal
of the preceding section (which can be done using either the
MATLAB code or LabVIEW Module 6.3 on the book website),
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Figure 6-46: Fifth-order Butterworth lowpass filter: (a)
magnitude spectrum; (b) impulse response.

the two signals would not sound the same. This is because the
Butterworth lowpass filter did not remove any of the audible
part of the noise below 4000 Hz.

Instead of filtering only the high frequencies, we would like
to eliminate the noise at all frequencies except the fundamental
at 491 Hz and its seven harmonics. [Even though the listed
frequency of note B is 494 Hz, this trumpet is playing at 491 Hz.]
In other words, we would like to design an upside-down comb
filter!Accordingly, its transfer function should be related to that

(b)

(a)
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Figure 6-47: Comparison of signal filtered by a fifth-order
Butterworth lowpass filter with original noise-free signal. The
filtered signal is time-delayed by a fraction of a millisecond.

of the comb filter given by Eq. (6.86) as

Hres(ω) = 1−Hcomb(ω) = 1−
∏n

k=−n
k �=0

[
jω − jkω0

jω + α − jkω0

]
.

(6.116)
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Figure 6-48: Magnitude spectra of resonator filter and noise-free
trumpet signal.

� We call this a resonator filter because its poles,
being close to the jω-axis, create resonant peaks in
the magnitude spectrum Mres(ω) at the values of ω
corresponding to the parallel pole/zero locations. �

It is also known as a line enhancement filter because it enhances
spectral lines, while rejecting the frequencies between them.

Example 6-13: Resonator Trumpet Filter

Design a resonator filter to remove the noise from the noisy
trumpet signal of Fig. 6-45(a). Generate plots of the filter’s
frequency and impulse responses for α = 25 s−1, and compare
the filtered signal with the original noise-free trumpet signal.

Solution: The fundamental angular frequency is

ω0 = 2πf0 = 2π × 491 = 3085 rad/s,

and the number of notches isn = 8. Hence, Eq. (6.116) becomes

Hres(ω) = 1 −
∏8

k=−8
k �=0

jω − j3085k

jω + 25 − j3085k
.

Figure 6-48 displays the magnitude spectra of both the
resonator filter and the noise-free trumpet signal. The overlap of
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Figure 6-49: Impulse response of resonator filter: (a) 0 to 100 ms;
(b) 0 to 10 ms.

the two spectra strongly indicates that the resonator filter should
be able to eliminate most of the noise in the noisy trumpet signal.

Following the recipe outlined in Example 6-7, the
expressions for Hres(ω) can lead us to the impulse response
hres(t), which is plotted in Fig. 6-49 at two different time scales.
Part (a) of the figure confirms that h(t) decays rapidly within
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Figure 6-50: Comparison of resonator-filtered signal in (a) with
original noise-free signal in (b). Even though the two waveforms
are not a perfect match, the two signals do sound alike.

0.2 s, and part (b) is an expanded view intended to show the
detailed structure of the impulse response during the first 10 ms.

Finally, in Fig. 6-50 we provide a comparison of the
resonator-filtered noisy signal with the original noise-free
trumpet signal. Even though the two signal waveforms do not
look exactly identical, the sound of the filtered signal is almost
indistinguishable from that of the noise-free signal (see S2 for
more details).

Concept Question 6-15: Why did the resonator filter 
perform better than the lowpass filter in denoising the 
trumpet signal? (See        )

Concept Question 6-16: Why do the impulse responses 
of the notch and comb filters include impulses, but the 
impulse response of the resonator filter does not? 
(See        )

Exercise 6-14: Obtain the transfer function of a resonator
filter designed to enhance 5 Hz sinusoids. Use α = 2.

Answer:

H(s) = 4s + 4

s2 + 4s + 991
.

(See S2 )

Exercise 6-15: Use LabVIEW Module 6.3 to denoise the
noisy trumpet signal using a resonator filter, following
Example 6-13. Use a noise level of 0.2.

Answer:

6-12 Modulation

Even though over the past 25 years most analog communication
systems have been replaced with digital systems, the technique
of modulation of an analog signal offers great insight into
how multiple signals can be bundled together and transmitted
simultaneously over the same channel (wires, optical fiber, free
space, etc.). Accordingly, this section addresses the following
topics:

(1) The term bandwidth has been assigned multiple
meanings, not only in common language, but in the technical
literature as well. What is the definition of bandwidth in the
context of modulation?

(2) Double sideband (DSB) modulation is a technique used
for shifting the spectrum of a signal from being centered at 0 Hz
to becoming centered at two new frequencies, ±fc. How is this
done and why?
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Module 6.3 Filtering a NoisyTrumpet Signal This module adds noise to a trumpet signal and uses either a Butterworth
or resonator lowpass filter, of orders set by the user, to reduce the noise. The module also allows the user to listen to the noisy
and filtered signals.

(3) Single sideband (SSB) modulation is similar to DSB,
but it requires only half the bandwidth and power that DSB
requires. How is this done?

(4) Frequency division multiplexing (FDM) allows us to (a)
combine multiple (e.g., telephone) signals—originating from
different sources—into a single combined signal, (b) transmit
the combined signal to its intended destination, and then (c)
unscramble the received combined signal to recover the original
individual signals, as if each had traveled alone along the
communication channel. How does FDM work?

(5) What is a superheterodyne receiver and how does it
work?

6-12.1 Bandwidth

Men typically can hear audio signals with frequencies from
around 20 Hz to around 20 kHz. The bulk of the average power

of a man’s voice is below 4 kHz. Women typically can hear
audio signals with frequencies from around 40 Hz to around 20
kHz, and the average power of a woman’s voice extends higher
than that of a man’s voice, to about 6 kHz. Hence, women’s
voices tend to be higher-pitched than men’s voices. Figure 6-51
displays recorded magnitude spectra of three specific sounds,
namely, “oo,” “ah,” and “ee.” The figure also includes a typical
spectrum of someone talking, which is plotted (unlike the
preceding three figures) using a decibel scale. In all cases, the
spectra—which had been generated by Fourier transforming
the time records of the spoken sounds—decrease to low levels
beyond about 3.5 kHz. Hence, we may regard these spectra
as bandlimited to 3.5 kHz. This could either mean that their
spectral contents are actually small (but not necessarily zero)
above 3.5 kHz or that the spectra had been subjected to lowpass
filtering to remove components above 3.5 kHz. In telephone
communication systems, the nominal frequency range allocated
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Figure 6-51: (a) to (c): spectra of three vowel sounds, with vertical axis in linear scale; in (d) the scale is in dB/Hz.

to an audio signal is 0.4–3.4 kHz. Because high frequencies are
not transmitted through a telephone channel, a person’s voice
usually sounds differently when transmitted over the phone, as
compared with when spoken directly (mouth-to-ear).

At this juncture, we should note the following:
(1) The spectra displayed in Fig. 6-51 are plotted as a function

of frequency f in Hz, rather than the angular frequency ω in
rad/s. This change is made in deference to the subject matter of
the present section in which the terminology is more commonly
expressed in terms of f rather than ω.

(2) The recorded spectra are one-sided, plotted as a function
of positive values of f only. Since the signals are real-valued,
their magnitude spectra are even functions of f , so one-sided
plots are quite sufficient to convey all of the information carried
by the spectrum.

(3) Figure 6-52 displays bidirectional spectra of two signals.
Spectrum X1(f ) is a lowpass signal, non-zero for |f | < fmax,
and spectrum X2(f ), which is the result of having passed x1(t)

through an (ideal) highpass filter with cutoff frequency f, is a
bandpass signal. The two spectra are identical between f and
fmax. Based on these spectra, we offer the following bandwidth
related definitions:

• Both signals are bandlimited to fmax, measured in Hz,
meaning that their spectra are zero-valued for f ≥ fmax.

• A signal’s bandwidth B is the difference between the
highest and lowest non-zero frequency components of its
one-sided spectrum. For the lowpass signal x1(t) shown in
Fig. 6-52, the bandwidth of its spectrum is B = fmax and
its bidirectional bandwidth is Bb = 2B, but for bandpass
signal x2(t) its bandwidth is B = fmax − f.

It should be pointed out that there are many other definitions
of bandwidth, including half-power bandwidth, rms bandwidth,
99% energy bandwidth, and null-to-null bandwidth. The
following example illustrates 99% energy bandwidth, which
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(a)  Lowpass signal
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Figure 6-52: (a) Lowpass signal of bandwidth B = fmax
and bidirectional bandwidth Bb = 2B, (b) bandpass signal’s
bandwidth is B = fmax − f.

is the definition used by the U.S. Federal Communications
Commission (FCC) for radio.

Example 6-14: 99% Bandwidth

Compute the 99% bandwidth of the exponential signal
x(t) = e−αt u(t), where the 99% bandwidth B99 is defined as
the (one-sided) frequency bandwidth in Hz containing 99% of
the total energy of x(t). Compute B99 for a = 3.

Solution: From entry #7 in Table 5-6, the Fourier transform
of x(t) is

e−at u(t) 1

a + jω
.

The total energy ET of x(t) is easily computed in the time
domain:

ET =
∞∫

−∞
|x(t)|2 dt =

∞∫
0

e−2at dt = 1

2a
.

Parseval’s theorem (Section 5-9) states that the energy content
of a signal can be determined from |x(t)|2 in the time domain
or from the square of its magnitude spectrum |X(ω)|2 in the
frequency domain. The energy contained between −ω0 and
+ω0 in the spectrum shown in Fig. 6-53 is

EB = 1

2π

ω0∫
−ω0

∣∣∣∣ 1

a + jω

∣∣∣∣
2

dω

= 1

2π

ω0∫
−ω0

1

a2 + ω2 dω = 1

πa
tan−1
(ω0

a

)
. (6.117)

Setting EB = 0.99ET leads to

0.99 = 2

π
tan−1
(ω0

a

)
,

which yields

ω0 = a tan

(
0.99π

2

)
= 63.66a.

To convert it to Hz, we should divide by 2π . Hence,

B99 = ω0

2π
= 63.66a

2π
= 10.13a. (6.118)

For a = 3, B99 = 30.4 Hz.

6-12.2 Multiplication of Signals

The simplest way to transmit n different baseband signals over a
given channel is to arrange them sequentially. While the process
is indeed very simple, it is highly inefficient. Alternatively,
we can bundle the signals together by attaching each to a
separate carrier signal with a different carrier frequency,
thereby distributing the n baseband signals along the frequency
axis with no overlap between their spectra. The details are
covered in Section 6-12.5.

�The processes of attaching a baseband signal to a carrier
signal and later detaching it from the same are called
modulation and demodulation, respectively. �

As we will see in forthcoming sections, these two processes
involve the multiplication of signals. Op-amp circuits can be
used to add or subtract two signals, but how do we multiply them
together? The answer is the subject of the present subsection.
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(b) Magnitude spectrum
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Figure 6-53: Signal x(t) = e−at u(t) and the magnitude of its
Fourier transform (Example 6-14).

Consider two signals, x(t) and y(t). It is easy to show that
their product is equivalent to

x(t) y(t) = 1

4

{
[x(t)+ y(t)]2 − [x(t)− y(t)]2

}
. (6.119)

The multiplication operation can be realized by implementing
the operations on the right-hand side of Eq. (6.119), which

include scaling (by a factor of 1/4), addition and subtraction,
and squaring. The recipes outlined in Section 4-5 can be used
to construct op-amp circuits to perform the scaling, addition,
and subtraction operations. Squaring requires the use of a non-
linear square-law device whose output is proportional to the
square of its input. Examples include certain types of diodes
and field-effect transistors.

Implementation of the right-hand side of Eq. (6.119) is shown
in block-diagram form in Fig. 6-54.

6-12.3 Switching Modulation

Modulating a signal x(t) entails multiplying it by a sinusoidal
signal cos(2πfct) at frequency fc. The purpose of modulation
is to shift the spectrum of x(t) up and down the frequency axis
by fc (in Hz). Switching modulation is a simple and commonly
used method for multiplying x(t) by cos(2πfct). The following
derivation of switching modulation shows yet again how useful
the concepts of Fourier series, Fourier transform, and their
properties can be.

Supposex(t) is a bandlimited signal with the spectrum shown
in Fig. 6-55(a). The actual shape of the spectrum is irrelevant
to the present discussion. Switching modulation is illustrated
in Fig. 6-55(b). A switch is rapidly opened and closed, with a
periodTc = 1/fc. It is not necessary that the switch be closed for
the same duration that it is open, although this is commonly the
case. The action of opening and closing the switch is equivalent
to multiplying x(t) by a square wave of period Tc = 1/fc, as
illustrated by Fig. 6-55(c).

Without loss of generality, we choose time t = 0 so that the
square wave, xm(t), is symmetric with respect to t = 0 (i.e.,
the square wave is an even function). According to entry #4
in Table 5-4, for A = 1, τ/Tc = 1/2, and Tc = 1/fc, xm(t) is
given by the Fourier series

xm(t) = 1

2
+ 2

π
cos(2πfct)− 2

3π
cos(6πfct)+ · · · .

x(t) x(t) y(t)

y(t)
Mathematical equivalent

x(t)

x(t) y(t)

(x + y) (x + y)2

(x − y)2

y(t)

(x − y)

Σ

Σ

Σ 1
4

^2

^2

+ +

+

+

_
_
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Figure 6-54: Block diagram realization of the product x(t) y(t). The symbol ^2 denotes a squaring operation.
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Figure 6-55: Switching modulation.

Multiplying x(t) by the square wave xm(t) gives

y(t) = x(t) xm(t) = 1

2
x(t)+ 2

π
x(t) cos(2πfct)

− 2

3π
x(t) cos(6πfct)+ · · · .

The spectrum of y(t), depicted in Fig. 6-55(d), consists
of multiple replicas of the spectrum of x(t) with various
amplitudes and frequency displacements. To obtain an output
signal proportional to x(t) cos(2πfct), signal y(t) is passed
through a bandpass filter with a gain factor of π/2, centered
at fc, thereby generating a modulated signal

ym(t) = x(t) cos(2πfct).

6-12.4 Double-Sideband Modulation

Consider a carrier signal of the form

xc(t) = A cos(2πfct + θc). (6.120)

The function of a carrier signal is to transport information,
such as audio, over a channel in the form of a propagating
wave. The information can be embedded in the carrier signal’s
amplitude A, frequency fc, or phase angle θc. Accordingly, the
three processes are known as amplitude, frequency, and phase
modulation. Our current interest is in amplitude modulation,
so we will assign fc and θc constant, non-time varying values.
Moreover, for simplicity and without loss of generality, we will
set θc = 0. Hence, xc(t) and its Fourier transform Xc(f ) are
given by

xc(t) = A cos(2πfct)

(6.121)

Xc(f ) = A

2
[δ(f − fc)+ δ(f + fc)].

The expression for Xc(f ) was obtained from Table 5-6, then
adjusted by a factor of 2π to convert it from ω to f [that is,
δ(f ) = 2π δ(ω)].

Next, let us assume we have a hypothetical signal x(t)
representing a message we wish to transfer between two
locations. The magnitude spectrum of x(t) is shown in
Fig. 6-56(a). It is bandlimited to B Hz, with B � fc. Double-
sideband (DSB) modulation entails replacing A of the carrier
signal with x(t), which is equivalent to setting A = 1 and
multiplying x(t) by xc(t). The outcome is a modulated signal
ym(t) given by

ym(t) = x(t) cos(2πfct)

Ym(f ) = 1

2
[X(f − fc)+ X(f + fc)].

(DSB modulation)

(6.122)

The expression for Ym(f ) follows from the modulation
property of the Fourier transform (Section 5-8.8). It can also be
derived by applying entry #12 in Table 5-7, which states that
multiplication in the time domain is equivalent to convolution
in the frequency domain (and vice versa). Convolving X(f )
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(a) Hypothetical baseband signal

(b) Carrier signal xc(t)

(c) Modulated carrier
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Figure 6-56: Baseband signal x(t), carrier signal xc(t), and modulated carrier ym(t).

with two impulses [representing cos(2πfct)] generates scaled
spectra of X(f ), one centered at fc and another centered at −fc
(Fig. 6-56(c)).

The magnitude spectrum of fc consists of symmetrical
halves, one called the upper sideband (USB), because it is
above the carrier frequency fc, and the other is called the lower

sideband (LSB). A similar nomenclature applies to the two
half spectra above and below −fc (Fig. 6-56(c)). Altogether,
the bidirectional spectrum has two double-sidebands, each
consisting of one LSB and one USB. The information
characterizing the real-valued signal x(t) is contained in all
four sidebands.
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Figure 6-57: The DSB demodulator uses a replica of the carrier signal, followed by a lowpass filter, to recover the baseband signal x(t).

After transmission to its intended destination, the DSB-
modulated signal ym(t) is demodulated (detected) to recover
the original signal x(t). Demodulation consists of two steps
(Fig. 6-57).

Step 1: Multiplication of ym(t) by a replica of the carrier
signal generates an intermediate signal yd(t) given by

yd(t) = ym(t) cos(2πfct) = x(t) cos2(2πfct).

Application of the trigonometric relation

cos2(θ) = 1

2
[1 + cos(2θ)]

leads to

yd(t) = 1

2
x(t)+ 1

2
x(t) cos(4πfct). (6.123)

The first term is a scaled version of the original signal and the
second term is a modulated signal at a carrier frequency of 2fc.
Hence, the spectrum of yd(t) is

Yd(f ) = 1

2
X(f )+ 1

4
[X(f − 2fc)+ X(f + 2fc)] . (6.124)

Step 2: The first term in Eq. (6.124) is centered at dc (f = 0),
whereas the two components of the second term are centered

at ±2fc. By passing yd(t) through a lowpass filter, as shown in
Fig. 6-57, the spectra centered at ±2fc can be removed without
affecting the original signal x(t). For an audio signal, B ≈ 3
kHz, compared with an fc on the order of hundreds of kHz
(for AM) or higher, which means that the central spectrum is
very far from the other two. Except for a scaling factor of 1/2,
the final output of the DSB demodulator is the original signal
x(t).

Example 6-15: DSB Modulation

Given signals x1(t) = 4 cos(8πt), x2(t) = 6 cos(6πt), and
x3(t) = 4 cos(4πt), generate the spectrum of

y(t) = x1(t)+ x2(t) cos(20πt)+ x3(t) cos(40πt).

Solution:

y(t) = x1(t)+ x2(t) cos(20πt)+ x3(t) cos(40πt)

= 4 cos(8πt) @ ± 4 Hz

+ 6 cos(6πt) cos(20πt) @ ± [7 Hz and 13 Hz]
+ 4 cos(4πt) cos(40πt) @ ± [18 Hz and 22 Hz]︸ ︷︷ ︸

spectral lines

.
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Figure 6-58: Spectrum of Example 6-15.

The spectrum of y(t) is displayed in Fig. 6-58.
In most cases, the transmitter and receiver are located at great

distances from one another, which means that the receiver does
not have a readily available exact replica of the carrier signal
xc(t) = cos(2πfct) to use as demodulator. To recover x(t),
the DSB demodulator technique shown in Fig. 6-57 requires
that the carrier frequency of the receiver’s demodulator be
identical with that of the transmitter’s modulator, and that the
two sinusoids are phase coherent with respect to one another.
As demonstrated shortly in Example 6-16, significant deviation
from these requirements can lead to serious distortion of the
message embedded in x(t). In view of these requirements,
this type of DSB demodulator is known as a synchronous or
coherent demodulator.

Example 6-16: Signal Fading

The term fading refers to when a received signal “fades in and
out,” sometimes audibly and sometimes not. Signal fading can
occur in DSB systems if the modulation carrier xc(t) and the
demodulation carrier xd(t) are not in sync with one another.
Given

xc(t) = cos(2πfct + θc) (6.125a)

and
xd(t) = cos(2πfdt + θd), (6.125b)

determine yout(t), the signal at the output of the demodulator in
Fig. 6-57, under each of the following conditions: (a) frequency
offset: θc = θd = 0, but fd = fc +�f , (b) random phase
offset: fd = fc, but θc = 0 and θd is random.

Solution:

(a) Frequency offset:
θc = θd = 0 and fd = fc + �f

Using the conditions specified in Eq. (6.125) leads to the
following expressions for ym(t) and yd(t):

ym(t) = x(t) cos(2πfct),

yd(t) = ym(t) xd(t)

= x(t) cos(2πfct) cos[(2πfc + 2π �f )t]

= 1

2
x(t) cos[2π(�f )t] + 1

2
x(t) cos[(4πfc + 2π �f )t].

After lowpass filtering the component whose spectrum is
centered at (2fc +�f ), the final output becomes

yout(t) = 1

2
x(t) cos[2π(�f )t]. (6.126)

The desired baseband signal, x(t), is now multiplied by a time-
varying sinusoid which will oscillate between ±1/2 at a slow
frequency of �f . This is a serious distortion of the message
carried by x(t). If x(t) is an audio signal, the�f -oscillation will
cause x(t) to become very loud, then fade down to zero, then
repeat the cycle over and over again. Moreover, the distortion
will occur even if �f is only a few hertz.

(b) Random phase offset:
fd = fc, θc = 0, and θd is random

If the receiver is able to generate a replica of the carrier
signal with identically the same frequency fc but unable to
maintain the phase angle of the receiver constant in time, then
by Eq. (6.125b)

ym(t) = x(t) cos(2πfct),

yd(t) = ym(t) xd(t)

= x(t) cos(2πfct) cos(2πfct + θd)

= 1

2
x(t) cos θd + 1

2
x(t) cos(4πfct + θd). (6.127)

After removal of the second term by lowpass filtering, the output
is

yout(t) = 1

2
x(t) cos θd. (6.128)

If θd varies randomly in time (because the transmitter and
receiver are not synchronized in phase), yout(t)will also, which
obviously is a terrible nuisance. And if θd = 90◦, the signal
disappears completely!

The demodulation carrier problem is resolved by transmitting
a copy of the modulation carrier along with the modulated
signal. This is the basis of amplitude modulation, the subject of
Section 6-12.5.
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Figure 6-59: Amplitude modulation includes the addition of a
dc bias prior to modulation by the carrier.

6-12.5 Adding a Carrier: Amplitude Modulation

To avoid the problem of fading, we use amplitude modulation
(AM). In amplitude modulation, the baseband signal x(t) is
dc-biased by adding a constant A to it prior to modulation by

(a) Baseband signal x(t)

t

x(t) Baseband signal

(b) Modulation index m = 0.7 (c) Modulation index m = 2

t

−1

0

1

ym(t)
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Envelope

t

m = 0.7

0

0.5

1.0

1.5
[A + x(t)] AM signal

t0

0.5

1.0

−1.0

−0.5

Distorted waveform

ym(t)

Envelope

t

m = 2

0

0.5

1.0

−0.5 Negative

[A + x(t)]
AM signal

Figure 6-60: (a) Baseband, (b) AM with m = 0.7, and (c) AM with m = 2.

the carrier signal. The process is outlined in Fig. 6-59, and the
modulated output in this case is

ym(t) = [A+ x(t)] cos(2πfct)

= A cos(2πfct)+ x(t) cos(2πfct). (6.129)

The carrier now is modulated by [A+x(t)], instead of just x(t),
thereby transmitting a copy of the carrier (of amplitudeA) along
with the modulated message x(t).

An important parameter in this context is the modulation
index m, defined as

m = |xmin|
A

, (6.130)
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where |xmin| is the smallest negative amplitude of x(t). If
m < 1, it means that

A+ x(t) > 0 for all t (m < 1). (6.131)

That is, the dc bias A is large enough to raise the waveform
of x(t) to a level that guarantees the condition given by
Eq. (6.131). The significance of this condition is illustrated by
the waveform displayed in Fig. 6-60 for a hypothetical message
x(t). Parts (b) and (c) of the figure display AM signals with
m = 0.7 and 2, respectively. When m < 1, as in Fig. 6-60(b),
the upper envelope of ym(t) is identical with that of [A+ x(t)]
because the dc bias is greater than the peak negative amplitude.
Consequently, if we were to use an envelope detector (as
discussed shortly) at the receiver end of the communication
system to recover [A+ x(t)], the recovered waveform will be
approximately distortion-free. In a subsequent step, the dc bias
will be removed to recover the original message x(t).

The envelope detector tracks the positive (upper) envelope
of the modulated signal ym(t). When m > 1, which is the case
for the modulated signal in Fig. 6-60(c), the envelope becomes
ambiguous whenever [A+x(t)] is negative, yielding a distorted
waveform. Hence, the use of an envelope detector to recover an
approximately distortionless version of the baseband message
x(t) is feasible only when:

0 < m < 1 (envelope detector condition). (6.132)

Note that DSB modulation corresponds to AM with A = 0 or,
equivalently, m = ∞, ruling out the applicability of envelope
detection entirely.

6-12.6 Envelope Detection

Envelope detection is provided by a circuit (an example of
which is shown in Fig. 6-61) with a response fast enough to
follow the variations of the envelope of ym(t), but too slow
to respond to the fast oscillations associated with the carrier. If
the message signal is bandlimited to fmax, the envelope detector
circuit should be designed such that its time constant τc satisfies
the condition

fmax � 1

τc
� fc. (6.133)

For the simple RC circuit shown in Fig. 6-61(a), τc = RC.
By way of an example, let us consider the case of a 1 kHz

sinusoid amplitude-modulated by a 10 kHz carrier withm = 1.

(a)  Envelope detector circuit

(b)  Envelope detection

+

_
ym(t) yout(t)

+
_

Before
detection

After envelope detection

t

Envelope

Figure 6-61: Envelope detector circuit and illustration of
detector output yout(t).

That is,

x(t) = cos(2 × 103πt),

xc(t) = cos(2 × 104πt),

ym(t) = [1 + x(t)] xc(t)

= [1 + cos(2π × 103t)] cos(2π × 104t).

Because the signal is a pure sinusoid, this is called tone
modulation. A plot of ym(t) is displayed in Fig. 6-62; the fast-
varying waveform is the 10 kHz carrier, and the envelope is a
dc-biased version of x(t). The envelope can be recovered by
passing the waveform of ym(t) through an envelope detector
(Fig. 6-61(a)) with τc � 1/fc = 10−4 s.

6-12.7 Frequency Translation: Mixing

In communication systems, on both the transmitter and receiver
ends, there is often a need to change the frequency of the carrier
signal, while preserving the baseband signal it is carrying.
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Figure 6-62: 1 kHz tone (sinusoid) amplitude modulating a
10 kHz carrier.

� Frequency conversion of a sinusoidal signal from
f1 to f2 is called frequency translation or mixing. If
f2 > f1, it is called upconversion, and if f2 < f1, it is
called downconversion. �

Changing the frequency of a sinusoidal signal is accomplished
by a multiplier (see Section 6-12.2), followed by a bandpass
filter. The process is outlined in Fig. 6-63. If the intent is to
convert an input signal of carrier frequency f1 into a new signal
of carrier frequency f2, we use a local oscillator at a frequency
of (f1 + f2) or (f1 − f2). The intermediate output after the
multiplication operation is

y(t) = [x(t) cos(2πf1t)] {2 cos [2π(f1 ± f2)t]}
= x(t) cos(2πf2t)+ x(t) cos [2π(2f1 ± f2)t] . (6.134)

The second term, at an oscillation frequency of (2f1 + f2),
or (2f1 − f2), is far removed from the spectrum of the first

x(t) cos(2πf1t)

yout(t) = x(t) cos(2πf2t)

Bandpass filter
centered at f2

y(t)

2 cos[2π( f1 ±  f2)t]

( f1 ±  f2)

Local oscillator

Figure 6-63: Frequency converter (mixer).

term, which is centered at f2. Hence, if the baseband signal is
bandlimited to fmax, the second term is removed by passing
the signal through a bandpass filter centered at f2 and of width
exceeding 2fmax.

Invented nearly a century ago, the superheterodyne receiver
continues to be the most popular type of receiver used in
support of radio communication and radar systems. Figure 6-64
shows a basic block diagram of a superheterodyne receiver.
To demonstrate its operation, we will assume the receiver is
connected to an antenna and the incoming modulated signal is
at a carrier frequency fc = 1 MHz. The tuner is a bandpass
filter whose center frequency can be adjusted so as to allow the
intended signal at fc = 1 MHz to pass through, while rejecting
signals at other carrier frequencies. After amplification by the
radio-frequency (RF) amplifier, the AM signal can either be
demodulated directly (which is what receivers did prior to
1918) or it can be converted into an IF signal by mixing it
with another locally generated sinusoidal signal provided by
the local oscillator. The frequency of the signal at the mixer’s
output is

fIF = fLO − fc, (6.135)

where fLO is the local-oscillator frequency. The frequency
conversion given by Eq. (6.135) assumes that fLO ≥ fc;
otherwise, fIF = fc − fLO if fLO < fc. It is important to note
that frequency conversion changes the carrier frequency of the
AM waveform from fc to fIF, but the audio signal remains
unchanged; it is merely getting carried by a different carrier
frequency.

The diagram in Fig. 6-64 indicates that the tuning knob
controls the center of the adjustable tuner as well as the local
oscillator frequency. By synchronizing these two frequencies to
each other, the IF frequency always remains constant. This is
an important feature of the superheterodyne receiver because it
insures that the same IF filter/amplifier can be used to provide
high-selectivity filtering and high-gain amplification, regardless
of the carrier frequency of theAM signal. In theAM radio band,
the carrier frequency of the audio signals transmitted by an AM
radio station may be at any frequency between 530 kHz and
1610 kHz. Because of the built-in synchronization between the
tuner and the local oscillator, the IF frequency of anAM receiver
is always at 455 kHz, which is the standard IF for AM radio.
Similarly, the standard IF for FM radio is 10 MHz, and the
standard IF for TV is 45 MHz.

It is impractical to design and manufacture high-performance
components at every frequency in the radio spectrum. By
designating certain frequencies as IF standards, industry was
able to develop devices and systems that operate with very high
performance at those frequencies. Consequently, frequency
conversion to an IF band is very prevalent not only in radio and
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Figure 6-64: Block diagram of the product superheterodyne receiver.

TV receivers, but also in radar sensors, satellite communication
systems, and transponders, among others.

After further amplification by the IF amplifier, the modulated
signal is demodulated to recover the baseband signal x(t).

6-12.8 Frequency Division Multiplexing (FDM)

We noted earlier in this section that multiplication of a baseband
message x(t) by a carrier xc(t) = cos(2πfct) leads to duplicate
spectra, each of bandwidth 2B, located at ±fc (Fig. 6-56). Each
of the two spectra consists of an upper sideband (USB) and a
lower sideband (LSB). Either of the two sidebands, which have
even amplitude symmetry and odd phase symmetry, contains all
of the information needed to reconstruct x(t). By eliminating
one of the sidebands, the bandwidth of the modulated signal is
reduced from 2B to B, and the signal is then called a single
sideband (SSB) signal. The SSB signal is generated from the
DSB either by filtering one of the sidebands—which is rather
difficult because it requires the use of a brick-wall filter—
or by applying a more practical technique called phase-shift
modulation using a Hilbert transform, as shown later in Section
6-12.9.

Suppose we wish to transmit as many phone conversations as
possible, each of bandwidth B = 3.5 kHz, using radio signals
with carrier frequencies in the 1.0 GHz to 1.01 GHz range.

Thus, the bandwidth of the available transmission band is
0.01 GHz, or 10 MHz. If we can arrange to modulate each
of the phone signals by a different carrier frequency—called
subcarriers—so that they occupy separate, 3.5 kHz wide bands
across the available transmission bandwidth, we can in principle
multiplex (combine) a large number of signals together. To
avoid interference between signals, the spectra of adjacent
signals are separated by guard bands. In the present example,
if we allow a guard band of 0.5 kHz between adjacent signal
spectra (Fig. 6-65(a)), we can potentially multiplex a total of

n = 10 MHz

(3.5 + 0.5) kHz
= 2500 signals.

Combining signals along the frequency axis is called
frequency division multiplexing (FDM). The FDM process
is diagrammed in Fig. 6-65(b) and (c) for the transmitter and
receiver ends, respectively. At the transmitter, signal x1(t) is
modulated by subcarrier frequency f1, x2(t) by subcarrier
frequency f2, and so on, through xn(t). Then, the signals are
added together and transmitted to their intended destination. At
the receiver end, the combined FDM signal is subjected to n
parallel bandpass filters yielding n separate modulated signals.
Each signal is then demodulated at its respective frequency.
The final outcome consists of n separate telephone signals, all
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Figure 6-65: Frequency division multiplexing.

of which had traveled together along the same channel at the
same time.

Example 6-17: AM versus DSB Spectra

A 1 Hz sinusoid x(t) = 2 cos(2πt) is modulated by a 50 Hz
carrier. Plot the time waveforms and associated spectra of the
modulated sinusoid for (a) DSB modulation and (b) AM with a
modulation index of 1.

Solution:
(a) With DSB, the modulated signal is given by

ym(t) = x(t) cos(2πfct) = 2 cos(2πt) cos(100πt).

The waveform of ym(t) is displayed in Fig. 6-66(a), and the
associated spectrum consists of spectral lines at the sum and
differences between the frequency of x(t) and that of the carrier.
That is, at ±49 Hz and ±51 Hz, as shown in Fig. 6-66(b).

(b) With AM, the modulated signal is given by Eq. (6.129).
For m = 1,

ym(t) = [2 + 2 cos(2πt)] cos(100πt).

The waveform and its spectrum are displayed in Fig. 6-67. We
note that in addition to the spectral lines at ±49 Hz and ±51 Hz,
the AM spectrum also includes a spectral line at the carrier
frequency of 50 Hz.
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Figure 6-66: Waveform and line spectrum of DSB modulated
sinusoid.
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Figure 6-67: Waveform and line spectrum of AM sinusoid.

� Note that the envelope of the AM signal is
[1 + cos(2πt)], so the tone x(t) can be recovered from
ym(t) using envelope detection. In contrast, the envelope
of the DSB-modulated signal is 2| cos(2πt)|, so only
|x(t)|, not x(t), can be recovered from ym(t) using
envelope detection. �

Concept Question 6-17: Explain how multiple signals
can be combined together into a single signal, which,
after transmission, can be “un-combined” into the original 
individual signals? (See        )

Concept Question 6-18: What is a carrier signal? How
is it used? (See        )

Exercise 6-16: Given 20 signals, each of (two-sided)
bandwidth Bb = 10 kHz, how much total bandwidth
would be needed to combine them using FDM with SSB
modulation and no guard bands between adjacent signals?

Answer: 100 kHz. (See S2 )

Exercise 6-17: Figure E6-17 depicts the frequency
bands allocated by the U.S. Federal Communications
Commission (FCC) to four AM radio stations. Each band
is 8 kHz in extent. Suppose radio stationWJR (with carrier
frequency of 760 kHz) were to accidentally transmit a
7 kHz tone, what impact might that have on other stations?
(Even though the four stations are separated by long
distances, let us assume they are close to one another.)

Answer: After modulation by the 760 kHz carrier, the
7 kHz tone gets transmitted at frequencies equal to the
sum and difference of the two frequencies, namely 753
kHz and 767 kHz. Listeners tuned to WSB (750 kHz) and
WABC (770 kHz) will hear a tone at 3 kHz.

Atlanta
WSB

kHz
746 754

750

Detroit
WJR

756 764
760

New York
WABC

766 774
770

Chicago
WBBM

776 784
780

Figure E6-17

(See S2 )
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Figure 6-68: Comparison of (a) AM with (b) SSB modulation using a Hilbert transform filter.

6-12.9 Single Sideband Modulation

One problem with all of the modulation schemes (DSB, AM
and FDM) presented so far in this section is that they are
inefficient in their use of the frequency spectrum. A signal
whose maximum frequency is B Hz occupies 2B Hz of
spectrum, owing to the presence of both lower and upper
sidebands. This was illustrated earlier in Fig. 6-56(c) and
replicated here as Fig. 6-68. Since the two sidebands have even
symmetry in magnitude and odd symmetry in phase, there is a
redundancy.

Single sideband modulation (SSB) is a modulation scheme
that eliminates this redundancy by eliminating the two
lower sidebands in Fig. 6-68(a). Alternatively, the two upper
sidebands can be eliminated, but we will consider only the
case of removing the two lower sidebands. The advantages of
SSB modulation over DSB modulation are as follows: (1) The
amount of spectrum required to transmit a signal is halved; (2)

the amount of power required to transmit a signal is halved;
and (3) twice as many signals (of equal bandwidths) can be
transmitted in the same amount of spectrum. SSB modulation
is used in CB and ham radios, DSL modems, and digital TV.

One way to perform SSB modulation would be to use a brick-
wall lowpass filter that passes only the lower sidebands and
eliminates the upper sidebands, but brick-wall lowpass filters
do not exist in the real world. Instead, we use the system shown
in Fig. 6-68(b).

Hilbert transform

It will be convenient later in this presentation to introduce the
signum function sgn(x) as

sgn(x) =
{

1 for x > 0,

−1 for x < 0.
(6.136)
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We also define the Hilbert transform HHH{x(t)} of a signal x(t)
as the LTI system with frequency response

H(jω) =
{

−j for ω > 0

+j for ω < 0
= −j sgn(ω). (6.137)

The impulse response of the Hilbert transform is the inverse
Fourier transform of H(jω), namely

HHH(t) = 1

2π

0∫
−∞

jejωt dω + 1

2π

∞∫
0

−jejωt dω. (6.138)

H(jω) is a pure imaginary and odd function of ω. Hence, by
conjugate symmetry, its inverse Fourier transform HHH(t) is a
real-valued and odd function of t . Indeed, after a few steps of
algebra, HHH(t) turns out to be

HHH(t) = 1

π t
. (6.139)

The Hilbert transform is often implemented in discrete time. A
discrete-time filter for the Hilbert transform is derived later in
Section 9-3.

6-12.10 Implementation

Now consider the modulation scheme shown in Fig. 6-68(b).
The signal x(t) is modulated by multiplying it by a carrier
cos(2πfct), as in DSB and AM modulation. The Hilbert
transform HHH{x(t)} of x(t) is modulated by multiplying it by
the phase-shifted carrier sin(2πfct). The difference of these
two modulated signals gives the SSB-modulated signal ym(t).

To see why this system eliminates the lower sidebands of the
SSB-modulated signal, let X(ω) be the Fourier transform of
the signal x(t). Then, using Eq. (6.137), we have the following
Fourier transform pair:

HHH{x(t)} − j sgn(ω) X(ω). (6.140)

Recall from Appendix C that

cos(2πfct) = ej2πfct

2
+ e−j2πfct

2
(6.141a)

and

sin(2πfct) = ej2πfct

2j
− e−j2πfct

2j
= −jej2πfct

2
+ je−j2πfct

2
.

(6.141b)

Using the frequency shift property of the Fourier transform in
Table 5-7, we have the following Fourier transform pairs:

x(t) cos(2πfct)
X(ω − 2πfc)

2
+ X(ω + 2πfc)

2
,

(6.142a)

x(t) sin(2πfct)
−jX(ω − 2πfc)

2
+ jX(ω + 2πfc)

2
.

(6.142b)

Applying Eq. (6.142)(b) to Eq. (6.140) requires replacing each
ω in Eq. (6.140) with ω− 2πfc, and then with ω+ 2πfc. This
gives the Fourier transform pair

HHH{x(t)} sin(2πfct)

− sgn(ω − 2πfc) X(ω − 2πfc)

2

+ sgn(ω + 2πfc) X(ω + 2πfc)

2
. (6.143)

Now, note that

1

2
+ sgn(ω − 2πfc)

2
=
{

1 for ω > 2πfc,

0 for ω < 2πfc.
(6.144)

Subtracting Eq. (6.143) from Eq. (6.142)(a) and using
Eq. (6.144) gives

ym(t) = x(t) cos(2πfct)− HHH{x(t)} sin(2πfct)⎧⎪⎨
⎪⎩

X(ω − 2πfc) for ω > 2πfc,

0 for − 2πfc < ω < 2πfc,

X(ω + 2πfc) for ω < −2πfc.

(6.145)

Hence, the lower sidebands of the spectrum of ym(t) have been
eliminated (see Fig. 6-68). The SSB-modulated signal ym(t)
can be demodulated to x(t) using the DSB demodulator shown
in Fig. 6-57.

6-13 Sampling Theorem
Today, most processing applied to signals, both natural and
artificial, is performed in the digital domain. The audio signal
picked up by the built-in microphone in a mobile phone is
digitized and coded prior to transmission. Upon reception, the
digital bits are converted back into an analog signal, which then
drives the speaker of the receiving mobile phone.

Conversion between the analog and digital domains is
performed by analog-to-digital converters (ADC) and digital-
to-analog converters (DAC). The ADC process consists of two
steps (Fig. 6-69):
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x(t) x[n]Sampling
system

Digital
computer

Analog to
digital converter

ADC

Pulse train δTs
(t)

Figure 6-69: The sampling system is like a switch that turns on for an instant every Ts seconds, which is equivalent to multiplying the signal
x(t) by a pulse train δTs(t) =∑∞

n=−∞ δ(t − nTs) and then reading off the areas under the impulses to obtain x[n].

(a) sampling the signal at some regular interval Ts and then

(b) converting the analog signal values into digital sequences.

� The sampling rate determines how well the variation of
the signal with time is captured by the sampling process,
whereas the number of bits used to encode the sampled
values determines the resolution with which the signal
intensity is captured. These are independent processes,
one dealing with discretization as a function of time and
the other as a function of signal intensity. �

An implicit assumption of the sampling process that converts
a continuous-time signal x(t) into a discrete-time signal x[n]
is that the reverse process is equally possible [that is, x(t)
can be reconstituted from x[n], without error]. Whether or
not the reverse process can be realized in practice depends
on a sampling-rate condition that involves the sampling rate
fs = 1/Ts, relative to the signal bandwidth B. This condition
is one of the important attributes of the sampling theorem,
the subject of the present section. The sampling theorem is the
transition vehicle between continuous-time signals and systems
and their counterparts in discrete time (i.e., between the material
covered thus far and the material in forthcoming chapters).

The second of the aforementioned steps of the ADC process
amounts to storing and processing the analog signal values with
finite precision. For the rest of this book, we will assume that
all signal values are known to infinite precision. We now focus
on the first step: sampling continuous-time signals.

6-13.1 Sampling a Continuous-Time Signal

To sample a signal x(t), we retain only its values at times t that
are integer multiples nTs of some small time interval Ts. That
is, we keep only the values x(nTs) of x(t) and discard all other

values. Sampling converts the continuous-time signal x(t) into
a discrete-time signal x[n]:

x[n] = x(nTs), n ∈ {integers} (6.146)

� Note that discrete-time notation uses square brackets
and index n, instead of curved brackets and time t . The
sequence of numbers x[n] is what is stored and processed
on a digital device. �

The sampling interval Ts is therefore a discretization length.
The sampling rate fs is defined as

fs = 1

Ts
. (6.147)

For CDs, the sampling rate is 44,100 samples per second, and
the sampling interval is

Ts = 1/44100 = 22.7 μs.

The physical act of sampling a continuous-time voltage
signal x(t) can be viewed as closing a switch for an instant every
Ts seconds, or at a rate of fs times per second, and storing those
values of x(t). By way of an example, consider a sinusoidal
signal x(t) = cos(2π1000t), sampled at fs = 8000 samples
per second. The sampling interval is Ts = 1/8000 s, and the
sampled signal is

x[n] = x
(
t = n

8000

)
= cos

(
2π

1000n

8000

)
= cos
(π

4
n
)
.

(6.148)
The result is shown in Fig. 6-70. The heights of the circles

indicate the values of x[n], and the stems connect them to the
times t = nTs = n/fs = n/8000 at which they are sampled.
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Figure 6-70: Sampling sinusoidal signal cos(2000πt) at 8000
samples per second.

6-13.2 Statement of the Sampling Theorem

Note that the entire previous section on amplitude modulation
was based on a single property of the Fourier transform. An
even more remarkable result that also follows from another one
of the basic properties of the Fourier transform is the sampling
theorem.

Sampling Theorem
• Let x(t) be a real-valued, continuous-time, lowpass

signal bandlimited to a maximum frequency ofB Hz.

• Let x[n] = x(nTs) be the sequence of numbers
obtained by sampling x(t) at a sampling rate of fs
samples per second, that is, every Ts = 1/fs seconds.

• Then x(t) can be uniquely reconstructed from its
samples x[n] if and only if fs > 2B. The sampling
rate must exceed double the bandwidth.

• For a bandpass signal of bandwidth B, a modified
constraint applies, as discussed later in Section
6-13.3.

The minimum sampling rate 2B is called the Nyquist
sampling rate. Although the actual units are 2B samples per
second, this is usually abbreviated to 2B “Hertz,” which has
the same dimensions as 2B samples per second.

1

t (ms)

x(t)

−0.5

−1

0.5

0

0 1 2 3 4 5 6 7

Figure 6-71: A 500 Hz sinusoid, x(t) = sin(1000πt), sampled
at the Nyquist rate of 1 kHz.

Example 6-18: Do We Need fs > 2B or fs ≥ 2B?

A 500 Hz waveform given by x(t) = sin(1000πt) is sampled at
the Nyquist sampling rate of 1 kHz (1000 samples per second).
Obtain an expression for the sampled signal xs[n] and determine
if the original signal can be reconstructed.

Solution: The sine wave’s frequency is f = 500 Hz, so a
sampling rate of 1 kHz is exactly equal to the Nyquist rate.
Figure 6-71 displays the waveform of x(t) and the time
locations when sampled at 1 kHz. Every single sample bears a
value of zero, because the sampling interval places all sample
locations at zero-crossings. Hence,

xs[n] = 0.

This is an example of when sampling at exactly the Nyquist rate
fails to capture the information in the signal.

6-13.3 Fourier Transform of a Pulse Train

In Fig. 6-72, a lowpass signal x(t) is sampled at an interval Ts
by multiplying it by an ideal pulse train δTs(t) defined as

δTs(t) =
∞∑

n=−∞
δ(t − nTs). (6.149)
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Figure 6-72: In the frequency domain, the spectrum of the sampled signal is a periodic replica of the spectrum of x(t), separated by a
spacing fs = 1/Ts.

The pulse train consists of equidistant impulses spanning the
full range of t , from −∞ to ∞. The result of the sampling
operation is the sampled signal xs(t), defined as

xs(t) = x(t) δTs(t) = x(t)

∞∑
n=−∞

δ(t − nTs)

=
∞∑

n=−∞
x(nTs) δ(t − nTs)

=
∞∑

n=−∞
x[n] δ(t − nTs). (6.150)

By virtue of the impulses, xs(t) is impulsive at
t = 0,±Ts,±2Ts, . . . , and it is zero elsewhere. Thus,
xs(t) and x[n] contain the same information, and each can be
obtained from the other, as shown in Fig. 6-72.

Suppose x(t) has a Fourier transform X(f ), bandlimited to
B Hz, and suppose we wish to determine the spectrum of the
sampled signal xs(t). When expressed in terms of f as the
frequency variable (instead of ω), the frequency-convolution
property of the Fourier transform (entry #12 in Table 5-7) takes
the form

x1(t) x2(t) X1(f ) ∗ X2(f ), (6.151)

where x1(t) and x2(t) are any two time-varying functions,
with corresponding Fourier transforms X1(f ) and X2(f ),
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respectively. In the present case, xs(t) is the product of x(t)
and δTs(t). Hence,

xs(t) = x(t) δTs(t) Xs(f ) = X(f ) ∗���(f ), (6.152)

where���(f ) is the Fourier transform of δTs(t).
To apply the convolution operation, we first need to establish

an expression for���(f ). Since δTs(t) is a periodic function with
period Ts = 1/fs, we can express it in terms of an exponential
Fourier series in the form given by Eq. (5.26c) as

δTs(t) =
∞∑

n=−∞
dnej2πnfst , (6.153a)

with Fourier coefficients

dn = 1

Ts

Ts/2∫
−Ts/2

δTs(t) e
−j2πnfst dt. (6.153b)

Over the range of integration [−Ts/2, Ts/2], δTs(t) = δ(t).
Hence, the integration leads to

dn = 1

Ts

Ts/2∫
−Ts/2

δ(t) e−j2πnfst dt = 1

Ts
= fs, for all n.

(6.154)
Using Eq. (6.154) in Eq. (6.153a) provides the Fourier series
representation of the pulse train δTs(t) as

δTs(t) =
∞∑

n=−∞
δ(t − nTs) = fs

∞∑
n=−∞

ej2πnfst . (6.155)

6-13.4 Spectrum of the Sampled Signal

Conversion of entry #10 in Table 5-6 from ω to f provides the
Fourier transform pair

ej2πnfst δ(f − nfs). (6.156)

In view of Eq. (6.156), the Fourier transform of δTs(t) is

���(f ) = F[δTs(t)] = fs

∞∑
n=−∞

δ(f − nfs). (6.157)

Using this result in Eq. (6.152), the Fourier transform of the
sampled signal becomes

Xs(f ) = X(f ) ∗ fs

∞∑
n=−∞

δ(f − nfs) = fs

∞∑
n=−∞

X(f − nfs).

In symbolic form, the Fourier transform pair is:

xs(t) = x(t) δTs(t)

Xs(f ) = fs

∞∑
n=−∞

X(f − nfs).

(6.158)

6-13.5 Shannon’s Sampling Theorem

Part (b) of Fig. 6-72, which displays the spectra of X(f ),
���(f ), and Xs(f ), shows that the spectrum of Xs(f ) consists
of a periodic repetition of X(f ), the bandlimited spectrum of
the original signal x(t), and the spacing between neighboring
spectra is fs. The spectrum centered at f = 0 is called the
baseband spectrum, and the spectra centered at ±fs, ±2fs, etc.
are image spectra that are introduced by the sampling process.

Since the bidirectional bandwidth of each spectrum is 2B,
keeping adjacent spectra from overlapping requires that

fs > 2B (Shannon’s sampling condition). (6.159)

The inequality given by Eq. (6.159) is a cornerstone of
Shannon’s sampling theorem. It states that if a bandlimited
signal is sampled at a rate fs > 2B, whereB is the signal’s one-
sided bandwidth, then the signal can be reconstructed without
error by passing the sampled signal through an ideal lowpass
filter with cutoff frequency B Hz. The filtering process is
depicted in Fig. 6-73. The lowpass filter rejects all the spectra
of Xs, except the one centered at f = 0, which is the spectrum
of the original continuous-time signal x(t).

As stated earlier, the condition

fs = 2B (Nyquist rate) (6.160)

is the Nyquist rate, and it represents a lower bound to the rate
at which x(t) should be sampled in order to preserve all its
information. Sampling at a rate higher than the Nyquist rate
does not add information, but sampling at a rate slower than
the Nyquist rate is detrimental to recovery. This is because
the central spectrum of Xs(f ) will have overlapping sections
with neighboring spectra centered at ±fs, thereby distorting
the fidelity of the central spectrum, and in turn, the fidelity
of the recovered signal x(t). The three spectra depicted in
Fig. 6-74 correspond to undersampled, Nyquist-sampled, and
oversampled scenarios.
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Figure 6-73: A signal x(t), sampled at a sampling frequency fs = 1/Ts to generate the sampled signal xs(t), can be reconstructed if
fs > 2B. The sampling system is a continuous-time to discrete-time (C/D) converter and the lowpass filter is a D/C converter.
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Figure 6-74: Comparison of spectra of Xs(f ), when x(t) is
undersampled, Nyquist sampled, and oversampled.

In practice, it is impossible to construct an ideal (brick-wall)
lowpass filter with cutoff frequency B, so we must sample x(t)
at a rate higher than the Nyquist rate so as to create sufficient
separation between adjacent spectra in order to accommodate
a realistic lowpass filter around the central spectrum.

6-13.6 Sinc Interpolation Formula

Figure 6-74(c) shows that x(t) can be recovered from xs(t)

using a brick-wall lowpass filter with cutoff frequency fs/2.
Equation (6.158) shows that the dc gain of the brick-wall
lowpass filter should be 1/fs to offset the multiplication
coefficient fs in Eq. (6.158). The impulse response of this brick-
wall lowpass filter is then

h(t) = 1

fs

sin(πfst)

πt
= sin(πfst)

πfst
.

According to Eq. (6.150),

xs(t) =
∞∑

n=−∞
x(nTs) δ(t − nTs).

where Ts = 1/fs. Combining these results leads to

x(t) = xs(t) ∗ h(t) =
∞∑

n=−∞
x(nTs) δ(t − nTs) ∗ h(t)

=
∞∑

n=−∞
x(nTs) h(t − nTs)

=
∞∑

n=−∞
x(nTs)

sin(πfs(t − nTs))

πfs(t − nTs)
.

(6.161)

This is the interpolation formula for recovering x(t) directly
from its samples x(nTs). To “interpolate” a set of data points
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means to construct a smooth function that passes through the
data points. Interpolation here means to “connect the dots” of
the samples x(nTs) to obtain x(t). While this formula is seldom
used directly, it is always nice to have an explicit formula.

Note from Fig. 6-74(d) that if x(t) is oversampled, the
cutoff frequency fs/2 of h(t) can be replaced with any number
between the maximum frequency B of x(t) and the minimum
frequency (fs − B) of the first copy of the spectrum of x(t)
created by sampling. It is still customary to use a cutoff
frequency of fs/2, since it lies halfway between B and fs −B.

6-13.7 Summary of Sampling and Reconstruction
Operations

Given a continuous-time signal x(t) bandlimited to B Hz, x(t)
is sampled by taking its values at times t = nTs for integers n.
The result is the discrete-time signal x[n] = x(nTs). One way
to do this is to multiply x(t) by the impulse train δTs(t). This
yields xs(t) = x(t) δTs(t), which is also a train of impulses,
only now the area under the impulse at time t = nTs is x[n].

To reconstruct x(t) from its sampled version xs(t), the latter
is lowpass-filtered (with cutoff frequencyB Hz) and divided by
fs to obtain x(t). The process is illustrated in Fig. 6-73.

6-13.8 Aliasing

An alias is a pseudonym or assumed name. In signal
reconstruction, aliasing refers to reconstructing the wrong
signal because of undersampling. The aliasing process is
illustrated by Example 6-19.

Example 6-19: Undersampling Aliasing

A 200 Hz sinusoidal signal given by

x(t) = cos(400πt)

is sampled at a 500 Hz rate. (a) Generate an expression for
the sampled signal xs(t) and evaluate its five central terms,
(b) demonstrate that x(t) can be reconstructed from xs(t) by
passing the latter through an appropriate lowpass filter, and (c)
demonstrate that reconstruction would not be possible had the
sampling rate been only 333 Hz.

Solution:
(a) With f0 = 200 Hz, fs = 500 Hz (which exceeds the

Nyquist rate of 400 Hz), and Ts = 1/fs = 2 ms, the input signal
is

x(t) = cos(400πt),

and its 500 Hz sampled version is

xs(t) =
∞∑

n=−∞
x(t) δ(t − nTs)

=
∞∑

n=−∞
cos(400πt) δ(t − 2 × 10−3n)

=
∞∑

n=−∞
cos(0.8πn) δ(t − 2 × 10−3n).

The sampled signal is displayed in Fig. 6-75(a). The central
five terms correspond to n = −2 to +2. Thus,

xcenter 5(t) = cos[400π(−4 × 10−3)] δ(t + 4 ms)

+ cos[400π(−2 × 10−3)] δ(t + 2 ms)

+ cos[400π(0)] δ(t)
+ cos[400π(2 × 10−3)] δ(t − 2 ms)

+ cos[400π(4 × 10−3)] δ(t − 4 ms)

= 0.31δ(t + 4 ms)− 0.81δ(t + 2 ms)+ δ(t)

− 0.81δ(t − 2 ms)+ 0.31δ(t − 4 ms).

(b) Figure 6-75(b) displays the spectrum of Xs(f ).
According to Eq. (6.158), the spectrum of the sampled signal,
Xs(f ), consists of the spectrum X(f ), plus replicas along the
f -axis, shifted by integer multiples of fs (i.e., by ±nfs). In the
present case, the spectrum of the cosine waveform consists of
a pair of impulse functions located at ±f0 = ±200 Hz. Hence,
the spectrum of the sampled signal will consist of impulse
functions with areas (fs/2) = 250 Hz, at:

(±200 ± 500n) Hz = ±200 Hz, ± 300 Hz,

± 700 Hz, ± 800 Hz, . . . .

By passing the sampled signal through a lowpass filter with
a cutoff frequency of 250 Hz, we recover the spectrum of
cos(400πt), while rejecting all other spectral components of
Xs(f ), thereby recovering x(t) with no distortion.

(c) Figure 6-76(a) displays the cosine waveform, and its
sampled values at fs = 333 Hz, which is below the Nyquist
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(a) x(t) and xs(t) at fs = 500 Hz

(b) Spectrum of Xs( f ) [blue = spectrum of x(t); red = image spectra]
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Figure 6-75: (a) 200 Hz cosine signal sampled at fs = 500 Hz or, equivalently, at a sampling interval Ts = 1/fs = 2 ms; (b) passing the
sampled signal through a lowpass filter with a cutoff frequency of 250 Hz would capture the correct spectral lines of the 200 Hz sinusoid.
Reconstruction is possible because the sampling rate fs > 2B. For this sinusoid, B = f0 = 200 Hz.

(a) x(t) and xs(t) at fs = 333 Hz

(b) Spectrum of Xs( f ) [blue = spectrum of x(t); red = image spectra]

f (Hz)
−133

133−466−533 0−200 466 533200

|Xs( f )|

−250 250

Lowpass filter

t (ms)x[−2] x[2]

x[−1] x[1]

x[0]

−1−3−4

0.310.31

−0.81 −0.81

−5−6 1

1

0 4 5 6 7−2 2

x(t) = cos(400πt)

3

fs = 333 Hz
(undersampled)

Spectral lines introduced
by undersampling

Figure 6-76: (a) 200 Hz cosine signal sampled at fs = 333 Hz or, equivalently, at a sampling interval Ts = 1/fs = 3 ms; (b) passing the
sampled signal through a lowpass filter with a cutoff frequency of 250 Hz would capture the correct spectral lines of the 200 Hz sinusoid,
but it will also include the image spectral lines at ±133 Hz. Perfect reconstruction is not possible because the sampling rate fs < 2B.
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t (ms)0

900 Hz sinusoid x2(t) 100 Hz sinusoid x1(t)

1 2 3 4 5
6 7 8 9 10

Figure 6-77: Two sinusoids, x1(t) at f1 = 100 Hz and x2(t)

at f2 = 900 Hz, are sampled at 1 kHz. The two sinusoids have
identical sampled values.

rate of 400 Hz. Thus, this is an undersampled waveform. The
spectrum consists of impulses at

(±200 ± 333n) Hz = ±133 Hz, ± 200 Hz,

± 466 Hz,±533 Hz, . . . .

Since the signal’s one-sided bandwidth is 200 Hz, the lowpass
filter’s cutoff frequency has to be greater than that, but such a
filter would also encompass the impulse functions at ±133 Hz,
thereby generating a signal that is the sum of two cosines: one
at 133 Hz and another at 200 Hz. A narrower, 150 Hz lowpass
filter would generate an alias in the form of a 133 Hz cosine
waveform instead of the original 200 Hz cosine waveform.

6-13.9 Aliasing in Sinusoids

Let us consider two sinusoids

x1(t) = cos(2πf1t) (6.162a)

t (ms)
0

0

1

0.5

105 15 20

−1

−0.5

x(t)

Figure 6-78: The 500 Hz sinusoid, sampled at fs = 450 Hz, appears to the eye like a 50 Hz signal.

and
x2(t) = cos(2πf2t), (6.162b)

and let us sample both waveforms at fs. The nth samples,
corresponding to t = nTs = n/fs, are

x1[n] = x1(nTs) = cos

(
2πn

f1

fs

)
, (6.163a)

x2[n] = x2(nTs) = cos

(
2πn

f2

fs

)
. (6.163b)

Furthermore, let us assume f1, f2, and fs are related by

f2 = ±(f1 +mfs) (m = integer). (6.164)

Use of Eq. (6.164) in Eq. (6.163b) leads to

x2[n] = cos

[
2πn

(
f1

fs
+m

)]
= cos

(
2πn

f1

fs

)
= x1[n].

Thus, x1(t) and x2(t) will have identical sampled values for
all n. This conclusion is illustrated by the two sinusoids in
Fig. 6-77, wherein x1(t) has a frequency f1 = 100 Hz, x2(t)

has a frequency f2 = 900 Hz, and the sampling rate fs = 1
kHz. The three frequencies satisfy Eq. (6.164) for m = −1.

The point of this illustration is that the oversampled 100 Hz
sinusoid is recoverable, but not so for the undersampled 900 Hz
sinusoid. To remove the ambiguity and recover the 900 Hz
waveform, it is necessary to sample it at a rate greater than
1800 Hz.

6-13.10 Physical Manifestations of Aliasing

To observe how aliasing distorts a signal, examine the sinusoid
shown in Fig. 6-78. The 500 Hz sinusoid is sampled at
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450 samples per second. The samples, shown as red dots, appear
as if they are part of sampling a 50 Hz sinusoid. Given the
choice between interpreting the samples as from a 500 Hz or a
50 Hz signal, the mind chooses the lower frequency (just as the
lowpass reconstruction filter would). In this case, the 500 Hz
signal masquerades as the 50 Hz sinusoid.

Another visual example of aliasing is found in some old
western movies. When a stagecoach wagon wheel with 24
spokes rotating at 1 revolution per second is filmed by a camera
that uses 24 frames per second, the wheel appears stationary,
even though it is moving. And if the wheel has only 23 spokes,
it will appear to rotate backwards slowly! Filming the rotating
wheel at 24 frames per second is equivalent to visually sampling
it at a sampling frequency fs = 24 Hz. If the wheel has only 23
spokes and it is rotating at 1 revolution per second, the image
of the wheel between successive frames will appear as if the
spokes are slightly behind, so the brain interprets it as rotating
backwards.

6-13.11 Aliasing in Real Signals

A signal x(t) cannot be time-limited to a finite duration
unless its spectrum X(f ) is unbounded (extends in frequency
over (−∞,∞)), and X(f ) cannot be bandlimited to a finite
bandwidth unless x(t) is everlasting (exists for all time). No
real signal is everlasting, and therefore, no real signal has a
perfectly bandlimited spectrum.

Suppose a real signal x(t)with the spectrum X(f ) displayed
in Fig. 6-79(a) is sampled at a sampling frequency fs. The
spectrum of the sampled signal, Xs(f ), consists of the sum of
replicate spectra of X(f ), which are centered at f = 0, ±fs,
±2fs, etc. The first overlap occurs at fs/2, which is called
the folding frequency. If we were to perform a reconstruction
operation by subjecting the sampled signal xs(t) to a lowpass
filter with one-sided bandwidth fs/2, as shown in Fig. 6-79(b),
we would recover a distorted version of x(t) because the
spectrum within the filter contains contributions not only from
the central spectrum [corresponding to X(f )] but also from the
tails of all of the other frequency-shifted spectra. These extra
contributions are a source of aliasing.

6-13.12 Antialiasing Filter

To avoid the aliasing problem, the sampling system can be
preceded by an analog lowpass antialiasing filter, as shown
in Fig. 6-80, thereby converting the spectrum of x(t) from one
with unlimited bandwidth, stretching outwards towards ±∞,
to a bandlimited spectrum. The lowpass filter eliminates high-

(a) Original spectrum

f

|X( f )|

(b) Overlapping spectra

0

Brick-wall filter

−fs −fs /2 fsfs /2
f

|Xs( f )|

Overlap distorts
central spectrum

Figure 6-79: Spectrum of sampled signal consists of overlapping
spectra.

frequency components of the spectrum, while preserving those
below its cutoff frequency. If the signal is to be sampled at fs,
a judicious choice is to select the filter’s cutoff frequency to
be fs/2. An additional bonus is accrued by the lowpass filter’s
operation in the form of rejection of high frequency noise that
may be accompanying signal x(t).

Example 6-20: Importance of Oversampling

Figure 6-81 displays the spectrum of a sampled signal xs(t).
To reconstruct the bandlimited signal x(t), a fifth-order lowpass
Butterworth filter is called for.

(a) Specify the filter’s frequency response in terms of
the signal’s one-sided bandwidth B, such that the baseband
spectrum is reduced by no more than 0.05%.
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x(t)
Lowpass filter

Cutoff frequency = fs /2
Sampling system

fs
xf (t) xs(t)

−fs /2 fs /20
f

Xf ( f )

Filtered spectrum

Removed by filter Removed

Figure 6-80: An antialiasing filter is a lowpass filter used ahead of sampling operation.

(b) Specify the sampling rate needed so that the image spectra
are reduced by the filter down to 0.1% or less of their unfiltered
values.

Solution:
(a) From Eq. (6.93), the magnitude response of a Butterworth

filter is given by

MLP(ω) = |C|
ωnc

· 1√
1 + (ω/ωc)2n

.

where ωc is the filter’s cutoff angular frequency.
For our present purposes, we will (a) convert ω to 2πf and

ωc to 2πfc, and (b) choose C = ωnc so that the dc gain is 1.
Hence,

MLP(f ) = 1√
1 + (f/fc)2n

.

Over the extent of the baseband spectrum, the lowest value
of MLP(f ) occurs at f = B. Hence, to meet the 0.05%
specification with n = 5, the response has to satisfy the
condition

1 − 0.0005 = 0.9995 = 1√
1 + (B/fc)10

.

Solving for fc leads to

(
B

fc

)10

= 1

(0.9995)2
− 1 = 0.001,

or
fc = (0.001)−1/10B = 2B.

f
−B B0

1
0.9995

0.001

Butterworth filter
Image spectrum

−fi−( fi + B) fi + Bfi

|X( f )| Image spectrum

Figure 6-81: Fifth-order Butterworth filter of Example 6-20.
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Thus, the cutoff frequency of the Butterworth filter should be
twice the one-sided bandwidth of x(t).

(b) The second requirement states that the filter’s magnitude
at the near-edges of the image spectra (labeled ±fi in Fig. 6-81)
should be no more than 0.1% of its peak value. That is, with
fc = 2B from part (a), we need to determine fi such that

0.001 = M(fi) = 1√
1 + (fi/2B)10

.

The solution leads to

fi = 8B,

which means that the first image spectra on the two sides of the
baseband spectrum are centered at ±(8B + B) = ±9B. This
corresponds to a sampling rate fs = 9B, or equivalently, an

oversampling ratio = 9B

2B
= 4.5 times!

6-13.13 Sampling of Bandpass Signals

Not all signals have spectra that are concentrated around dc.
A bandpass signal is one whose spectrum extends over a
bandwidth B between a lower frequency f and an upper
frequency fu, as shown in Fig. 6-82(a). According to the
foregoing discussion about sampling and reconstruction, it is
necessary to sample the signal at more than twice its highest
frequency (i.e., at fs > 2fu) in order to be able to reconstruct
it. However, the signal’s spectrum contains no information in
the spectral range [−f, f], so sampling at the traditional
Nyquist rate seems excessive. After all, if the signal is mixed
with a local-oscillator signal at the appropriate frequency (see
Section 6-11.5), its spectrum will get shifted towards dc,
becoming a baseband-like signal with bandwidth B, as shown
in Fig. 6-82(b). The frequency shifted spectrum continues to
contain the same information as the input signal. Hence, a
sampling rate that exceeds the Nyquist rate should be quite
sufficient to capture the information content of the signal.

Alternatively, instead of frequency translating the bandpass
spectrum towards dc, the signal can still be sampled at a rate
between 2B and 4B by selecting the sampling rate fs such that
no overlap occurs between the spectrum X(f ) of the bandpass
signal and the image spectra generated by the sampling process.
The uniform sampling theorem for bandpass signals states
that a bandpass signal x(t) can be faithfully represented and
reconstructed if sampled at a rate fs such that

fs = 2fu

m
, (6.165)

(a) Bandpass spectrum

(b) After frequency translation

B

−fℓ−fu 0 fℓ fu
f

|X( f )|

B

|X′( f )|

−B B0
f

B B

Figure 6-82: A bandpass spectrum can be shifted to create a
baseband-like signal by mixing the signal with a local oscillator
whose frequency is fLO = f.

wherem is the largest integer not exceeding fu/B. Figure 6-83
is a graphical representation of the stated condition. The
baseband-like spectrum corresponds to fu/B = 1.

Example 6-21: Sampling a Bandpass Signal

Bandpass signal x(t) has the spectrum shown in Fig. 6-86(a).
Determine the minimum sampling rate necessary to sample the
signal so it may be reconstructed with total fidelity.

Solution: From the given spectrum, we obtain

fu = 150 Hz, f = 50 Hz,

B = fu − f = 150 − 50 = 100 Hz,

and
fu

B
= 150

100
= 1.5.
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Same as baseband

Forbidden region
(aliasing)
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2B

3B

2.67B
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fs

fu /B

m = 3

m = 2

m = 1

m = 4

−fℓ−fu 0 fℓ fu
f

|X( f )|

BB

Figure 6-83: Minimum sampling frequency fs for a bandpass signal.

According to Fig. 6-83, for fu/B = 1.5, the sampling rate
should be

fs = 3B = 3 × 100 = 300 Hz.

Per Eq. (6.158), the spectrum of the sampled signal is given by

Xs(f ) = fs

∞∑
n=−∞

X(f − nfs).

Spectrum Xs(t) consists of the original spectrum, plus an
infinite number of duplicates, shifted to the right by nfs for
n > 0 and to the left by |nfs| for n < 0.All spectra are scaled by
a multiplicative factor of fs. Figure 6-86(b) displays the spectra
for n = 0 and ±1. We note that the spectra do not overlap,
which means that the original signal can be reconstructed by
passing spectrum Xs(f ) through a lowpass filter with a spectral
response that extends between −150 Hz and +150 Hz.

6-13.14 Practical Aspects of Sampling

So far, all our discussions of signal sampling assumed the
availability of an ideal impulse train composed of impulses.

In practice, the sampling is performed by finite-duration
pulses that may resemble rectangular or Gaussian waveforms.
Figure 6-84 depicts the sampling operation for a signal x(t),
with the sampling generated by a train of rectangular pulses
given by

pTs(t) =
∞∑

n=−∞
rect

(
t − nTs

τ

)
,

where Ts is the sampling interval and τ is the pulse width. From
Table 5-4, the Fourier series representation of the pulse train is

pTs(t) = τ

Ts
+

∞∑
m=1

2

mπ
sin

(
mπτ

Ts

)
cos

(
2mπτ

Ts

)
. (6.166)

The signal sampled by the pulse train is

xs(t) = x(t) pTs(t)

= τ

Ts
x(t)+

∞∑
m=1

2

mπ
x(t) sin

(
mπτ

Ts

)
cos

(
2mπt

Ts

)
,

(6.167)
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x(t)

t
0−2Ts −Ts

2Ts 4Ts

6Ts

Ts 3Ts

5Ts

t0−2Ts −Ts

2Ts 4Ts

6Ts

3Ts

5Ts

t
0−2Ts −Ts 2Ts 4Ts 6TsTs 3Ts 5Ts

pTs
(t)

xs(t)

Tsτ

Ts

(a) Time domain (b) Frequency domain

−B B0
f

|Xs( f )|
(τ/Ts )|X(0)|

|X( f )|

−8fs −2fs−4fs−6fs 0 2fs 4fs 6fs 8fs
f

|P( f )|

−fs−2fs 0 fs 2fs
f

Figure 6-84: Sampling a signal x(t) by a train of rectangular pulses.

which can be cast in the form

xs(t) = A0 x(t)+ A1 x(t) cos(2πfst)

+ A2 x(t) cos(4πfst)+ · · · , (6.168)

with

fs = 1

Ts
, A0 = τ

Ts
,

A1 = 2

π
sin(πfsτ), A2 = 1

π
sin(2πfsτ), . . . .

The sequence given by Eq. (6.168) consists of a dc term,
A0 x(t), and a sum of sinusoids at frequency fs and its
harmonics. The Fourier transform of the A0 term is A0 X(f ),
where X(f ) is the transform of x(t). It is represented by the
central spectrum of Xs(f ) in Fig. 6-84. The cosine terms in
Eq. (6.168) generate image spectra centered at ±fs and its
harmonics, but their amplitudes are modified by the values of
A1, A2, etc.

Signal x(t) can be reconstructed from xs(t) by lowpass
filtering it, just as was done earlier with the ideal impulse
sampling. The Shannon sampling requirement that fs should
be greater than 2B still holds.
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(a) Sampling sequence

Continuous/
Discrete

SAMPLING
C C Analog/

Digital Digital

xf (t) xs(t)

pTs
(t)

xd[n] as a digital sequence

Cutoff:  fs /2 Hz

Antialiasing
Filterx(t) A/D

Converter recorded
onto CD

CD
Ts 2Ts0 t

(b) Reconstruction sequence

Digital Discrete/Continuous
RECONSTRUCTION

D/C

Ts 2Ts0 t

xf (t)

pTs
(t)

Cutoff:  fs /2 Hz

Reconstruction
FilterD/A

Converter
xd[n]

Read
off CD

CD

Figure 6-85: DSP system with C/D and D/C to convert between continuous time and discrete time, and A/D and D/A to convert between
analog and digital.

By way of an example, we show in Fig. 6-85 a block diagram
of a typical DSP system that uses a compact disc (CD) for
storage of digital data. The sampling part of the process starts
with a continuous-time signal x(t). After bandlimiting the
signal to fs/2 by an antialiasing filter, the filtered signal xf(t) is
sampled at a rate fs and then converted into a digital sequence
xd[n] that gets recorded onto the CD.

Reconstruction performs the reverse sequence, starting with
xd[n] as read off of the CD and concluding in xf(t), the
bandlimited version of the original signal.

Concept Question 6-19: Does sampling a signal at 
exactly the Nyquist rate guarantee that it can be 
reconstructed from its discrete samples? (See        )

Concept Question 6-20: What is signal aliasing? What
causes it? How can it be avoided? (See        )

Concept Question 6-21: If brick-wall lowpass filters are
used in connection with a signal bandlimited to fmax and
sampled at fs, what should the filter’s cutoff frequency 
be when used as (a) an anti-aliasing filter and (b) a 
reconstruction filter? (See        )

Exercise 6-18: What is the Nyquist sampling rate for a
signal bandlimited to 5 kHz?

Answer: 10 kHz. (See S2 )

Exercise 6-19: A 500 Hz sinusoid is sampled at 900 Hz.
No anti-alias filter is used. What is the frequency of the
reconstructed sinusoid?

Answer: 400 Hz. (See S2 )
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(a) Spectrum of original signal

(b) Spectrum of sampled signal

0−100

n = −1 n = −1 n = 0 n = 0 n = 1 n = 1

−200−300−400−500 100 200 300 400 500
f (Hz)

Xs( f )

0−100−200−300−400−500 100 200 300 400 500
f (Hz)

X( f )

A

fs A

Figure 6-86: Spectra of (a) original signal and (b) after sampling at 300 Hz (Example 6-21).

Summary

Concepts

• Circuits can be designed to serve as lowpass, highpass,
bandpass, and bandreject frequency filters.

• The inherent input-output isolation offered by op-amp
circuits makes them ideal for cascading multiple stages
together to realize the desired spectrum.

• The frequency response of a system is governed by the
locations of the poles and zeros of its transfer function
H(s) in the s-plane.

• Notch filters are used to remove sinusoidal interference.

• Comb filters are used to remove periodic interference.

• Butterworth filters can be designed as lowpass, highpass,
and bandpass filters with sharp roll-off at their cutoff
frequencies.

• Resonator filters are used to reduce noise in periodic
signals composed of discrete (line) spectra.

• In amplitude modulation (AM), a signal is dc-biased
by adding a constant A to it prior to modulation by the
carrier signal.

• In frequency division multiplexing (FDM), a large
number of signals can be combined (multiplexed)
together, transmitted as a single signal, and then
demultiplexed after reception.

• The sampling theorem states that a signal can be
recovered from its discrete samples if the sampling
rate fs exceeds 2fmax, where fmax is the signal’s highest
frequency.
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Mathematical and Physical Models
Series RLC lowpass and highpass filters

ω0 = 1/
√
LC (resonant frequency)

Quality factor Q = ω0/B

Notch filter frequency response

Hnotch(ω) = (jω − jω0)(jω + jω0)

(jω + α − jω0)(jω + α + jω0)

Comb filter frequency response

Hcomb(ω) =
∏n

k=−n
k �=0

[
jω − jkω0

jω + α − jkω0

]

Butterworth lowpass filter response

HLP(ω) = C
n∏
i=1

(
1

jω − pi

)

Resonator filter frequency response

HLP(s) = C
ωnc

H(sa)

∣∣∣∣
sa=s/ωc

Shannon’s sampling condition for reconstruction

fs > 2fmax

Important Terms Provide definitions or explain the meaning of the following terms:

active filter
additive zero-mean white noise
aliasing
amplitude modulation (AM)
bandlimited
bandpass filter
bandreject filter
bandwidth B
baseband bandwidth
Bode plot
brick-wall filter
Butterworth filter
carrier frequency
comb filter
corner frequency
cutoff frequency
dc gain
demodulation
double-sideband (DSB) modulation
double-sideband suppressed carrier

(DSB-SC)
folding frequency
frequency division multiplexing

(FDM)

frequency offset
frequency response H(ω)
frequency translation (mixing)
gain factor
gain roll-off rate
guard band
half-power frequencies
highpass filter
image spectra
line enhancement filter
local oscillator
lower sideband (LSB)
lowpass filter
magnitude response M(ω)
maximum frequency fmax
modulation
modulation index
multiplexing
notch filter
Nyquist rate
oversampling
passband
passive filter
phase coherent

phase offset
phase response φ(ω)
poles
proper rational function
pulse train
quality factor
resonant frequency
resonator filter
sampling interval
sampling rate fs
sampling theorem
Shannon’s sampling theorem
signal bandwidth
signal-to-noise ratio
single-sideband (SSB) modulation
stopband
subcarrier
superheterodyne receiver
switching modulation
synchronous demodulator
transfer function
tuner
upper sideband (USB)
zeros
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PROBLEMS

Section 6-2: Types of Filters

∗6.1 Determine the resonant frequency of the circuit shown in
Fig. P6.1 given that R = 100 �, L = 5 mH, and C = 1 μF.

RC

L

Figure P6.1: Circuit for Problem 6.1.

6.2 Determine the resonant frequency of the circuit shown in
Fig. P6.2 given that R = 100 �, L = 5 mH, and C = 1 μF.

R

C

L

Figure P6.2: Circuit for Problem 6.2.

6.3 For the circuit shown in Fig. P6.3, determine (a) the
transfer function H = Vo/Vi, and (b) the frequencyωo at which
H is purely real.

R

C L2

L1
+

_
Vi

+

_
Vo

Figure P6.3: Circuit for Problem 6.3.

6.4 For the circuit shown in Fig. P6.4, determine (a) the
transfer function H = Vo/Vi, and (b) the frequencyωo at which
H is purely real.

∗
Answer(s) in Appendix F.

C

R1

R2LVi
+

_
Vo

+
_

Figure P6.4: Circuit for Problem 6.4.

6.5 Convert the following power ratios to dB.

(a) 3 × 102

∗(b) 0.5 × 10−2

(c)
√

2000

(d) (360)1/4

∗(e) 6e3

(f) 2.3 × 103 + 60

(g) 24(3 × 107)

(h) 4/(5 × 103)

6.6 Convert the following voltage ratios to dB.

(a) 2 × 10−4

(b) 3000

(c)
√

30
∗(d) 6/(5 × 104)

6.7 Convert the following dB values to voltage ratios.

(a) 46 dB

(b) 0.4 dB

(c) −12 dB
∗(d) −66 dB

6.8 Generate magnitude and phase plots for the following
voltage transfer functions. Use Fig. 6-7 as a model.

(a) H(ω) = j100ω

10 + jω

(b) H(ω) = 0.4(50 + jω)2

(jω)2

(c) H(ω) = (40 + j80ω)

(10 + j50ω)

(d) H(ω) = (20 + j5ω)(20 + jω)

jω

(e) H(ω) = 30(10 + jω)

(200 + j2ω)(1000 + j2ω)

(f) H(ω) = j100ω

(100 + j5ω)(100 + jω)2

(g) H(ω) = (200 + j2ω)

(50 + j5ω)(1000 + jω)
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Section 6-3: Passive Filters

6.9 The element values of a series RLC bandpass filter are
R = 5 �, L = 20 mH, and C = 0.5 μF.

(a) Determine ω0, Q, B, ωc1 , and ωc2 .

(b) Is it possible to double the magnitude ofQ by changing the
values ofL and/orC, while keepingω0 andR unchanged?
If yes, propose such values, and if no, why not?

6.10 A series RLC bandpass filter has half-power frequencies
at 1 kHz and 10 kHz. If the input impedance at resonance is
6 �, what are the values of R, L, and C?

∗6.11 A series RLC circuit is driven by an ac source with
a phasor voltage Vs = 10 30◦ V. If the circuit resonates at
103 rad/s and the average power absorbed by the resistor at
resonance is 2.5 W, determine the values of R, L, and C given
that Q = 5.

6.12 The element values of a parallel RLC circuit are
R = 100 �, L = 10 mH, and C = 0.4 mF. Determine ω0, Q,
B, ωc1 , and ωc2 .

6.13 Design a parallel RLC filter with f0 = 4 kHz,Q = 100,
and an input impedance of 25 k� at resonance.

6.14 For the circuit shown in Fig. P6.14 provide the
following:

(a) An expression for H(ω) = Vo/Vi in standard form.

(b) Spectral plots for the magnitude and phase of H(ω) given
that R1 = 1 �, R2 = 2 �, C1 = 1 μF, and C2 = 2 μF.

(c) The cutoff frequency ωc and the slope of the magnitude
(in dB) when ω/ωc � 1 and when ω/ωc 	 1.

C2

C1

R1

R2
+

_
Vi

+

_
Vo

Figure P6.14: Circuit for Problem 6.14.

6.15 For the circuit shown in Fig. P6.15 provide the
following:

(a) An expression for H(ω) = Vo/Vi in standard form.

(b) Spectral plots for the magnitude and phase of H(ω) given
that R1 = 1�, R2 = 2 �, L1 = 1 mH, and L2 = 2 mH.

(c) The cutoff frequency ωc and the slope of the magnitude
(in dB) when ω/ωc � 1 and when ω/ωc 	 1.

L2

L1

R1

R2
+

_
Vi

+

_
Vo

Figure P6.15: Circuit for Problem 6.15.

6.16 For the circuit shown in Fig. P6.16 provide the
following:

(a) An expression for H(ω) = Vo/Vi in standard form.

(b) Spectral plots for the magnitude and phase of H(ω) given
that R = 100 �, L = 0.1 mH, and C = 1 μF.

(c) The cutoff frequency ωc and the slope of the magnitude
(in dB) when ω/ωc 	 1.

C

L

R
+

_
Vi

+

_
Vo

Figure P6.16: Circuit for Problem 6.16.

∗6.17 For the circuit shown in Fig. P6.17 provide the
following:

(a) An expression for H(ω) = Vo/Vi in standard form.

(b) Spectral plots for the magnitude and phase of H(ω) given
that R = 10 �, L = 1 mH, and C = 10 μF.

(c) The cutoff frequency ωc and the slope of the magnitude
(in dB) when ω/ωc � 1.

L

C

R
+

_
Vi

+

_
Vo

Figure P6.17: Circuit for Problem 6.17.

6.18 For the circuit shown in Fig. P6.18 provide the
following:

(a) An expression for H(ω) = Vo/Vi in standard form.
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L

R

R
+

_
Vi

+

_
Vo

Figure P6.18: Circuit for Problem 6.18.

(b) Spectral plots for the magnitude and phase of H(ω) given
that R = 50 � and L = 2 mH.

(c) The cutoff frequency ωc and the slope of the magnitude
(in dB) when ω/ωc � 1.

6.19 For the circuit shown in Fig. P6.19 provide the
following:

(a) An expression for H(ω) = Vo/Vi in standard form.

(b) Spectral plots for the magnitude and phase of H(ω) given
that R = 50 � and L = 2 mH.

Section 6-4: Active Filters

6.20 For the op-amp circuit of Fig. P6.20 provide the
following:

(a) An expression for H(ω) = Vo/Vs in standard form.

(b) Spectral plots for the magnitude and phase of H(ω) given
that R1 = 1 k�, R2 = 4 k�, and C = 1 μF.

(c) What type of filter is it? What is its maximum gain?

6.21 For the op-amp circuit of Fig. P6.21 provide the
following:

(a) An expression for H(ω) = Vo/Vs in standard form.

(b) Spectral plots for the magnitude and phase of H(ω) given
that R1 = 99 k�, R2 = 1 k�, and C = 0.1 μF.

(c) What type of filter is it? What is its maximum gain?

6.22 For the op-amp circuit of Fig. P6.22 provide the
following:

L

R

R
+

_
Vi

+

_
Vo

Figure P6.19: Circuit for Problem 6.19.

+

_
VoVs

R2

R1

C

+

_

+
_

Figure P6.20: Circuit for Problem 6.20.

+

_
VoVs

R1

C

R2
+

_

+
_

Figure P6.21: Circuit for Problem 6.21.

+

_
VoVs

R2R1
C1

C2

+

_

+
_

Figure P6.22: Circuit for Problems 6.22 and 6.23.

(a) An expression for H(ω) = Vo/Vi in standard form.

(b) Spectral plots for the magnitude and phase of H(ω) given
that R1 = R2 = 100 �, C1 = 10 μF, and C2 = 0.4 μF.

(c) What type of filter is it? What is its maximum gain?

6.23 Repeat Problem 6.22 after interchanging the values of
C1 and C2 to C1 = 0.4 μF and C2 = 10 μF.

∗6.24 For the op-amp circuit of Fig. P6.24 provide the
following:

(a) An expression for H(ω) = Vo/Vs in standard form.
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(b) Spectral plots for the magnitude and phase of H(ω) given
thatR1 = 1 k�, R2 = 20�, C1 = 5 μF, andC2 = 25 nF.

(c) What type of filter is it? What is its maximum gain?

+

_
Vo

Vs

R2

C2

C1R1

+

_

+
_

Figure P6.24: Circuit for Problem 6.24.

6.25 Design an active lowpass filter with a gain of 4, a corner
frequency of 1 kHz, and a gain roll-off rate of −60 dB/decade.

6.26 Design an active highpass filter with a gain of 10, a corner
frequency of 2 kHz, and a gain roll-off rate of 40 dB/decade.

6.27 The element values in the circuit of the
second-order bandpass filter shown in Fig. P6.27 are:
Rf1 = 100 k�, Rs1 = 10 k�, Rf2 = 100 k�, Rs2 = 10 k�,
Cf1 = 3.98 × 10−11 F, Cs2 = 7.96 × 10−10 F. Generate a
spectral plot for the magnitude of H(ω) = Vo/Vs. Determine
the frequency locations of the maximum value of M [dB] and
its half-power points.

Section 6-5: Ideal Brick-Wall Filters

6.28 Derive the impulse response of a system characterized
by the frequency response shown in Fig. P6.28. Express your
answer in terms of two sinc functions.

f (Hz)
−1−2 210

2

1

|H( f )|

Figure P6.28: Frequency response of Problem 6.28.

6.29 Derive the impulse response of a system characterized
by the frequency response shown in Fig. P6.29. Express your
answer in terms of three sinc functions.

f (Hz)
−1−2−3 3210

2

1

|H( f )|

Figure P6.29: Frequency response of Problem 6.29.
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+
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+
_ +

_

+
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+
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Rs1 Rs1 Rs2
Cs2 Cs2Rs2

Cf1 Cf1

Rf1 Rf1 Rf2 Rf2

Figure P6.27: Circuit for Problem 6.27.
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6.30 A bandlimited differentiator system with frequency
response H(ω) = jω rect(ω/ω0) is used to convert CAT-scan
(computed axial tomography x-ray images) signals into medical
images.

(a) Obtain the corresponding impulse response h(t).
∗(b) Using linear approximations for small arguments of sine

and cosine, show that h(0) = 0. Can you deduce this result
directly from the functional form of H(ω)?

6.31 The current i(t) through a capacitor can be determined
from the voltage υ(t) across the capacitor using the
relation i(t) = C dυ/dt . This requires implementation of
the pure differentiator system y(t) = dx/dt . However, this
system is not BIBO-stable, because a (bounded) input
x(t) = u(t) leads to an (unbounded) output y(t) = δ(t). Using
H(ω) = (jωa)/(jω + a) is a useful substitute, since H(ω)
resembles a differentiator at low frequencies, but it is also
bounded at high frequencies:

H(ω) ≈
{
jω ω � a,

a ω 	 a.

(a) Compute the transfer function H(s).

(b) Compute the impulse response h(t).

(c) Compute an LCCDE implementing H(ω).

(d) Compute the response to the (bounded) input x(t) = u(t).
Is the response bounded?

6.32 The current i(t) through an inductor can be determined
from the voltage υ(t) across the inductor using the relation
i(t) = 1

L

∫ t
−∞ υ(τ) dτ , which is equivalent to υ(t) = L di/dt .

This requires implementation of the pure integrator system
y(t) = ∫ t−∞ x(τ) dτ . However, this system is not BIBO-
stable, because a (bounded) input x(t) = u(t) leads to an
(unbounded) output y(t) = r(t). Using H(ω) = 1/(jω+ ε) is
a useful substitute, since H(ω) resembles an integrator at high
frequencies, but it is also bounded at low frequencies:

H(ω) ≈
{

1/(jω) ω 	 ε,

1/ε ω � ε.

(a) Compute the transfer function H(s).

(b) Compute the impulse response h(t).

(c) Compute an LCCDE implementing H(ω).

(d) Compute the response to the (bounded) input x(t) = u(t).
Is the response bounded?

Sections 6-7 to 6-11: Filters

6.33 Given a sound recording of two trumpets, one playing
note A (440 Hz) and the other playing note E (660 Hz),
simultaneously, can a comb filter be designed to remove the
sound of one of the two trumpets?

6.34 This problem illustrates an important point about
displaying the frequency response of a notch filter. Design a
notch filter to remove a 60 Hz interfering sinusoid. Useα = 0.1.
Plot |H(ω)| versus

(a) ω = 0, 1, 2, . . . , 999, 1000 rad/s,

(b) ω = 0, 0.01, 0.02, . . . , 999.99, 1000 rad/s.
Your plots should look different! Explain why.

6.35 Design a notch filter that meets the following
specifications:

• It eliminates 100 Hz.

• |h(t)| ≤ 0.001 for t > 0.5 s.

Plot the resulting impulse and frequency responses.

6.36 Design a comb filter that meets the following
specifications:

• It eliminates 5 harmonics of 100 Hz.

• It eliminates dc (zero frequency).

• |h(t)| ≤ 0.001 for t > 0.5 s.

Plot the resulting impulse and frequency responses.

6.37 Design a resonator filter that meets the following
specifications:

• It passes 5 harmonics of 100 Hz

• It passes dc (zero frequency).

• |h(t)| ≤ 0.001 for t > 0.5 s.

Plot the resulting impulse and frequency responses.

6.38 A synthetic EKG (electrocardiogram) signal with a 
period of 1 second (60 beats per minute) has noise added to it. 
It is sampled at 256 sample/s. The signal is on the  S2   website 
as the file P638.mat. Design a resonator filter to remove the 
noise and implement it on the signal. Use poles at ±jk  − 0.01 
for k =   1,  . . .  , 7. Plot each of the following:
(a) Resonator frequency response

(b) Resonator impulse response

(c) Noisy and filtered EKG signals
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The following three problems implement notch, comb, and 
resonator filters on simple signals composed of triangles. No 
MATLAB or MathScript programming is needed.

6.39 The program P639.m on the  S2  website generates two 
triangle waves with periods of 0.02 s and 0.04 s, and generates 
a comb filter that eliminates the 0.02-s signal and keeps the 
0.04-s signal. The user must input the real part a of the poles. 
Determine the value of a that maximizes the selectivity of the 
comb filter, while keeping the duration of the impulse 
response to within ≈ 1 s. Plot each of the following:

(a) The two triangle waves and their spectra

(b) The impulse and frequency responses of the filter

(c) The unfiltered and filtered sums of waves

6.40 The program P640.m on the S2 website generates 
sinusoid and triangle waves with periods of 0.02 s and 0.04 s, 
and generates a notch filter that eliminates the sinusoid and 
keeps the triangle. The user must input the real part a of the 
poles. Determine the value of a that maximizes the selectivity 
of the notch filter, while keeping the duration of the impulse 
response to within ≈ 1 s. Plot each of the following:

(a) The triangle-plus-sinusoid and its spectrum

(b) The impulse and frequency responses of the filter

(c) The filtered signal

∗6.41 The program P641.m on the S2 website generates a 
triangle wave and adds noise to it. It also generates a resonator 
filter that enhances three of the triangle wave harmonics. The 
user must input the real part a of the poles. Determine the 
value of a that maximizes the selectivity of the resonator, 
while keeping the duration of the impulse response to within 
≈ 1 s.  Plot each of the following:

(a) The noisy triangle wave and its spectrum

(b) The impulse and frequency responses of the filter

(c) The filtered signal

6.42 For a sixth-order Butterworth lowpass filter with a cutoff
frequency of 1 rad/s, compute the following:

(a) The locations of the poles

(b) The transfer function H(s)

(c) The corresponding LCCDE description

6.43 For an eighth-order Butterworth lowpass filter with a
cutoff frequency of 1 rad/s, compute the following:

(a) The locations of the poles.

(b) The transfer function H(s)

(c) The corresponding LCCDE description

6.44 Design a Butterworth lowpass filter that meets the
following specifications: (1) |H(ω)| = 0.9 at 10 Hz and (2)
|H(ω)| = 0.1 at 28 Hz. Compute the following:
∗(a) The order N and cutoff frequency ωc

(b) The locations of the poles

(c) The transfer function H(s)

(d) The LCCDE description of the filter

6.45 For a sixth-order Butterworth highpass filter with cutoff
frequency 3 rad/s, compute the following:

(a) The locations of the poles

(b) The transfer function H(s)

(c) The LCCDE description of the filter

6.46 For an eighth-order Butterworth highpass filter with
cutoff frequency 2 rad/s, compute the following:

(a) The locations of the poles

(b) The transfer function H(s)

(c) The LCCDE description of the filter

6.47 Design a Butterworth highpass filter that meets the
following specifications: (1) |H(ω)| = 0.10 at 6 Hz and (2)
|H(ω)| = 0.91 at 17 Hz. Compute the following:

(a) The order N and cutoff frequency ωc

(b) The locations of the poles

(c) The transfer function H(s)

(d) The LCCDE description of the filter

6.48 Design a fourth-order Butterworth lowpass filter using
two stages of the Sallen-Key circuit shown in Fig. 6-43. In each
stage use R1 = R2 = 10 k� and select C1 and C2 so that the
cutoff frequency is 100 Hz.

6.49 Repeat Problem 6.48 for a sixth-order Butterworth
lowpass filter.

6.50 By interchanging the resistors and capacitors in the
Sallen-Key circuit of Fig. 6-43, the lowpass circuit becomes
a highpass circuit.

(a) Show that the highpass version has the transfer function
given by

H(s) = s2

s2 +
(

1

R2C1
+ 1

R2C2

)
s + 1

R1R2C1C2

.

(b) Use R1 = R2 = 10 k� and select C1, and C2 so that H(s)
matches a second-order Butterworth highpass filter with a
cutoff frequency of 1 kHz.
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∗6.51 In the spring-mass-damper suspension system shown
in Fig. P6.51, b = 4 N·s/m, k = 3 N/m, m1 = 6 kg, and
m2 = 2 kg. If vy1(t) = dy1/dt is regarded as the input
signal and vy3(t) = dy3/dt is the output response, show that
the suspension system acts like a mechanical third-order
Butterworth filter with cutoff frequency of 1 rad/s.

Mass m2

Mass m1

k y2(t)

y1(t)

y3(t)

b

Pavement

Tires

Figure P6.51: Suspension system.

6.52 Suppose in the suspension system of Problem 6.51,
mass m2 is a cart moving at 1.414 m/s along a sinusoidally
corrugated roadway whose pavement’s vertical displacement
is given by 0.3 cos(0.5x), where x is the horizontal position
in meters. Show that the suspension system keeps the cart
(mass m2) from moving vertically.

6.53 In the suspension system shown in Fig. P6.51,
vy1(t) = dy1/dt is regarded as the input signal and
vy3(t) = dy3/dt is the output response. If the associated
transfer function takes the form of a third-order Butterworth
filter with cutoff frequency ωc, determinem2, b, and k in terms
of m1 and ωc.

Section 6-12: Amplitude Modulation

6.54 More power is required to transmit AM than DSB
modulation. For a pure-tone signal x(t) = A cos(2πfTt) and
a carrier xc(t) = cos(2πfct), calculate the average power
transmitted when using: (a) DSB modulation, (b) AM with a
modulation index of 1.

6.55 A DSB radio station at 760 kHz transmits a 3 kHz tone.
A DSB receiver is used, without its final lowpass filter (it has
been removed). What would a listener tuned to 770 kHz hear?

6.56 Quadrature phase modulation allows transmission of
two bandlimited signals within the same frequency band. Let
x(t) and y(t) be two voice signals, both bandlimited to 4
kHz. Consider z(t) = x(t) cos(2πfct)+y(t) sin(2πfct). Show
that z(t) occupies 8 kHz of spectrum, but that x(t) and y(t)
can both be recovered from modulated signal z(t). [Hint:
2 sin(2πfct) cos(2πfct) = sin(4πfct).]

6.57 Single sideband (SSB) modulation is used in ham radio
and digital television. One way to implement SSB is to use
a sharp filter (here, a brick-wall bandpass filter). Let x(t) be
bandlimited to 4 kHz, with the spectrum shown in Fig. P6.57.
x(t) is modulated using frequency fc, then brick-wall bandpass
filtered, giving y(t) = [x(t) 2 cos(2πfct)] ∗ h(t), where

h(t) = sin(2π2000t)

πt
2 cos(2π(fc − 2000)t)

is the impulse response of a brick-wall bandpass filter.

(a) Plot the spectrum of y(t).

(b) Show how to recover x(t) from y(t).

(c) Show that SSB requires only half of the power and
bandwidth of DSB-SC.

f (kHz)
0−4 4

Figure P6.57: Signal spectrum of Problem 6.57.

6.58 In World War II, voice radio scramblers used modulation
schemes to distort a signal so that enemy forces could not
understand it unless it was demodulated properly. In one
scheme, a signal x(t), bandlimited to 4 kHz, is modulated to
generate an output signal

y(t) = [2x(t) cos(8000πt)] ∗
[

sin(8000πt)

πt

]
.

(a) Plot the range of the spectrum of y(t).

(b) Describe why the scrambled signal’s spectrum is
“distorted.”

(c) Show that x(t) can be recovered from y(t) using

x(t) = [2y(t) cos(8000πt)] ∗
[

sin(8000πt)

πt

]
.
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6.59 FM stereo signals are formed using the system shown in
Fig. P6.59, where L(t) is the left speaker signal and R(t) is the
right speaker signal. Assume both signals are bandlimited to 15
kHz. Also, signal C(t) is a 38 kHz sinusoidal carrier given by
C(t) = 2 cos(76000πt). Sketch the spectrum of z(t).

L(t)

R(t)

+

+

+

+

+
−

z(t)C(t)

Figure P6.59: FM stereo system (Problem 6.59).

6.60 Design a Butterworth filter that meets the following
specifications:

(1) |H(ω)| = 0.995 at B Hz, and

(2) |H(ω)| = 0.01 at 2B Hz.

∗

Compute the order N and cutoff frequency fc Hz as a function 
of B.

6.61 Load the file P661.mat from the S2 website.  
MATLAB/MathScript variable S  contains two DSB-
modulated signals, modulated with carrier frequencies 10 kHz 
and 20 kHz, and sampled every 20 μs. Write a short 
MATLAB/MathScript program that demodulates the two 
signals from S. Listen and describe them both.

Section 6-13: Sampling Theorem

6.62 The spectrum of the trumpet signal for note G (784 Hz) 
is negligible above its ninth harmonic. What is the Nyquist 
sampling rate required for reconstructing the trumpet signal 
from its samples?

6.63 Compute a Nyquist sampling rate for reconstructing 
signal

x(t) = sin(40πt) sin(60πt)

π2t2

from its samples.

6.64 Signal

x(t) = sin(2πt)

πt
[1 + 2 cos(4πt)]

is sampled every 1/6 second. Sketch the spectrum of the
sampled signal.

6.65 Signal x(t) = cos(14πt)− cos(18πt) is sampled at 16
sample/s. The result is passed through an ideal brick-wall
lowpass filter with a cutoff frequency of 8 Hz. Compute and
sketch the spectrum of the output signal.

∗6.66 Signal x(t) = sin(30πt)+ sin(70πt) is sampled at 50
sample/s. The result is passed through an ideal brick-wall
lowpass filter with a cutoff frequency of 25 Hz. Compute and
sketch the spectrum of the output signal.

6.67 A signal x(t) has the bandlimited spectrum shown
in Fig. P6.67. If x(t) is sampled at 10 samples/s and then
passed through an ideal brick-wall lowpass filter with a cutoff
frequency of 5 Hz, sketch the spectrum of the output signal.

f (Hz)
−10 10

1

X( f )

Figure P6.67: Spectrum of x(t) (Problem 6.67).

6.68 A signal x(t), bandlimited to 10 Hz, is sampled at
12 samples/s. what portion of its spectrum can still be recovered
from its samples?

6.69 A spoken-word narration recorded on a book-on-CD is
bandlimited to 4 kHz. The narration is sampled at the standard
CD sampling rate of 44,100 samples/s. To reconstruct it, the
sampled narration is passed through a Butterworth lowpass filter
with a cutoff frequency of 4 kHz. What is the minimum order
required of the Butterworth filter so that all parts of the image
spectra are reduced in level to at most 0.001 of their unfiltered
values?

6.70 If x(t) is bandlimited to 5 kHz, what is the Nyquist
sampling rate for y(t) = x2(t)?

6.71 Compute the Nyquist sampling rates of the following
three signals:

(a) x1(t) = 3t + 7

t
sin(10πt)

(b) x2(t) = sin(6πt) sin(4πt)

(c) x3(t) = sin(6πt) sin(4πt)

t2

6.72 Show that
∞∑

n=−∞

[
sin(4π(t − n))

4π(t − n)
− sin(4π(t − n− 1

2 ))

4π(t − n− 1
2 )

]
= cos(2πt).
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6.73 What does aliasing sound like? Load the file P673.mat 
from the  S2    website.   This is a speech signal (a single 
sentence) sampled at 24000 samples/s.

(a) Listen to the signal using
load P673.mat;soundsc(X,24000).  Describe
it.

(b) Plot the one-sided magnitude spectrum from 0 to 8 kHz
using
N=length(X)/3;F=linspace(0,8000,N); FX
=abs(fft(X));plot(F,FX(1:N))

(c) Repeat (a) and (b) after reducing the sampling rate to 6000
samples/s. Do this by keeping only every fourth sample
and discarding the other three samples.

(d) Use Y=X(1:4:end);soundsc(Y,6000). Describe
it. It should sound different.

(e) Plot the one-sided magnitude spectrum of the signal in (c)
from 0 to 3 kHz using
N=length(Y)/2;F=linspace(0,3000,N); FY
=4*abs(fft(Y));plot(F,FY(1:N))

(f) Compare (note differences) answers to (a) and (c), and to
(b) and (d).

6.74 A commonly used method for converting discrete-
time signals to continuous-time signals is zero-order hold,
in which x(t) is held constant between its known samples at
t = nTs. Zero-order hold interpolation of samples is illustrated
in Fig. P6.74(a).

(a) Zero-order hold is a lowpass filter. Compute its frequency
response H(ω).

(b) Zero-order hold is used to reconstruct cos(0.1t/Ts) from
its samples at t = nTs. The first copy of the spectrum
induced by sampling lies in

2π − 0.1

Ts
≤ ω ≤ 2π + 0.1

Ts
.

Compute the reduction in gain

∣∣∣∣H
(
(2π − 0.1)/Ts

H(0)

)∣∣∣∣

between ω = 0 and ω = (2π − 0.1)/Ts.

(a) Zero-order hold (b) First-order hold
71 2 3 4 65

5
4
3
2
1
0

5
4
3
2
1
0

71 2 3 4 65

Figure P6.74: Zero-order hold interpolation and first-order
hold interpolation.

6.75 First-order hold is commonly used for converting
discrete-time signals to continuous-time signals, in which
x(t) varies linearly between its known samples at t = nTs.
First-order hold interpolation of samples is illustrated in
Fig. P6.74(b).

(a) First-order hold is a lowpass filter. Compute its frequency
response H(ω).

(b) First-order hold is used to reconstruct cos(0.1t/Ts) from
its samples at t = nTs. The first copy of the spectrum
induced by sampling lies in

2π − 0.1

Ts
≤ ω ≤ 2π + 0.1

Ts
.

Compute the reduction in gain

∣∣∣∣H
(
(2π − 0.1)/Ts

H(0)

)∣∣∣∣
between ω = 0 and ω = (2π − 0.1)/Ts.

6.76 This problem relates to computation of spectra X(ω) of
signals x(t) directly from samples x(nTs).

(a) Show that the spectrum of the sampled signal

xs(t) =
∞∑

n=−∞
x[n] δ(t − nTs)

is periodic in ω with period 2π/Ts.

(b) Derive a formula for computing X(ω) directly from {x[n]},
if no aliasing exists
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LabVIEW Module 6.1

6.77 For an interference frequency of 800 Hz, for what value
of the minus real part of the poles does the filtered signal most
resemble the original signal?

6.78 For an interference frequency of 1000 Hz, why does the
filtered signal look so different from the original signal for any
value of the minus real part of the poles?

6.79 For an interference frequency of 1700 Hz, for what value
of the minus real part of the poles does the filtered signal most
resemble the original signal?

LabVIEW Module 6.2

6.80 Use the comb filter to eliminate the trumpet playing
note G. Set the minus real part of poles at 100 and the comb
filter order at 9.

6.81 Use a comb filter of order 9 to eliminate the trumpet
playing note G. Set the minus real part of poles at 10. Explain
why this system does not provide a satisfactory result.

6.82 Use a comb filter of order 9 to eliminate the trumpet
playing note A. Set the minus real part of poles at 100.

6.83 Use a comb filter of order 9 to eliminate the trumpet
playing note A. Set the minus real part of poles at 10. Explain
why this system does not provide a satisfactory result.

LabVIEW Module 6.3

For each of the following problems, display all of the waveforms
and spectra, and listen to the original, noisy, and filtered trumpet
signals. Use a 10th order filter and a noise level of 0.2.

6.84 For each part, use a Butterworth filter with the specified
cutoff frequency. Does the filtered signal waveform resemble
the original signal waveform? If not, why not? Has this filter
eliminated the audible part of the noise? Does the filtered signal
sound like the original signal?

(a) 1000 Hz

(b) 1500 Hz

(c) 2500 Hz

6.85 For each part, use a resonator filter with a fundamental
frequency of 488 Hz and the specified minus real part of poles.
Has the resonator filter eliminated the audible part of the noise?
Does the filtered signal waveform resemble the original signal
waveform?

(a) Minus real part of poles is 10.

(b) Minus real part of poles is 100.

(c) Vary minus real part of poles to make the filtered waveform
most closely resemble the original signal.
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Objectives

Learn to:

� Define discrete-time signals and systems.

� Obtain the z-transform of a discrete-time signal.

� Characterize discrete-time systems by their
z-domain transfer functions.

� Use DTFS, DTFT, DFT, and FFT.
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(a) x2[n] = (1/2)n u[n]
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This chapter introduces discrete-time signals and systems. The
z-transform of a discrete-time signal, which is the analog of the
Laplace transform of a continuous-time signal, is examined in
great detail in preparation for Chapter 8 where applications of
discrete-time signals and systems are highlighted.

7
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Overview

Whereas many types of signals are inherently time- and space-
continuous, others are inherently time-discrete. Examples of
the latter include demographic data, genetic sequences, the
number of flights per day between two specific destinations,
and so on. The preceding six chapters dealt with continuous-
time signals and systems. This and the following chapter will
examine transformation techniques and solution procedures for
discrete-time signals and systems.

Recall from Chapter 1 that a discrete-time signal is defined
only at integer-valued times. A digital signal is a discrete-time
signal that has been also quantized to a finite number of values
and then stored and processed using bits (0 or 1). This book
will treat only discrete-time signals; digital signals belong in
hardware-oriented computer engineering courses. We provide
a bridge to the digital domain, specifically to the study of digital
communications systems, digital signal processing (DSP), and
related topics.

In the digital domain, a signal is composed of a sequence
of binary numbers, 1s and 0s. Conversion of a continuous-time
signal x(t) into a binary sequence entails two discretization
processes: one involving time and another involving the
amplitude of x(t). A digital signal is a coded discrete-
time discrete-amplitude signal. Discretization in time is
accomplished by sampling x(t) every Ts seconds to generate
a discrete-time signal x[n] defined as

x[n] = x(nTs),

where as defined previously in Section 6-13, x(nTs) = x(t)

evaluated at t = nTs. The sampling process is illustrated in
Fig. 7-1(b).

Discretization in amplitude and conversion into digital
format involves the use of an encoder. The binary sequence
shown in Fig. 7-1(b) uses a 4-bit encoder, which can convert an
analog signal into 24 = 16 binary states ranging from 0 to 15.
The analog signal can be scaled and shifted (if necessary) to
accommodate its amplitude range within the dynamic range of
the encoder. The digital signal corresponding to x[n] is

xd[n] = [anbncndn],

where an to dn assume binary values (0 or 1) to reflect the
value of x[n]. For example, in Fig. 7-1(b), x[3] = 12, and
the corresponding digital sequence is xd[3] = [1100]. The
correspondence between decimal value and binary sequence
for a 4-bit encoder is given in Table 7-1.

Signal xd[n] becomes the input signal to a digital computer,
and after performing the task that it is instructed to do,

Table 7-1: Correspondence between decimal value and binary
sequence for a 4-bit encoder.

Decimal Value Binary Sequence Symbol

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

it generates an output signal, which is denoted yd[n] in
Fig. 7-1. Application of digital-to-analog conversion generates
a discrete-time output signal y[n], and when followed by
reconstruction, the discrete signal y[n] gets converted into a
continuous-time signal y(t), thereby completing the process.

Most signal processing is performed in the digital
domain. This includes the application of digital frequency
transformations, frequency filtering, coding and decoding, and
many other functions. The major advantage of DSP over analog
signal processing is the ability to use microprocessors (DSP
chips) to perform the sophisticated mathematical operations
we will study in this chapter. We will see in Chapters 8–10
that discrete-time signal processing enables filtering with much
sharper frequency selectivity than is possible with analog signal
processing. Also, operations such as deconvolution and batch
signal processing are difficult or impossible to perform using
analog signal processing. Furthermore, DSP enables storage on
optical media (CDs and DVDs) and computer memory (based
on storage of bits).
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(a) Processing steps

(b) Signal transformations
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Figure 7-1: The multiple transformations that input signal x(t) goes through before final reconstruction as output signal y(t).

7-1 Discrete Signal Notation and
Properties

� Because x[n] is a sampled version of continuous-
time signal x(t), integer n is like a discrete surrogate for
continuous time t . Hence, n is often referred to as discrete
time or simply time even though (in reality) it is only an
integer index. �

A discrete time signal x[n] can be specified by listing its
values for each integer value of n. For example,

x[n] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3 for n = −1,

2 for n = 0,

4 for n = 2,

0 for all other n.

(7.1)
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Note that because x[1] = 0, it need not be listed explicitly, as
it is automatically included in the last entry.

7-1.1 Brackets Notation

An alternative format for specifying the values of x[n] uses
a brackets notation in which non-zero values of x[n] are
listed sequentially and are separated by commas and the entire
sequence is enclosed between two curly brackets. Thus, if
x[n] = 0 outside the interval −N ≤ n ≤ M for some positive
integers M and N , x[n] can be specified as

x[n] = {x[−N ], . . . , x[−1], x[0], x[1], . . . , x[M]}.

The underlined value in the sequence designates which value of
x[n] is at time n = 0. Values not listed explicitly are zero. Some
books use an upward-pointing arrow instead of an underline to
denote time n = 0.

The brackets format is particularly useful for signals of short
duration, and for periodic signals. The signal given by Eq. (7.1)
assumes the form

x[n] = {3, 2, 0, 4}. (7.2)

In this format, all sequential values x[n] are listed (including
x[1] = 0), as long as they are within the range of n bounded
by the outer non-zero values of x[n], which in this case are
x[−1] = 3 and x[2] = 4.

When applied to a periodic signal y[n], the brackets format
requires that the values of y[n] be specified over two of its
periods, and ellipses “. . . ” are added at both ends. For example,
the periodic signal y[n] = cos

(
π
2 n

)
is written as

y[n] = {. . . ,−1, 0, 1, 0,−1, 0, 1, 0, . . . }. (7.3)

Any starting time nmay be used, as long as n = 0 is included in
one of the two periods. In the present example, the two periods
start at n = −2 and end at n = 5.

7-1.2 Stem Plots

Discrete-time signals can also be specified by a graphical
format that uses stem plots, so called because they look like
a line of dandelions in which the location and height of each
dandelion specify the value of n and x[n], respectively. Stem
plots emphasize the fact that x[n] is undefined at non-integer
times. Examples are displayed in Fig. 7-2 for x[n] of Eq. (7.2)
and y[n] of Eq. (7.3).

(a)  x[n]

(b)  y[n]

0 1

1
2
3
4

2 3
n

−2 −1

0

1

n
0 1 43 5−3 −1

−1

2−2

Figure 7-2: Stem plots forx[n] andy[n], as defined by Eqs. (7.2)
and (7.3), respectively.

7-1.3 Duration of Discrete-Time Signals

The length or duration of a signal in discrete time differs from
that in continuous time. Consider:

x(t) = 0 for t outside the interval a ≤ t ≤ b

and

x[n] = 0 for n outside the interval a ≤ n ≤ b.

Boundaries a and b are both integers and x(a), x(b), x[a], and
x[b] are all non-zero values. It follows that

Duration of x(t) = b − a, (7.4a)

whereas

Duration of x[n] = b − a + 1. (7.4b)

The number of integers between a and b (inclusive of the
endpoints) is (b−a+1). Careful counting is needed in discrete
time!
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(e) y4[n] = x[2n]

(c) y2[n] = x[−n] (d) y3[n] = x[n/2]
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Figure 7-3: Various transformations of discrete signal x[n].

7-1.4 Time Shifting

Figure 7-3(a) displays a discrete-time signal x[n]. To time-
shift the signal by N units, we replace n with (n−N). The

time-shifted version is

y[n] = x[n−N ] =
{

right-shifted (delayed) if N > 0,

left-shifted (advanced) if N < 0.
(7.5)
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If N = 3, for example, x[n] gets shifted to the right by three
units. The shifted version is shown is Fig. 7-3(b).

7-1.5 Time Reversal

Replacingnwith −n generates a mirror image of x[n], as shown
in Fig. 7-3(c). The time-reversed version is

y[n] = x[−n]. (7.6)

7-1.6 Time Scaling

(a) Downsampling

The discrete-time counterpart for compression, namely
y(t) = x(at), where a > 1, is

y[n] = x[Nn],

for some positive integer N . Only every N th value of x[n],
specifically {. . . , x[N ], x[2N ], x[3N ], . . . } appear in y[n].
Hence, this process is called decimation.

Another way of looking at decimation is to regard
x[n] as samples of a continuous-time signal x(t) sampled
every Ts, so that x[n] = x(nTs) for integers n. Then,
y[n] = x[Nn] = x(n(NTs)), so that y[n] is x(t) sampled every
NTs. This is a lower sampling rate, so the process is also called
downsampling.

Figure 7-3(e) displays y4[n] = x[2n], which is x[n]
downsampled by N = 2. Note that x[2n] does look like x[n]
compressed in time.

(b) Upsampling

The discrete-time counterpart for expansion, namely
y(t) = x(at), where 0 < a < 1, is

y[n] = x[n/N ],

if n is a multiple of N , and y[n] = 0 otherwise. If N = 2, then
y[n] = {. . . , x[0], 0, x[1], 0, x[2], . . . }. This process is called
zero-stuffing.

Figure 7-3(d) displays y3[n] = x[n/2] for even n and
y3[n] = 0 for odd n, which is x[n] zero-stuffed with N = 2.
This does look like x[n] expanded in time, except for the zero
values of y[n]. In practice, these values are replaced with values
interpolated from the non-zero values of y[n]. The combined
process of zero-stuffing followed by interpolation is equivalent
to sampling at a higher sampling rate, so zero-stuffing followed
by interpolation is also called upsampling. Sometimes the term
“upsampling and interpolation” is also used.

Table 7-2: Discrete-time signal transformations.

Transformation Outcome y[n]
Amplitude scaling a x[n]
Amplitude shifting x[n] + b

Time scaling x[Nn]
Time shifting x[n−N ]
Time reversal x[−n]
Addition x1[n] + x2[n]

7-1.7 Amplitude Transformation

Some applications may call for changing the scale of a
discrete-time signal or shifting its average value. The amplitude
transformation

y[n] = a x[n] + b (7.7)

can accommodate both operations; coefficient a scales x[n] and
coefficient b shifts its dc value.

A summary list of signal transformations is given in
Table 7-2.

Concept Question 7-1: What does the underline in

{3, 1, 4} mean? (See        )

Concept Question 7-2: Why are stem plots used in
discrete time? (See        )

Exercise 7-1: Determine the duration of {3, 1, 4, 6}.
Answer: a = −1 and b = 2, so the duration is
b − a + 1 = 4. (See S2 )

Exercise 7-2: If the mean value of x[n] is 3, what
transformation results in a zero-mean signal?

Answer: y[n] = x[n] − 3. (See S2 )

7-2 Discrete-Time Signal Functions

In continuous time, we made extensive use of impulse and
step functions, exponential functions, and sinusoids. We now
introduce their discrete-time counterparts.
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δ[n]1

n
0 1 3−3 −1 2−2

δ[n − 2]1

n
0 1 3−3 −1 2−2

Figure 7-4: Stem plots for δ[n] and δ[n− 2].

7-2.1 Discrete-Time Impulse δ[n]
In discrete time, impulse δ[n] is defined as

δ[n] = {1} =
{

1 for n = 0,

0 for n �= 0.
(7.8)

Unlike its continuous-time counterpart δ(t), δ[n] does not have
to satisfy requirements of zero width, infinite height, and unit
area. Figure 7-4 displays stem plots of δ[n] and its right-shifted
version δ[n− 2].

In continuous time, the sampling property of impulses is
given in Eq. (1.29) as

x(T ) =
∞∫

−∞
x(t) δ(t − T ) dt (continuous time). (7.9)

The discrete-time sampling property of impulses is

x[n] =
∞∑

i=−∞
x[i] δ[i − n] (discrete time). (7.10)

7-2.2 Discrete-Time Step u[n]
The discrete-time step u[n] is defined as

u[n] = {1, 1, 1, . . .} =
{

1 for n ≥ 0,

0 for n < 0,
(7.11a)

and its shifted version is

u[n−N ] =
{

1 for n ≥ N,

0 for n < N.
(7.11b)

u[n]
1

n
0 1 3−1 2−2

Figure 7-5: Stem plot of u[n].

The relationship between step and impulse is

u(t) =
t∫

−∞
δ(τ ) dτ (continuous time) (7.12a)

and

u[n] =
n∑

i=−∞
δ[i] (discrete time). (7.12b)

Unlike the continuous-time step, there is no discontinuity at
time zero in discrete time; we simply have u[0] = 1. Indeed,
the very notion of continuity has no place in discrete time. A
stem-plot representation of u[n] is displayed in Fig. 7-5.

Given that u[n] = 1 for all integer values of n ≥ 0 and
u[n− 1] = 1 for all integer values of n ≥ 1, it follows that

δ[n] = u[n] − u[n− 1]. (7.13)

7-2.3 Discrete-Time Geometric Signals

A geometric signal is defined as

x[n] = pn u[n], (7.14)

where p is a constant that may be real or complex. Geometric
signals are the discrete-time counterparts to exponential signals;
a geometric signal is an exponential signal that has been
sampled at integer times. The geometric signal (1/2)n u[n] and
exponential signal (1/2)t u(t) are plotted in Fig. 7-6.

If p in Eq. (7.14) is a complex number,

p = |p|ejθ ,
x[n] will exhibit amplitude and phase plots:

|x[n]| = |p|n u[n] (7.15a)

and

x[n] = nθ u[n]. (7.15b)
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x[n]
1

n
0 1 3 4−1 2−2

(a) x(t) = (1/2)t u(t)

(b) x[n] = (1/2)n u[n]

x(t)

1

n
0 1 3 4−1 2−2

Figure 7-6: Plots of exponential signal x(t) and its geometric
counterpart.

7-2.4 Discrete-Time Sinusoids

A discrete-time signal x[n] is periodic with fundamental
period N0 if, for all integer times n,

x[n] = x[n+N0] (any periodic discrete-time signal),
(7.16)

where N0 is an integer; otherwise, x[n+N0] would not be
defined.

A continuous-time sinusoid of angular frequency ω0 is given
by

x(t) = A cos(ω0t + θ). (7.17)

The corresponding period and frequency are T0 = 2π/ω0 and
f0 = 1/T0. When sampled every Ts seconds, the continuous-
time sinusoid becomes a discrete-time sinusoid given by

x[n] = x(nTs) = A cos(ω0nTs+θ) = A cos(�n+θ), (7.18)

where

� = ω0Ts (rad/sample) (7.19)

is defined as the discrete-time angular frequency. Since θ and
�n are both in radians andn is a sampling integer,� is measured
in radians per sample.

(a) Fundamental period of sinusoid

Were we to apply the standard relationship for a continuous-
time signal, we would conclude that the discrete-time period of
x[n] is

N0 = 2π

�
= 2π

ω0Ts
(iff N0 is an integer). (7.20)

The expression given by Eq. (7.20) is valid if and only if
N0 is an integer, which is seldom true. To determine the true
period N0, we insert Eq. (7.18) into the periodicity relation
given by Eq. (7.16), which yields

A cos(�n+ θ) = A cos(�n+ θ +�N0).

To satisfy this condition, �N0 has to be equal to an integer
multiple of 2π :

�N0 = 2πk,

where k is an integer. Hence, the fundamental period of the
discrete-time sinusoid is given by

N0 = 2πk

�
= k

T0

Ts
, (7.21)

where T0 is the period of the continuous-time sinusoid, Ts is
the sampling period, and k has to be selected such that it is the
smallest integer value that results in an integer value for N0.

Example 7-1: Period of Sinusoid

Determine the discrete-time period of

x[n] = cos(0.3πn).

A stem plot of x[n] is shown in Fig. 7-7.

Solution: From Eq. (7.21),

N0 = 2πk

�
= 2πk

0.3π
= 20k

3
.

Before we select a value for k, we need to make sure that its
coefficient is in the form of a non-reducible fraction N/D,
which 20/3 is. Hence, the smallest integer value of k that results
in an integer value forN0 is k = D = 3, and that, in turn, leads
to

N0 = N = 20 samples.
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n
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Figure 7-7: The period of discrete-time signal
x[n] = cos(0.3πn) is 20 samples.

Thus, the discrete-time sinusoid repeats itself every 20 samples,
and the duration of the 20 samples is equal to three periods of
the continuous-time sinusoid.

Example 7-2: Sum of Two Sinusoids

Determine the fundamental period of

x[n] = cos(πn/3)+ cos(πn/4).

Solution: The fundamental period of x[n] has to satisfy both
sinusoids. For the first sinusoid, Eq. (7.21) gives

N01 = 2πk1

�1
= 2πk1

π/3
= 6k1.

The smallest integer value k1 can assume such that N01 is an
integer is k1 = 1. Hence, N01 = 6.

Similarly, for the second term, we have

N02 = 2πk2

�2
= 2πk2

π/4
= 8k2,

which is satisfied by selecting k2 = 1 and N02 = 8.
The fundamental period of x[n] is N0, selected such that

it is simultaneously the smallest integer multiple of both N01

and N02 . The value of N0 that satisfies this condition is:

N0 = 24.

Every 24 points, cos(πn/3) repeats four times, cos(πn/4)
repeats three times, and their sum repeats once.

x1(t) = cos[(π/4)t] x2(t) = cos[(7π/4)t]

= x1[n] and x2[n] have
   identical stem plots
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1
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−0.4
−0.6

0
0.2
0.4
0.6
0.8

−0.2

Figure 7-8: Sinusoidal signals at ω1 = π/4 rad/s and ω2 =
7π/4 rad/s are identical at integer times.

(b) Fundamental frequency of sinusoid

Figure 7-8 displays two continuous-time sinusoidal signals:
one at angular frequency ω1 = π/4 rad/s and another at
ω2 = 7ω1 = 7π/4 rad/s. Thus,

x1(t) = cos
(π

4
t
)

and

x2(t) = cos

(
7π

4
t

)
.

When sampled at t = nTs with Ts = 1 s, their discrete-time
equivalents are

x1[n] = cos
(π

4
n
)

and

x2[n] = cos

(
7π

4
n

)
.

Even though the two discrete-time signals have different
angular frequencies, x1[n] = x2[n] for all n, as shown in
Fig. 7-8. The two signals have identical stem plots, even though
they have different angular frequencies. Is the ambiguity related
to the fact that the two angular frequencies are integer multiples
of one another?

No, the ambiguity is not specific to signals whose angular
frequencies are integer multiples of one another. Consider, for
example, the two continuous-time sinusoids

y1(t) = cos

(
7π

8
t

)
(7.22a)
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(a) Continuous-time signals

(b) Discrete-time signals (red and blue stem plots
are offset slightly for display purposes)

y1[n] = cos[(7π/8)n] y2[n] = cos[(9π/8)n]

n
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−0.4
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0.4
0.6
0.8
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y1(t) = cos[(7π/8)t] y2(t) = cos[(9π/8)t]
y1(t) y2(t)

Figure 7-9: Whereas in continuous time, no ambiguity exists
between the waveforms of y1(t) and y2(t), their discrete-time
analogues, y1[n] and y2[n], have identical stem plots when
sampled at Ts = 1 s, even though they have different angular
frequencies.

and

y2(t) = cos

(
9π

8
t

)
. (7.22b)

Their time plots are displayed in Fig. 7-9(a). Because the
two sinusoids have different angular frequencies, their patterns
diverge as a function of time, and it is easy to distinguish y1(t)

from y2(t) and to determine the angular frequency of each from
its time plot.

This unambiguous relationship between cos(ωt) and its time
plot does not carry over into discrete time. When sampled at
t = nTs with Ts = 1 s, the discrete-time equivalents of y1(t)

and y2(t) are

y1[n] = cos

(
7π

8
n

)
(7.23a)

and

y2[n] = cos

(
9π

8
n

)
. (7.23b)

Even though y1[n] and y2[n] have different discrete-
time angular frequencies, they exhibit identical stem plots,
as shown in Fig. 7-9(b). This is because for n = 1,
cos

[ 7
8 π

] = cos
[ 9

8 π
] = −0.92, and the same is true for other

integer values of n.
For a continuous-time sinusoid x(t) = A cos(ω0t+θ), there

is a one-to-one correspondence between the expression of x(t)
and its waveform. If we plot x(t), we get a unique waveform,
and conversely, from the waveform, we can deduce the values
of A, ω0, and θ .

The one-to-one correspondence does not apply to discrete-
time sinusoids. Sinusoids with different values of � can
generate the same stem plot, as evidenced by the plots in
Figs. 7-8 and 7-9(b). For a specific value of�, the stem plot of
cos(�n) is unique, but given a stem plot, there may be multiple
values of � that would generate the same stem plot.

� Another artifact of discrete-time sinusoids is that a
sinusoid may or may not be periodic. �

According to Eq. (7.21), a sinusoid x(t) = cos(�n+ θ) is
periodic with period N0 only if an integer k exists so that
N0 = (2πk/�) is an integer. It is seldom possible to satisfy
this condition. For example, if � = 2 rad/sample, it follows
thatN0 = πk, for which no integer value of k exists that would
make N0 an integer.

If N0 does exist, the fundamental angular frequency
associated with N0 is

�0 = 2π

N0
. (7.24)

Since N0 is a positive integer and the smallest value it can
(realistically) assume is 2 samples per cycle, it follows that

0 ≤ �0 ≤ π. (7.25)
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Table 7-3: Comparison between continuous-time and discrete-time sinusoids.

Property Continuous Time Discrete Time

Nomenclature ω0 = angular frequency �0 = fundamental angular frequency
f0 = ω0/2π = circular frequency � = angular frequency
T0 = 1/f0 = period FFF = �0/2π = fundamental circular frequency

N0 = fundamental period

Periodicity Property cos(ω0t + θ) = cos(ω0(t + T0)+ θ) cos(�n+ θ) = cos(�(n+N0)+ θ)

Period T0 = 2π/ω0 N0 = 2πk/�, with k = smallest positive integer that
gives an integer value to N0

Angular frequency 0 < ω0 < ∞ 0 ≤ �0 ≤ π ; �0 = 2π/N0

Radial frequency 0 < f0 < ∞ FFF = �0/2π , 0 ≤ FFF ≤ 1
2

� The principal range of the frequency � of a discrete-
time sinusoid is limited to 0 to π , inclusive. �

Example 7-3: Fundamental Period and Frequency

Compute the fundamental period and fundamental angular
frequency of x[n] = 3 cos(7.2πn+ 2).

Solution: Application of Eq. (7.20) with � = 7.2π gives

N0 = 2πk

�
= 2πk

7.2π
= k

3.6
.

The smallest integer value of k that gives an integer value forN0
is k = 18, which yields N0 = 5 samples.

From Eq. (7.24),

�0 = 2π

N0
= 2π

5
= 0.4π (rad/sample).

Table 7-3 compares the properties of continuous-time
sinusoids with those of discrete-time sinusoids.

Concept Question 7-3: Why is u[0] = 1, instead of
undefined? (See        )

Concept Question 7-4: When is a discrete sinusoid not
periodic? (See        )

Exercise 7-3: Determine the fundamental period and
fundamental angular frequency of 3 cos(0.56πn+ 1).

Answer: N0 = 25 samples,
�0 = 2π/25 rad/sample. (See S2 )

Exercise 7-4: Compute the fundamental angular
frequency of 2 cos(5.1πn+ 1).

Answer: 0.1π rad/sample. (See S2 )

7-3 Discrete-Time LTI Systems

A discrete-time system is a device or process that accepts
a discrete-time signal x[n] as its input, and in response, it
produces another discrete-time signal y[n] as its output:

Input x[n] System Output y[n].

A simple example of a discrete-time system is a weighted
moving-average system that generates an output y[n] equal to
the weighted average of the three most recent values of the stock
market index x[n]:

y[n] = 6

11
x[n] + 3

11
x[n− 1] + 2

11
x[n− 2]. (7.26)

Output y[n] on day n is the sum of the stock market index
on that same day, x[n], plus those on the preceding two days,
x[n− 1] and x[n− 2], with the three input values weighted
differently in order to give the largest weight of 6/11 to x[n]
and successively smaller weights to x[n− 1] and x[n− 2]. The
weights are chosen so that if the stock market index is static
(i.e., x[n] = x[n−1] = x[n−2]), the sum in Eq. (7.26) would
yield y[n] = x[n].
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Figure 7-10: Block diagram representation of Eq. (7.26).

7-3.1 System Diagram

The system described by Eq. (7.26) is represented by the block
diagram shown in Fig. 7-10. The diagram includes three types
of operations.

(a) Scaling: Multiplication of x[n], x[n− 1], and x[n− 2] by
6/11, 3/11, and 2/11, respectively.

(b) Addition: Symbolized by the symbol �.

(c) Delay: Symbolized by the symbol D. Delaying a signal
x[n] is an instruction to the system to select its predecessor
in the sampled sequence, namely x[n− 1].

These are the primary operations carried out by a digital
computer to perform addition and subtraction, and to solve
difference equations.

7-3.2 Difference Equations

Discrete-time systems work with difference equations, which
are the discrete-time counterpart to differential equations in
continuous-time. Consider the first-order differential equation

dy

dt
+ c y(t) = d x(t) (differential equation). (7.27)

When sampled at a short time interval Ts, input signal x(t)
becomes x[n] = x(nTs), and similarly, output signal y(t)
becomes y[n] = y(nTs). Also, time derivative dy/dt becomes
a difference between y[n] and y[n− 1] divided by Ts. Thus,

x(t) x[n]
y(t) y[n]
dy

dt

y[n] − y[n− 1]
Ts

(for Ts very small, but �= 0).

The discrete-time equivalent of Eq. (7.27) is then

y[n] − y[n− 1]
Ts

+ c y[n] = d x[n]. (7.28)

Simplification of Eq. (7.28) leads to the difference equation

y[n]+a y[n−1] = b x[n] (difference equation) (7.29)

with

a = −1

1 + cTs
and b = dTs

1 + cTs
. (7.30)

Note that coefficients a and b of the difference equation are
related to (but different from) coefficients c and d of the
differential equation.

In general, the discrete-time counterpart to a continuous-time
LCCDE is a difference equation of the same order:

LCCDE
N∑
i=0

cN−i
diy

dt i
=

M∑
i=0

dM−i
dix

dt i
(7.31a)

and

Difference Equation
N∑
i=0

ai y[n− i] =
M∑
i=0

bi x[n− i].
(7.31b)

Coefficients ai and bi of the difference equation are related to
the coefficient of the LCCDE. Also note that the order of the
indices of the coefficients are reversed between continuous and
discrete time. More discussion of the latter is given in Chapter 8.

7-3.3 Recursive Equation

By rewriting Eq. (7.29) as

y[n] = −a y[n− 1] + b x[n], (7.32)

we obtain a recursive form in which the value ofy[n] is obtained
by updating the previous value, y[n− 1], through a scaling
factor (−a) and adding a scaled value of the current input x[n].
Expressing a difference equation in recursive form is the format
used by DSP chips to perform signal processing.
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7-3.4 ARMA Format

The two sides of the difference equation given by Eq. (7.31b)
carry special meanings:

(a) Autoregressive (AR)

When the input (right-hand side of Eq. (7.31b)) consists of only
the input at the present time, namely x[n], Eq. (7.31b) reduces
to

N∑
i=0

ai y[n− i] = x[n] (autoregressive). (7.33)

It is called autoregressive because the present output y[n]
becomes equal to a linear combination of present input x[n]
and previous outputs y[n− 1] to y[n−N ].
(b) Moving average (MA)

Similarly, when the output (left-hand side of Eq. (7.31b))
consists of only the output at the present time, namely y[n],
Eq. (7.31b) becomes

y[n] =
M∑
i=0

bi x[n− i] (moving average). (7.34)

The right-hand side is the weighted average of the (M+1)most
recent values of the input. It is called a moving average because
the sequence of input values being averaged is shifted (moved)
by one time unit as n is incremented to (n+ 1), and so on.

For example, the 120-day moving average of a stock index is
an MA system of orderM = 119, with coefficients bi = 1/120
for i = 0, 1, . . . , 119. Thus,

y[n] = 1

120

119∑
i=0

x[n− i],

where x[n] is the present value of the stock index.
Systems described by difference equations that contain

multiple terms on both sides are called ARMA, denoting the
general case where the equation is an amalgamation of both
autoregression and moving average.

Example 7-4: ARMA Format

Express the following equation in ARMA format:

y[n+ 1] + 2y[n− 1] = 3x[n+ 1] + 4x[n].
In ARMA format, y[n] is the latest term on the output side.
By changing variables from n to n− 1, the difference equation
becomes

y[n] + 2y[n− 2] = 3x[n] + 4x[n− 1].

7-3.5 Realization of Difference Equations

ARMA difference equations can be implemented using the
discrete form of the Direct I and II realizations presented
in Section 4-7 for continuous-time systems. Integrators in
continuous-time realizations are replaced with delays (shift
registers) in their discrete-time counterparts. The process is
illustrated in Example 7-5.

Example 7-5: ARMA Realization

Develop the Direct II realization of the ARMA difference
equation

y[n] + a1 y[n− 1] + a2 y[n− 2]
= b0 x[n] + b1 x[n− 1] + b2 x[n− 2].

Solution: We define the intermediate variable z[n] as

z[n] = b0 x[n] + b1 x[n− 1] + b2 x[n− 2], (7.35a)

and also as

z[n] = y[n] + a1 y[n− 1] + a2 y[n− 2]. (7.35b)

Figure 7-11(a) displays the realization of Eq. (7.35a) as a linear
combination of delayed versions of the input x[n].

Next, we rewrite Eq. (7.35b) so that y[n] alone is on the
left-hand side,

y[n] = z[n] − a1 y[n− 1] − a2 y[n− 2]. (7.35c)

Realization of Eq. (7.35c) is shown in Fig. 7-11(b).
We now have two realizations: x[n] → z[n] and

z[n] → y[n], with each representing a system. The combined
realization is equal to the sequential implementation of the
two realizations, in either order. This is analogous to the
Direct Form II implementation described in Section 4-7.2. By
reversing the order of the two realizations shown in Fig. 7-11(a)
and (b), and replacing the two parallel chains of shift elements
with a shared single chain, we obtain the realization shown in
Fig. 7-11(c).

Concept Question 7-5: What is a recursive equation?
(See        )
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(a) Realization of z[n] from x[n]

∑b0

D

D

b1

b2

∑

x[n] z[n]

(b) Realization of y[n] from z[n]

D

D

−a2

∑ −a1

∑ y[n]z[n]

(c) Realization of y[n] from x[n]

y[n]x[n] b0

b1

b2

∑

−a2

∑ −a1

∑ ∑

D

D

Figure 7-11: Upon reversing the order of the realizations in
(a) and (b) and then combining them by sharing shift registers
(delays), the result is the Direct Form II realization shown in (c).

Concept Question 7-6: What is the difference between
AR and MA systems? (See        )

Exercise 7-5: Transform the following equation into the
form of an ARMA difference equation:

y[n+ 2] + 2y[n] = 3x[n+ 1] + 4x[n− 1].

Answer: y[n] + 2y[n− 2] = 3x[n− 1] + 4x[n− 3]
(replace n with n− 2). (See S2 )

7-4 Properties of Discrete-Time LTI
Systems

Fundamentally, the properties of scalability, additivity, linearity,
and time invariance are exactly the same in discrete time as they
are in continuous time. If we were to replace t withn everywhere
in Section 2-1, we would obtain the list of properties pertaining
to discrete-time LTI systems. Of course, time shifts must be
integers in discrete time. A quick review of the aforementioned
and other properties of discrete-time LTI systems follows.

7-4.1 Linearity

A system is linear if it has the scaling and additivity properties.
For discrete-time systems, we have the following relationships:

Scalability:

Given: x[n] System y[n],

then c x[n] System c y[n].

Additivity:

Given: x1[n] System y1[n]

and x2[n] System y2[n],

then x1[n] + x2[n] System y1[n] + y2[n].

The principle of superposition applies to linear systems in
discrete time, just as it does to linear systems in continuous
time, when initial conditions are zero.
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Example 7-6: Difference Equations

Show that all difference equations with constant coefficients are
linear.

Solution: Let the system responses to x1[n] and x2[n] be y1[n]
and y2[n], respectively, with the two input-output pairs related
by

N∑
i=0

ai y1[n− i] =
M∑
i=0

bi x1[n− i] (7.36a)

and

N∑
i=0

ai y2[n− i] =
M∑
i=0

bi x2[n− i]. (7.36b)

Multiplying Eq. (7.36a) by a constant c gives

N∑
i=1

ai(c y1[n− i]) =
M∑
i=1

bi(c x1[n− i]),

which proves the scaling property.
Adding Eqs. (7.36a and b) yields

N∑
i=1

ai(y1[n− i] + y2[n− i]) =
M∑
i=1

bi(x1[n− i] + x2[n− i]),

which demonstrates that the additivity property holds.

� Any difference equation with constant coefficients
describes a linear system. �

7-4.2 System Memory

A system may have memory, in which case it is called a dynamic
system, or it may be a memoryless or static system. A discrete-
time system is said to have memory if its output y[n] at time n
depends not only on the value of the input x[n] at time n but
also on values of x[n] or y[n] at other times. For example,

y[n] = 10x[n] is memoryless,

whereas

y[n] = 3x[n] − 2x[n− 2] has memory.

Example 7-7: Discrete-Time Differentiator

Is the discrete-time counterpart of the differentiator
y(t) = 3 (dx/dt) linear? Does it have memory? Assume
that the sampling period Ts is very small.

Solution: In continuous time,

y(t) = 3
dx

dt
= 3 lim

Ts→0

{
x(t)− x(t − Ts)

Ts

}
.

Conversion to discrete time is achieved by setting t = nTs:

y(nTs) = 3

[
x(nTs)− x(nTs − Ts)

Ts

]
,

or in discrete signal notation,

y[n] = 3

[
x[n] − x[n− 1]

Ts

]
(7.37)

with the understanding that Ts is very small. The result
given by Eq. (7.37) is a difference equation with constant
coefficients. Hence, the discrete-time differentiator is an LTI
system. Moreover, since y[n] depends on the value of the input
at an earlier point in time (i.e., on x[n− 1]), the system does
have memory.

7-4.3 Time Invariance

A discrete-time system is time-invariant if shifting the input by
k units leads to an equal shift in the output. That is, if y[n] is
the response to x[n], the response to x[n+k] is y[n+k], where
k is any integer.

� Time invariance implies that the parameters of the
system do not change with time. For a system described
by a difference equation, its parameters are reflected in the
equation’s coefficients, so if the coefficients are constant,
the system is time invariant. �

7-4.4 Impulse Response h[n]
The impulse response of a discrete-time system is designated
h[n]. Unlike the continuous-time case, there is no difficulty
in measuring h[n] for a real-world system, since discrete-time
impulses exist physically. For a discrete-time LTI system, its
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impulse response is the output generated by the system when
excited by a discrete-time unit impulse at its input:

δ[n]
Impulse

System h[n].
Impulse
response

(7.38)

In general, the impulse response of an LTI system can be
computed from its ARMA difference equation, if it exists,
using the z-transform, as will be demonstrated in Section 7-6.
However, for the special case of a system described by a MA
difference equation of the form given by Eq. (7.34), h[n] can
be read off of its coefficients directly. For

y[n] =
M∑
i=0

bi x[n−i] = b0 x[n]+b1 x[n−1]+· · ·+bM x[n−M],

upon setting x[n] = δ[n], the output generated by the system is
h[n]. That is,

h[n] = y[n]|x[n]=δ[n] =
M∑
i=0

bi δ[n− i] = {b0, b1, . . . , bM},
(7.39)

where in the final step we adopted the brackets notation
introduced in Section 7-1.1. Graphically,h[n] is a stem plot with
the stem amplitudes being the coefficients of the MA difference
equation:

y[n] =
M∑
i=0

bi x[n− i] h[n] = {b0, b1, . . . , bM}.

(7.40)

7-4.5 Causality and BIBO Stability

The definitions of causality and BIBO stability for discrete LTI
systems are identical to those for continuous-time systems.

� Specifically, a signal x[n] is causal if x[n] = 0 for all
n < 0. An LTI system is causal if and only if its impulse
response h[n] is causal (i.e., h[n] = 0 for all n < 0). �

ARMA difference equations, like their continuous-time
LCCDE counterparts, are inherently causal, since the present

value of the output, y[n], can be computed from only present
and past values of the input and past values of the output.

� A signal x[n] is bounded if there exists some
numberL such that |x[n]| ≤ L.A signalx[n] is absolutely
summable if

∑∞
n=−∞ |x[n]| is finite. �

Absolutely summable for a discrete-time signal is the
counterpart of absolutely integrable for a continuous-time
signal; namely,

∫∞
−∞ |x(t)| dt is finite.

� An LTI system is BIBO stable if every bounded input
x[n] generates a bounded output y[n]. Equivalently, an
LTI system is BIBO stable if and only if its impulse
response h[n] is absolutely summable. �

Proof of the preceding statement is almost identical
procedurally with that contained in Section 2-6.3 for
continuous-time, except that integrals are replaced with
summations.

All MA systems are BIBO stable. From Eq. (7.40),

h[n] = {
b0, b1, . . . , bM

}
,

which is absolutely summable because M is finite and so are
all of the coefficients.

Example 7-8: MA System Stability

Given the system y[n] = 2x[n]−3x[n−1]−4x[n−2], prove
that the system is BIBO stable.

Solution: Application of Eq. (7.39) to this MA system gives

h[n] = {2,−3,−4},
and its absolute sum is∑

|h[n]| = 2 + 3 + 4 = 9,

which is finite. Hence, the system is BIBO stable, as expected.

Example 7-9: BIBO Unstable System

Determine whether or not the system with impulse response

h[n] = (−1)n

n+ 1
u[n]

is BIBO stable.
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Solution: Whereas

∞∑
n=−∞

h[n] =
∞∑

n=−∞

(−1)n

n+ 1
u[n]

=
∞∑
n=0

(−1)n

n+ 1
= 1 − 1

2
+ 1

3
− 1

4
+ · · · = ln 2,

proving that h[n] is summable, it is not absolutely summable
because

∞∑
n=−∞

|h[n]| = 1 + 1

2
+ 1

3
+ 1

4
+ · · · → ∞.

Since h[n] is not absolutely summable, the system is not BIBO
stable.

7-4.6 h[n] as Linear Combination of Geometric
Signals

Recall from Section 7-2.3 that a geometric signal given by

x[n] = pn u[n]
is the discrete-time equivalent of an exponential signal ept u(t)

in continuous time. Constant p may be real-valued or complex.
Sometimes, the impulse response h[n] of a discrete-time LTI
system may be described by a linear combination of geometric
signals. That is,

h[n] =
N∑
i=1

Cipni u[n]. (7.41)

� Such a system is BIBO stable if and only if |pi | < 1
for all i. �

We can prove that the preceding statement is true by proving
that h[n] is absolutely summable. By the triangle inequality,

∞∑
n=−∞

|h[n]| =
∞∑

n=−∞

∣∣∣∣
N∑
i=1

Cipni u[n]
∣∣∣∣ ≤

∞∑
n=−∞

∞∑
i=1

|Cipni | u[n].

Upon interchanging the order of the two summations and
replacing the lower limit on n to zero (as required by u[n]),
we get

∞∑
n=−∞

|h[n]| ≤
N∑
i=1

∞∑
n=0

|Cipni | =
N∑
i=1

|Ci |
∞∑
n=0

|pni |. (7.42)

Recall that the sum of an infinite geometric series is

∞∑
n=0

rn = 1

1 − r
(7.43)

if and only if |r| < 1. If |r| ≥ 1, the series does not converge.
Here, setting r = |pi |, we have (if and only if |pi | < 1)

∞∑
n=0

|pni | = 1 + |pi | + |pi |2 + · · · = 1

1 − |pi | , (7.44)

which is finite. For the summation over i, the sum of N
finite quantities is finite. Hence, if |pi | < 1, h[n] is absolutely
summable, and the system is BIBO stable.

By way of comparison, a continuous-time LTI system with
an impulse response

h(t) =
N∑
i=1

Ciepi t u(t) (7.45)

is BIBO stable if and only if Re{pi} < 0 for all i. The
continuous-time stability condition of poles pi in the open left
half-plane in the s-domain becomes the discrete-time stability
condition of poles pi inside the unit circle |pi | = 1.

Concept Question 7-7: Why are all MA systems BIBO
stable? (See        )

Concept Question 7-8: What is the condition for BIBO
stability of an LTI system with the impulse response
h[n] = ∑N

i=1 Ci pi
n u[n]? (See        )

Exercise 7-6: Is the system with impulse response

h[n] = 1

(n+ 1)2
u[n]

BIBO stable?

Answer: Yes.

∞∑
n=−∞

|h[n]| =
∞∑
n=0

1

(n+ 1)2
= π2

6
.

This is finite, so the system is BIBO stable. (See S2 )
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Exercise 7-7: Is the system with h[n] = ( 1
2

)n
u[n] BIBO

stable?

Answer: Yes, since | 1
2 | < 1. (See S2 )

Exercise 7-8:A system has an impulse response h[n] = 0
for n < 0 but h[0] �= 0. Is the system causal?

Answer: Yes. The output of a causal system at time n
can depend on the input at the same time n. (See S2 )

7-5 Discrete-Time Convolution

Convolution is much simpler to perform in discrete-time than in
continuous-time, primarily because there are no integrals to be
evaluated. As we will see shortly, computing the convolution
of two finite-duration signals is fairly straightforward, and if
either signal has infinite duration, the z-transform of Section
7-6 should be used.

7-5.1 Derivation of Convolution Sum

The convolution sum in discrete time is the counterpart of
the convolution integral in continuous time. Derivation of the
expression defining the convolution sum of two discrete-time
signals follows the same basic steps outlined earlier in Section
2-3.1 for the convolution integral.

Step 1: From the definition of the impulse response given by
Eq. (7.38),

δ[n] LTI h[n]. (7.46)

Step 2: From time-invariance of LTI systems, delaying the
input δ[n] by an integer i delays the output h[n] by the same
integer i,

δ[n− i] LTI h[n− i]. (7.47)

Step 3: From the scaling property of LTI systems,
multiplying the input δ[n− i] by any constant x[i] multiplies
the output h[n− i] by the same factor,

x[i] δ[n− i] LTI x[i] h[n− i]. (7.48)

Step 4: From the additivity property of LTI systems,
summing the input over i, sums the output over i as well,

∞∑
i=−∞

x[i] δ[n−i] LTI
∞∑

i=−∞
x[i] h[n−i]. (7.49)

Step 5: From the sampling property of impulses, the input is
recognized to be just x[n]. Hence,

x[n] LTI
∞∑

i=−∞
x[i] h[n− i]. (7.50)

Using an asterisk * to denote the convolution operation,
Eq. (7.50) can be written as

y[n] = x[n] ∗ h[n] =
∞∑

i=−∞
x[i] h[n− i].

(any pair of functions)

(7.51a)

If the two functions represent causal signals or systems, they
should be multiplied by step functions (as a reminder) and the
limits of the summation should be changed to i = 0 to n. That
is,

y[n] = (x[n] u[n]) ∗ (h[n] u[n])

=
∞∑

i=−∞
x[i] u[i] h[n− i] u[n− i]

= u[n]
n∑
i=0

x[i] h[n− i].

(causal functions)

(7.51b)

Example 7-10: Convolution Sum

Given x[n] = {2, 3, 4} and h[n] = {5, 6, 7}, compute
y[n] = x[n] ∗ h[n].
Solution: Both signals have a length of 3 and start at time
zero. That is, x[0] = 2, x[1] = 3, x[2] = 4, and x[i] = 0 for
all other values of i. Similarly, h[0] = 5, h[1] = 6, h[2] = 7,
and h[i] = 0 for all other values of i.
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By Eq. (7.51a), the convolution sum of x[n] and h[n] is

y[n] = x[n] ∗ h[n] =
∞∑

i=−∞
x[i] h[n− i]. (7.52)

Since h[i] = 0 for all values of i except i = 0, 1, and 2, it
follows that h[n− i] = 0 for all values of i except for i = n,
n− 1, and n− 2. With this constraint in mind, we can apply
Eq. (7.52) at discrete values of n, starting at n = 0:

y[0] =
0∑
i=0

x[i] h[0 − i] = x[0] h[0] = 2 × 5 = 10,

y[1] =
1∑
i=0

x[i] h[1 − i]

= x[0] h[1] + x[1] h[0] = 2 × 6 + 3 × 5 = 27,

y[2] =
2∑
i=0

x[i] h[2 − i]

= x[0] h[2] + x[1] h[1] + x[2] h[0]
= 2 × 7 + 3 × 6 + 4 × 5 = 52,

y[3] =
2∑
i=1

x[i] h[3 − i]

= x[1] h[2] + x[2] h[1] = 3 × 7 + 4 × 6 = 45,

y[4] =
2∑
i=2

x[i] h[4 − i] = x[2] h[2] = 4 × 7 = 28,

y[n] = 0, otherwise.

Hence,

y[n] = {10, 27, 52, 45, 28}.

7-5.2 Discrete-Time Convolution Properties

With one notable difference, the properties of the discrete-time
convolution are the same as those for continuous time. If (t)
is replaced with [n] and integrals are replaced with sums, the
convolution properties derived in Chapter 2 lead to those listed
in Table 7-4.

The notable difference is associated with property #7. In
discrete time, the width (duration) of a signal that is zero-valued
outside interval [a, b] is b − a + 1, not b − a. Consider two
signals, h[n] and x[n], defined as follows:

Signal From To Duration

h[n] a b b − a + 1

x[n] c d d − c + 1

y[n] a + c b + d (b + d)− (a + c)+ 1

where y[n] = h[n] ∗ x[n]. Note that the duration of y[n] is

(b + d)− (a + c)+ 1 = (b − a + 1)+ (d − c + 1)− 1

= duration h[n] + duration x[n] − 1.

7-5.3 Delayed-Impulses Computation Method

For finite-duration signals, computation of the convolution sum
can be facilitated by expressing one of the signals as a linear
combination of delayed impulses. The process is enabled by the
sampling property (#6 in Table 7-4).

Consider, for example, the convolution sum of the two signals
defined in Example 7-10, namely

y[n] = x[n] ∗ h[n] = {2, 3, 4} ∗ {5, 6, 7}. (7.53)

The sampling property allows us to express x[n] in terms of
impulses,

x[n] = 2δ[n] + 3δ[n− 1] + 4δ[n− 2]. (7.54)

Use of Eq. (7.54) in Eq. (7.53) gives

y[n] = (2δ[n] + 3δ[n− 1] + 4δ[n− 2]) ∗ h[n]
= 2h[n] + 3h[n− 1] + 4h[n− 2]. (7.55)

Given that both x[n] and h[n] are of duration = 3, the duration
of their sum is 3+3−1 = 5, and it extends fromn = 0 ton = 4.
Computing y[0] using Eq. (7.55) (while keeping in mind that
h[i] has a non-zero value for only i = 0, 1, and 2) leads to

y[0] = 2h[0] + 3h[−1] + 4h[−2]
= 2 × 5 + 3 × 0 + 4 × 0 = 10.

The process can then be repeated to obtain the values of y[n]
for n = 1, 2, 3, and 4.
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Table 7-4: Comparison of convolution properties for continuous-time and discrete-time signals.

Property Continuous Time Discrete Time

Definition y(t) = h(t) ∗ x(t) =
∞∫

−∞
h(τ) x(t − τ) dτ y[n] = h[n] ∗ x[n] =

∞∑
i=−∞

h[i] x[n− i]

1. Commutative x(t) ∗ h(t) = h(t) ∗ x(t) x[n] ∗ h[n] = h[n] ∗ x[n]

2. Associative [g(t) ∗ h(t)] ∗ x(t) = g(t) ∗ [h(t) ∗ x(t)] [g[n] ∗ h[n]] ∗ x[n] = g[n] ∗ [h[n] ∗ x[n]]
3. Distributive x(t) ∗ [h1(t)+ · · · + hN(t)] =

x(t) ∗ h1(t)+ · · · + x(t) ∗ hN(t)
x[n] ∗ [h1[n] + · · · + hN [n]] =
x[n] ∗ h1[n] + · · · + x[n] ∗ hN [n]

4. Causal ∗ Causal = Causal y(t) = u(t)

t∫
0

h(τ) x(t − τ) dτ y[n] = u[n]
n∑
i=0

h[i] x[n− i]

5. Time-shift h(t − T1) ∗ x(t − T2) = y(t − T1 − T2) h[n− a] ∗ x[n− b] = y[n− a − b]
6. Convolution with Impulse x(t) ∗ δ(t − T ) = x(t − T ) x[n] ∗ δ[n− a] = x[n− a]
7. Width width y(t) = width x(t)+ width h(t) width y[n] =

width x[n] + width h[n] − 1

8. Area area of y(t) = area of x(t)× area of h(t)
∞∑

n=−∞
y[n] =

( ∞∑
n=−∞

h[n]
)( ∞∑

n=−∞
x[n]

)

9. Convolution with step y(t) = x(t) ∗ u(t) =
t∫

−∞
x(τ) dτ x[n] ∗ u[n] =

n∑
i=−∞

x[i]

7-5.4 Graphical Computation Method

The convolution sum can be computed graphically through a
four-step process. By way of illustration, we will compute

y[n] = x[n] ∗ h[n] =
∞∑

i=−∞
x[i] h[n− i], (7.56)

with

x[n] = {2, 3, 4}, h[n] = {5, 6, 7}. (7.57)

Step 1: Replace index n with index i and plot x[i] and h[−i],
as shown in Fig. 7-12(a). Signal h[−i] is obtained from h[i] by
reflecting it about the vertical axis.

Step 2: Superimpose x[i] and h[−i], as in Fig. 7-12(b), and
multiply and sum them. Their product is 10.

Step 3: Shift h[−i] to the right by 1 to obtain h[1− i], as shown
in Fig. 7-12(c). Multiplication and summation of x[i] byh[1−i]
generates y[1] = 27. Shift h[1 − i] by one more unit to the
right to obtain h[2 − i], and then repeat the multiplication and
summation process to obtain y[2]. Continue the shifting and
multiplication and summation processes until the two signals
no longer overlap.

Step 4: Use the values of y[n] obtained in step 3 to generate a
plot of y[n], as shown in Fig. 7-12(g).

Concept Question 7-9: What does convolution with a
step function do to a signal in discrete time? (See        )

Concept Question 7-10: Why is convolution property #7
in Table 7-4 (duration) different in discrete time?
(See        )
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(a) x[i] and h[−i]

(c)(b)

(e)(d)

(g) y[n](f )
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Figure 7-12: Graphical computation of convolution sum.

Exercise 7-9: Compute y[n] = {1, 2} ∗ {0, 0, 3, 4}.
Answer: y[n] = {0, 3, 10, 8}. (See S2 )

7-6 The z-Transform

The z-transform plays the same role for discrete-time systems
that the Laplace transform plays for continuous-time systems.
Computations of z-transforms and inverse z-transforms are
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performed using procedures and techniques analogous to those
used with the Laplace transform.

7-6.1 Definition of the z-Transform

The (unilateral) z-transform of a discrete-time signal x[n] is
defined as

ZZZ[x[n]] = X(z) =
∞∑
n=0

x[n] z−n. (7.58a)

Note that the summation starts at n = 0, so values of x[n]
for n < 0 (if non-zero valued) are discarded. For the sake of
comparison, the Laplace transform of x(t) is

LLL[x(t)] = X(s) =
∞∫

0

x(t) (es)−t dt, (7.58b)

where z is a complex variable analogous to es for the Laplace
transform.

The z-transform transforms x[n] from the discrete-time
domain symbolized by the discrete variable n to the
z-domain, where, in general, z is a complex number. The inverse
z-transform performs the reverse operation,

x[n] = ZZZ
−1[X(z)]. (7.59)

� The uniqueness property of the unilateral z-transform
states that a causal signal x[n] has a unique X(z), and vice
versa. �

Thus,

x[n] X(z). (7.60)

7-6.2 Examples of z-Transform Pairs

Not all discrete-time signals have z-transforms. Fortunately,
however, for the overwhelming majority of signals of practical
interest, their z-transforms do exist. Table 7-5 provides a list
of z-transform pairs of signals commonly used in science and
engineering.

Example 7-11: z-Transforms of δ[n] and u[n]

Verify that the z-transforms of (a) δ[n−m], (b) δ[n], and (c)
u[n] match those listed in Table 7-5.

Solution:
(a) For x[n] = δ[n−m], application of the definition of the

z-transform given by Eq. (7.58a) gives

X[z] =
∞∑
n=0

x[n] z−n =
∞∑
n=0

δ[n−m] z−n = z−m.

This is because δ[n−m] = 1 for n = m, and zero for all other
values of n. In shorthand notation,

δ[n−m] z−m. (7.61)

(b) For m = 0,

δ[n] 1. (7.62)

(c) For x[n] = u[n],

X(z) =
∞∑
n=0

u[n] z−n = 1 + z−1 + z−2 + · · · . (7.63a)

If |z−1| < 1, the infinite geometric series in Eq. (7.63a) can be
expressed in closed form as

∞∑
n=0

z−n = 1

1 − z−1 = z
z − 1

for |z−1| < 1. (7.63b)

Hence,

u[n] z
z − 1

for |z| > 1. (7.64)

The condition |z| > 1 is called the region of conver-
gence (ROC ) of the z-transform of u[n]. The expression
ZZZ[u[n]] = z/(z − 1) is only valid for |z| > 1. If |z| < 1 the
infinite series given by Eq. (7.63a) does not converge, and the
expression is not valid. This will be of little practical import in
this book. However, books on digital signal processing may use
a bilateral z-transform for which ROC will be very important
in computing the inverse z-transform.
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Table 7-5: Examples of z-transform pairs. ROC stands for region of convergence (validity) in the z-plane.

z-Transform Pairs

x[n] X(z) = ZZZ[x[n]] ROC

1 δ[n] 1 All z

1a δ[n−m] z−m, if m ≥ 0 z �= 0

2 u[n] z
z − 1

|z| > 1

3 n u[n] z

(z − 1)2
|z| > 1

3a n2 u[n] z(z + 1)

(z − 1)3
|z| > 1

4 an u[n] z
z − a

|z| > |a|

4a an−1 u[n− 1] 1

z − a
|z| > |a|

4b nan u[n] az

(z − a)2
|z| > |a|

4c (n− 1)an−2 u[n− 2] 1

(z − a)2
|z| > |a|

4d n2an u[n] az(z + a)

(z − a)3
|z| > |a|

5 sin(�n) u[n] z sin(�)

z2 − 2z cos(�)+ 1
|z| > 1

5a an sin(�n) u[n] az sin(�)

z2 − 2az cos(�)+ a2 |z| > |a|

6 cos(�n) u[n] z2 − z cos(�)

z2 − 2z cos(�)+ 1
|z| > 1

6a an cos(�n) u[n] z2 − az cos(�)

z2 − 2az cos(�)+ a2 |z| > |a|

7 cos(�n+ θ) u[n] z2 cos(θ)− z cos(�− θ)

z2 − 2z cos(�)+ 1
|z| > 1

7a 2|a|n cos(�n+ θ) u[n] zejθ

z − a
+ ze−jθ

z − a∗ , a = |a|ej� |z| > |a|

Example 7-12: z-Transform of a Finite Duration Signal

Compute the z-transform of x[n] = {4, 2, 0, 5}.
Solution: Signal x[n] can be written as

x[n] = 4δ[n] + 2δ[n− 1] + 0δ[n− 2] + 5δ[n− 3].

Hence,

X(z) =
∞∑
n=0

x[n] z−n = 4 + 2z−1 + 5z−3 = 4z3 + 2z2 + 5

z3 .

For reasons that will become apparent later, X(z) is expressed
in the form of a rational function (ratio of two polynomials).

� The relationship between a causal finite-length signal
and its z-transform can be cast in the form

{a0, a1, a2, . . . , am} a0 + a1

z
+ a2

z2 + · · · + am

zm
.

(7.65)
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Example 7-13: z-Transforms of Geometric and Sinusoidal
Signals

Find the z-transform of (a) the geometric signalx1[n] = an u[n]
and (b) the sinusoidal signal x2[n] = A cos(�n+ θ) u[n].
Solution:

(a) For x1[n],

X1(z) =
∞∑
n=0

an u[n] z−n =
∞∑
n=0

(a
z

)n
.

Setting r = a/z in the formula for the infinite geometric series

∞∑
n=0

rn = 1

1 − r
for |r| < 1,

the expression for X1(z) becomes

X1(z) = 1

1 − (a/z)
= z

z − a
for

∣∣∣a
z

∣∣∣ < 1.

Hence,

an u[n] z
z − a

for |z| > |a|. (7.66)

(b) For the sinusoidal signal

x2[n] = A cos(�n+ θ) u[n],
we start by converting the cosine into complex exponentials
using

A cos(�n+ θ) = A

2
ej (�n+θ) + A

2
e−j (�n+θ)

= A

2
ejθ ej�n + A

2
e−jθ e−j�n.

According to Eq. (7.66), if we set a = e±j�, then

(e±j�)n u[n] z
z − e±j�

,

Accordingly,

ZZZ[A cos(�n+ θ) u[n]]

= A

2
ejθ ZZZ[ej�n u[n]] + A

2
e−jθ ZZZ[e−j�n u[n]]

= A

2
ejθ

z
z − ej�

+ A

2
e−jθ z

z − e−j�
, (7.67)

provided |z| > |e±j�| = 1. Cross-multiplication leads to the
final result

A cos(�n+ θ) u[n]

A

[
z2 cos(θ)− z cos(�− θ)

z2 − 2z cos(�)+ 1

]
.

(7.68)

For the two special cases where A = 1 and θ = 0 or −π/2,
Eq. (7.68) reduces to, respectively,

cos(�n) u[n] z2 − z cos(�)

z2 − 2z cos(�)+ 1
,

sin(�n) u[n] z sin(�)

z2 − 2z cos(�)+ 1
.

(7.69a)

(7.69b)

Concept Question 7-11: The z-transform has a unique
inverse for what class of signals? (See        )

Concept Question 7-12:What is the z-transform of δ[n]?
u[n − m]? u[n]? (See        )

Exercise 7-10: Compute the z-transform of {1, 2}. Put the
answer in the form of a rational function.

Answer: 1 + 2z−1 = (z + 2)/z. (See S2 )

Exercise 7-11: Compute the z-transform of
{1, 1} + (−1)n u[n]. Put the answer in the form of
a rational function.

Answer:

1 + z−1 + z
z + 1

= z + 1

z
+ z

z + 1
= 2z2 + 2z + 1

z2 + z
.

(See S2 )

7-7 Properties of the z-Transform

Table 7-6 highlights several important properties of the
z-transform. Most can be derived directly from the definition
given by Eq. (7.58a).
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Table 7-6: Properties of the z-transform for causal signals for m > 0.

Property x[n] X(z)

1. Linearity C1 x1[n] + C2 x2[n] C1 X1(z)+ C2 X2(z)

2. Time delay by 1 x[n− 1] u[n] 1

z
X(z)+ x[−1]

2a. Time delay by m x[n−m] u[n] 1

zm
X(z)+ 1

zm

m∑
i=1

x[−i] zi

3. Right shift by m x[n−m] u[n−m] 1

zm
X(z)

4. Time advance by 1 x[n+ 1] u[n] z X(z)− z x[0]
4a. Time advance by m x[n+m] u[n] zm X(z) − zm

m−1∑
i=0

x[i] z−i

5. Multiplication by an an x[n] u[n] X
( z

a

)
6. Multiplication by n n x[n] u[n] −z

dX(z)
dz

7. Time scaling x[n/k] X(zk), k positive integer and n multiple of k

8. Time reversal x[−n] X(1/z)

9. Summation
∑n
k=0 x[k] u[n]

z
z − 1

X(z)

10. Convolution x1[n] ∗ x2[n] X1(z) X2(z)

11. Initial value x[0] = lim
z→∞ X(z)

12. Final value lim
n→∞ x[n] = lim

z→1
[(z − 1) X(z)], if x[∞] exists

Example 7-14: Linear Combination of Signals

Compute ZZZ[{1, 3} + 4(2n) u[n]].
Solution:

ZZZ[{1, 3} + 4(2n) u[n]] = ZZZ[{1, 3}] + 4ZZZ[2n u[n]]

= (1 + 3z−1)+ 4
z

z − 2
= 5z2 + z − 6

z2 − 2z
,

where we followed the recipe of Example 7-12 for the finite-
length signal (first term), and we applied Eq. (7.66) for the
geometric signal.

7-7.1 Right Shifts and Time Delays

In computing the z-transform of a shifted signal, we need to
distinguish between signals x[n] that are causal (x[n] = 0 for
n < 0) and signals that are noncausal.

� If x[n] is causal, then x[n] = x[n] u[n], and
right-shifting it by m means replacing x[n] with
x[n−m] u[n−m]. This implies that the signal “starts”
at time m, since x[n−m] u[n−m] = 0 for n < m. �

But if x[n] is not causal, then right-shifting it means that
values of the signal at negative times will now be present at non-
negative times. Since the unilateral z-transform of a signal uses
only values of the signal at non-negative times, computing the
z-transform of a shifted noncausal signal is more complicated
than computing the z-transform of a shifted causal signal, as
the following example shows.

Example 7-15: z-Transform of Shifted Signals

Let x1[n] = {3, 2, 4} and x2[n] = {3, 2, 4}. Compute
the z-transforms of signals y1[n] = x1[n− 1] and
y2[n] = x2[n− 1].
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Solution: Signal x1[n] is causal, but signal x2[n] is not. Signals
y1[n] and y2[n] are delayed versions of x1[n] and x2[n],

y1[n] = x1[n− 1] = {0, 3, 2, 4},
y2[n] = x2[n− 1] = {3, 2, 4}.

Application of Eq. (7.65) leads to

X1(z) = 3 + 2z−1 + 4z−2,

Y1(z) = 3z−1 + 2z−2 + 4z−3,

X2(z) = 2 + 4z−1,

Y2(z) = 3 + 2z−1 + 4z−2.

Whereas Y1(z) = z−1 X1(z), Y2(z) is not equal to z−1 X2(z).
This is because x2[−1] does not appear in X2(z), but it does
appear in Y2(z). Because x2[n] is not causal, we must use
property #2 in Table 7-6 to compute Y2(z), whereas property
#3 is sufficient to compute Y1(z).

We observe from Example 7-15 that even though x1[n] and
x2[n] consisted of the same sequence of numbers, the fact that
one of them is causal and the other is not leads to different
expressions for their unilateral z-transforms and similarly for
the transforms of y1[n] and y2[n]. To distinguish between signal
transformations involving causal and noncausal signals, we
apply “right-shifts” to causal signals and “time delays” to
noncausal signals.

If x[n] is causal, x[n] = x[n] u[n], and the right shift of x[n]
bym is x[n−m] u[n−m]. If x[n] is not causal, the time delay
of x[n] by m is x[n−m] u[n]. To delay a noncausal signal
bym, we shift it to the right bym and then take only the causal
part (the part for n ≥ 0) of the shifted signal. This distinction is
necessary since the unilateral z-transform of a signal uses only
the causal part of the signal.

The next two subsections show how to compute the
z-transform of right-shifted (causal) and time-delayed (non-
causal) signals.

7-7.2 Right Shift by m Units

Given

x[n] u[n] X(z) =
∞∑
n=0

x[n] z−n,

right-shifting the signal by m units entails not only delaying it
by m units, but also starting it m units later. The right-shifted
signal is x[n−m] u[n−m]. Its z-transform is

ZZZ[x[n−m] u[n−m]] =
∞∑
n=0

x[n−m] u[n−m] z−n

=
∞∑
n=m

x[n−m] z−n, (7.70)

where we changed the lower limit tom since u[n−m] = 0 for
n < m. Changing variables to i = n−m gives

ZZZ[x[n−m] u[n−m]] =
∞∑
i=0

x[i] z−(i+m)

= 1

zm

∞∑
i=0

x[i] z−i = 1

zm
X(z),

which matches property #3 in Table 7-6. In abbreviated
notation

x[n−m] u[n−m] 1

zm
X(z).

(right-shift property)

(7.71)

7-7.3 Time Delay by m Units

Given

x[n] u[n] X(z) =
∞∑
n=0

x[n] z−n,

we wish to relate the z-transform of x[n−m] u[n]—the original
signal delayed by m units—to X(z). The z-transform of the
delayed signal is

ZZZ[x[n−m] u[n]] =
∞∑
n=0

x[n−m] u[n] z−n. (7.72)

By introducing the variable k = n−m, Eq. (7.72) becomes

ZZZ[x[n−m] u[n]] =
∞∑

k=−m
x[k] z−(k+m)

= z−m
−1∑

k=−m
x[k] z−k + z−m

∞∑
k=0

x[k] z−k.
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Furthermore, we replace index kwith −i in the first term, which
reverses the order of the summation and leads to

ZZZ[x[n−m] u[n]] = 1

zm

m∑
i=1

x[−i] zi + 1

zm
X(z),

which is identical in form to property #2a in Table 7-6. In
abbreviated notation, we have

x[n−m] u[n] 1

zm
X(z)+ 1

zm

m∑
i=1

x[−i] zi .

(time delay property)

(7.73)

7-7.4 z-Scaling

� Multiplication of a signal by an leads to scaling the
z-variable of its z-transform by a factor 1/a. �

That is,

if x[n] u[n] X(z),

then an x[n] u[n] X
( z

a

)
.

(z-scaling property)

(7.74)

This property follows from the z-transform definition

ZZZ[an x[n] u[n]] =
∞∑
n=0

x[n] anz−n =
∞∑
n=0

x[n]
( z

a

)−n = X
( z

a

)
.

To illustrate the utility of Eq. (7.74), consider the transform pair
for the sinusoid given by Eq. (7.69b), namely,

sin(�n) u[n] z sin(�)

z2 − 2z cos(�)+ 1
. (7.75)

If we are working with a signal given by an sin(�n) u[n] and
wish to determine its z-transform, we simply apply Eq. (7.74)
by replacing z with (z/a) everywhere in the z-transform of
sin(�n) u[n]. Thus,

an sin(�n) u[n] (z/a) sin(�)

(z/a)2 − 2
( z

a

)
cos�+ 1

= az sin(�)

z2 − 2az cos(�)+ a2 . (7.76)

7-7.5 z-Derivative

From

X(z) =
∞∑
n=0

x[n] z−n, (7.77)

it follows that

d

dz
X(z) = −

∞∑
n=0

n x[n] z−n−1. (7.78)

Multiplying both sides by −z gives

−z
d

dz
X(z) =

∞∑
n=0

n x[n] z−n = ZZZ[n x[n] u[n]],

or equivalently

n x[n] u[n] − z
dX(z)
dz

.

(z-derivative property)

(7.79)

Multiplication of x[n] by n in discrete time is equivalent to
taking the negative derivative of the z-transform of x[n] in the
z-domain.

7-7.6 Convolution

Recall from Section 7-5 that the convolution of two causal
signals x1[n] and x2[n] is defined as

y[n] = x1[n] ∗ x2[n] =
∞∑
i=0

x1[i] u[i] x2[n− i] u[n− i].
(7.80)
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The z-transform of y[n] is

ZZZ[y[n]] =
∞∑
n=0

z−n
∞∑
i=0

x1[i] u[i] x2[n− i] u[n− i]. (7.81)

By expressing z−n = z−i · z−(n−i) and interchanging the order
of the two summations, we have

ZZZ[y[n]] =
∞∑
i=0

x1[i] u[i] z−i
∞∑
n=0

x2[n− i] u[n− i] z−(n−i).

(7.82)
In the second summation, we change variables by introducing
integer m = n− i, which leads to

ZZZ[y[n]] =
∞∑
i=0

x1[i] u[i] z−i
∞∑

m=−i
x2[m] u[m] z−m

=
∞∑
i=0

x1[i] u[i] z−i
∞∑
m=0

x2[m] z−m = X1(z) X2(z).

(7.83)

The lower limit on the summation was changed from m = −i
to m = 0 because u[m] = 0 for m < 0. The result given by
Eq. (7.83) can be encapsulated in the abbreviated form

x1[n] ∗ x2[n] X1(z) X2(z).

(convolution property)

(7.84)

The convolution property states that convolution in discrete time
is equivalent to multiplication in the z-domain.

Example 7-16: {1, 2, −3} ∗ u[n]

Compute the convolution y[n] = {1, 2,−3} ∗ u[n] (a) directly
in discrete time and (b) by applying the convolution property
of the z-transform.

Solution:

(a) Discrete-time method

By application of the sampling property discussed in Section
7-5.3, we have

y[n] = {1, 2,−3} ∗ u[n]
= (δ[n] + 2δ[n− 1] − 3δ[n− 2]) ∗ u[n]
= u[n] + 2u[n− 1] − 3u[n− 2]

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for n ≤ −1,

1 for n = 0,

1 + 2 = 3 for n = 1,

1 + 2 − 3 = 0 for n = 2,

0 for n > 2.

Hence,

y[n] = {1, 3}.

Note that the convolution of a finite-duration signal and an
infinite-duration signal can be of finite duration.

(b) z-Transform method

Application of Eq. (7.65) gives

x1[n] = {1, 2,−3} X1(z) =
(

1 + 2

z
− 3

z2

)
.

Also, from Eq. (7.64), the z-transform of u[n] is

x2[n] = u[n] X2(z) =
(

z
z − 1

)
.

The convolution property given by Eq. (7.84) states that

Y(z) = X1(z) X2(z)

=
(

1 + 2

z
− 3

z2

)(
z

z − 1

)

= z2 + 2z − 3

z(z − 1)
= (z + 3)(z − 1)

z(z − 1)
= z + 3

z
= 1 + 3

z
.
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The inverse transform of Y(z) is

y[n] = {1, 3},
which is identical with the result obtained in part (a).

7-7.7 Initial and Final Value Theorems

From the definition of the z-transform,

X(z) =
∞∑
n=0

x[n] z−n,

it is readily apparent that if z → ∞ all terms in the summation
vanish except for n = 0. Hence,

x[0] = lim
z→∞ X(z) (initial-value theorem). (7.85)

Recall that a strictly proper rational function is the ratio of
two polynomials, with the degree of the numerator’s polynomial
smaller than the degree of the denominator’s polynomial. An
immediate consequence of the initial value theorem is that the
inverse z-transform x[n] of a strictly proper rational function
X(z) gives x[0] = 0. Similarly, a more elaborate derivation
leads to

lim
n→∞ x[n] = x[∞] = lim

z→1
[(z − 1) X(z)],

(final value theorem)

(7.86)

provided x[∞] exists.

Concept Question 7-13: What is the difference between
a time delay and a right shift? (See        )

Concept Question 7-14: Why does the z-transform map
convolutions to products? (See        )

Exercise 7-12: Compute ZZZ[n u[n]], given that

ZZZ[u[n]] = z
z − 1

.

Answer: Using the z-derivative property,

ZZZ[n u[n]] = −z
d

dz

[
z

z − 1

]
= z
(z − 1)2

.

(See S2 )

Exercise 7-13: Compute ZZZ[nan u[n]], given that

ZZZ[n u[n]] = z
(z − 1)2

.

Answer: Using the z-scaling property,

ZZZ[nan u[n]] = z/a
((z/a)− 1)2

a2

a2 = az
(z − a)2

.

(See S2 )

7-8 Inverse z-Transform

The z-transform is used to solve difference equations, in a
manner analogous to how the Laplace transform is used to solve
differential equations. In the preceding section, we established
that the z-transform X(z) of a given discrete-time signal
x[n] can be computed either directly by applying the formal
definition given by Eq. (7.58a) or, when more convenient,
by taking advantage of the z-transform properties listed in
Table 7-6. Now we explore how to perform the inverse process,
namely to inverse transform X(z) to x[n].

The z-transform X(z) may assume one of two forms:

(1) X(z) is a polynomial in z−1, or

(2) X(z) is a rational function (ratio of two polynomials).

We will consider these two cases separately.

7-8.1 X(z) = Polynomial in z−1

From Eq. (7.65), for a causal signal, we have

x[n] = {a0, a1, a2, . . . , am}

(7.87)

X(z) =
(
a0 + a1

z
+ a2

z2 + · · · + am

zm

)
.

Hence, obtaining x[n] from X(z) when the latter is expressed
as a polynomial in z−1 entails no more than reading off the
coefficients of X(z).
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Example 7-17: Finite-Length Signals

Obtain the inverse z-transforms of

(a) X1(z) = 2 + 4/z + 5/z3,

(b) X2(z) = (7z2 + 3z + 6)/z3, and

(c) X3(z) = 3/z4.

Solution:
(a) Using Eq. (7.87),

x1[n] = {2, 4, 0, 5}.

Note that x1[2] = 0 because the coefficient of z−2 is zero.
(b) Before we apply Eq. (7.87) to X2(z), we need to convert

its expression into a polynomial in z−1. That is,

X2(z) = 7z2 + 3z + 6

z3 = 7

z
+ 3

z2 + 6

z3 .

The corresponding discrete time signal is

x2[n] = {0, 7, 3, 6}.

(c) Since the only non-zero term in X3(z) is of power z−4,

x3[n] = {0, 0, 0, 0, 3}.

7-8.2 X(z) = Rational Function

The procedure for computing the inverse z-transform of a
rational function is similar to that for the inverse Laplace
transform presented in Chapter 3. The only major difference is
in the final step of transforming the partial fraction expansion
to discrete time. In continuous time, we have

eat u(t)
1

s − a
(continuous time).

In discrete time, it is the right-shifted version of Eq. (7.66) that
has the analogous transform:

an−1 u[n− 1] 1

z − a
(discrete time).

Inverse z-Transform Procedure

1. Given X(z) = N(z)
D(z)

, where N(z) and D(z) are

polynomials of degrees M and N , respectively, compute
poles {pi = 1, 2, . . . , N}, which are the roots of
D(z) = 0. The poles will be either real or complex, and
if complex, they will occur in complex conjugate pairs
if the system is real. We assume the poles are distinct:
p1 �= p2 �= · · · �= pN .

2. Express X(z) as

X(z) = N(z)
D0(z − p1)(z − p2) · · · (z − pN)

,

where D0 is a constant, and then apply partial fraction
expansion to obtain the form

X(z) = A0 +
N∑
i=1

Ai
z − pi

. (7.88)

Coefficient A0 = 0 if and only if M < N ; that is, if and
only if X(z) is a strictly proper function.

3. Inverse-transform X(z) to x[n] by applying transform
pair #4a in Table 7-5, namely:

an−1 u[n− 1] 1

z − a
. (7.89)

The result is

x[n] = A0 δ[n] +
N∑
i=1

Aip
n−1
i u[n− 1]. (7.90)

4. If Ai and or pi are complex quantities, simplify the
expression by converting sums of complex conjugate
terms to cosine functions. Alternatively, in step 3, use
entry #7a in Table 7-5 to convert complex-conjugate
terms into cosines directly.

Example 7-18: Rational Functions

Compute

(a) ZZZ
−1
(

z − 3

z2 − 3z + 2

)
and
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(b) ZZZ
−1
(

16z
z2 − 6z + 25

)
.

Solution:

(a) X1(z) = z − 3

z2 − 3z + 2
. The roots of z2 − 3z + 2 = 0 are

the poles p1 = 1 and p2 = 2. Hence,

X1(z) = z − 3

z2 − 3z + 2
= z − 3

(z − 1)(z − 2)
= A1

z − 1
+ A2

z − 2
,

with

A1 = (z − 1) X(z)|z=1 = z − 3

z − 2

∣∣∣∣
z=1

= 2,

A2 = (z − 2) X(z)|z=2 = z − 3

z − 1

∣∣∣∣
z=2

= −1.

Now that X1(z) is given by the standard form

X1(z) = 2

z − 1
− 1

z − 2
,

it can be inverse z-transformed by applying the relationship
given by Eq. (7.90):

x1[n] = 2(1)n−1 u[n− 1] − (2)n−1 u[n− 1]
= (2 − 2n−1) u[n− 1].

(b) X2(z) = 16z
z2 − 6z + 25

The roots of z2 − 6z + 25 = 0 are the poles p1 = 3 + j4 and
p2 = p∗

1 = 3 − j4. Furthermore,

p1 = √
9 + 16 ej tan−1(4/3) = 5ej�

and

p2 = p∗
1 = 5e−j�

with � = 0.93 rad. Hence,

X2(z) = 16z
(z − p1)(z − p2)

= A

z − p1
+ A∗

z − p∗
1
,

with

A = (z − p1) X2(z)|z=p1

= 16z
z − p∗

1

∣∣∣∣
z=p1

= 16(3 + j4)

(3 + j4)− (3 − j4)
= 10e−j36.9◦

.

Therefore,

X2(z) = 10e−j36.9◦

z − 5ej�
+ 10ej36.9◦

z − 5e−j�
.

Use of Eq. (7.89) with θ = 36.9◦ gives

x2[n] = 10e−j36.9◦
(5ej�)n−1 u[n− 1]

+ 10ej36.9◦
(5e−j�)n−1 u[n− 1]

= 10(5n−1)[ej [(n−1)�−θ ] + e−j [(n−1)�−θ ]] u[n− 1]
= 20(5n−1) cos((n− 1)�− θ) u[n− 1]
= 20(5n−1) cos(0.93(n− 1)− 36.9◦) u[n− 1].

This can also be done directly using the right-shifted version of
entry #7a in Table 7-5.

7-8.3 Alternative Partial Fraction Method

The standard partial-fraction-expansion method generates
terms of the form A/(z − p). According to Eq. (7.89),

Apn−1 u[n− 1] A
z − p

. (7.91)

Hence, all such fraction-expansion terms lead to discrete-time
domain terms that include the shifted step u[n− 1]. Often, it is
more convenient to work with terms involving u[n], rather than
u[n− 1]. From Table 7-5, transform pair #4 is of the form

Apn u[n] Az
z − p

. (7.92)

This means that if we can generate partial fractions that include
z in the numerator, their inverse transformations would yield
terms in u[n]. To that end, we introduce an alternative partial
fraction method consisting of the following simple steps:
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Alternative Partial Fraction Method
1. Divide X(z) by z to obtain

X′(z) = X(z)
z

. (7.93)

2. Apply partial fraction expansion to X′(z) to cast it in
the form

X′(z) =
N∑
i=1

Ai
z − pi

, (7.94)

where pi for i = 1, 2, . . . , N are its poles and Ai are the
associated expansion coefficients (residues).

3. Multiply X′(z) by z to restore X(z) in a form compatible
with Eq. (7.92):

X(z) =
N∑
i=1

Aiz
z − pi

. (7.95)

4. Apply Eq. (7.92) to inverse z-transform X(z) to x[n].

Example 7-19: Alternative Method

Repeat part (a) of Example 7-18 using the alternative partial
fraction expansion method.

Solution: X1(z) = z − 3

z2 − 3z + 2

Dividing X1(z) by z gives

X′
1(z) = z − 3

z(z − 1)(z − 2)
= A1

z
+ A2

z − 1
+ A3

z − 2
,

with

A1 = z X′
1(z)

∣∣
z=0 = z − 3

(z − 1)(z − 2)

∣∣∣∣
z=0

= −3

2
.

Similarly, we determine that A2 = 2 and A3 = −1/2. Hence,

X′
1(z) = − 3

2z
+ 2

z − 1
− 1

2

1

z − 2
.

Converting back to X1(z), we have

X1(z) = z X′
1(z) = −3

2
+ 2z

z − 1
− 1

2

z
z − 2

.

Inverse transforming X1(z) leads to

x1[n] = −3

2
δ[n] + 2u[n] − 1

2
2n u[n].

All terms include δ[n] or u[n], instead of u[n− 1].
At first glance, this expression for x1[n] seems to differ from

the expression for x1[n] obtained in Example 7-18.

Example 7-18: x1[n] = (2 − 2n−1) u[n− 1]

Example 7-19: x1[n] = −3

2
δ[n] + 2u[n] − 1

2
2n u[n].

However, inserting n = 0, 1, 2, . . . gives

Example 7-18: x1[n] = {0, 1, 0,−2,−6,−14, . . . },
Example 7-19: x1[n] = {0, 1, 0,−2,−6,−14, . . . }.

The two expressions are identical. An important issue in
computing inverse z-transform is that different approaches may
result in answers that look different but are actually equal.
This is easily checked by computing the expressions for several
values of n.

Note that by the initial value theorem, we know immediately
that x1[0] = 0. The purpose of the impulse in the second
expression for x1[n] is to make x1[0] = 0.

Exercise 7-14: Compute the inverse z-transform of
(z + 3)/(z + 1).

Answer:

ZZZ
−1
[

z + 3

z + 1

]
= δ[n] + 2(−1)n−1 u[n− 1].

(See S2 )
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Exercise 7-15: Compute the inverse z-transform of
1/[(z + 1)(z + 2)].
Answer: (−1)n−1 u[n− 1] − (−2)n−1 u[n− 1].
(See S2 )

7-9 Solving Difference Equations with
Initial Conditions

7-9.1 Solution Procedure

The time-delay property of the z-transform can be used to solve
difference equations with initial conditions, just as the one-sided
Laplace transform can be used to solve LCCDEs with initial
conditions. Two important considerations that should be kept
in mind when performing the solution procedure are

(a) The time-delay property given by Eq. (7.73) as

x[n−m] u[n] 1

zm
X(z)+ 1

zm

m∑
i=1

x[−i] zi , (7.96)

which allows relating the z-transform of time-delayed signals
to that of the undelayed signal.

(b) A standard time reference, which means that unless noted
to the contrary, an input term of the form x[n−m] appearing
in the difference equation is implicitly causal and equivalent to
x[n−m] u[n]. The same notion applies to output-related terms:
y[n−m] = y[n−m] u[n].

Example 7-20: Difference Equation Solution

Solve for y[n], given the difference equation

y[n]−1.1y[n−1]+0.3y[n−2] = x[n]+2x[n−1], (7.97)

with x[n] = (0.25)n u[n] and initial conditions y[−1] = 3 and
y[−2] = 4.

Solution:
1. We start by computing the z-transform of all terms in

Eq. (7.97), while keeping in mind that because x[n] is causal

x[n] = 0 for n < 0.

x[n] = (0.25)n u[n] X(z) = z
z − 0.25

(entry #4, Table 7-5)

2x[n− 1] u[n] 2

z
X(z)+ 2x[−1]

= 2

z − 0.25
+ 0

= 2

z − 0.25

(Eq. (7.96) with m = 1)

y[n] Y(z)

y[n− 1] 1

z
Y(z)+ y[−1]

= 1

z
Y(z)+3︸︷︷︸
initial condition

(Eq. (7.96) with m = 2)

y[n− 2] 1

z2 Y(z)

+ 1

z
y[−1] + y[−2]

= 1

z2 Y(z)+3

z
+ 4.︸ ︷︷ ︸

initial conditions

2. We transform Eq. (7.97) to the z-domain by replacing each
of its terms with the corresponding z-transform:

Y(z)− 1.1

(
1

z
Y(z)+ 3

)
+ 0.3

(
1

z2 Y(z)+ 3

z
+ 4

)

= z
z − 0.25

+ 2

z − 0.25
. (7.98)

3. Collecting terms involving Y(z) and then solving for Y(z)
leads to

Y(z) = z(3.1z2 + 0.575z + 0.225)

(z − 0.25)(z2 − 1.1z + 0.3)

= z(3.1z2 + 0.575z + 0.225)

(z − 0.25)(z − 0.5)(z − 0.6)
.
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4. Next we apply the alternative partial fraction method of
Section 7-8.3 by defining

Y′(z) = Y(z)
z

= 3.1z2 + 0.575z + 0.225

(z − 0.25)(z − 0.5)(z − 0.6)

= A1

z − 0.25
+ A2

z − 0.5
+ A3

z − 0.6
.

Evaluation of expansion coefficients A1 to A3 leads to

Y′(z) = 6.43

z − 0.25
− 51.50

z − 0.5
+ 48.17

z − 0.6
.

5. Finally, we return to Y(z) by multiplying Y′(z) by z:

Y(z) = 6.43z
z − 0.25

− 51.50z
z − 0.5

+ 48.17z
z − 0.6

, (7.99a)

and with the help of entry #4 in Table 7-5, we inverse
z-transform to discrete time:

y[n] = [6.43(0.25)n − 51.50(0.5)n + 48.17(0.6)n] u[n].
(7.99b)

7-9.2 Zero-State/Zero-Input Response

In Section 3-11, we examined several formats (partitions) for
how to organize the response of an LTI system, including the
zero-state/zero-input partition. In this particular partition, the
total response y(t) to an input excitation x(t) is separated into
two components:

y(t) = yZIR(t)+ yZSR(t),

where
(a) yZIR(t), called the zero-input response (ZIR), represents

the response of the system to initial conditions alone (i.e., for
x(t) = 0), and

(b) yZSR(t), called the zero-state response (ZSR), represents
the response of the system to the input x(t) alone with all initial
conditions set to zero.

An analogous partition can be established for the difference
equation. Recall that in Eq. (7.98) the factor 3 inside the first
bracketed term actually is the value of y[−1], and the factor
(3/z + 4) inside the second bracketed term is associated with
initial conditions y[−1] and y[−2]. By rearranging Eq. (7.98)
into the form(

1 − 1.1

z
+ 0.3

z2

)
Y(z)︸ ︷︷ ︸

system terms

+
(

−3.3 + 1.2 + 0.9

z

)
︸ ︷︷ ︸

initial condition terms

= z + 2

z − 0.25
,︸ ︷︷ ︸

input-related terms

(7.100)

we partition it into one group of terms related to initial
conditions and another group related to input x[n]. Dividing all
terms in Eq. (7.100) by the system terms, moving the second
term to the right-hand side of the equation and then simplifying
the terms into rational functions leads to

Y(z) = z(2.1z − 0.9)

(z − 0.5)(z − 0.6)︸ ︷︷ ︸
zero-input response

+ z2(z + 2)

(z − 0.25)(z − 0.5)(z − 0.6)︸ ︷︷ ︸
zero-state response

. (7.101)

Separate applications of the alternative inverse z-transform
partial fraction method to the two terms on the right-hand side
of Eq. (7.101) leads to

Y(z) =
( −1.5z

z − 0.5
+ 3.6z

z − 0.6

)
︸ ︷︷ ︸

zero-input response

+
(

6.43z
z − 0.25

− 50z
z − 0.5

+ 44.57z
z − 0.6

)
︸ ︷︷ ︸

zero-state response

. (7.102)

When simplified, Eq. (7.102) reduces to Eq. (7.99a), as
expected. The discrete-time domain counterpart of Eq. (7.102)
is

y[n] = [−1.5(0.5)n + 3.6(0.6)n] u[n]︸ ︷︷ ︸
zero-input response

+ [6.43(0.25)n − 50(0.5)n + 44.57(0.6)n] u[n]︸ ︷︷ ︸
zero-state response

.

(7.103)

Concept Question 7-15: Why do we solve difference 
equations using the time-delay property of z-transforms 
instead of the right-shift property? (See        )

Exercise 7-16: Use z-transforms to compute the zero-
input response of the system

y[n] − 2y[n− 1] = 3x[n] + 4x[n− 1]

with initial condition y[−1] = 1
2 .

Answer: y[n] = 2n u[n]. (See S2 )
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7-10 System Transfer Function
In discrete time, the output response y[n] of an LTI system to
a causal signal input x[n] is given by the convolution relation

y[n] = x[n] ∗ h[n], (7.104)

where h[n] is the impulse response of the system. Since
according to Eq. (7.84), convolution in discrete time
corresponds to multiplication in the z-domain, it follows that

Y(z) = X(z) H(z), (7.105)

where X(z), Y(z), and H(z) are, respectively, the z-transforms
of x[n], y[n], and h[n]. The transfer function H(z)
characterizes the LTI system under zero initial conditions:

H(z) = Y(z)
X(z)

(with zero initial conditions). (7.106)

Also,
H(z) = ZZZ[h[n]]. (7.107)

When X(z) = 1, the z-domain output of an LTI system is its
transfer function H(z). The inverse z-transform of 1 is δ[n].
Hence, the correspondence between the discrete-time domain
and the z-domain is described by

Discrete time δ[n] LTI y[n] = h[n]

z-domain 1 LTI Y(z) = H(z).

Under zero initial conditions, transformation of a difference
equation given by the general form

N−1∑
i=0

ai y[n− i] =
M−1∑
i=0

bi x[n− i],

(discrete time)

(7.108)

to the z-domain is facilitated by the time-delay property (#2a
in Table 7-6):

y[n−m] = y[n−m] u[n]

(7.109)

1

zm
Y(z)+ 1

zm

m∑
i=1

y[−i] zi = 1

zm
Y(z)+ 0.

Note that the summation has been replaced with zero because
zero initial conditions means that y[n] = 0 for n < 0 or,
equivalently, y[−i] = 0 for i > 0.

In view of Eq. (7.109), the z-transform of Eq. (7.108) is

[
N−1∑
i=0

aiz−i
]

Y(z) =
[
M−1∑
i=0

biz−i
]

X(z)

(z-domain),

(7.110)

which is equivalent to

[a0 + a1z−1 + · · · + aN−1z−(N−1)] Y(z)

= [b0 + b1z−1 + · · · + bM−1z−(M−1)] X(z).

The transfer function of the system represented by the difference
equation is then given by

H(z) = Y(z)
X(z)

= zN−M
[
b0zM−1 + b1zM−2 + · · · + bM−1

a0zN−1 + a1zN−2 + · · · + aN−1

]
.

(7.111)

� The transfer function of a physically realizable LTI
system must be a proper rational function. �

Example 7-21: Transfer Function Diagram

An LTI system described by the difference equation

y[n] − 0.6y[n− 1] + 0.08y[n− 2] = 4x[n]
has zero initial conditions. Obtain the transfer function of the
system and its block-diagram realization.

Solution: In the absence of initial conditions, the z-transform
of the difference equation is

Y(z)− 0.6
1

z
Y(z)+ 0.08

1

z2 Y(z) = 4X(z)

or, equivalently,(
1 − 0.6

z
+ 0.08

z2

)
Y(z) = 4X(z).
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X(z) Y(z)H(z) = 4z2

z2 − 0.6z + 0.08

∑4

−0.08

0.6∑

X(z) Y(z)

z−1

(1/z) Y(z)

(1/z2) Y(z)

z−1

∑4

−0.08

0.6∑

x[n] y[n]

D

D

Figure 7-13: Realization of H(z) in the z-domain, or
equivalently h[n] in the time domain, of Example 7-21.

Hence,

H(z) = Y(z)
X(z)

= 4z2

z2 − 0.6z + 0.08
, (7.112)

and its realization, shown in Fig. 7-13, follows from

Y(z) = 4X(z)+ 0.6

z
Y(z)− 0.08

z2 Y(z).

7-11 BIBO Stability of H(z)

According to the BIBO stability criterion, an LTI system is
BIBO stable if and only if no bounded input can produce an
unbounded output. In discrete time, an input of the form

x[n] = (a)n u[n] (7.113)

is bounded if and only if |a| ≤ 1. Otherwise, if |a| > 1,
|a|n → ∞ as n → ∞. Note that |a| does not have to be smaller
than 1, it can be equal to 1 and x[n] remains bounded. This is
an important distinction, as we shall see shortly.

From pair #4 in Table 7-5, the z-transform of x[n] = an u[n]
is

X(z) = z
z − a

. (7.114)

The general form of the transfer function of a discrete-time
LTI system with zeros {zi , i = 1, 2, . . . ,M} and poles
{pi , i = 1, 2, . . . , N} is given by

H(z) = C(z − z1)(z − z2) . . . (z − zM)
(z − p1)(z − p2) . . . (z − pN)

, (7.115)

where C is a constant.
Assuming that the poles are distinct (i.e., no two poles are

identical) and H(z) is strictly proper, application of partial
fraction expansion leads to the general form

H(z) = A1

z − p1
+ A2

z − p2
+ · · · AN

z − pn
,

where A1 to AN are the expansion coefficients. From the
standpoint of our discussion of BIBO stability, let us consider
the case of a single-term system given by

H(z) = A1

z − p
.

The stability argument made for a single term can be extended
to others. The output of the system with input X(z) and transfer
function H(z) is

Y(z) = H(z) X(z) = A1z
(z − a)(z − p)

. (7.116)

We shall now consider the special case when a = p, which
yields

Y(z) = A1z
(z − p)2

. (7.117a)
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From entry #4b in Table 7-5, the inverse z-transform of Y(z) is

y[n] = A1npn u[n]. (7.117b)

(a) If |p| = |a| > 1, y[n] → ∞ as n → ∞. This is not
surprising, as the input itself is unbounded in this case.

(b) If |p| = |a| = 1, y[n] → ∞ as n → ∞.
(c) If |p| = |a| < 1, y[n] → 0 as n → ∞ because npn → 0

as n → ∞.

Conclusions

� BIBO stability for a causal LTI system requires
that all poles of H(z) have magnitudes smaller than 1.
Equivalently, all poles pi should be located inside the
unit circle defined by |z| = 1. �

Location on the unit circle (equivalent to |p| = 1) causes the
system to be BIBO-unstable.

Figure 7-14 displays, in part (a), the s-plane for continuous-
time systems, and in part (b), the z-plane for discrete-time
systems. For continuous-time systems, BIBO stability requires
all poles to reside in the open left half-plane. The analogous
requirement for discrete-time systems is that the poles of H(z)
should reside inside the unit circle.

� For a physically realizable system, complex poles exist
in conjugate pairs, and similarly for zeros. �

The locations of the poles of H(z) govern the form of
the impulse response h[n]. We illustrate the correspondence
through three simple examples.

1. A real-valued pole inside the unit circle

Consider a transfer function H(z) given by

H(z) = z
z − p

,

(a) Poles in open left half-plane

0

s-plane

(b) Poles inside unit circle

j1

−j1

−1 1

Unit circle z-plane

Figure 7-14: BIBO stability for (a) continuous-time systems
requires the poles of the transfer function H(s) to reside in
the open left half-plane, whereas for (b) discrete-time systems,
BIBO stability requires the poles of H(z) to reside inside the
unit circle.

with a single zero at the origin and a single pole

p = a + jb,

where a and b are real numbers. In the present case, we set
b = 0 and require that |a| < 1 so p is inside the unit circle.

Case 1: a is positive

From Entry #4 in Table 7-5, it follows that

h[n] = an u[n]. (7.118a)

Since a is a positive number smaller than 1, h[n] assumes
a decaying geometric pattern, as shown in Fig. 7-15(a) for
a = 0.9.
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(a) p real, positive, and |p| < 1 (b) p real, negative, and |p| < 1

(e) Complex conjugate poles with |p| < 1 (f ) Complex conjugate poles with |p| > 1

(c) p real, positive, and |p| > 1 (d) p real, negative, and |p| > 1
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Figure 7-15: Locations of poles of H(z) and the corresponding h[n].

Case 1: a is negative

For a = −|a|,

h[n] = an u[n] = (−|a|)n u[n] = (−1)n|a|n u[n], (7.118b)

which also assumes a decaying geometric pattern, except that
the coefficient of |a|n alternates in sign between +1 and −1.
The pattern is displayed in Fig. 7-15(b).

2. A real-valued pole outside the unit circle

For p = a + jb, with b = 0 and |a| > 1 (outside of the unit
circle), the expressions given by Eqs. (7.118a and b) remain

applicable, but since |a| > 1, h[n] has a growing geometric
pattern, as shown in Fig. 7-15(c) for a = 1.1 and Fig. 7-15(d)
for a = −1.1.

3. A pair of complex-conjugate poles

Consider the transfer function

H(z) = z
z − p

+ z
z − p∗ ,

with p = a + jb. Both a and b are positive real numbers.
In view of Entry #7a in Table 7-5,

h[n] = 2|p|n cos(�n) u[n], (7.119)
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with |p| = √
a2 + b2 and � = tan−1(b/a).

Figure 7-15(e) displays the decaying sinusoidal pattern of
h[n] for |p| < 1 (inside the unit circle), and Fig. 7-15(f) displays
the growing sinusoidal pattern for |p| > 1.

Concept Question 7-16:Within what region are the poles
of a causal, BIBO-stable discrete-time system located?
(See        )

Exercise 7-17: A system is described by

y[n] − 3

4
y[n− 1] + 1

8
y[n− 2] = x[n] + 2x[n− 1].

Compute its transfer function.

Answer:

H(z) = Y(z)
X(z)

= z2 + 2z

z2 − 3
4 z + 1

8

.

(See S2 )

Exercise 7-18: A system is described by

y[n] − 3

4
y[n− 1] + 1

8
y[n− 2] = x[n] + 2x[n− 1].

Determine its poles and zeros and whether or not it is
BIBO stable.

Answer:

H(z) = z2 + 2z

z2 − 3
4 z + 1

8

= z(z + 2)(
z − 1

2

) (
z − 1

4

) .
The system has zeros {0, 2} and poles

{ 1
2 ,

1
4

}
. Since both

poles are inside the unit circle, the system is BIBO stable.
(See S2 )

7-12 System Frequency Response

This section examines the response of an LTI system to a
specific class of input signals, namely discrete-time complex
exponentials and sinusoids.

7-12.1 Complex Exponential Signals

Signal x[n] = ej�n is a discrete-time complex exponential with
angular frequency �. According to Eq. (7.104), if x[n] is the

input to a BIBO-stable LTI system with causal impulse response
h[n], then the output is the convolution of h[n] with x[n]:

y[n] = h[n] ∗ x[n] =
∞∑
i=0

h[i] x[n− i]

=
∞∑
i=0

h[i] ej�(n−i)

= ej�n
∞∑
i=0

h[i] e−ji� = x[n] H(ej�),

(7.120)

where we introduce the frequency response function defined
as

H(ej�) =
∞∑
i=0

h[i] e−ji�.

(frequency response)

(7.121)

The result given by Eq. (7.120) states that if we know H(ej�) or
have an expression for it, output y[n] can be determined readily
by multiplying input x[n] by the system frequency response
H(ej�). The choice of notation, namely H as a function of ej�,
is chosen deliberately as a reminder that H(ej�) is specific to
discrete-time LTI systems excited by complex exponentials (or
sinusoids).

Separately, let us consider the definition of the z-transform
of the causal impulse response h[i]. Per Eq. (7.58a),

H(z) =
∞∑
i=0

h[i] z−i , (7.122)

where we changed the index from n to i for convenience.
Comparison of Eq. (7.121) with Eq. (7.122) reveals that if
z = ej�, the two become identical with one another. That is, for
an LTI system, H(ej�) can be obtained from H(z) by setting
z = ej�:

H(ej�)︸ ︷︷ ︸
frequency response

= H(z)︸︷︷︸
transfer function

∣∣
z=ej� . (7.123)

In brief, if we know the transfer function H(z) of an LTI system,
we can apply Eq. (7.123) to obtain H(ej�) and then use it to
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determine the output y[n] due to an input complex exponential
x[n] = ej�n:

ej�n LTI H(ej�) ej�n

= M(ej�) ej (�n+θ),
(7.124)

where M(ej�) and θ(ej�) are the magnitude (gain) and phase 
of H(ej�),

M(ej�) = |H(ej�)|, (7.125a)

θ(ej�) =    H(ej�) . (7.125b)

The process represented by Eq. (7.124) is entirely analogous to
the continuous-time case.

7-12.2 Sinusoidal Signals

An input sinusoidal signal x(n) = A cos(�n+φ) can be written
as

x[n] = A cos(�n+ φ)

= A

2
[ej (�n+φ) + e−j (�n+φ)]

=
(
A

2
ejφ

)
ej�n +

(
A

2
e−jφ

)
e−j�n, (7.126)

which now consists of two complex exponential signals:
one with angular frequency � and another with angular
frequency −�. Following the same argument made in Section
2-7.4 for the continuous-time sinusoid, we can show that the
sum of the corresponding output complex exponentials combine
to produce the result

A cos(�n+ φ)

LTI

AM(ej�) cos(�n+ φ + θ).

(7.127)

This relation is analogous to Eq. (2.120) for sinusoids in
continuous time.An input sinusoid generates an output sinusoid
at the same angular frequency. The amplitude and relative phase

of the output sinusoid are governed by the frequency response
of the system.

Example 7-22: Frequency Response I

The impulse response of an LTI system is

h[n] =
(

1

2

)n
u[n].

(a) Determine and plot the frequency response H(ej�) and (b)
compute the system response to input x[n] = cos

(
π
3 n

)
.

Solution:
(a) From Eq. (7.121), we have

H(ej�) =
∞∑
i=0

h[i] e−ji�

=
∞∑
i=0

(
1

2

)i
e−ji� =

∞∑
i=0

(
e−j�

2

)i
. (7.128)

In view of ∞∑
i=0

ri = 1

1 − r

for any r, so long as |r| < 1, Eq. (7.128) can be written as

H(ej�) = 1

1 − 1
2 e

−j� ,

because
∣∣ 1

2 e
−j�∣∣ = 1

2 < 1. We can also obtain this result by
using Eqs. (7.123) and (7.66). Figure 7-16 displays plots of the
magnitude and phase of H(ej�).

� Note that the magnitude spectrum exhibits even
symmetry relative to the vertical axis, the phase spectrum
exhibits odd symmetry, and both are continuous as a
function of the angular frequency �, and periodic with
period 2π . �

The fact that the frequency response of a discrete-time system is
continuous in � should not be a source of concern. If the input
sinusoid is at some angular frequency �0, the output sinusoid
will be at the same angular frequency and the connection
between the two sinusoids is provided by H(ej�), evaluated
at � = �0.
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(a) M(e jΩ) = |H(e jΩ)|

(c) x[n]

Gain

Phase

(d) y[n]

−2π −π π 2π0

0.5
1

0

1.5
2

M(e jΩ)

Ω

−2π −π π 2π0

0.4

−0.4

−0.8

0 Ω

θ(e jΩ)

(b) Phase θ(e jΩ) =   H(e jΩ)

0.5

−0.5
−1

0

0 2 4 6 8 201816141210

1

n

0 2 4 6 8 201816141210

0.5

−0.5
−1

0

1

n

Figure 7-16: Plots of the magnitude and phase of H(ej�)
versus �, and x[n] and y[n] versus n (Example 7-22).

(b) For x[n] = cos
(
π
3 n

)
, � = π

3 . At � = π
3 ,

H(ejπ/3) = 1

1 − 1
2 e

−jπ/3 = 1.155e−jπ/6.

Hence, application of Eq. (7.127) with φ = 0 yields

y[n] = |H(ejπ/3)| cos
(π

3
n+ θ

)
= 1.155 cos

(π
3
n− π

6

)
.

Plots of x[n] and y[n] are displayed in parts (c) and (d) of
Fig. 7-16. The output y[n] may not look like a sinusoid, but it
is.

Example 7-23: Two-Point Averager

For the two-point averager system

y[n] = 1

2
(x[n] + x[n− 1]),

compute H(ej�) and plot it.

Solution: Transforming the difference equation to the
z-domain gives

Y(z) = 1

2
X(z)+ 1

2

1

z
X(z),

which leads to

H(z) = Y(z)
X(z)

= 1

2

(
z + 1

z

)
.

For sinusoidal input signals, Eq. (7.123) gives

H(ej�) = H(z)|z=ej� = 1

2

(
ej� + 1

ej�

)
.

Factoring out ej�/2 from the numerator provides the phase-
splitting form of cos(�/2):

H(ej�) = ej�/2

ej�

(
ej�/2 + e−j�/2

2

)
= e−j�/2 cos(�/2).

Plots of the magnitude and phase of H(ej�) are displayed
in Fig. 7-17. The magnitude is even and periodic in � with
period 2π , as expected. The two-point averager will pass low
frequencies (� ≈ 0) and reject high frequencies (� ≈ π ), so it
functions as a crude lowpass filter. This agrees with the intuition
that averaging smooths out fast variations of a signal, while
leaving its slow variations unaffected.

The sawtooth of the phase signal requires some explanation.
The phase jumps from −π/2 to π/2 at frequency � = π . This
happens because the magnitude is zero at frequency � = π ;
the phase can be discontinuous when the magnitude is zero.
In fact, the phase is undefined when the magnitude is zero.
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Figure 7-17: Magnitude and phase spectra of the two-point
averager (Example 7-23).

The frequency response function H(ej�) = e−j�/2 cos(�/2)
is a continuous function of �. The sign of cos(�/2) changes
at frequency � = π , and this is why the phase jumps by π at
frequency � = π .

A common mistake is to jump to the conclusion that
|H(ej�)| = cos(�/2) and H(ej�) = −�/2, but this is not
valid, because cos(�/2) < 0 for some values of �.

(a) For |�| < π ,

|H(ej�)| = cos(�/2)
H(ej�) = −�/2

}
for |�| < π.

(b) For π < |�| < 3π , cos(�/2) < 0, which cannot be the
magnitude since the magnitude is always non-negative. Instead,
the magnitude is − cos(�/2), which is > 0, and the additional
factor of −1 is now included in the phase as an additional phase
shift of π . So for π < |�| < 3π , we have

|H(ej�)| = − cos(�/2)
H(ej�) = ±π −�/2

}
for π < |�| < 3π.

(c) For |�| > π , still another issue arises. The phase must
be a periodic function of�, with period 2π , but the expression
−�/2 is not periodic. The phase must be reduced mod 2π by

subtracting integer multiples of 2π until a value θ such that
|θ | ≤ π is obtained.

The preceding considerations lead to the plots displayed in
Fig. 7-17. Note that the magnitude is an even function of �,
the phase is an odd function of �, and both are periodic with
period 2π , as they should be. As a result, once the magnitude
and phase have been obtained for |�| ≤ π , their plots can be
periodically repeated in � so they both have period 2π .

7-12.3 Relating Different Descriptions of LTI
Systems

Discrete-time transfer functions play a central role in relating
different descriptions of LTI systems, just as they do
in continuous time. Transformations between the various
descriptions are illustrated through the following series of
examples.

Example 7-24: Input-Output Pair to Other Descriptions

The response of an LTI system to input signal

x[n] = (−2)n u[n]

is

y[n] = 2

3
(−2)n u[n] + 1

3
(0.4)n u[n].

Determine (a) transfer function H(z), (b) its poles and zeros,
(c) frequency response H(ej�), (d) the impulse response h[n],
and (e) the difference equation.

Solution:
(a) In view of Eq. (7.66), the z-transform of x[n] is

X(z) = z
z + 2

.

For output y[n], use of Eq. (7.66) leads to

Y(z) = 2

3

z
z + 2

+ 1

3

z
z − 0.4

= z(z + 0.4)

(z + 2)(z − 0.4)
.

Hence,

H(z) = Y(z)
X(z)

= z(z + 0.4)

(z + 2)(z − 0.4)

/(
z

z + 2

)
= z + 0.4

z − 0.4
.

(b) The poles and zeros of H(z) are: z = {−0.4} and
p = {0.4}. The system is BIBO stable since |0.4| < 1.
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(c) From Eq. (7.123), we have

H(ej�) = |H(z)|z=ej� = ej� + 0.4

ej� − 0.4
.

(d)

h[n] = ZZZ
−1[H(z)] = ZZZ

−1
[

z + 0.4

z − 0.4

]

= ZZZ
−1
[

z
z − 0.4

]
+ 0.4ZZZ

−1
[

1

z − 0.4

]

= (0.4)n u[n] + 0.4(0.4)n−1 u[n− 1]
= (0.4)n(u[n] + u[n− 1]).

(e) To obtain the difference equation, we arrange H(z) in
power of z−1.

H(z) = Y(z)
X(z)

= z + 0.4

z − 0.4
= 1 + 0.4z−1

1 − 0.4z−1 .

Cross-multiplying, we get

Y(z) (1 − 0.4z−1) = X(z) (1 + 0.4z−1),

from which we obtain the difference equation

y[n] − 0.4y[n− 1] = x[n] + 0.4x[n− 1].

Note that the terms and coefficients of the difference equation
can be read off almost directly from H(z).

Example 7-25: Zeros and Poles to Other Descriptions

An LTI system has a zero at 1, a pole at 0.3, and H(0) = 1.
Determine (a) H(z), (b) H(ej�), (c) h[n], and (d) the difference
equation describing the system.

Solution:
(a) The poles and zeros determine H(z) within an unknown

scale factor C. Hence,

H(z) = C
z − 1

z − 0.3
.

The specified value H(0) = 1 allows C to be determined from

1 = H(0) = C
0 − 1

0 − 0.3
= C

0.3
.

Hence, C = 0.3 and

H(z) = 0.3
z − 1

z − 0.3
.

(b)

H(ej�) = |H(z)|z=ej� = 0.3
ej� − 1

ej� − 0.3
.

(c) To obtainh[n], we first arrange H(z) in a form amenable to
inverse transformation using the z-transform pairs in Table 7-5.
We do so by rewriting H(z) as

H(z) = 0.3
z − 1

z − 0.3
= 0.3z

z − 0.3
− 0.3

z − 0.3
.

Its inverse z-transform is

h[n] = 0.3(0.3)n u[n] − 0.3(0.3)n−1 u[n− 1]
= (0.3)n+1 u[n] − (0.3)n u[n− 1].

(d) To obtain the difference equation, we rewrite H(z) in
powers of z−1,

H(z) = Y(z)
X(z)

= 0.3
z − 1

z − 0.3
= 0.3 − 0.3z−1

1 − 0.3z−1 .

Cross-multiplication gives

Y(z) (1 − 0.3z−1) = 0.3X(z) (1 − z−1),

whose inverse z-transform is the difference equation

y[n] − 0.3y[n− 1] = 0.3x[n] − 0.3x[n− 1].

Example 7-26: Frequency Response to Difference

Equation

An LTI system has the frequency response function

H(ej�) = [cos(�)− 1] + j sin(�)

[cos(2�)− cos(�)+ 0.21] + j [sin(2�)− sin(�)] .

Obtain (a) H(z), (b) poles and zeros, (c) h[n], and (d) the
difference equation describing the system.
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Solution:
(a) To convert H(ej�) to H(z), the functional variable in

H(ej�) should be ej�, which calls for replacing cosine and
sine functions with the identities

cos(�) = 1

2
(ej� + e−j�)

and

sin(�) = 1

2j
(ej� − e−j�).

After making the substitutions for all sine and cosine functions,
a few steps of algebra lead to

H(ej�) = ej� − 1

ej2� − ej� + 0.21
.

Transfer function H(z) is then given by

H(z) = H(ej�)
∣∣∣
ej�=z

= z − 1

z2 − z + 0.21
.

(b) The zeros are z = {1}, and the poles obtained by setting
the denominator = 0 are p = {0.7, 0.3}.

(c) Application of partial fraction expansion to H(z) leads to

H(z) = −3

4

1

z − 0.7
+ 7

4

1

z − 0.3
.

Its inverse z-transform is

h[n] = −3

4
(0.7)n−1 u[n− 1] + 7

4
(0.3)n−1 u[n− 1].

(d) To express H(z) in powers of z−1, we multiply its
numerator and denominator by z−2. The new form is

H(z) = Y(z)
X(z)

= z−1 − z−2

1 − z−1 − 0.21z−2 .

Cross-multiplication gives

Y(z) [1 − z−1 + 0.21z−2] = X(z) [z−1 − z−2],

which leads to the difference equation

y[n] − y[n− 1] + 0.21y[n− 2] = x[n− 1] − x[n− 2].

Concept Question 7-17: What is a fundamental 
difference between continuous-time and discrete-time 
frequency response functions? (See        )

Exercise 7-19: Compute the response of the system
y[n] = x[n] − x[n− 2] to input x[n] = cos(πn/4).

Answer: y[n] = 0.707 cos(πn/4 + π/4). (See S2 )

Exercise 7-20: An LTI system has

H(ej�) = j tan(�).

Compute the difference equation.

Answer: y[n] + y[n− 2] = x[n] − x[n− 2]. (See S2 )

7-13 Discrete-Time Fourier Series
(DTFS)

The discrete-time Fourier series (DTFS) is the discrete-time
counterpart to Fourier-series expansion of continuous-time
periodic signals. Unlike the continuous-time Fourier series
(CTFS), the DTFS is finite in length (i.e., it has a finite number
of terms).

Computation of its expansion coefficients requires summa-
tions rather than integrals. The response of an LTI system to
a discrete-time periodic signal can be determined by applying
the superposition principle. The process entails the following
steps:

Step 1: Compute the DTFS of the input signal.
Step 2: Compute the output response to each DTFS term

using the system’s frequency response H(ej�), as defined by
Eq. (7.121).

Step 3: Sum the results to obtain the total output signal.

7-13.1 Period and Angular Frequency
(a) Continuous-time periodic signal

By way of review, in continuous time, a signal x(t) is periodic
with period T0 if

x(t) = x(t + T0). (7.129)

Associated with T0 is a circular frequency f0 = 1/T0
and an angular frequency ω0 = 2πf0 = 2π/T0. The
complex-exponential Fourier-series representation of x(t) is
given by Eq. (5.57) as

x(t) =
∞∑

n=−∞
xnejnω0t (7.130a)

with expansion coefficients

xn = 1

T0

T0/2∫
−T0/2

x(t) e−jnω0t dt. (7.130b)
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(b) Discrete-time periodic signal

Recall from Section 7-2.4 that a discrete-time signal x[n] is
periodic with period N0 if

x[n] = x[n+N0]. (7.131)

Associated with the fundamental period N0 is a fundamental
angular frequency �0 given by

�0 = 2π

N0
. (7.132)

N0 is an integer and �0 is confined to the range 0 ≤ �0 ≤ π .

7-13.2 Orthogonality Property
Before introducing the DTFS representation, we will establish
the following orthogonality property:

N0−1∑
n=0

ej2π [(k−m)/N0]n = N0δ[k −m]

=
{
N0 if k = m,

0 if k �= m,

(7.133)

where k, m, and n are integers, and none are larger than N0.

(a) k = m:

If k = m, Eq. (7.133) reduces to
N0−1∑
n=0

e0 =
N0−1∑
n=0

1 = N0 (k = m). (7.134)

(b) k �= m:

If in the finite geometric series
N0−1∑
n=0

rn = rN0 − 1

r − 1
for r �= 1,

we replace r with ej2π(k−m)/N0 , we have
N0−1∑
n=0

ej2π [(k−m)/N0]n = ej2π [(k−m)/N0]N0 − 1

ej2π(k−m)/N0 − 1
.

Since k �= m, and k and m cannot be larger than N0, the
exponent j2π(k −m)/N0 in the denominator cannot be a
multiple of 2π . Hence, the denominator cannot be zero. The
exponent in the numerator, on the other hand, is j2π(k −m),
and therefore, it is always a multiple of 2π . Consequently,

N0−1∑
n=0

ej2π [(k−m)/N0]n = 0 (k �= m). (7.135)

The combination of Eqs. (7.134) and (7.135) constitutes the
orthogonality property given by Eq. (7.133).

7-13.3 DTFS Representation

A discrete-time periodic signal x[n], with fundamental
period N0 and associated fundamental periodic angular
frequency �0 = 2π/N0, can be expanded into a discrete-time
Fourier series (DTFS) given by

x[n] =
N0−1∑
k=0

xkejk�0n, n = 0, 1, . . . , N0 − 1

(7.136a)
with expansion coefficients

xk = 1

N0

N0−1∑
n=0

x[n] e−jk�0n, k = 0, 1, . . . , N0−1.

(7.136b)

�A periodic signal x[n] of periodN0 is represented in its
DTFS by the sum ofN0 complex exponentials at harmonic
values of �0 = 2π/N0. �

The expression for xk is obtained by (1) multiplying both sides
of Eq. (7.136a) by e−jm�0n, (2) summing both sides using∑N0−1
n=0 , and then applying the orthogonality property given

by Eq. (7.133). That is,

N0−1∑
n=0

x[n] e−jm�0n =
N0−1∑
n=0

N0−1∑
k=0

xkej (k−m)�0n

=
N0−1∑
k=0

xk
N0−1∑
n=0

ej2π [(k−m)/N0]n

=
N0−1∑
k=0

xkN0 δ[k −m] = xmN0,

(7.137)

because the inner summation is zero except for k = m.
Changing indices from m to k in the last result leads to
Eq. (7.136b).

The Fourier series expansion given by Eq. (7.136a) consists
of only N0 terms, in contrast with the Fourier series for
continuous time, which consists of an infinite number of terms.
The N0 terms constitute N0 harmonics of �0, including the
mean value of x[n] corresponding to k = 0, which is given by

x0 = 1

N0

N0−1∑
n=0

x[n]. (7.138)
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In general, the expansion coefficients are complex quantities,

xk = |xk|ejφk . (7.139)

� Plots of |xk| and φk as a function of k from
k = 0 to k = N0 − 1 constitute magnitude and phase
line-spectra. �

Example 7-27: DTFS Computation

Compute the DTFS of the periodic signal

x[n] = {. . . , 24, 8, 12, 16, 24, 8, 12, 16, . . . }.

Solution: From the bracket sequence, the period is
N0 = 4, and the fundamental periodic angular frequency is
�0 = 2π/N0 = π/2. Hence, the series has expansion
coefficients x0 to x3. From Eq. (7.138), we have

x0 = 1

N0

N0−1∑
n=0

x[n] = 1
4 (24 + 8 + 12 + 16) = 15. (7.140)

For the other coefficients, we need to evaluate Eq. (7.136b) for
�0 = π/2 and k = 1, 2, and 3. Setting k = 1 in Eq. (7.136b)
and noting that e−jπ/2 = −j gives

x1 = 1

4

3∑
n=0

x[n] e−j�0n

= 1

4
(24e0 + 8e−jπ/2 + 12e−jπ + 16e−j3π/2)

= 1

4
(24 − j8 − 12 + j16) = 3 + j2 = 3.6ej33.7◦

.

(7.141)

Similarly, noting that e−j2π/2 = e−jπ = −1 leads to

x2 = 1
4 (24 − 8 + 12 − 16) = 3 (7.142)

and
x3 = x∗

1 = 3 − j2 = 3.6e−j33.7◦
. (7.143)

Incorporating these coefficients in Eq. (7.136a) leads to

x[n] =
N0−1∑
k=0

xkejk�0n

= x0 + x1e
jπn/2 + x2e

jπn + x3e
j3πn/2

= 15 + 3.6ej33.7◦
ejπn/2 + 3ejπn + 3.6e−j33.7◦

ej3πn/2.

Recognizing that n is an integer, the middle term reduces
to 3 cos(πn). Also, since ej3πn/2 = e−jπn/2 for any integer
value of n, the second and last term can be combined into a
cosine function. The net result is

x[n] = 15 + 7.2 cos
(πn

2
+ 33.7◦)+ 3 cos(πn). (7.144)

Inserting n = 0 in Eq. (7.144) leads to x[0] = 24, as expected.
Similar confirmations apply to n = 1, 2, and 3.

7-13.4 Spectral Symmetry

(1) In Example 7-27, were we to use Eq. (7.136b) to compute
xk for negative values of k, the outcome would have been

x−k = x∗
k , (7.145)

which means that the magnitude line spectrum is an even
function and the phase line spectrum is an odd function. This
result is consistent with similar observations made in Chapter 5
about continuous-time periodic signals.

(2) Were we to compute xk for values of k greater than 3, we
would discover that the line spectra repeats periodically at a
period of four lines. This is very different from the spectra of
periodic continuous-time signals.

Figure 7-18 displays line spectra for |xk| and φk = xk of
Example 7-27 as a function of�with� expressed in multiples
of�0 = π/2. Thus, line x1 corresponds to k = 1, which in turn
corresponds to � = k�0 = π/2; x2 corresponds to k = 2 and
� = 2π/2 = π ; and so on. We note the following observations:

(1) Both spectra repeat every N0 = 4 lines.

(2) Magnitude spectrum |xk| is an even function.

(3) Phase spectrum φk is an odd function.

Because the line spectra are periodic, a periodic signal x[n]
can be represented by any contiguous group of harmonics of�0
spanning over a full period N0. That is, instead of choosing the
lower and upper limits of the summation in Eq. (7.136a) to be
k = 0 and k = N0 − 1, respectively, we may shift the span in
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(a) x[n]

(b) Magnitude line spectrum

(c) Phase line spectrum
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Figure 7-18: Magnitude and line spectra of the periodic signal of Example 7-27.

either direction to the more general definition

x[n] =
N0−1+r∑
k=r

xkejk�0n (7.146)

for any integer value of r . If r = −2, for example, the span will
be from −2 to 1, and if r = 2, the span becomes from 2 to 5.
This flexibility allows us to reduce the number of expansion
coefficients xk we need to calculate by taking advantage of the
symmetry property x−k = x∗

k .

7-13.5 Parseval’s Theorem

� For a discrete-time periodic signal, Parseval’s theorem
states that its average power is the same when computed
in either the time or the frequency domain:

1

N0

N0−1∑
n=0

|x[n]|2 =
N0−1∑
k=0

|xk|2. (7.147)
�
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Example 7-28: Signal Power

Verify Parseval’s theorem for the periodic signal in Example
7-27.

Solution: In Example 7-27, we established that

N0 = 4,

x[0] = 24, x[1] = 8, x[2] = 12, and x[3] = 16,

x0 = 15, x1 = 3.6ej33.7◦
, x2 = 3, and x3 = 3.6e−33.7◦

.

In the time domain, the average power is

Pav = 1

4

[
(24)2 + (8)2 + (12)2 + (16)2

]
= 260.

In the frequency domain, the average power is

Pav = (15)2 + (3.6)2 + 32 + (3.6)2 = 260.

(Note that 3.6 is actually
√

13 rounded off.)

7-13.6 Output Response Using DTFS

According to Eq. (7.120), the output response y[n] to a complex
exponential signal ej�n at the input to an LTI system with
frequency response H(ej�) is

y[n] = ej�n H(ej�). (7.148)

The DTFS representation expresses a periodic signal x[n]
in the form of a sum of complex exponentials of complex
amplitudes xk and corresponding frequencies k�0n,

x[n] =
N0−1∑
k=0

xkejk�0n. (7.149)

By invoking the superposition property of LTI systems, we can
write

y[n] =
N0−1∑
k=0

ykejk�0n (7.150a)

with

yk = xk H(ej�)
∣∣∣
�=k�0

. (7.150b)

Example 7-29: Averaging a Periodic Signal

The periodic signal given by

x[n] = {. . . , 4, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, . . . }

is used at the input to the two-point averager of Example 7-23.
Determine y[n].
Solution: The period of x[n] is N0 = 6, and from Example
7-23,

H(ej�) = e−j�/2 cos

(
�

2

)
. (7.151)

Application of Eq. (7.136b) leads to the expansion coefficients:

xk = {1, 0.5, 0.5, 1, 0.5, 0.5}.

Application of Eq. (7.150b) with�0 = 2π/N0 = 2π/6 = π/3
gives

y0 = x0 H(ej0) = 1

[
e−j�/2 cos

(
�

2

)]∣∣∣∣
�=0

= 1,

y1 = x1

[
H(ej�)

∣∣∣
�=�0=π/3

]

= 1

2

[
e−j�/2 cos

(
�

2

)]∣∣∣∣
�=�0=π/3

= 1

2

[
e−jπ/6 cos

(π
6

)]
= 0.433e−jπ/6

y2 = x2

[
H(ej�)

∣∣∣
�=2�0=2π/3

]

= 1

2

[
e−j2π/6 cos

(
2π

6

)]
= 0.25e−jπ/3,

and similarly,

y3 = 0,

y4 = y∗
2 = 0.25ejπ/3,

y5 = y∗
1 = 0.433ejπ/6.

Note that when computing yk , H(ej�) was evaluated at
� = k�0, not �0. Thus, there is a one-to-one correspondence
between each yk and H(ej�)

∣∣
�=k�0

.
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After combining all six terms of y[n] and recognizing that the
complex terms appear in complex conjugates, the expression for
y[n] becomes

y[n] = 1 + 0.866 cos
(πn

3
− π

6

)
+ 0.5 cos

(
2πn

3
− π

3

)

= 1 + 0.866 cos

[
π

3

(
n− 1

2

)]
+ 0.5 cos

[
2π

3

(
n− 1

2

)]

= {. . . , 2, 2, 0.5, 0.5, 0.5, 0.5, 2, 2, 0.5, 0.5, 0.5, 0.5, . . . }.
(7.152)

The two-point averager has smoothed x[n] by reducing its high-
frequency components. Note also that each input component
has been “delayed” by 0.5. Of course, a fractional delay in
discrete time has no meaning, but the effect of the phase shift is
equivalent to what a fractional delay would do to a signal. This
is an example of linear phase, where the phase of the frequency
response depends linearly on frequency.

Concept Question 7-18: Name one major difference
between DTFS and CTFS. (See        )

Exercise 7-21: Compute the DTFS of 4 cos(0.15πn+1).

Answer: x3 = 2ej1, x37 = 2e−j1, and all other xk = 0
for k = 0, . . . , 39. (See S2 )

Exercise 7-22: Confirm Parseval’s rule for the above
exercise.

Answer: 42/2 = 8 and |2ej1|2 + |2e−j1|2 = 8.
(See S2 )

7-14 Discrete-Time Fourier Transform
(DTFT)

7-14.1 DTFT Pairs

Recall from Section 5-7 that in continuous time the Fourier
transform pair x(t) and X(ω) are interrelated by

X(ω) = F [x(t)] =
∞∫

−∞
x(t) e−jωt dt (7.153a)

(continuous time)

and

x(t) = F−1[X(ω)] = 1

2π

∞∫
−∞

X(ω) ejωt dω. (7.153b)

The analogous pair of equations for nonperiodic discrete-time
signals are

X(ej�) = DTFT[x[n]] =
∞∑

n=−∞
x[n] e−j�n

(discrete time)

(7.154a)

and

x[n] = DTFT−1[X(ej�]

= 1

2π

�1+2π∫
�1

X(ej�) ej�n d�,
(7.154b)

where X(ej�) is the discrete-time Fourier transform (DTFT)
of x[n], and�1 is any arbitrary value of�. As we will see later,
X(ej�) is periodic in� with period 2π , thereby allowing us to
perform the inverse transform operation given by Eq. (7.154b)
over any interval of length 2π along the �-axis.

The analogy between the DTFT X(ej�) and the continuous-
time Fourier transform X(ω) can be demonstrated further by
expressing the discrete-time signal x[n] in the form of the
continuous-time signal x(t) given by

x(t) =
∞∑

n=−∞
x[n] δ(t − n). (7.155)

The continuous-time Fourier transform of x(t) is

X(ω) =
∞∑

n=−∞
x[n] F [δ(t−n)] =

∞∑
n=−∞

x[n] e−jωn = X(ej�),

(7.156)
where in the last step we replacedωwith� so we may compare
the expression to that given by Eq. (7.154a).

� The DTFT is the continuous-time Fourier transform of
the continuous-time sum-of-impulses

∞∑
n=−∞

x[n] δ(t − n).

As a direct result of Eq. (7.156), most of the properties of
the continuous-time Fourier transform also hold for the DTFT.
These are summarized in Table 7-7.
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Table 7-7: Properties of the DTFT.

Property x[n] X(ej�)

1. Linearity k1 x1[n] + k2 x2[n] k1 X1(e
j�)+ k2 X2(e

j�)

2. Time shift x[n− n0] X(ej�) e−jn0�

3. Frequency shift x[n] ej�0n X(ej (�−�0))

4. Multiplication by n (frequency differentiation) n x[n] j
dX(ej�)
d�

5. Time Reversal x[−n] X(e−j�)

6. Time convolution x1[n] ∗ x2[n] X1(e
j�) X2(e

j�)

7. Frequency convolution x1[n] x2[n] 1

2π
X1(e

j�) ∗ X2(e
j�)

8. Conjugation x∗[n] X∗(e−j�)

9. Parseval’s theorem
∞∑

n=−∞
|x[n]|2 = 1

2π

�1+2π∫
�1

|X(ej�)|2 d�

10. Conjugate symmetry X∗(ej�) = X(e−j�)

� In particular, the following conjugate symmetry
properties extend directly from the continuous-time
Fourier transform to the DTFT:

x[n] X(ej�)

Real and even Real and even
Real and odd Imaginary and odd

Imaginary and even Imaginary and even
Imaginary and odd Real and odd

An important additional property of the DTFT that does not
hold for the continuous-time Fourier transform is:

� The DTFT X(ej�) is periodic with period 2π . �

This property follows from ej (�+2πk) = ej� for any integer k
in the definition of the DTFT given by Eq. (7.154a).

� The DTFT can be viewed as a continuous-time Fourier
series expansion of the periodic function X(ej�). So
the inverse DTFT given by Eq. (7.154b) is simply the
formula for computing the continuous-time Fourier series
coefficients of a periodic signal with period T0 = 2π . �

The relation between the DTFT and the z-transform is
analogous to the relation between the continuous-time Fourier
transform and the Laplace transform.

� If, in continuous time, x(t) is causal, then

X(ω) = X(s)
∣∣
s=jω. (7.157a)

Similarly, in discrete time, if x[n] is causal,

X(ej�) = X(z)
∣∣
z=ej� . (7.157b)

The relations between periodicity and discreteness in time
and frequency can be summarized as follows:

Time Frequency
Domain Domain Relation
Periodic Discrete Fourier Series

Discrete Periodic DTFT

Discrete Discrete
and Periodic and Periodic DTFS
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The Discrete-Time Fourier Transform (DTFT)
(a) For a discrete-time signal x[n], its DTFT is its

spectrum X(ej�).

(b) For a discrete-time system, the DTFT of its impulse
response h[n] is the system’s frequency response
H(ej�).

Example 7-30: DTFT Computation

Compute the DTFT of

(a) x1[n] = {3, 1, 4, 2, 5},
(b) x2[n] = ( 1

2

)n
u[n],

(c) x3[n] = 4 sin(0.3n),

and plot their magnitude and phase spectra.

Solution:
(a) Signal x1[n] is noncausal and extends from n = −2 to

n = +2. Hence, application of Eq. (7.154a) gives

X1(e
j�) = 3ej2� + 1ej� + 4 + 2e−j� + 5e−j2�.

Its magnitude and phase spectra, given by

M1(e
j�) = |X1(e

j�)|

and φ1(e
j�) = X1(e

j�) , are displayed in Fig. 7-19. Both are
periodic with period 2π . The magnitude spectrum is an even
function, and the phase spectrum is an odd function. That is,

X1(e
j�) = X∗

1(e
−j�). (7.158)

The periodicity and symmetry properties exhibited by X1(e
j�)

are applicable to the DTFT of any discrete-time signal. Note
that phase of +π is identical to phase of −π in Fig. 7-19(c).

(b) For x2[n] = ( 1
2

)n
u[n], we have

X2(e
j�) =

∞∑
n=−∞

x2[n] e−j�n

=
∞∑
n=0

(
1

2

)n
e−j�n =

∞∑
n=0

(
1

2ej�

)n
. (7.159)

(a) x1[n] = {3,1,4,2,5}

x1[n]

n
−1−2−3 0

0

3

1

4
2

5

0
321

1
2
3

5

(b) M1(e jΩ)

(c) ϕ1(e jΩ)

Ω
−2π−3π −π π 2π 3π 0

M1(e jΩ)

5

10

15

Ω
−2π−3π −π π 2π 3π 0

ϕ1(e jΩ)

−π

π

Figure 7-19: Plots of x1[n] and its DTFT magnitude and phase
spectra [part (a) of Example 7-30].

In view of the infinite geometric series, namely,

∞∑
n=0

rn = 1

1 − r
for |r| < 1,

Eq. (7.159) simplifies to

X2(e
j�) = 1

1 − 1

2ej�

= ej�

ej� − 1

2

. (7.160)

Plots of x2[n] and the magnitude and phase spectra of its DTFT
are displayed in Fig. 7-20.
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x2[n]

n
0

0.8
0.6
0.4
0.2

0

1

1/2
1/4

1/8 1/16 1/32 1/64

3 4 5 621
(a) x2[n] = (1/2)n u[n]

(c) ϕ2(e jΩ)

(b) M2(e jΩ)

0.5

1.5
1

2

Ω

M2(e jΩ)

−2π−3π −π π 2π 3π 0

Ω

ϕ2(e jΩ)

−2π−3π −π π 2π 3π 0

−π/6

π/6

0

Figure 7-20: Plots of x2[n] and its DTFT magnitude and phase
spectra (part (b)) of Example 7-30].

(c) For x3[n] = 4 sin(0.3n), use of DTFT pair #7 inTable 7-8
gives

X3(e
j�) = 4π

j

∞∑
k=−∞

[δ(�−0.3−2πk)− δ(�+0.3−2πk)].

For the period associated with k = 0, we have

X3(e
j�) = j4π δ(�+ 0.3)− j4π δ(�− 0.3), (7.161)

which consists of two impulses at � = ±0.3, as shown in
Fig. 7-21. The spectrum repeats every 2π .

(a) x3[n] = 4 sin(0.3n)

x3[n]

−2
−4

−10 −8 −6 −4 −2 0 2 4 6 8 10

4
2

n0

(b) M3(e jΩ)

0

4

8

12

M3(e jΩ)

−2π−3π −π π 2π 3π 0
Ω

(c) ϕ3(e jΩ)

−2π−3π −π π 2π 3π 0
Ω

ϕ3(e jΩ)

−π/2

π/2

0

Figure 7-21: Plots of x3[n] and its DTFT magnitude and phase
spectra (part (c) of Example 7-30).

7-14.2 Rectangular Pulse

In discrete time, we define the rectangular pulse rect[n/N ] as

rect
[ n
N

]
= u[n+N ] − u[n− 1 −N ] =

{
1 for |n| ≤ N,

0 for |n| > N.

(7.162)
The pulse extends from −N to N and is of length 2N + 1. Its
DTFT is given by

X(ej�) =
N∑

n=−N
e−j�n. (7.163)
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Table 7-8: Discrete-time Fourier transform (DTFT) pairs.

x[n] X(ej�) Condition

1. δ[n] 1

1a. δ[n−m] e−jm� m = integer

2. 1 2π
∞∑

k=−∞
δ(�− 2πk)

3. u[n] ej�

ej� − 1
+

∞∑
k=−∞

πδ(�− 2πk)

3a. an u[n] ej�

ej� − a
|a| < 1

3b. nan u[n] aej�

(ej� − a)2
|a| < 1

4. ej�0n 2π
∞∑

k=−∞
δ(�−�0 − 2πk)

5. a−n u[−n− 1] aej�

1 − aej�
|a| < 1

6. cos(�0n) π

∞∑
k=−∞

[δ(�−�0 − 2πk)+ δ(�+�0 − 2πk)]

7. sin(�0n)
π

j

∞∑
k=−∞

[δ(�−�0 − 2πk)− δ(�+�0 − 2πk)]

8. an cos(�0n+ θ) u[n] ej2� cos θ − aej� cos(�0 − θ)

ej2� − 2aej� cos�0 + a2
|a| < 1

9. rect
[ n
N

]
= u[n+N ] − u[n− 1 −N ]

sin
[
�
(
N + 1

2

)]
sin

(
�
2

)

10.
sin[�0n]
πn

∞∑
k=−∞

[u(�+�0 − 2πk)− u(�−�0 − 2πk)]

By changing indices to m = n+N , Eq. (7.163) assumes the
form

X(ej�) =
2N∑
m=0

e−j�(m−N) = ej�N
2N∑
m=0

e−j�m.

The summation resembles the finite geometric series

M−1∑
m=0

rm = 1 − rM

1 − r
for r �= 1,

so if we set r = e−j� and M = 2N + 1, we have

X(ej�) = ej�N
[

1 − (e−j�)2N+1

1 − e−j�

]
= ej�N − e−j�(N+1)

1 − e−j�
.

To convert the numerator and denominator into sine functions,
we multiply the numerator and denominator by ej�/2. The
process leads to

X(ej�) = sin
[
�
(
N + 1

2

)]
sin

(
�
2

) . (7.164)

This is called a discrete sinc function. Plots of
x[n] = rect[n/N ] and its DTFT are displayed in Fig. 7-22 for
N = 10. We observe that X(ej�) looks like a sinc function
that repeats itself every 2π along the �-axis.
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(a) x[n] = rect(n/10)

(b) X(e jΩ)

x[n]
1.5

0.5

1

0 n
−15 −10 −5 0 5 10 15

X(e jΩ)

0

21
20
15
10
5

Ω

−π π 2π0−2π

Figure 7-22: The DTFT of a rectangular pulse is a discrete sinc
function.

As � → 0, sin� ≈ �, which when applied to Eq. (7.164)
leads to

lim
�→0

X(ej�) = �
(
N + 1

2

)
(�/2)

= 2N + 1.

Alternatively, we could have arrived at the same result through

X(ej0) =
∞∑

n=−∞
x[n] =

N∑
n=−N

1 = 2N + 1.

For N = 10, 2N + 1 = 21, which matches the peak value of
the spectrum in Fig. 7-22(b).

Example 7-31: Brick-Wall Lowpass Filter

A discrete-time lowpass filter has the brick-wall spectrum

H(ej�) =
{

1 0 ≤ |�| ≤ �0,

0 �0 < |�| ≤ π,

(a) Brickwall lowpass filter spectrum with Ω0 = π/4

(b) Impulse response h[n]

H(e jΩ)

Ω

1.5

0.5

0

1

−π π 2π0−2π Ω0−Ω0

Frequency response

n

0.20

0.10

0
−0.10

−20 −15 −10 −5 0 5 10 2015

h[n]
Impulse response

Figure 7-23: The impulse response of a brick-wall lowpass filter
is a discrete-time sinc function.

which is defined over −π ≤ � ≤ π and periodic in �

with period 2π , as shown in Fig. 7-23(a). Determine its
corresponding impulse response h[n].
Solution:To obtainh[n], we need to perform the inverse DTFT
given by Eq. (7.154b) with �1 = −π , namely

h[n] = IDTFT[H(ej�)]

= 1

2π

π∫
−π

H(ej�) ej�n d�

= 1

2π

�0∫
−�0

ej�n d�

= 1

j2πn
(ej�0n − e−j�0n) = sin(�0n)

πn
, (7.165)

which constitutes a discrete-time sinc function. An example is
shown in Fig. 7-23 for �0 = π/4. As expected, the transform
of a rectangular pulse is a sinc function, and vice-versa.
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X(e jΩ)

FFT
(Digital computer)DFT

DTFTSampling

X(e jkΩ0)

Analytical solution

Numerical solution

x[n]
x(t)

Figure 7-24: Whereas the analytical solution produces a continuous spectrum X(ej�), the numerical solution generates a sampled spectrum
at discrete values that are integer multiples of �0.

7-14.3 DTFT of Discrete-Time Convolution

In continuous time, convolution of two signals x(t) and y(t)
in the time domain corresponds to multiplication of their
Fourier transforms X(ω) and Y(ω) in the frequency domain
(property #11 in Table 5-7). A similar statement applies to the
convolution of a signal x(t)with the impulse response h(t) of a
linear system. The discrete-time equivalent of the convolution
property takes the form

x[n] ∗ h[n] X(ej�) H(ej�). (7.166)

The convolution of x[n] and h[n] can be computed directly
in the discrete-time domain using Eq. (7.51a), or it can be
computed indirectly by: (1) computing the DTFTs of x[n]
and h[n], (2) multiplying X(ej�) by H(ej�), and then (3)
computing the inverse DTFT of the product. Thus,

x[n] ∗ h[n] DTFT−1[X(ej�) H(ej�)]. (7.167)

The choice between using the direct or indirect approach usually
is dictated by overall computational efficiency.

Concept Question 7-19: What is the difference between
DTFT and CTFT? (See        )

Concept Question 7-20: What is the significant
difference between discrete-time and continuous-time 
sinc functions? (See        )

Exercise 7-23: Compute the DTFT of 4 cos(0.15πn+1).

Answer:

4πej1 δ((�− 0.15))+ 4πe−j1 δ((�+ 0.15)),

where δ((�−�0)) is shorthand for the chain of impulses

∞∑
k=−∞

δ(�− 2πk −�0).

(See S2 )

Exercise 7-24: Compute the inverse DTFT of
4 cos(2�)+ 6 cos(�)+ j8 sin(2�)+ j2 sin(�).

Answer:
{
6, 4, 0, 2,−2

}
. (See S2 )

7-15 Discrete Fourier Transform
(DFT)

The discrete Fourier transform (DFT) is the numerical bridge
between the DTFT and the fast Fourier transform (FFT).
In Fig. 7-24, we compare two sequences: one leading to an
analytical solution for the DTFT X(ej�) of a discrete-time
signal x[n] and another leading to a numerical solution of
the same. The analytical solution uses a DTFT formulation,
which includes infinite summations and integrals [as in
Eqs. (7.154a and b)]. In practice, discrete-time signal processing
is performed numerically by a digital computer using FFTs.

�Despite its name, the FFT is not a Fourier transform; it is
an algorithm for computing the discrete Fourier transform
(DFT). �



“book” — 2016/3/14 — 13:47 — page 401 — #56

7-15 DISCRETE FOURIER TRANSFORM (DFT) 401

The role of the DFT is to cast the DTFT formulation of an
infinite-duration signal in an approximate form composed of
finite summations instead of infinite summations and integrals.
For finite-duration signals, the DFT formulation is exact.

7-15.1 The DFT Approximation

(a) Nonperiodic signals

For a nonperiodic signal x[n], the DTFT is given by Eq. (7.154)
as

X(ej�) =
∞∑

n=−∞
x[n] e−j�n (7.168a)

and

x[n] = 1

2π

�1+2π∫
�1

X(ej�) ej�n d�.

︸ ︷︷ ︸
Inverse DTFT

(7.168b)

The expression for X(ej�) includes a summation over
−∞ < n < ∞, and the expression forx[n] involves continuous
integration over a segment of length 2π . The discrete Fourier
transform (DFT):

(1) limits the span of n of signal x[n] to a finite
length N0, thereby converting the infinite summation into a
finite summation (how N0 is specified is discussed later in
Section 7-15.2), and

(2) converts the integral in Eq. (7.168b) into a summation of
length N0.

The DFT formulation is given by

X[k] =
N0−1∑
n=0

x[n] e−jk�0n, k = 0, 1, . . . , N0 − 1

(7.169a)
and

x[n] = 1

N0

N0−1∑
k=0

X[k]ejk�0n, n = 0, 1, . . . , N0 − 1,

︸ ︷︷ ︸
Inverse DFT

(7.169b)

where X[k] are called the DFT complex coefficients, and

�0 = 2π

N0
.

This is called anN0-point DFT or a DFT of orderN0. Whereas
in the DTFT, the Fourier transform X(ej�) is a continuous
function of� and periodic with period 2π , the Fourier transform
of the DFT is represented by N0 Fourier coefficients X[k]
defined at N0 harmonic values of �0, where �0 is specified by
the choice of N0. Thus, N0 values of x[n] generate N0 values
of X[k], and vice versa.

(b) Periodic signals

For a periodic signal x[n], the discrete-time Fourier series
(DTFS) of Section 7-13 is given by Eq. (7.136) as

xk = 1

N0

N0−1∑
n=0

x[n] e−jk�0n, k = 0, 1, . . . , N0 − 1,

(7.170a)
and

x[n] =
N0−1∑
n=0

xkejk�0n, n = 0, 1, . . . , N0 − 1.

︸ ︷︷ ︸
DTFS

(7.170b)
Comparison of the DFT formulas in Eq. (7.169) with those in

Eq. (7.170) for the DTFS leads to the conclusion that, within a
scaling factor, they are identical in every respect. If we define
X[k] = N0xk , the pair of expressions in Eq. (7.169) become
identical with those in Eq. (7.170).

� The DFT is identical to the DTFS with X[k] = N0xk . �

The preceding observations lead to two important conclu-
sions.

(1) The DFT does not offer anything new so far as periodic
signals are concerned.

(2) The DFT, in essence, converts a nonperiodic signal x[n]
into a periodic signal of period N0 and converts the DTFT into
a DTFS (within a scaling constant N0).
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The conversion process is called windowing or truncating.
It entails choosing which span of x[n] to retain and which to
delete and how to select the value ofN0. Windowing is the topic
of the next subsection.

Example 7-32: DFT of a Periodic Sinusoid

Compute the DFT of x[n] = A cos(2π(k0/N0)n+θ), where k0 
is an integer. Note that this is a periodic sinusoid.

Solution: Using the definition of the DFT given by Eq. 
(7.169a), we obtain

X[k] =
N0−1∑
n=0

A cos

(
2π

k0

N0
n+ θ

)
e−j2π(k/N0)n

=
N0−1∑
n=0

[
A

2
ejθ ej2π(k0/N0)n + A

2
e−jθ e−j2π(k0/N0)n

]

· e−j2π(k/N0)n

= A

2
ejθ

N0−1∑
n=0

ej2π [(k0−k)/N0]n

+ A

2
e−jθ

N0−1∑
n=0

e−j2π [(k0+k)/N0]n.

Using the orthogonality property defined by Eq. (7.133), the
Fourier coefficients become

X[k] = N0
A

2
ejθ if k = k0,

X[k] = N0
A

2
e−jθ if k = N0 − k0,

X[k] = 0 for all other k.

As N0 → ∞, this pair of discrete-time impulses resembles a
pair of continuous-time impulses, which is exactly the DTFT
of a sinusoid.

7-15.2 Windowing

Consider the nonperiodic signal x[n] shown in Fig. 7-25(a),
which represents sampled values measured by a pressure sensor.
Even though x[n] has non-zero values over a wide span of n,
the bulk of the signal is concentrated over a finite range. If we

multiply x[n] by a window function of length N0, chosen such
that it captures the essential variation of x[n], we end up with
the truncated signal shown in Fig. 7-25(b). A window function
is simply a rectangular function of unit amplitude. Values of
x[n] outside the window region are replaced with zeros, so the
windowed version of x[n] is

xw[n] =
{
x[n] 0 ≤ n ≤ N0 − 1,

0 otherwise.
(7.171)

Next, if we pretend that the truncated signal is a single cycle
of a periodic signal (Fig. 7-25(c)), we can use the DTFS (or,
equivalently, the DFT) to compute its Fourier coefficients.

In the time domain, the windowing action of the DFT limits
the number of sampled values of x[n] to N0. The spectrum of
Xw(e

j�) is periodic with period 2π . The DFT converts the
continuous 2π -period of � into N0 discrete frequencies by
sampling the spectrum at multiples of �0 = 2π/N0. This is
equivalent to having a spectral resolution
� = 2π/N0 = �0.

In some cases, the available number of samples of x[n] may
be limited to some valueN0, but the desired spectral resolution
for adequate representation ofx[n] requires sampling at a higher
rate, N ′

0. In that case, the length of signal x[n] is extended
from N0 by appending zeros to the time signal. That is, x[n] is
redefined as

x′[n] =
{
x[n] 0 ≤ n ≤ N0 − 1,

0 N0 ≤ n ≤ N ′
0 − 1.

(7.172)

Extending the length of x[n] by adding zeros is called zero-
padding. An example of a zero-padded signal is shown is
Fig. 7-25(d).

7-15.3 Relation of DFT to z-Transform

Comparison of the expressions defining the z-transform
[Eq. (7.58a)], the DTFT [Eq. (7.154a)], and the DFT
[Eq. (7.169a)], leads to the following conclusion:

X[k] = X(ej�)
∣∣∣
�=k�0

= X(z)|z=ejk�0 (7.173)

DFT DTFT z-transform

with �0 = 2π/N0.
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(a) Original x[n]

(b) xw[n] is a windowed version of x[n]

(c) Periodic version of xw[n]

(d) x′[n] is a truncated and zero-padded version of x[n]

n

Window

n
N0 − 10

n
N0 − 10

Zero padding

Window

n
N0 − 10 N0 − 1′

Figure 7-25: (a) Original nonperiodic signal x[n], (b) xw[n], a truncated version of x[n] generated by multiplying x[n] by a window
function, (c) creating an artificial periodic version of the truncated signal xw[n], and (d) x′[n], a truncated and zero-padded version of x[n].

The DFT is the result of sampling the DTFT at N0 equally
spaced frequencies between 0 and 2π . From the standpoint
of the z-transform, the DFT is the result of sampling the
z-transform at N0 equally spaced points around the unit circle
|z| = 1.

Example 7-33: Using DFT to Compute DTFT Numerically

Redo Example 7-30(a) using a 32-point DFT.
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Figure 7-26: A 32-point DFT (red dots) approximates the exact
DTFT (blue curve).

Solution: Example 7-30(a) demonstrated how to compute
x1[n] = { 3, 1, 4, 2, 5 }, and the magnitude of the DTFT was
plotted in Fig. 7-19(b). Since the magnitude of the DTFT
is unaffected by time shifts (property #2 in Table 7-7), we
compute and plot the magnitude of the 32-point DFT of
{ 3, 1, 4, 2, 5 }, zero-padded with 27 zeros, using Eq. (7.169a).
The results are plotted as red dots in Fig. 7-26 and the exact
DTFT magnitude is shown in blue. Increasing 32 to a larger
number would provide a much finer sampling of the DTFT.

7-15.4 Use of DFT for Convolution

The convolution property of the DTFT extends to the DFT after
some modifications. Consider two signals, x1[n] and x2[n], with
N0-point DFTs X1[k] and X2[k]. From Eq. (7.169b), the inverse
DFT of their product is

DFT−1(X1[k] X2[k]) = 1

N0

N0−1∑
k=0

(X1[k] X2[k])ejk�0n

= 1

N0

N0−1∑
k=0

ejk�0n

⎡
⎣N0−1∑
n1=0

x1[n1] e−jk�0n1

⎤
⎦

·
⎡
⎣N0−1∑
n2=0

x2[n2] e−jk�0n2

⎤
⎦ .

(7.174)

Rearranging the order of the summations gives

DFT−1(X1[k] X2[k]) =
1

N0

N0−1∑
n1=0

N0−1∑
n2=0

x1[n1] x2[n2]
N0−1∑
k=0

ejk�0(n−n1−n2). (7.175)

In view of the orthogonality property given by Eq. (7.133) and
recalling that �0 = 2π/N0, Eq. (7.175) reduces to

DFT−1(X1[k] X2[k])

= 1

N0

N0−1∑
n1=0

N0−1∑
n2=0

x1[n1] x2[n2] N0 δ[(n− n1 − n2)N0 ]

=
N0−1∑
n1=0

x1[n1] x2[(n− n1)N0 ], (7.176)

where (n−n1)N0 means (n−n1) reduced modN0 (i.e., reduced
by the largest integer multiple ofN0 without (n−n1) becoming
negative).

7-15.5 DFT and Cyclic Convolution

Because of the mod N0 reduction cycle, the expression on the
right-hand side of Eq. (7.176) is called the cyclic or circular
convolution of signals x1[n] and x2[n]. The terminology helps
distinguish it from the traditional linear convolution of two
nonperiodic signals. As noted earlier, a DFT in effect converts
a nonperiodic signal into a periodic-looking signal, so x1[n] and
x2[n] are periodic with period N0.

The symbol commonly used to denote cyclic convolution is c©.
Combining Eqs. (7.174) and (7.176) leads to

yc[n] = x1[n] c© x2[n] =
N0−1∑
n1=0

x1[n1] x2[(n− n1)N0 ]

= DFT−1(X1[k] X2[k])

= 1

N0

N0−1∑
k=0

X1[k] X2[k] ejk�0n,

(7.177)

where �0 = 2π/N0.
The cyclic convolution yc[n] can certainly by computed by

applying Eq. (7.177), but it can also be computed from the linear
convolution x1[n] ∗ x2[n] by aliasing the latter. To illustrate,
suppose x1[n] and x2[n] are both of duration N0. The linear
convolution of the two signals

y[n] = x1[n] ∗ x2[n] (7.178)
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is of duration 2N0 − 1. Aliasing y[n] means defining z[n], the
aliased version of y[n], as

z[0] = y[0] + y[0 +N0]
z[1] = y[1] + y[1 +N0]
...

z[N0 − 1] = y[N0 − 1] . (7.179)

The aliasing process leads to the result that z[n] is the cyclic
convolution of x1[n] and x2[n]:

yc[n] = z[n] = x1[n] c© x2[n]. (7.180)

Example 7-34: Cyclic Convolution

Given the two signals

x1[n] = { 2, 1, 4, 3 },
x2[n] = { 5, 3, 2, 1 },

compute the cyclic convolution of the two signals by

(a) applying the DFT method;

(b) applying the aliasing of the linear convolution method.

Solution:
(a) With N0 = 4 and �0 = 2π/N0 = π/2, application of

Eq. (7.169a) to x1[n] and x2[n] leads to

X1[k] = { 10, −2 + j2, 2, −2 − j2 },
X2[k] = { 11, 3 − j2, 3, 3 + j2 }.

The point-by-point product of X1[k] and X2[k] is

X1[k] X2[k]
= { 10 × 11, (−2 + j2)(3 − j2), 2 × 3, (−2 − j2)(3 + j2) }
= { 110, −2 + j10, 6, −2 − j10 }.

Application of Eq. (7.177) leads to

x1[n] c© x2[n] = { 28, 21, 30, 31 }.

(b) The linear convolution of x1[n] and x2[n] is

y[n] = { 2, 1, 4, 3 }∗{ 5, 3, 2, 1 } = { 10, 11, 27, 31, 18, 10, 3 }.

Per Eq. (7.179),

z[n] = { y[0] + y[4], y[1] + y[5], y[2] + y[6], y[3] }
= { 10 + 18, 11 + 10, 27 + 3, 31 } = { 28, 21, 30, 31 }.

Hence, by Eq. (7.180),

x1[n] c© x2[n] = z[n] = { 28, 21, 30, 31 },

which is the same answer obtained in part (a).

7-15.6 DFT and Linear Convolution

In the preceding subsection, we examined how the DFT can
be used to compute the cyclic convolution of two discrete-
time signals (Eq. (7.177)). The same method can be applied
to compute the linear convolution of the two signals, provided
a preparatory step of zero-padding the two signals is applied
first.

Let us suppose that signal x1[n] is of duration N1 and signal
x2[n] is of durationN2, and we are interested in computing their
linear convolution

y[n] = x1[n] ∗ x2[n].

The duration of y[n] is

Nc = N1 +N2 − 1. (7.181)

Next, we zero-pad x1[n] and x2[n] so that their durations are
equal to or greater than Nc. As we will see in Section 7-16 on
how the fast Fourier transform (FFT) is used to compute the
DFT, it is advantageous to choose the total length of the zero-
padded signals to beM such thatM ≥ Nc, and simultaneously
M is a power of 2.

The zero-padded signals are defined as

x′
1[n] = { x1[n]︸ ︷︷ ︸

N1

, 0, . . . , 0︸ ︷︷ ︸
M−N1

}, (7.182a)

x′
2[n] = { x2[n]︸ ︷︷ ︸

N2

, 0, . . . , 0︸ ︷︷ ︸
M−N2

}, (7.182b)
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and theirM-point DFTs are X′
1[k] and X′

2[k], respectively. The
linear convolution y[n] can now be computed by a modified
version of Eq. (7.177), namely

yc[n] = x′
1[n] ∗ x′

2[n] = DFT−1{ X′
1[k] X′

2[k] }

= 1

M

M−1∑
k=0

X′
1[k] X′

2[k] ej2πnk/M.

(7.183)

Example 7-35: DFT Convolution

Given signals x1[n] = {4, 5} and x2[n] = {1, 2, 3}, (a) compute
their convolution in discrete time, and (b) compare the result
with the DFT relation given by Eq. (7.183).

Solution:
(a) Application of Eq. (7.51a) gives

x1[n] ∗ x2[n] =
3∑
i=0

x1[i] x2[n− i] = {4, 13, 22, 15}.

(b) Since x1[n] is of length N1 = 2 and x2[n] is of length
N2 = 3, their convolution is of length

Nc = N1 +N2 − 1 = 2 + 3 − 1 = 4.

Hence, we need to zero-pad x1[n] and x2[n] as

x′
1[n] = {4, 5, 0, 0}

and
x′

2[n] = {1, 2, 3, 0}.
From Eq. (7.169a) with �0 = 2π/Nc = 2π/4 = π/2, the
4-point DFT of x′

1[n] = {4, 5, 0, 0} is

X1[k] =
3∑
n=0

x′
1[n] e−jkπn/2, k = 0, 1, 2, 3,

which gives

X′
1[0] = 4(1)+ 5(1)+ 0(1)+ 0(1) = 9,

X′
1[1] = 4(1)+ 5(−j)+ 0(−1)+ 0(j) = 4 − j5,

X′
1[2] = 4(1)+ 5(−1)+ 0(1)+ 0(−1) = −1,

and

X′
1[3] = 4(1)+ 5(j)+ 0(−1)+ 0(j) = 4 + j5.

Similarly, the 4-point DFT of x′
2[n] = {1, 2, 3, 0} gives

X′
2[0] = 6,

X′
2[1] = −2 − j2,

X′
2[2] = 2,

and

X′
2[3] = −2 + j2.

Multiplication of corresponding pairs gives

X′
1[0] X′

2[0] = 9 × 6 = 54,

X′
1[1] X′

2[1] = (4 − j5)(−2 − j2) = −18 + j2,

X′
1[2] X′

2[2] = −1 × 2 = −2,

and

X′
1[3] X′

2[3] = (4 + j5)(−2 + j2) = −18 − j2.

Application of Eq. (7.183) gives

yc[n] = x′
1[n] ∗ x′

2[n] = 1

Nc

Nc−1∑
k=0

X′
1[k] X′

2[k] ej2πnk/Nc

= 1

4

3∑
k=0

X′
1[k] X′

2[k] ejkπn/2.

Evaluating the summation for n = 0, 1, 2 and 3 leads to

yc[n] = x′
1[n] ∗ x′

2[n] = {4, 13, 22, 15},
which is identical to the answer obtained earlier in part (a).
For simple signals like those in this example, the DFT
method involves many more steps than does the straightforward
convolution method of part (a), but for the type of signals used
in practice, the DFT method is computationally superior.

Concept Question 7-21: What is the difference between
DFT and DTFS? (See        )

Concept Question 7-22: How is the DFT related to the
DTFT? (See        )

Exercise 7-25: Compute the 4-point DFT of {4, 3, 2, 1}.
Answer: {10, (2 − j2), 2, (2 + j2)}. (See S2 )
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Table 7-9: Comparison of number of complex computations (including multiplication by ±1 and ±j)
required by a standard DFT and an FFT.

N0 Multiplication Additions

Standard DFT FFT Standard DFT FFT

2 4 1 2 2
4 16 4 12 8
8 64 12 56 24
16 256 32 240 64
...

...
...

...
...

512 262,144 2,304 261,632 4,608
1,024 1,048,576 5,120 1,047,552 10,240
2,048 4,194,304 11,264 4,192,256 22,528

N0 N0
N0

2
log2 N0 N0(N0 − 1) N0 log2 N0

7-16 Fast Fourier Transform (FFT)

� The Fast Fourier Transform (FFT) is a computational
algorithm used to compute the Discrete Fourier
Transforms (DFT) of discrete signals. Strictly speaking,
the FFT is not a transform, but rather an algorithm for
computing the transform. �

As was mentioned earlier, the fast Fourier transform (FFT)
is a highly efficient algorithm for computing the DFT of
discrete time signals. An N0-point DFT performs a linear
transformation from an N0-long discrete-time vector, namely
x[n], into an N0-long frequency domain vector X[k] for
k = 0, 1, . . . , N0 − 1. Computation of each X[k] involves N0
complex multiplications, so the total number of multiplications
required to perform the DFT for all X[k] is N2

0 . This is in
addition to N0(N0 − 1) complex additions. For N0 = 512, for
example, direct implementation of the DFT operation requires
262,144 multiplications and 261,632 complex additions.

Contrast these large number of multiplications and additions
(MADs) with the number required using the FFT algorithm:
forN0 large, the number of complex multiplications is reduced
from N2

0 to approximately (N0/2) log2N0, which is only 2304
complex multiplications forN0 = 512. For complex additions,
the number is reduced from N0(N0 − 1) to N0 log2N0 or 4608
for N0 = 512. These reductions, thanks to the efficiency of the
FFT algorithm, are on the order of 100 for multiplications and
on the order of 50 for addition. The reduction ratios become
increasingly more impressive at larger values ofN0 (Table 7-9).

The computational efficiency of the FFT algorithm relies on a
“divide and conquer” concept.AnN0-point DFT is decomposed

(divided) into two (N0/2)-point DFTs. Each of the (N0/2)-
point DFTs is decomposed further into two (N0/4)-point DFTs.
The decomposition process, which is continued until it reaches
the 2-point DFT level, is illustrated in the next subsections.

7-16.1 2-Point DFT

For notational efficiency, we introduce the symbols

WN0 = e−j2π/N0 = e−j�0 , (7.184a)

Wnk
N0

= e−j2πnk/N0 = e−jnk�0 , (7.184b)

and
W−nk
N0

= ej2πnk/N0 = ejnk�0 , (7.184c)

where �0 = 2π/N0. Using this shorthand notation, the
summations for the DFT, and its inverse given by Eq. (7.169),
assume the form

X[k] =
N0−1∑
n=0

x[n] Wnk
N0
, k = 0, 1, . . . , N0−1, (7.185a)

and

x[n] = 1

N0

N0−1∑
k=0

X[k]W−nk
N0

, n = 0, 1, . . . , N0 − 1.

(7.185b)
In this form, the N0-long vector X[k] is given in terms of the
N0-long vector x[n], and vice versa, withWnk

N0
andW−nk

N0
acting

as weighting coefficients.

2
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x[0]

X[1]

X[0]

x[1] −1

1
1

1

Figure 7-27: Signal flow graph for a 2-point DFT.

For a 2-point DFT,

N0 = 2,

�0 = 2π/2 = π,

W 0k
2 = e−j0 = 1,

and

W 1k
2 = e−jkπ = (−1)k.

Hence, Eq. (7.185a) yields the following expressions for X[0]
and X[1]:

X[0] = x[0] + x[1] (7.186a)

and
X[1] = x[0] − x[1], (7.186b)

which can be combined into the compact form

X[k] = x[0] + (−1)k x[1], k = 0, 1. (7.187)

The equations for X[0] and X[1] can be represented by the
signal flow graph shown in Fig. 7-27, which is often called a
butterfly diagram.

7-16.2 4-Point DFT

For a 4-point DFT, N0 = 4, �0 = 2π/4 = π/2, and

Wnk
N0

= Wnk
4 = e−jnkπ/2 = (−j)nk. (7.188)

From Eq. (7.185a), we have

X[k] =
3∑
n=0

x[n] Wnk
4

= x[0] + x[1] W 1k
4 + x[2] W 2k

4 + x[3] W 3k
4 ,

k = 0, 1, 2, 3. (7.189)

xe[0] = x[0]

xe[1] = x[2]

Xe[0]

Xe[1]

X[0]

−1

1

2-point DFT

1
1

1
X[1]1

1

1

1

xo[0] = x[1]

xo[1] = x[3]

Xo[0]

Xo[1]

X[2]

−1

−11

2-point DFT Recomposition

1
1

X[3]

W1
4

−W1
4

Figure 7-28: Signal flow graph for a 4-point DFT. Weighting
coefficient W1

4 = −j . Note that summations occur only at red
intersection points.

Upon evaluating W 1k
4 , W 2k

4 , and W 3k
4 and the relationships

between them, Eq. (7.189) can be cast in the form

X[k] = [x[0] + (−1)k x[2]]︸ ︷︷ ︸
2-point DFT

+W 1k
4 [x[1] + (−1)k x[3]]︸ ︷︷ ︸

2-point DFT

,

(7.190)
which consists of two 2-point DFTs: one that includes values
of x[n] for even values of n, and another for odd values of n.
At this point, it is convenient to define xe[n] and xo[n] as x[n]
at even and odd times:

xe[n] = x[2n], n = 0, 1, (7.191a)

xo[n] = x[2n+ 1], n = 0, 1. (7.191b)

Thus, xe[0] = x[0] and xe[1] = x[2] and, similarly,
xo[0] = x[1] and xo[1] = x[3]. When expressed in terms
of xe[n] and xo[n], Eq. (7.190) becomes

X[k] = [xe[0] + (−1)k xe[1]]︸ ︷︷ ︸
2-point DFT of xe[n]

+W 1k
4 [xo[0] + (−1)k xo[1]]︸ ︷︷ ︸

2-point DFT of xo[n]
,

k = 0, 1, 2, 3. (7.192)

The FFT computes the 4-point DFT by computing the two
2-point DFTs, followed by a recomposition step that involves
multiplying the even 2-point DFT byW 1k

4 and then adding it to
the odd 2-point DFT. The entire process is depicted by the signal
flow graph shown in Fig. 7-28. In the graph, Fourier coefficients
Xe[0] and Xe[1] represent the outputs of the even 2-point DFT,
and similarly, Xo[0] and Xo[1] represent the outputs of the odd
2-point DFT.
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Im[z]

Re[z]

Figure 7-29: A 16-point DFT is X(z) evaluated at 16 points
equally spaced on the unit circle.

7-16.3 16-Point DFT

We now show how to compute a 16-point DFT using two
8-point DFTs and 8 multiplications and additions (MADs).
This divides the 16-point DFT into two 8-point DFTs, which
in turn can be divided into four 4-point DFTs, which are just
additions and subtractions. This conquers the 16-point DFT by
dividing it into 4-point DFTs and additional MADs.

Dividing a 16-point DFT

Recall that the 16-point DFT is the z-transform evaluated at 16
equally-spaced points on the unit circle, as shown in Fig. 7-29.
Of the 16 points, 8 are depicted by blue circles and the other 8
are depicted by red crosses. Those depicted by circles are points
at which X(z) is evaluated for an 8-point DFT, and the 8 points
depicted by crosses are the points at which X(z) is evaluated
for a modulated 8-point DFT. Thus, the 16-point DFT can be
computed as an 8-point DFT (for even values of k) and as a
modulated 8-point DFT (for odd values of k).

Computation at even indices

We consider even and odd indices k separately.
For even values of k, we can write k = 2k′ and split the

16-point DFT summation into two summations:

X[2k′] =
15∑
n=0

x[n] e−j2π(2k′/16)n

=
7∑
n=0

x[n] e−j2π(2k′/16)n +
15∑
n=8

x[n] e−j2π(2k′/16)n.

(7.193)

Changing variables from n to n′ = n− 8 in the second
summation, and recognizing 2k′/16 = k′/8, gives

X[2k′] =
7∑
n=0

x[n] e−j2π(k′/8)n +
7∑

n′=0

x[n′ + 8] e−j2π(k′/8)(n′+8)

=
7∑
n=0

(x[n] + x[n+ 8])e−j2π(k′/8)n

= DFT({x[n] + x[n+ 8], n = 0, . . . , 7}). (7.194)

So for even values of k, the 16-point DFT of x[n] is the 8-point
DFT of { x[n] + x[n+ 8], n = 0, . . . , 7 }. The z-transform is
computed at the circles of Fig. 7-29.

Computation at odd indices

For odd values of k, we can write k = 2k′ + 1 and split the
16-point DFT summation into two summations:

X[2k′ + 1] =
15∑
n=0

x[n] e−j2π(2k′+1)/16n

=
7∑
n=0

x[n] e−j2π(2k′+1)/16n

+
15∑
n=8

x[n] e−j2π(2k′+1)/16n. (7.195)

Changing variables from n to n′ = n− 8 in the second
summation, and recognizing that e−j2π8/16 = −1 and

2k′ + 1

16
= k′

8
+ 1

16
,

gives

X[2k′ + 1] =
7∑
n=0

(x[n] e−j2π(1/16)n)e−j2π(k′/8)n

+
7∑

n′=0

(x[n′ + 8] e−j2π(1/16)(n′+8))e−j2π(k′/8)(n′+8)

=
7∑
n=0

e−j2π(1/16)n(x[n] − x[n+ 8])e−j2π(k′/8)n

= DFT({e−j2π(1/16)n(x[n] − x[n+ 8]),
n = 0, . . . , 7}). (7.196)
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So for odd values of k, the 16-point DFT of x[n] is the 8-point
DFT of { e−j (2π/16)n(x[n] − x[n+ 8]), n = 0, . . . , 7 }. The
signal { x[n] − x[n+ 8], n = 0, . . . , 7 } has been modulated
through multiplication by e−j (2π/16)n. The modulation shifts
the frequencies, so that the z-transform is computed at the
crosses of Fig. 7-29. The multiplications by e−j (2π/16)n are
known as twiddle multiplications (mults) by the twiddle factors
e−j (2π/16)n.

Example 7-36: Dividing an 8-Point DFT into Two 4-Point

DFTs

Divide the 8-point DFT of { 7, 1, 4, 2, 8, 5, 3, 6 } into two
4-point DFTs and twiddle mults.

Solution:

• For even values of index k, we have

X[0, 2, 4, 6] = DFT({ 7 + 8, 1 + 5, 4 + 3, 2 + 6 })
= { 36, 8 + j2, 8, 8 − j2 }.

For odd index values, we need twiddle mults. The twiddle
factors are given by { e−j2πn/8 } for n = 0, 1, 2, and 3,

which reduce to { 1,
√

2
2 (1 − j),−j,

√
2

2 (−1 − j) }.
• Implementing the twiddle mults gives

{ 7 − 8, 1 − 5, 4 − 3, 2 − 6 }

×
{

1,

√
2

2
(1 − j),−j,

√
2

2
(−1 − j)

}

= { −1, 2
√

2(−1 + j),−j, 2
√

2(1 + j) }.

• For odd values of index k, we have

X[1, 3, 5, 7] = DFT({ −1, 2
√

2(−1 + j),−j, 2
√

2(1 + j) })
= { −1 + j4.66,−1 + j6.66,−1 − j6.66,−1 − j4.66 }.

• Combining these results for even and odd k gives

DFT({ 7, 1, 4, 2, 8, 5, 3, 6 })
= {36, −1 + j4.7, 8 + j2, −1 + j6.7, 8,

− 1 − j6.7, 8 − j2, −1 − j4.7}.
Note the conjugate symmetry in the second and third lines:
X[7] = X∗[1], X[6] = X∗[2], and X[5] = X∗[3].

• This result agrees with direct computation using

fft([7 1 4 2 8 5 3 6]).

7-16.4 Dividing Up a 2N -Point DFT

We now generalize the procedure to a 2N -point DFT by dividing
it into two N -point DFTs and N twiddle mults.

(1) For even indices k = 2k′ we have:

X[2k′] =
N−1∑
n=0

(x[n] + x[n+N ])e−j2π(k′/N)n

= DFT{ x[n] + x[n+N ], n = 0, 1, . . . , N − 1 }.
(7.197)

(2) For odd indices k = 2k′ + 1 we have:

X[2k′ + 1] =
N−1∑
n=0

e−j2π(1/(2N))n(x[n] − x[n+N ])e−j2π(k′/N)n

= DFT{ e−j2π(1/(2N))n(x[n] − x[n+N ]) }.
(7.198)

Thus, a 2N -point DFT can be divided into

• Two N -point DFTs,

• N multiplications by twiddle factors e−j2π(1/2N)n, and

• 2N additions and subtractions.

7-16.5 Dividing and Conquering

Now suppose N is a power of two; e.g., N = 1024 = 210. In
that case, we can apply the algorithm of the previous subsection
recursively to divide anN -point DFT into twoN/2-point DFTs,
then into four N/4-point DFTs, then into eight N/8-point
DFTs, and so on until we reach the following 4-point DFTs:

X[0] = x[0] + x[1] + x[2] + x[3],
X[1] = x[0] − jx[1] − x[2] + jx[3],
X[2] = x[0] − x[1] + x[2] − x[3],
X[3] = x[0] + jx[1] − x[2] − jx[3]. (7.199)

At each stage, half of the DFTs are modulated, requiring
N/2 multiplications. So if N is a power of 2, then
an N -point DFT computed using the FFT will require
approximately (N/2) log2(N) multiplications and N log2(N)

additions. These can be reduced slightly by recognizing that
some multiplications are simply by ±1 and ±j .

To illustrate the computational significance of the FFT,
suppose we wish to compute a 32768-point DFT. Direct compu-
tation using Eq. (7.169a) would require (32768)2 ≈ 1.1 × 109

MADs. In contrast, computation using the FFT would require
less than 32768

2 log2(32768) ≈ 250,000 MADs, representing a
computational saving of a factor of 4000!
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7-17 Cooley-Tukey FFT

The Cooley-Tukey FFT was originally derived by the
German mathematician Carl Friedrich Gauss, but its first
implementation using computers (with punch cards and tape
drives) was carried out by Cooley and Tukey at IBM in 1965.
With N defined as the product N1N2, the Cooley-Tukey FFT
divides an N1N2-point DFT into

• N1 N2-point DFTs,

• N2 N1-point DFTs, and

• (N1 − 1)(N2 − 1) twiddle mults.

The goal is to compute the N = N1N2-point DFT

X[k] =
N−1∑
n=0

x[n] e−j2πnk/N , k = 0, 1, . . . , N − 1.

(7.200)
N should be chosen to be an integer with a large number
of small factors. Then an N -point DFT can be divided into
many N1-point DFTs and N2 point DFTs. If N1 = N3N4 and
N2 = N5N6, then eachN1-point DFT can be divided into many
N3-point DFTs and N4-point DFTs, and each N2-point DFT
can be divided into many N5-point DFTs and N6-point DFTs,
each of which can in turn be further divided. The extreme case
of this is when N is a power of two, the case presented in
Section 7-16.5.

7-17.1 Coarse and Vernier Indices

The implementation procedure of the Cooley-Tukey FFT starts
by defining

(a) the coarse indices n2 and k1 and

(b) the vernier indices n1 and k2

as the quotients and remainders, respectively, after dividing n
by N1 and k by N2. That is,

n = n1 +N1n2 for

{
n1 = 0, 1, . . . , N1 − 1,
n2 = 0, 1, . . . , N2 − 1,

k = k2 +N2k1 for

{
k1 = 0, 1, . . . , N1 − 1,
k2 = 0, 1, . . . , N2 − 1.

(7.201)

These names come from coarse and fine (vernier) adjustments
for gauges and microscopes.

For example, forN = 6 withN1 = 3 andN2 = 2, the indices
n, n1, n2, k, k1, k2 assume the values listed in Table 7-10. For
example, dividingn = 5 byN1 = 3 gives a remainder ofn1 = 2

Table 7-10: Coarse and vernier indices for N1 = 3 and
N2 = 2.

n 0 1 2 3 4 5
n1 0 1 2 0 1 2
n2 0 0 0 1 1 1
k 0 1 2 3 4 5
k1 0 0 1 1 2 2
k2 0 1 0 1 0 1

and a quotient of n2 = 1. The DFT X[k] can then be rewritten
as

X[k2 +N2k1] =
N1−1∑
n1=0

N2−1∑
n2=0

x[n1 +N1n2] e−j (2π/N)nk.
(7.202)

The product of indicesnk in the DFT exponent can be expressed
as

nk = (n1 +N1n2)(k2 +N2k1)

= n1k2 +N1n2k2 +N2n1k1 +N1N2n2k1, (7.203)

which, together with replacing N with N1N2 in the DFT
exponent, leads to

e−j (2π/N)nk = e−j (2π/N)n1k2e−j (2π/N)N1n2k2

× e−j (2π/N)N2n1k1e−j (2π/N)N1N2n2k1

= e−j (2π/N)n1k2e−j (2π/N2)n2k2e−j (2π/N1)n1k1 .

(7.204)

The double summation in Eq. (7.202) can be rewritten as

X[k2 +N2k1] =
N1−1∑
n1=0

e−j (2π/N1)n1k1

︸ ︷︷ ︸
N1-point DFT

[
e−j (2π/N)n1k2︸ ︷︷ ︸

twiddle factor

×
N2−1∑
n2=0

e−j (2π/N2)n2k2x[n1 +N1n2]
︸ ︷︷ ︸

N2-point DFT for each n1

]
.

(7.205)

Hence, the N -point DFT is now composed by N2 N1-point 
DFTs, N1 N2-point DFTs, and twiddle mults of twiddle factors 
e−j(2π/N)n  k . 
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7-17.2 Computational Procedure

1. ComputeN1 (for eachn1)N2-point DFTs of x[n1+N1n2].
2. Multiply the result by twiddle factors e−j (2π/N)n1k2 .

3. Compute N2 (for each k2) N1-point DFTs of the previous
result.

Note that if either n1 = 0 or k2 = 0, then e−j (2π/N)n1k2 = 1.
Hence, the number of twiddle mults is not N1N2 but
(N1 − 1)(N2 − 1).

7-17.3 2-D Visualization

We can visualize the Cooley-Tukey FFT method by writing both
x[n] and Xk as (N1 ×N2) arrays, which leads to the following
procedure:

1. Map x[n] to xn1,n2 using xn1,n2 = x[n1 +N1n2].
2. Determine the N2-point DFT of each row (for fixed n1).

3. Multiply this array point-by-point by the array of twiddle
factors e−j (2π/N)n1k2 .

4. Determine theN1-point DFT of each column (for fixed k2).
The result of this is X[k1, k2].

5. Map X[k1, k2] = X[k2 +N2k1].
Note that the mappings used for x[n] and X[k] are different,
but they can be made identical by taking the transpose
(exchanging each column for the correspondingly numbered
row) of X[k1, k2] before the final mapping. This is called index
shuffling. We may exchange "row" and "column" above.

Example 7-37: 4-Point DFT to 2 × 2 Array

Use the 2-D visualization technique to map the general 4-point
DFT of { x[0], x[1], x[2], x[3] } to 4 2-point DFTs and twiddle
mults. Recall that 2-point DFTs involve only additions and
subtractions.

Solution:
(1) Map { x[0], x[1], x[2], x[3] } to a 2 × 2 array:

{ x[0], x[1], x[2], x[3] } → x[0] x[1]
x[2] x[3] = x[0]

x[2]
x[1]
x[3] .

(2) Compute 2-point DFTs of each column:

x[0] + x[2]
x[0] − x[2]

x[1] + x[3]
x[1] − x[3] = x[0] + x[2] x[1] + x[3]

x[0] − x[2] x[1] − x[3] .

(3) Multiply by twiddle factors:

× 1 1
1 −j = x[0] + x[2] x[1] + x[3]

x[0] − x[2] −j (x[1] − x[3]) .

(4) Compute the 2-point DFTs of each row:

(x[0] + x[2])+ (x[1] + x[3]) (x[0] + x[2])− (x[1] + x[3])

(x[0] − x[2])− j (x[1] − x[3]) (x[0] − x[2])+ j (x[1] + x[3])

Read off { X[0],X[1],X[2],X[3] }. Note the index shuffling:
the index locations in the final array are the transpose of the
index locations in the first array.

X[0] X[2]

X[1] X[3]
= X[0] X[2]

X[1] X[3] { X[0],X[1],X[2],X[3] }

7-17.4 Radix-2 Cooley-Tukey FFTs

As noted at the beginning of this section,N should be chosen to
be an integer with a large number of small factors. The extreme
case of this is when N is a power of two, the case presented
in Section 7-16.5. We now specialize the Cooley-Tukey FFT to
this case. We will obtain two different forms of the FFT, one of
which matches Eq. (7.197) and Eq. (7.198) and one of which is
different. If N is an even number, we can write N = 2(N/2).
We can then setN1 = 2 andN2 = N/2, or vice versa. This gives
two different Radix-2 Cooley-Tukey FFTs, one that decimates
(divides up) the computation in the time domain and another
that decimates the computation in the frequency domain.
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(a) Decimation in time

InsertingN1 = 2 andN2 = N/2 into Eq. (7.205) gives directly

X[k2] = 1
N/2−1∑
n2=0

e−j2π(n2k2/(N/2))x[2n2]
︸ ︷︷ ︸

N/2-point DFT

+ e−j2π(1k2/N)

N/2−1∑
n2=0

e−j2π(n2k2/(N/2))x[2n2 + 1]
︸ ︷︷ ︸

N/2-point DFT

,

X[k2 +N/2] = 1
N/2−1∑
n2=0

e−j2π(n2k2/(N/2))x[2n2]
︸ ︷︷ ︸

N/2-point DFT

− e−j2π(1k2/N)

N/2−1∑
n2=0

e−j2π(n2k2/(N/2))x[2n2 + 1]
︸ ︷︷ ︸

N/2-point DFT

.

The number of twiddle mults at each stage is N/2. This agrees
with (N1 − 1)(N2 − 1) = (2 − 1)[(N/2)− 1] ≈ N/2. Since
there are log2N stages, the total number of multiplications is
(N/2) log2N .

(b) Decimation in frequency

Now we reverse the assignments of N1 and N2 to N1 = N
2 and

N2 = 2. Inserting these into Eq. (7.205) gives directly

X[2k1] =
N/2−1∑
n1=0

e−j2π(n1k1/(N/2))

︸ ︷︷ ︸
N/2-point DFT

[x[n1] + x[n1 +N/2]]︸ ︷︷ ︸
Half of 2-point DFT

,

X[2k1 + 1] =
N/2−1∑
n1=0

e−j2π(n1k1/(N/2))

︸ ︷︷ ︸
N/2-point DFT

· [x[n1] − x[n1 +N/2]]︸ ︷︷ ︸
Half of 2-point DFT

e−j2π(1n1/N).

We take separate N
2 -point DFTs of the sums and differences

(x[n]±x[n+N
2 ]). Only one set of DFTs is multiplied by twiddle

factors, so the number of twiddle mults is again N
2 log2N . For

reference, the first FFT derived in this chapter (Section 7-16.3),
using z-transforms evaluated on the unit circle, is a decimation-
in-frequency Radix-2 Cooley-Tukey FFT.

The inverse DFT can be computed using any of these
formulas, except that the sign of the exponent in the twiddle
mults is changed.

One advantage of decimation-in-frequency over decimation-
in-time is that decimation-in-frequency computes X[k] for even
indices k without twiddle mults.

There are many other fast algorithms for computing the DFT
besides the Cooley-Tukey FFT, but the Cooley-Tukey FFT is
by far the most commonly-used fast algorithm for computing
the DFT. The radix-2 Cooley-Tukey FFT is so fast that DFTs
of orders N that are not powers of two are often zero-padded,
so that N is replaced with the next-highest power of two.

Concept Question 7-23: Why is the FFT so much faster
than direct computation of the DFT? (See        )

Exercise 7-26: How many MADs are needed to compute
a 4096-point DFT using the FFT?

Answer: 4096
2 log2(4096) = 24576.

Exercise 7-27: Using the decimation-in-frequency FFT,
which values of the 8-point DFT of a signal of the form
{a, b, c, d, e, f, g, h} do not have a factor of

√
2 in them?

Answer: In the decimation-in-frequency FFT, the
twiddle multiplications only affect the odd-valued
indices. So {X0, X2, X4, X6} do not have a factor of

√
2

in them.

Exercise 7-28: Using the decimation-in-time FFT, show
that only two values of the 8-point DFT of a signal of the
form {a, b, a, b, a, b, a, b} are nonzero.

Answer: In the decimation-in-time FFT, 4-point DFTs
of {a, a, a, a} and {b, b, b, b} are computed. These are
both zero except for the dc (k = 0) values. So the 8-point
DFT has only two nonzero values X0 = 4a + 4b and
X4 = 4a − 4b.
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Summary

Concepts
• LTI systems, causality, BIBO stability, and convolution all generalize directly from continuous time to discrete time.

Integrals are replaced with summations.

• Transfer functions H(z) generalize directly and are extremely useful in relating the following descriptions of LTI systems:
poles and zeros; impulse response; difference equations; frequency response; specific input-output pairs.

• In discrete time, all functions of � are periodic with period 2π .

• The following transforms are directly analogous: z-transforms and Laplace transforms; DTFS and Fourier series; DTFT
and Fourier transform.

• The FFT is a fast algorithm for computing the DFT.

Mathematical and Physical Models
Convolution

y[n] = h[n] ∗ x[n] =
∞∑

i=−∞
h[n− i] x[i]

Frequency Response

H(ej�) = ∑∞
n=−∞ h[n] e−j�n

ej�n LTI H(ej�) ej�n

ZZZ[x[n]] = X(z) =
∞∑
n=0

x[n] z−n

DTFS

x[n] =
N0−1∑
k=0

xkejk�0n, n = 0, 1, . . . , N0 − 1

xk = 1

N0

N0−1∑
n=0

x[n] e−jk�0n, k = 0, 1, . . . , N0 − 1

DTFT

X(ej�) =
∞∑

n=−∞
x[n] e−j�n, x[n] = 1

2π

�1+2π∫
�1

X(ej�) ej�n d�

DFT

X[k] =
N0−1∑
n=0

x[n] e−jk�0n, k = 0, 1, . . . , N0 − 1, �0 = 2π/N0

A cos(�n+ φ) LTI AM(ej�) cos(�n+ φ + θ), θ = H(ej�)

Important Terms Provide definitions or explain the meaning of the following terms:

ARMA
AR (autoregressive)
brackets notation
convolution
decimation
delay
DFT
DTFS

DTFT
difference equation
discrete time
downsampling
FFT
fundamental angular frequency
fundamental period
geometric signal

impulse response
MA (moving average)
MAD
magnitude response
oversampling
Parseval’s theorem
poles
recursive

right shift
sampling property
signal flow graph
transfer function
truncating
windowing
z-transform
zeros
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PROBLEMS

Section 7-2: Signals and Functions

7.1 Convert each signal to the form {a, b, c, d, e}.
(a) u[n] − δ[n− 3] − u[n− 4]
(b) n u[n] − n u[n− 5]

∗(c) u[n− 1] u[4 − n]
(d) 2δ[n− 1] − 4δ[n− 3]

7.2 Convert each signal to the form {a, b, c, d, e}.
∗(a) u[n] − u[n− 4]
(b) u[n] − 2u[n− 2] + u[n− 4]
(c) n u[n] − 2(n− 2) u[n− 2] + (n− 4) u[n− 4]
(d) n u[n] − 2(n− 1) u[n− 1] + 2(n− 3) u[n− 3]

− (n− 4) u[n− 4]
7.3 Compute the fundamental periods and fundamental
angular frequencies of the following signals:

(a) 7 cos(0.16πn+ 2)

(b) 7 cos(0.16n+ 2)

(c) 3 cos(0.16πn+ 1)+ 4 cos(0.15πn+ 2)

7.4 Compute the fundamental periods and fundamental
angular frequencies of the following signals:

(a) 3 cos(0.075πn+ 1)
∗(b) 4 cos(0.56πn+ 0.7)

(c) 5 cos(
√

2 πn− 1)

Section 7-3 and 7-4: Discrete-Time LTI Systems

7.5 Which of the following systems is (i) linear and (ii) time-
invariant?

(a) y[n] = n x[n]
(b) y[n] = x[n] + 1

(c) y[n] + 2y[n− 1] = 3x[n] + nx[n− 1]
(d) y[n] + 2y[n− 1] = 3x[n] + 4x[n− 1]

7.6 An ideal digital differentiator is described by the system

y[n] = (x[n+ 1] − x[n− 1])− 1
2 (x[n+ 2] − x[n− 2])

+ 1
3 (x[n+ 3] − x[n− 3])+ · · ·

(a) Is the system LTI?

(b) Is it causal?

∗
Answer(s) in Appendix F.

(c) Prove it is not BIBO stable.

(d) Provide a bounded input x[n] that produces an unbounded
output y[n].

7.7 The following two input-output pairs are observed for a
system known to be linear:

• {1, 2, 3} Linear {1, 4, 7, 6}

• δ[n] Linear {1, 3}

Prove the system is not time-invariant. (Hint: Prove this by
contradiction.)

7.8 The following two input-output pairs are observed for a
system known to be linear:

• {1, 1} Linear {5, 6}

• δ[n] Linear {1, 3}

Prove the system is not time-invariant.

Section 7-5: Discrete-Time Convolution

7.9 Compute the following convolutions:

(a) {1, 2} ∗ {3, 4, 5}
(b) {1, 2, 3} ∗ {4, 5, 6}

∗(c) {2, 1, 4} ∗ {3, 6, 5}
7.10 Compute the following convolutions:

(a) {3, 4, 5} ∗ {6, 7, 8}
(b) {1, 2,−3} ∗ u[n]
(c) {3, 4, 5} ∗ (u[n] − u[n− 3])
(d) {1, 2, 4} ∗ 2δ[n− 2]

7.11 If {1, 2, 3} ∗ x[n] = {5, 16, 34, 32, 21}, compute x[n]
without using z-transforms.

7.12 Given that

{1, 2, 3} System {1, 4, 7, 6}

for a system known to be LTI, compute the system’s impulse
response h[n] without using z-transforms.

7.13 Given the two systems connected in series as

x[n] h1[n] w[n] = 3x[n] − 2x[n− 1],
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and

w[n] h2[n] y[n] = 5w[n] − 4w[n− 1],

compute the overall impulse response.

7.14 The two systems

y[n] = 3x[n] − 2x[n− 1]

and
y[n] = 5x[n] − 4x[n− 1]

are connected in parallel. Compute the overall impulse
response.

Sections 7-6 and 7-7: z-Transforms

7.15 Compute the z-transforms of the following signals. Cast
your answer in the form of a rational fraction.

(a) (1 + 2n) u[n]
(b) 2nu[n] + 3nu[n]
(c) {1,−2} + (2)nu[n]
(d) 2n+1 cos(3n+ 4) u[n]

7.16 Compute the z-transforms of the following signals. Cast
your answer in the form of a rational fraction.

(a) n u[n]
(b) (−1)n3−n u[n]
(c) u[n] − u[n− 2]

Section 7-8: Inverse z-Transforms

7.17 Compute the inverse z-transforms.

(a)
z + 1

2z

(b)
z − 1

z − 2

(c)
2z + 3

z2(z + 1)

(d)
z2 + 3z

z2 + 3z + 2

∗(e)
z2 − z

z2 − 2z + 2

7.18 Compute the inverse z-transforms.

(a)
4z

z − 1
+ 5z

z − 2
+ 6z

z − 3

(b)
(1 + j)z

z − (3 + 4j)
+ (1 − j)z

z − (3 − 4j)
.

Simplify to a geometric-times-sinusoid function.

(c)
(3 + j4)z

z − (1 + j)
+ (3 − j4)z

z − (1 − j)
+ (1 + j)z

z − (3 + j4)

+ (1 − j)z
z − (3 − j4)

.

Simplify to a sum of two geometric-times-sinusoids.

(d)
8z

z2 − 6z + 25

Section 7-9: Solving Difference Equations

7.19 Use the one-sided z-transform to solve

y[n] − 5y[n− 1] + 6y[n− 2] = 4u[n]

with initial conditions y[−1] = y[−2] = 1.

7.20 The sequence of Fibonacci numbers y[n] is
{1, 1, 2, 3, 5, 8, 13, 21, . . . }. Each Fibonacci number is
the sum of the two previous Fibonacci numbers. Use the one-
sided z-transform to derive an explicit closed-form expression
for y[n]. Show that for n > 3 the ratio y[n+ 1]/y[n] is equal
to (1 + √

5)/2 ≈ 1.618, which is called the golden ratio.

7.21 Given

{1, 3, 2} y[n] + 2y[n− 1] = 4x[n] + 5x[n− 1] y[n],

compute the output y[n].
7.22 Show that the discrete-time sinusoid

y[n] = cos(�0n) u[n]

can be generated using the simple difference equation

y[n] − 2 cos(�0) y[n− 1] + y[n− 2] = 0

initialized using

y[−1] = cos(�0) and y[−2] = cos(2�0).

This is useful for simple DSP chips that do not have a
built-in cosine function, since the constant cos(�0) can be
precomputed.



“book” — 2016/3/14 — 13:47 — page 417 — #72

PROBLEMS 417

Sections 7-10 and 7-11: Transforms and BIBO Stability

∗7.23 The step response (to u[n]) of an LTI system is known
to be 2u[n] + (−2)n u[n]. Compute the following:

(a) The transfer function H(z).

(b) The poles and zeros.

(c) The impulse response h[n].
(d) The difference equation.

7.24 An LTI system has zeros {3, 4} and poles {1, 2}. The
transfer function H(z) has H(0) = 6. Compute the following:

(a) The transfer function H(z).

(b) The response to x[n] = {1,−3, 2}.
(c) The impulse response h[n].
(d) The difference equation.

7.25 An LTI system has the transfer function

H(z) = (z − 1)(z − 6)

(z − 2)(z − 3)
.

Compute the following:

(a) The zeros and poles. Is the system stable?

(b) The difference equation.

(c) The response to input x[n] = {1,−5, 6}.
(d) The impulse response h[n].

7.26 An LTI system has the transfer function

H(z) = z
(z − 1)(z − 2)

.

Compute the following:

(a) The zeros and poles. Is the system stable?

(b) The difference equation.

(c) The response to input x[n] = {2,−6, 4}.
(d) The response to input x[n] = {1,−1}.
(e) The impulse response h[n].

7.27 Multichannel blind deconvolution. We observe the two
signals:

y1[n] = {1,−13, 86,−322, 693,−945, 500},
y2[n] = {1,−13, 88,−338, 777,−1105, 750},

where y1[n] = h1[n] ∗ x[n], y2[n] = h2[n] ∗ x[n], and all of
{ h1[n], h2[n], and x[n] } are unknown! We know only that
all of the signals have finite lengths, are causal, and x[0] = 1.
Compute h1[n], h2[n], and x[n]. Hint: Use z-transforms and
zeros.

Section 7-12: Frequency Response

7.28 Compute H(ej�) for the system

y[n] + y[n− 2] = x[n] − x[n− 2].
Simplify your answer as much as possible.

7.29 Given

cos
(π

2
n
)

y[n] = x[n] + 0.5x[n− 1] + x[n− 2] y[n],

∗(a) Compute the frequency response H(ej�).

(b) Compute the output y[n].
7.30 Given

cos
(π

2
n
)

y[n] = 8x[n] + 3x[n− 1] + 4x[n− 2] y[n],

(a) Compute the frequency response H(ej�).

(b) Compute the output y[n].
7.31 If input x[n] = cos(π2 n)+ cos(πn), and

x[n] y[n] = x[n] + x[n− 1] + x[n− 2] + x[n− 3] y[n],

(a) Compute the frequency response H(ej�).

(b) Compute the output y[n].
7.32 If input x[n] = 1 + 2 cos(π2 n)+ 3 cos(πn), and

x[n] y[n] = x[n] + 4x[n− 1] + 3x[n− 3] y[n],

(a) Compute the frequency response H(ej�).

(b) Compute the output y[n].
7.33 If

x[n] = 3 + 4 cos(
π

2
n+ π

4
)

y[n] + y[n− 1] = x[n] − x[n− 1]

y[n],
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(a) Compute the frequency response H(ej�).
(b) Compute the output y[n].

7.34 If input x[n] = 9 + 2 cos(π2 n)+ 3 cos(πn), and

x[n] 5y[n] + 3y[n− 1] + y[n− 2]
= 7x[n] + 6x[n− 1] − x[n− 2] y[n].

(a) Compute the frequency response H(ej�).
(b) Compute the output y[n].

7.35 If x[n] = 4 + 3 cos(π3 n)+ 2 cos(π2 n), and

x[n] y[n] + 2y[n− 1] + y[n− 2]
= x[n] + x[n− 1] + x[n− 2] y[n],

(a) Compute the frequency response H(ej�). Simplify your
answer as much as possible.

(b) Compute the output y[n].
∗7.36 If x[n] = cos(2π3 n)+ cos(π2 n), and

x[n] y[n] + ay[n− 1] =
x[n] + bx[n− 1] + x[n− 2] y[n],

for what constants a and b is y[n] = sin(π2 n)?

7.37 Given the system:

y[n] = 0.5x[n] + 0.29(x[n+ 1] + x[n− 1])
− 0.042(x[n+ 3] + x[n− 3])
+ 0.005(x[n+ 5] + x[n− 5]),

(a) Compute an expression for H(ej�). Express it as a sum of
3 cosines and a constant.

(b) Plot |H(ej�)| at � = 2πk
200 , 0 ≤ k ≤ 99.

(c) Describe in words what function the system performs on
x[n].

7.38 A system has 2N poles {pi ,p∗
i , i = 1, . . . , N} in com-

plex conjugate pairs, and 2N zeros {1/pi , 1/p∗
i , i = 1, . . . , N}

in complex conjugate pairs at reciprocals of {pi ,p∗
i }. Show that

the gain |H(ej�)| of the system is constant for all �. This is
an all-pass system. All-pass systems are used to alter a filter’s
phase response without affecting its gain. Hint: For any complex
number z = |z|ejθ , the ratio

z
z∗ = |z|ejθ

|z|e−jθ = ej2θ

has magnitude 1.

Section 7-13: DTFS

7.39 Given:

x[n] = {. . . , 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, . . . },
compute its DTFS expansion.

7.40 Given:

x[n] = {. . . , 3,−1,−1,−1, 3,−1,−1,−1, . . . },
compute its DTFS expansion.

7.41 Given:

x[n] = {. . . , 18, 12, 6, 0, 6, 12, 18, 12, 6, 0, 6, 12, 18, . . . },

(a) Compute its DTFS expansion. (Hint: x[n] has period = 6,
is real, and is an even function.)

(b) Compute its average power in the time domain.

(c) Compute its average power in the frequency domain.

7.42 The goal of this problem is to show how the
conjugate symmetry relation x−k = x∗

k can greatly simplify the
computation of DTFS from its coefficients.

Let x[n] have a DTFS with coefficients

xk = cos(πk/4)+ sin(3πk/4).

Note that xk are real-valued, but not a symmetric function of
index k.

(a) Explain why x[n] has period N0 = 8.

(b) Compute the real part of x[n] from the symmetric
component of xk .

(c) Compute the imaginary part of x[n] from the antisymmet-
ric component of xk .

(d) Compute the average powers in the time and frequency
domains. Confirm that they agree.

7.43 Given input:

x[n] = {. . . , 4,−2, 0,−2, 4,−2, 0,−2, 4,−2, 0,−2, . . . },
and system impulse response h[n] = sin(πn/3)/(πn), com-
pute output y[n].

∗7.44 Given input x[n] and output y[n]:
x[n] = {. . . , 4, 2, 1, 0, 4, 2, 1, 0, 4, 2, 1, 0, . . . },
y[n] = {. . . , 10, 4, 10, 4, 10, 4, . . . },

and system impulse response h[n] = {a, b, c}, determine the
values of a, b, and c.
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Section 7-14: DTFT

7.45 Compute the DTFTs of the following signals (simplify
answers to sums of sines and cosines).

(a) {1, 1, 1, 1, 1}
(b) {3, 2, 1}

7.46 Compute the inverse DTFT of

X(ej�) = [3+2 cos(�)+4 cos(2�)]+j [6 sin(�)+8 sin(2�)].

7.47 Compute the inverse DTFT of

X(ej�) = [7 + 5 cos(�)+ 3 cos(2�)] + j [sin(�)+ sin(2�)].

7.48 Use inverse DTFTs to evaluate these integrals.

(a)
1

2π

π∫
−π

ej�ej3�

ej� − 1
2

d�

(b)
1

2π

π∫
−π

ej3�2 cos(3�) d�

7.49 Given x[n] = {1, 4, 3, 2, 5, 7,−45, 7, 5, 2, 3, 4, 1},
compute the following:

(a) X(ejπ )

(b) X(ej�)

(c)
∫ π
−π X(ej�) d�

(d)
∫ π
−π |X(ej�)|2 d�

Section 7-15: DFT

7.50 Compute the DFTs of each of the following signals:
∗(a) {12, 8, 4, 8}
(b) {16, 8, 12, 4}

7.51 Determine the DFT of a single period of each of the
following signals:

(a) cos(π4 n)

(b) 1
4 sin( 3π

4 n)

7.52 Compute the inverse DFTs of the following:

(a) {0, 0, 3, 0, 4, 0, 3, 0}
(b) {0, 3 + j4, 0, 0, 0, 0, 0, 3 − j4}

7.53 Use DFTs to compute the convolution

{1, 3, 5} ∗ {7, 9}.

7.54 Let x[n] have even duration N and half-wave
antisymmetry x[n+N

2 ] = −x[n]. An example of half-wave
antisymmetry is x[n] = { 3, 1, 4, 2,−3,−1,−4,−2 }. Show
that the DFT X[k] of x[n] is 0 for even integers k using:

(a) The definition of the DFT.

(b) The decimation-in-frequency FFT.

7.55 An important application of the FFT is to compute
the cyclic convolution y[n] = h[n] c© x[n], because the linear
convolution y[n] = h[n]∗x[n] can be computed from the cyclic
convolution of zero-padded h[n] and x[n]. Then, y[n] can be
computed from

y[n] = DFT−1{DFT{h[n]} · DFT{x[n]}},

which requires computation of two DFTs and one inverse DFT.
Show that the DFTs of two real-valued signals h[n] and x[n]
can be determined from the single DFT of the complex-valued
signal z[n] = h[n] + jx[n], using conjugate symmetry.
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Objectives

Learn to:

� Design discrete-time filters, including notch and
comb filters.

� Perform discrete-time filtering and deconvolution
using the discrete Fourier transform.

� Compute the spectra of both periodic and
nonperiodic discrete-time signals.

� Perform deconvolution using real-time signal
processing.

31
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n

In real-time signal processing the output signal is generated
from the input signal as it arrives, using an ARMA difference
equation. In batch signal processing, a previously digitized
and stored signal can be processed in its entirety, all at once.
This chapter presents examples of how noise filtering and other
applications are performed in discrete time.
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Overview
Chapters 4, 6, and 8 share a common feature: Each covers
applications that demonstrate the utility of the theoretical
concepts introduced in the chapters that preceded it. Chapter 4
focused on applications of the Laplace transform, and Chapter 6
did likewise for the Fourier transform. Both dealt exclusively
with continuous-time signals. Chapter 8 is the analogue to the
combination of Chapters 4 and 6, but for discrete-time signals.

The material covered in Chapter 8 consists of four core topics.

(1) Discrete-time filtering: This topic includes the design and
implementation of general highpass, lowpass, bandpass, and
bandreject filters, as well as specialized filters that perform
deconvolution (“undoing” convolution) and dereverberation
(removing echoes).

(2) Batch signal processing: By storing the entire signal
digitally prior to signal processing, it is possible to process
the entire signal all at once, and to do so to both causal and
noncausal signals.

(3) Bilateral z-transforms: By allowing noncausal systems
with noncausal, but one-sided impulse responses, deconvolu-
tion of non-minimum-phase systems can be performed.

(4) Computing spectra of continuous-time signals: The
discrete Fourier transform (DFT) and the fast Fourier transform
(FFT) algorithm are used as computational tools to compute the
spectra of periodic and nonperiodic continuous-time signals.

� Unless stated to the contrary, all systems considered in
this chapter are assumed to be causal. �

8-1 Discrete-Time Filters
In our examination of continuous-time filters in Chapter 6, we
noted that the filter’s frequency response is governed by the
proximity of the locations of the poles and zeros of its transfer
function H(s) to the vertical axis in the s-plane. Also, BIBO
stability requires that the poles reside in the open left half-plane.
A similar notion applies to discrete-time filters, except that the
reference boundary is the unit circle defined by |z| = 1. The
poles of H(z) must reside inside the unit circle, and the shape
of the frequency response H(ej�) is dictated by the locations
of the poles and zeros of H(z) relative to the unit circle.

8-1.1 Roles of Poles and Zeros of H(z)

The transfer function of an LTI system with zeros
{zi , i = 1, 2, . . . ,M} and poles {pi , i = 1, 2, . . . , N}
is given by Eq. (7.115) as

H(z) = C(z − z1)(z − z2) · · · (z − zM)
(z − p1)(z − p2) · · · (z − pN)

, (8.1)

z = e jΩ

Ω = 0Ω = π
Ω

j1

−j1

Unit circle

−1 1

Figure 8-1: z = ej� is located on the unit circle at polar angle�.

where C is a constant. Replacing z with ej� gives the frequency
response

H(ej�) = C(ej� − z1)(e
j� − z2) · · · (ej� − zM)

(ej� − p1)(ej� − p2) · · · (ej� − pN)
. (8.2)

Figure 8-1 displays the unit circle in the z-plane. Because

|ej�| = 1 and ej� = �, (8.3)

setting z = ej� implicitly defines a point in the polar z-plane
whose radius is 1 and polar angle is�. Thus, replacing z in H(z)
with ej� is equivalent to placing z on the unit circle at angle�.
Point (1 + j0) in the z-plane corresponds to angular frequency
� = 0, and point (−1 + j0) corresponds to� = π . Increasing
the angular frequency of the frequency response H(ej�) is
equivalent to moving point ej� in Fig. 8-1 counterclockwise
along the unit circle.

To develop a qualitative understanding of the expression
given by Eq. (8.2), let us consider a simple LTI system
characterized by a frequency response that has one zero at
(−1 + j0) and two poles, as shown in Fig. 8-2. Unless they
reside along the real axis, the poles and zeros of a physically
realizable system always occur in complex conjugate pairs.
Hence, in the present case, p2 = p∗

1.Also, let us assume constant
C = 1. From Fig. 8-2,

ej� − z1 = l1e
jψ1 ,

ej� − p1 = d1e
jδ1 ,



“book” — 2016/3/15 — 6:30 — page 422 — #3

422 CHAPTER 8 APPLICATIONS OF DISCRETE-TIME SIGNALS AND SYSTEMS

e jΩ

e jΩ1

Ω
Ω1

j1

−j1

−1 1
ψ1

d2

d1

l1

δ1

δ2

p1

p2

z1

Figure 8-2: Locations of zero z1 and conjugate poles p1 and p2,
relative to ej�.

and
ej� − p2 = d2e

jδ2 ,

where l1, d1, and d2 are the distances between the “observation
point” ej� on the unit circle and the locations of the zero and
two poles, and ψ1, δ1, and δ2, are the associated angles. Hence,
H(ej�) is given by

H(ej�) = ej� − z1

(ej� − p1)(ej� − p2)

= l1

d1d2
ej (ψ1−δ1−δ2) = M(ej�) ejθ(e

j�) (8.4)

with

M(ej�) = l1

d1d2
, (8.5a)

θ(ej�) = ψ1 − δ1 − δ2. (8.5b)

The magnitude and phase spectra of H(ej�) are generated by
moving ej� from (1 + j0), corresponding to � = 0, all the
way around the unit circle, all the while computing M(ej�)
and θ(ej�) as functions of �. Since for a physically realizable
system the poles and zeros either lie on the real axis or exist in
conjugate pairs, their locations create an inherently symmetrical
arrangement with respect to ej� and e−j�. Consequently,

� • H(ej�) is periodic in � with period 2π .

• Its magnitude M(ej�) is an even function:
M(ej�) = M(e−j�).

• Its phase θ(ej�) is an odd function:
θ(ej�) = −θ(e−j�). �

In Fig. 8-2, zero z1 is located on the unit circle at � = π . This
means that l1 = 0 when� = π , creating a null in the spectrum
of H(ej�) at that frequency. Similarly, had the zero been located
on the unit circle at an angle �1 instead, H(ej�) would have
exhibited a null at �1.

Whereas zeros generate nulls in the spectrum, poles generate
peaks. A pole located close to the unit circle along a
direction �1, for example, would cause a peak in the spectrum
at � = �1. In summary:

� • A zero of H(z) located near (or on) the unit circle
at z = ej�1 leads to a dip (or null) in the magnitude
spectrum M(ej�) at � = �1.

• A pole of H(z) located near the unit circle at z = ej�2

leads to a peak in the magnitude spectrum M(ej�)

at � = �2.

• Multiple poles or multiple zeros at the same location
generate magnitude spectra with steeper slopes. �

We will now explore the utility of these pole-zero properties for
several types of filters.

8-1.2 Lowpass Filter

Let us consider a simple lowpass filter whose transfer function
has one conjugate pair of poles and one conjugate pair of zeros.
To emphasize low frequencies, which lie on the right half of the
unit circle, we place poles at 0.5e±j60◦

, as shown in Fig. 8-3(a).
By the same logic, to dampen the magnitude of the frequency
response at high frequencies, we place zeros in the left half of
the circle, at 1e±j139◦

. Inserting these values in Eq. (8.2) with
C = 1 gives

H(ej�) = (ej� − ej139◦
)(ej� − e−j139◦

)

(ej� − 0.5ej60◦
)(ej� − 0.5e−j60◦

)
. (8.6)

The magnitude spectrum displayed in Fig. 8-3(b) was generated
by computing M(ej�) = |H(ej�)| at multiple values of �
between 0 and π . Since M(ej�) is an even function, it is
sufficient to display it over 0 ≤ � ≤ π . The general shape of
the magnitude spectrum does indeed resemble that of a lowpass
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(a) Poles @ 0.5e ± j60° and zeros @ 1e ± j139°

(b) Magnitude responses

5

4

3

2

1

0 Ω

M(e jΩ)

π
4

π
2

3π π
4

d2

d1

e jΩ

Ω

j1

−j1

z1 = 1e j139°

z2 = 1e −j139°

p2 = 0.5e −j60°

−1 1

p1

l2

l1

Figure 8-3: Lowpass filter with conjugate poles at 0.5e±j60◦

and zeros at 1e±j139◦
.

filter, albeit not a steep one. A spectrum with a steeper slope
requires more poles and/or zeros.

Note that in Fig. 8-3(b), the magnitude at � = 0 is 4.7,
corresponding to setting� = 0 in Eq. (8.6) and then computing
the absolute value of H(ej�). The scaling constant C had been
set to 1. By choosing a different value for C, we can scale the

vertical axis in Fig. 8-3(b) to suit the intended application. For
example, setting C = 1/4.7 leads to a magnitude spectrum with
a dc value of 1.

Example 8-1: Half-Band Lowpass Filter

A half-band lowpass filter passes discrete-time signals with
angular frequencies below π/2 and rejects signals with angular
frequencies above π/2. For such a filter with:

• Zeros: {e±jπ/2, e±j3π/4, ejπ },
• Poles: {0.6, 0.8e±jπ/4, 0.8e±jπ/2},

Obtain (a) its H(z), (b) its difference equation, and (c) generate
a plot of its magnitude spectrum M(ej�). Assume C = 1.

Solution:
(a) The transfer function has five equally spaced zeros on the

left half of the unit circle, and five poles at their mirror angles
near the right half of the circle (but with varying radii). The
locations of all ten poles and zeros are mapped in Fig. 8-4(a).

The filter transfer function H(z) is obtained by inserting the
specified values for the poles and zeros in Eq. (8.1) with C = 1.
The process leads to

H(z) = [
(z − ejπ/2)(z − e−jπ/2)(z − ej3π/4)

· (z − e−j3π/4)(z − ejπ )
]

· [(z − 0.6)(z − 0.8ejπ/4)(z − 0.8e−jπ/4)(z − 0.8ejπ/2)

· (z − 0.8e−jπ/2)
]−1

.

After a few simple steps of algebra, the expression reduces to

H(z) = z5 + 2.414z4 + 3.414z3 + 3.414z2 + 2.414z + 1

z5 − 1.73z4 + 1.96z3 − 1.49z2 + 0.84z − 0.25
.

(8.7)
(b) Noting that H(z) = Y(z)/X(z), the difference equation

can be obtained formally by rearranging Eq. (8.7) in powers
of z−1, cross multiplying, and then inverse z-transforming to
discrete time, or it can be obtained informally by simply reading
off the coefficients of the numerator and denominator. Either
approach leads to

y[n] − 1.73y[n− 1] + 1.96y[n− 2] − 1.49y[n− 3]
+ 0.84y[n− 4] − 0.25y[n− 5]

= x[n] + 2.414x[n− 1] + 3.414x[n− 2]
+ 3.414x[n− 3] + 2.414x[n− 4] + x[n− 5]. (8.8)
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(b) Magnitude response

(a) Pole-zero diagram
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M(e jΩ)
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Figure 8-4: Pole-zero diagram and magnitude spectrum of the
half-band lowpass filter of Example 8-1.

The ARMA difference equation is initialized with y[n] = 0
for n < 5. The first recursion computes y[5] from inputs
{ x[0], . . . , x[5] }.

(c) Figure 8-4(b) displays the magnitude spectrumM(ej�),
obtained by replacing z with ej� in Eq. (8.7) and then
computing M(ej�) for various values of � over the range
0 ≤ � ≤ π . (See S2 for more details.)
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M(e jΩ)

(b) Magnitude response

(a) Poles @ 0.5e ± j139° and zeros @ 1e ± j60°

Figure 8-5: Highpass filter with complex conjugate poles at
0.5e±j139◦

and zeros at 1e±j60◦
.

8-1.3 Highpass Filter

Reversing the angular locations of the poles and zeros of the
lowpass filter configuration shown earlier in Fig. 8-3 leads to a
highpass filter with the magnitude spectrum shown in Fig. 8-5.
By the same token, if the poles and zeros of the half-band low-
pass filter shown in Fig. 8-4(a) were to be moved to their mirror
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image locations relative to the imaginary axis, the lowpass-filter
spectrum would become a half-band highpass-filter spectrum.

8-1.4 Bandpass Filter

Placing conjugate poles along the vertical axis, close to the
unit circle, generates a simple bandpass filter, as shown in
Fig. 8-6. The location of the peak corresponds to the angles
of the conjugate poles.

(a) Poles at ± j0.95

(b) Magnitude spectrum
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M(e jΩ)
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π
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3π π
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Ω

Figure 8-6: Bandpass filter consisting of complex conjugate
poles at ±j0.95.

8-1.5 Bandreject Filter

To create a bandreject filter, we need a configuration with
zeros placed in the part of the spectrum where the rejection
band is intended to be. In Fig. 8-7(a), four zeros are used,
a pair at 1e±j72◦

and another at 1e±j108◦
. The result is a
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(a) Zeros @ 1e ± j72° and @ 1e ± j108°

(b) Magnitude spectrum

e j72°e j108°

e −j108° e −j72°

Figure 8-7: Bandreject filter with zeros at 1e±j72◦
and

1e±j108◦
.
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Module 8.1 Discrete-Time Frequency Response from Poles and Zeros This module allows the user to specify
locations of up to 6 complex conjugate pairs of poles and zeros, and computes the discrete-time frequency response of the
resulting system. This is useful for discrete-time filter design.

magnitude spectrum (Fig. 8-7(b)) that has nulls at values
of � corresponding to ±72◦ and ±108◦, and an overall shape
resembling that of a bandreject filter.

Concept Question 8-1: For the half-band filter, why are
the zeros equally spaced on the unit circle? (See        )

Exercise 8-1: Obtain the transfer function of a BIBO-
stable, discrete-time lowpass filter consisting of a single
pole and a single zero, given that the zero is on the unit
circle, the pole is at a location within 0.001 from the unit
circle, and the dc gain at � = 0 is 1.

Answer: H(z) = 0.0005(z + 1)/(z − 0.999). (See S2 )

Exercise 8-2: Use LabVIEW Module 8.1 to replicate the
result of Section 8-1.2 and produce Fig. 8-3.

Answer:
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Exercise 8-3: Use LabVIEW Module 8.1 to replicate
Example 8-1 and produce Fig. 8-4.

Answer:

8-2 Notch Filters

Continuous-time notch filters were discussed at length in
Chapter 6. The present section provides a parallel treatment for
discrete-time notch filters. In both cases, the goal is to design a
filter that can eliminate an interfering sinusoid of frequency
fi Hz from a signal x(t), while leaving other frequency
components of x(t) (almost) unaffected.

In the discrete-time case, signal x(t) is sampled every Ts
seconds (at a sampling rate fs = 1/Ts samples per second)
to generate x[n] = x(nTs). The same process holds for the
interfering sinusoid xi(t). Thus, if

xi(t) = A cos(2πfit + φ) (8.9)

is sampled at t = nTs, we obtain the discrete form

xi[n] = A cos(2πfi(nTs)+ φ) = A cos(�in+ φ), (8.10)

where �i is the discrete-time angular frequency of the
interfering sinusoid, defined as

�i = 2πfiTs = 2πfi

fs
. (8.11)

To remove a sinusoid at angular frequency �i, the filter’s
transfer function H(z) should have zeros at e±j�i . Furthermore,
to minimize the impact of the two zeros on other frequencies,
the transfer function should have two poles at ae±j�i , with a
chosen to be slightly smaller than 1. Closely placed pole/zero
pairs effectively cancel each other at frequencies not close to�i.
By choosing a < 1, we ensure BIBO stability of the filter.

With these poles and zeros, H(z) is given by

H(z) = (z − ej�i)(z − e−j�i)

(z − aej�i)(z − ae−j�i)
= z2 − 2z cos�i + 1

z2 − 2az cos�i + a2 .

(8.12)
Application of partial fraction expansion leads to the impulse
response

h[n] = ZZZ
−1[H(z)] = δ[n] +Kan cos(�in+ φ′) u[n− 1],

(8.13)
where constants K and φ′ are functions of a and �i. As in the
continuous case, a is a trade-off parameter between resolution
(sharpness of the dip of H(ej�) at�i) and the duration of h[n].

Implementation of the notch filter is realized using a
difference equation, obtained by: (1) rearranging the numerator
and denominator of H(z) in powers of z−1,

Y(z)
X(z)

= z2 − 2z cos�i + 1

z2 − 2az cos�i + a2 = 1 − 2z−1 cos�i + z−2

1 − 2az−1 cos�i + a2z−2 ,

(2) cross-multiplying to get

Y(z)[1−2az−1 cos�i+a2z−2] = X(z)[1−2z−1 cos�i+z−2],

and (3) inverse z-transforming to discrete time,

y[n] − 2a cos�i y[n− 1] + a2 y[n− 2]
= x[n] − 2 cos�i x[n− 1] + x[n− 2]. (8.14)

According to Eq. (8.14), the notch filter is implemented as a
linear combination of the present input and the two most recent
inputs and outputs. Note that the coefficients of the ARMA
difference equation can be read off directly from the expression
of H(z).

Example 8-2: Notch-Filter Design I

Signal x(t) = sin(250πt)+ sin(400πt) is the sum of two
sinusoids, one at f1 = 125 Hz and another at f2 = 200 Hz. The
signal is sampled by a digital signal processing (DSP) system
at 1000 samples per second. Design a notch filter with a = 0.9
to reject the 200 Hz sinusoid, compare the input and output
signals, and plot the filter’s magnitude frequency response.

Solution: At fs = 1000 samples/s, Ts = 1/fs = 10−3 s, and
the angular frequency of the sinusoid to be rejected is

�2 = 2πf2Ts = 2π × 200 × 10−3 = 0.4π.
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With �i = �2 = 0.4π and a = 0.9, Eq. (8.12) becomes

H(z) = z2 − 2z cos�2 + 1

z2 − 2az cos�2 + a2

= z2 − 2z cos(0.4π) + 1
z2 − 2 × 0.9z cos(0.4π)+ (0.9)2

= z2 − 0.62z + 1

z2 − 0.56z + 0.81
. (8.15)

By reading off the coefficients of the numerator and
denominator, we obtain the ARMA difference equation

y[n] − 0.56y[n− 1] + 0.81y[n− 2]
= x[n] − 0.62x[n− 1] + x[n− 2].

The input, x[n], is the sampled version of signal x(t), namely,

x[n] = sin(�1n)+ sin(�2n),

with �1 = 0.25π and �2 = 0.4π . The corresponding filtered
output is y[n]. The process can be initiated by setting
y[−2] = y[−1] = x[−2] = x[−1] = 0. From Eq. (8.13), we
see that the non-impulse term decays as an = 0.9n. At n = 30
(which occurs at 30 ms because the sampling interval is
1 ms), (0.9)30 ≈ 0.04, which means that by then, the transient
component of the output signal has essentially concluded.
Figure 8-8 displays plots of x[n] and y[n], starting at n = 31,
thereby avoiding the transient part of the output signal. We
observe that y[n] is clearly a single sinusoid; the notch filter
has indeed filtered out the 200 Hz sinusoid.

The frequency response of the notch filter, H(ej�), is
obtained from Eq. (8.15) by setting z = ej�,

H(ej�) = ej2� − 0.62ej� + 1

ej2� − 0.56ej� + 0.81
.

At the two ends of the spectrum, namely at � = 0 and π ,

H(ej0) = 1 − 0.62 + 1

1 − 0.56 + 0.81
= 1.104

and
H(ejπ ) = 1 + 0.62 + 1

1 + 0.56 + 0.81
= 1.105.

The magnitude of an ideal notch filter should be 1 at frequencies
away from the notch frequency �2 = 0.4π . Hence, we can
modify H(ej�) by multiplying it by 1/1.104. The magnitude
of the unmodified response is shown in Fig. 8-9. See S2 for
details.

Example 8-3: Notch Filter Design II

Design a discrete-time filter that fulfills the following
specifications:

(a) Input x[n]

(b) Filtered output y[n]

1.5

1
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−1.5
3531 40 45 50
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n

31

0

−0.5

0.5

1.0

−1
35 40 45 50

y[n]

n

Figure 8-8: Time waveforms of (a) the original and (b) filtered
signals of Example 8-2.

(1) It rejects 1000 Hz.

(2) Its magnitude response is 0.9 at both 900 Hz and 1100 Hz.

(3) Its magnitude response is greater than 0.9 outside the range
900 Hz < f < 1100 Hz.

(4) The magnitude at 0 Hz (dc) is 1.
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(a) Pole-zero diagram

(b) Magnitude response

−π 0.4π−0.4π π Ω

M(e jΩ)

0

1

0.8

0.6

0.4

0.2

e jΩ

Ω

j1

−j1

−1 1

0.9e −j0.4π

0.9e j0.4π

e −j0.4π

e j0.4π

Figure 8-9: Pole-zero diagram and magnitude response of notch
filter of Example 8-2.

The filter (intended for continuous-time signals that had been
sampled at 6000 samples/s) should use two poles and two zeros.

Solution: When sampled at a rate fs = 6000 samples/s,
a continuous-time sinusoidal signal of angular frequency ω
becomes a discrete-time sinusoid of angular frequency

� = ω

fs
= 2πf

fs
. (8.16)

Accordingly, the notch frequency fi = 1000 Hz corresponds to

�i = 2π × 1000

6000
= π

3
.

To reject a discrete-time sinusoid at �i, the filter’s transfer
function should have zeros at e±j�i and neighboring poles at
ae±j�i (Fig. 8-10(a)), with a close to but smaller than 1 to
ensure BIBO stability.

The frequency response of the notch filter, H(ej�), is
obtained from Eq. (8.12) by setting z = ej�. Thus,

H(ej�) = C
ej2� − ej� + 1

ej2� − aej� + a2 , (8.17)

where C, an as yet to be determined constant, has been
added as a multiplicative constant so as to satisfy the problem
specifications. One of the filter specifications states that
H(ej0) = 1, which requires

1 = C
1 − 1 + 1

1 − a + a2 ,

or
C = 1 − a + a2. (8.18)

The constant a is determined from the specification that
M(ej�) = 0.9 at f = 900 Hz and 1100 Hz or, equivalently,
at

�L = 2π
900

6000
= 0.3π (8.19a)

and

�H = 2π
1100

6000
= 0.367π. (8.19b)

Thus, the specifications require

0.9 = (1 − a + a2)

∣∣∣∣ ej0.6π − ej0.3π + 1

ej0.6π − aej0.3π + a2

∣∣∣∣ (8.20a)

and

0.9 = (1 − a + a2)

∣∣∣∣ ej0.734π − ej0.367π + 1

ej0.734π − aej0.367π + a2

∣∣∣∣ . (8.20b)

By trial and error, we find that a = 0.95 provides a satisfactory
solution. The corresponding magnitude response of the filter is
shown in Fig. 8-10(b). The horizontal axis was converted from
� to f using Eq. (8.16).

In conclusion, with a = 0.95 and

C = 1 − a + a2 = 1 − 0.95 + (0.95)2 = 0.953,
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(a) Pole and zero locations

(b) Magnitude spectrum
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Figure 8-10: Notch filter of Example 8-3.

replacing ej� with z in Eq. (8.17) leads to the notch filter
transfer function

H(z) = 0.953

(
z2 − z + 1

z2 − 0.95z + 0.9

)
.

The corresponding ARMA difference equation is

y[n] − 0.95y[n− 1] + 0.9y[n− 2]
= 0.953x[n] − 0.953x[n− 1] + 0.953x[n− 2].

Example 8-4: Trumpet Notch Filter

A signal generated by an actual trumpet playing note B (which
has frequency harmonics of 491 Hz) had an interfering 1200 Hz
sinusoid added to it. The trumpet-plus-sinusoid was sampled at
the standard CD sampling rate of 44,100 samples/s. Design
and implement a discrete-time notch filter to eliminate the
interfering sinusoid. Use a = 0.99.

Solution: At fs = 44, 100 samples/s, the angular frequency
of the interfering sinusoid is

�i = 2πfi

fs
= 2π × 1200

44, 100
= 0.171.

With zeros at e±j�i and poles at 0.99e±j�i , H(z) assumes the
form

H(z) = z2 − 2z cos(0.171)+ 1

z2 − 1.98z cos(0.171)+ (0.99)2
. (8.21)

The notch filter can be implemented by an ARMA difference
equation with coefficients read off H(z), namely

y[n] − 1.95y[n− 1] + 0.98y[n− 2]
= x[n] − 1.97x[n− 1] + x[n− 2].

The harmonics of the trumpet are at 491k (Hz), with
k = 1, 2, . . . , and their corresponding discrete-time angular
frequencies are

�t = 2π × 491k

44, 100
= 0.07k, k = 1, 2, . . . .

Figure 8-11 displays the magnitude spectra of (a) the trumpet
signal, (b) the interfering 1200 Hz sinusoid (with�i = 0.171),
and (c) the notch filter.

Comparison of the trumpet-plus-sinusoid waveforms, before
and after passing through the notch filter, is available in
Fig. 8-12. The filtering was performed in discrete time, then the
signal was reconstructed to continuous time. Also shown is the
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Figure 8-11: Spectra of trumpet signal, interfering sinusoid and
notch filter (Example 8-4).

original trumpet signal before adding the interfering sinusoid to
it. We observe that the signals in (b) and (c) of Fig. 8-12 are very
similar, yet both are very different in both scale and waveform
shape from the trumpet-plus-sinusoid signal in part (a) of the
figure. Thus, the notch filter did indeed recover the original
trumpet signal almost exactly.

As a final note, we should examine how long it takes
the transient component of the filter’s impulse response to
decay to a negligible level. The factor an = (0.99)n decays
to ≈ 0.04 if n = 315. In continuous time, this corresponds
to t = 315/(44, 100) = 0.007 s. Hence, the filter provides its
steady state response within 7 ms after the appearance of the
signal at its input terminals. (See S2 for more details.)

Concept Question 8-2: Where are the poles and zeros of
a discrete-time notch filter located? (See        )

Exercise 8-4: Determine the ARMA difference equation
for the notch filter that rejects a 250 Hz sinusoid. The
sampling rate is 1000 samples per second. Use a = 0.99.

Answer: y[n] + 0.98y[n− 2] = x[n] + x[n− 2].
(See S2 )

Exercise 8-5: Use LabVIEW Module 8.1 to replicate
Example 8-2 and produce the pole-zero and gain plots
of Fig. 8-9.

(a) Waveform of trumpet-plus sinusoid

(b) Waveform of notch-filtered trumpet-plus-sinusoid

(c) Waveform of original interference-free
trumpet signal.
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Figure 8-12: Comparison of signal waveforms: (a) trumpet-
plus-sinusoid xn(t), (b) y(t), the notch-filtered version of xn(t),
and (c) original interference-free trumpet signal x(t).

Answer:
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Module 8.2 Discrete-Time Notch Filter to Eliminate One of Two Sinusoids This module computes the sum of
two sinusoids at specified frequencies, and applies a notch filter to eliminate one of the sinusoids.

Module 8.3 Discrete-Time Notch Filter to Eliminate Sinusoid fromTrumpet Signal This module adds a sinusoid
with specified amplitude and frequency to a trumpet signal and uses a notch filter to eliminate the sinusoid. It also allows the
user to listen to the original, trumpet-plus-sinusoid, and filtered signals.
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Exercise 8-6: Use LabVIEW Module 8.2 to replicate Example 8-2 and produce the time waveforms of Fig. 8-8.

Answer:

Exercise 8-7: Use LabVIEW Module 8.3 to replicate Example 8-4 and produce the time waveforms of Fig. 8-12 (as stem
plots).

Answer:
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8-3 Comb Filters

The purpose of a comb filter is to remove periodic interference
from a signal. In continuous time, the periodic interference can
be expanded in a Fourier series. Hence, it can be eliminated
using a cascade (series connection) of notch filters, each of
which eliminates a single harmonic of the interfering signal.

After sampling, each harmonic of the interference becomes
a discrete-time sinusoid, which can be eliminated using a
discrete-time notch filter. Hence, the various harmonics of the
periodic interference again can be removed using a cascade of
notch filters—just as in continuous time.

We should note that a signal that is periodic in continuous
time with period T0 will not necessarily be periodic after
sampling, unless T0 is an integer multiple of the sampling
interval Ts. That is, periodicity in discrete time requires that

T0

Ts
= k, k = integer (8.22a)

or, equivalently,

fs

f0
= k, k = integer, (8.22b)

where fs = 1/Ts is the sampling rate and f0 = 1/T0 is the
frequency of the continuous-time periodic signal.

� In general, a sampled continuous-time periodic signal
is not periodic in discrete time. �

8-3.1 Cascaded Comb Filter

If the interfering signal is not periodic after sampling, the
comb filter should consist of a cascade of notch filters, as
discussed earlier, with each aimed at filtering one of the discrete-
time components of the sampled continuous-time harmonics.
The cascaded comb filter, demonstrated in Example 8-5, is
applicable whether or not the sampled interference is periodic.

8-3.2 Periodic Comb Filter

If Eq. (8.22) is true, the sampled signal will be periodic with
fundamental period N0 given by

N0 = fs

f0
= k. (8.23)

Whereas designing a comb filter as a cascade combination
of multiple notch filters is a perfectly acceptable approach, the
periodic nature of the interfering original offers an additional

approach characterized by the simple ARMA difference
equation given by

y[n] − aN0 y[n−N0] = x[n] − x[n−N0], (8.24)

(periodic comb filter)

where a is a selectable constant such that 0 < a < 1. The
z-transform of Eq. (8.24) is

Y(z)− aN0 z−N0 Y(z) = X(z)− z−N0 X(z), (8.25)

which leads to the transfer function

H(z) = Y(z)
X(z)

= 1 − z−N0

1 − aN0 z−N0
= zN0 − 1

zN0 − aN0
. (8.26)

The zeros of H(z) are

zk = {ej2πk/N0 , k = 0, 1, . . . , N0 − 1},
and its poles are

pk = {aej2πk/N0 , k = 0, 1, . . . , N0 − 1}.
The corresponding angular frequencies are

�k = 2πk

N0
, k = 0, 1, . . . , N0 − 1. (8.27)

Implementation of this type of periodic comb filter is illustrated
in Examples 8-5 and 8-6.

Example 8-5: Comb Filter Design

A 30 Hz sinusoidal signal is corrupted by a zero-mean,
60 Hz periodic interference from a motor. The interference is
bandlimited to 180 Hz. Using a DSP system with a sampling rate
of 480 samples/s, design a comb filter that passes the sinusoid
and rejects the interference. Use a = 0.95.

Solution: Our first step should be to determine whether or not
the sampled interference signal is periodic. We do so by testing
Eq. (8.23). Since f0 = 60 Hz and fs = 480 samples/s, the ratio,
if an integer, is the discrete-time period N0:

N0 = fs

f0
= 480

60
= 8.

Since the sampled interference is indeed periodic, we can pursue
either of two paths: (a) designing a notch filter to remove the
three harmonics of the interfering signal, namely at 60, 120, and
180 Hz (“zero-mean” means that there is no dc component)
or (2) applying the model described by Eq. (8.24), which is
applicable to periodic discrete-time signals only.

We will explore both options.
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(a) Cascaded comb filter

The transfer function of the comb filter consists of a series
connection of three notch filters with frequencies

�01 = 2π × 60

480
= π

4
,

�02 = 2�0 = π

2
,

and

�03 = 3�0 = 3π

4
.

Hence, H(z) is given by

H(z) =
3∏
k=1

(z − ejkπ/4)(z − e−jkπ/4)
(z − 0.95ejkπ/4)(z − 0.95e−jkπ/4)

,

where we selected a = 0.95 for all three notch filters. After
several steps of algebra, the expression for H(z) simplifies to

H(z) = z6 + z4 + z2 + 1

z6 + (0.95)2z4 + (0.95)4z2 + (0.95)6
. (8.28)

The pole-zero diagram and magnitude spectrum of H(ej�) are
displayed in Fig. 8-13.

The comb filter is implemented by an ARMA difference
equation, which can be readily read off H(z) as

y[n] + (0.95)2y[n− 2] + (0.95)4y[n− 4]
+ (0.95)6y[n− 6]

= x[n] + x[n− 2] + x[n− 4] + x[n− 6]. (8.29)

To initialize the computation of y[n], we start by setting
y[n] = 0 for n < 6. The first recursion computes y[6] in terms
of { x[0], . . . , x[6] }. The waveforms of the original and filtered
signals are shown in Fig. 8-14. It is clear that after passing
through the comb filter, only the desired 30 Hz sinusoid
remains. As with the notch filter of the preceding section, the
dc magnitude H(ej0) is slightly greater than 1. This can again
easily be corrected by multiplying H(z) by 1/H(ej0).

(a) Pole-zero diagram

(b) Magnitude spectrum
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Figure 8-13: Pole-zero diagram and magnitude spectrum of
comb filter (Example 8-5a).

(b) Periodic comb filter

We implement the filter given by Eq. (8.24) with N0 = 8 and
a = 0.95:

y[n] − 0.958y[n− 8] = x[n] − x[n− 8]. (8.30)
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(a) Original signal

(b) Filtered signal
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Figure 8-14: Waveforms of original and filtered signals.

The filter has eight zeros and eight poles, at angles�k given by
Eq. (8.27) as

�k = 2πk

8
= πk

4
, k = 0, 1, . . . , 7.

Six of these pole/zero pairs are identical to those of the
transfer function of the filter in part (a). The periodic filter has
two additional notches that would reject signals with� = 0 and
� = π , but neither is associated with any components of the
interfering periodic signal. The main advantage of the periodic
notch filter described by Eq. (8.30) over the cascaded notch filter
given by Eq. (8.29) is implementation; far fewer addition and
multiplication operations are required. (See S2 for details.)

Example 8-6: Comb-Filtering Trumpet Signal

Consider a signal consisting of the superposition of two actual
trumpets: one playing note A at a fundamental frequency of
440 Hz and another playing note B at a frequency of 491 Hz.
The signal was sampled at the standard CD sampling rate of
44,100 sample/s. Design and implement a discrete-time comb
filter to eliminate the signal of the trumpet playing noteA, while
keeping the signal of note B.

Solution: The angular frequencies corresponding to notes A
and B are

�Ak = 2πfAk

fs
= 2π × 440k

44, 100
= 0.0627k, k = 1, 2, . . .

and

�Bk = 2πfBk

44, 100
= 2π × 491k

44, 100
= 0.07k, k = 1, 2, . . . .

The goal is to design a comb filter that passes all harmonics
of �B and rejects all harmonics of �A. For the sampled
signal to be exactly periodic at a period corresponding to �A,
the ratio fs/fA has to be an integer. In the present case,
fs/fA = 44, 100/440 = 100.227, which is not an integer, but
we may approximate the ratio as 100 or 101 so as to use the
periodic comb filter given by Eq. (8.24) with a = 0.99:

y[n] − 0.99N0y[n−N0] = x[n] − x[n−N0]. (8.31)

The filter was evaluated for N0 = 100 and N0 = 101, and the
latter value was found to provide better performance.

Figure 8-15(a) displays spectra of note A, note B, and
the filter’s magnitude response. For comparison, we show in
Fig. 8-15(b) and (c) the waveforms of the combined trumpet
signals (notes A and B together) before and after getting filtered
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(c) Waveform of comb-filtered signal (d) Original interference-free signal

(a) Spectra of trumpet notes A and B and of comb filter (b) Waveform of two-trumpet signal
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Figure 8-15: In Example 8-6, the comb filter removes input signal A.

by the periodic comb filter. The filtered waveform is a close,
but not perfect, reproduction of the original waveform of note B
alone (which is shown in part (d) of the figure).

The filter succeeds in removing all of the harmonics of noteA,
but it also removes those harmonics of note B that happen to
coincide with one or more of the filter’s notch frequencies.
When a harmonic of note A overlaps with a harmonic of note B,
it is difficult for any filter to distinguish one from the other.
For example, the angular frequency of the seventh harmonic of
noteA is�A7 = 0.4388 rad, which is close to the sixth harmonic
of note B, �B6 = 0.4197 rad. To distinguish between two
closely spaced harmonics, the notches in the filter’s frequency
response have to be much narrower than the spacing between
the harmonics.

The subject of frequency filtering a periodic interference will
be revisited in Section 8-8, where we discuss batch filtering, a
technique that can outperform both the periodic and cascaded
comb filters. (See S2 for details.)

Concept Question 8-3: What is the relation between
discrete-time notch and comb filters? (See        )

Exercise 8-8: Determine the ARMA difference equation
for a comb filter that rejects periodic interference that
has period = 0.01 s and is bandlimited to 200 Hz. The
sampling rate is 600 samples per second. Use a = 0.99.

Answer: Harmonics at 100 and 200 Hz;

y[n] + 0.98y[n− 2] + 0.96y[n− 4]
= x[n] + x[n− 2] + x[n+ 4].

(See S2 )
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Exercise 8-9: Use LabVIEW Module 8.4 to replicate Example 8-5 and produce the pole-zero and gain plots of Fig. 8-13 and
time waveforms of Fig. 8-14.

Answer:

Module 8.4 Discrete-Time Comb Filter to Eliminate Periodic Signal from Sinusoid This module generates a
periodic signal with a fundamental frequency and up to 3 harmonics. It then uses a comb filter to eliminate the periodic signal,
while retaining the sinusoid.
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Module 8.5 Discrete-Time Comb Filter to Separate Two Trumpet Signals This module adds the waveforms of
trumpets playing notes A and B, and uses a comb filter to separate them. The module also allows the user to listen to the
original (two trumpets) and filtered (one trumpet) signals.

8-4 Deconvolution and
Dereverberation

In some system applications, the discrete-time output y[n] is
measured and recorded, the system has been fully characterized
(which means that its impulse response h[n] is known), and
the quantity we wish to determine is the input signal x[n]. An
example might be a sensor that “measures” a physical quantity
such as temperature or pressure, but the measurement process
is not just a direct proportional relationship; rather, it is a
convolution involving x[n] and the sensor’s impulse response
h[n]:

y[n] = x[n] ∗ h[n]. (8.32)

To recover the quantity of interest (namely, x[n]) we need
to perform a deconvolution operation, wherein we undo the
convolution given by Eq. (8.32) to determine x[n] from y[n]
and h[n].

One possible approach to solving the deconvolution problem
is to determine the impulse response of the inverse system,g[n],
or equivalently, the transfer function of the inverse system,
G(z). When z-transformed, the convolution given by Eq. (8.32)
becomes a product, namely,

Y(z) = H(z) X(z). (8.33)

The input is then given by

X(z) = Y(z)
H(z)

= G(z) Y(z), (8.34)

where
G(z) = 1

H(z)
. (8.35)

In symbolic form, we have

x[n] System
H(z)

y[n] (8.36a)

and

y[n] Inverse system
G(z)

x[n]. (8.36b)

Conceptually, the deconvolution solution is straightforward: (1)
z-transform h[n] and y[n] to obtain H(z) and Y(z), (2) obtain
the transfer function of the inverse system, G(z) = 1/H(z), (3)
apply Eq. (8.34) to find X(z), and (4) inverse z-transform X(z)
to obtain the sought-after input x[n]. In practice, however, we
should ensure that G(z) is both BIBO stable and causal.
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8-4.1 BIBO Stability and Causality

The system described by H(z) is BIBO stable if and only if
all of its poles reside inside the unit circle defined by |z| = 1.
Since the poles of G(z) are the zeros of H(z), both the original
system and the inverse system are BIBO stable if H(z) has all
of its poles and zeros inside the unit circle. Such a discrete-time
system is called a minimum-phase system. It is the analogue of
the minimum-phase continuous-time system, which is defined
to have all of its poles and zeros in the open left half of the
s-plane.

Recall from Section 3-8 that a continuous-time BIBO stable
and causal LTI system has a BIBO stable and causal LTI inverse
system if and only if its transfer function is not only minimum
phase, but also proper; i.e., the degrees of the numerator and
denominator are equal. This is necessary for continuous-time
systems because otherwise either the original or inverse system
would have an improper transfer function, which renders it not
BIBO stable.

However, the proper-function requirement is not an issue for
discrete-time systems. In fact, any LTI system described by an
ARMA difference equation in which b0, the coefficient of x[n],
is non-zero, has a proper transfer function for its inverse system.
Moreover, even if b0 = 0, we can still develop a viable inverse
system by expressing G(z) in terms of an auxiliary minimum-
phase transfer function G̃(z).

8-4.2 ARMA Difference Equation for Inverse
System

From Eq. (7.108), the general form of the ARMA difference
equation describing an LTI system is given by

N−1∑
i=0

ai y[n− i] =
M−1∑
i=0

bi x[n− i], (8.37)

and the corresponding transfer function is

H(z) =
∑M−1
i=0 biz−i∑N−1
i=0 aiz−i . (8.38)

Coefficient a0 belongs to y[n], the output at “present time” n,
so it is by definition non-zero. Moreover, it is customary to
normalize the values of all of the other coefficients so that
a0 = 1. On the input side, if the coefficient of x[n] (namely, b0)
is not zero, it means y[n] does depend on x[n] and possibly
earlier values of the input as well. But if b0 = 0, it means that
y[n] depends on x[n− 1] and earlier values but not on the
current input x[n]. Similarly, if b0 = b1 = 0, it means that y[n]
depends on x[n− 2] and possibly on earlier inputs. We will
consider the cases b0 �= 0 and b0 = 0 (but b1 �= 0) separately
and then extend our conclusions to other cases.

(a) Case 1: b0 �= 0

If M = N in Eq. (8.38), then H(z) is automatically a proper
function. If M > N , we multiply both the numerator and
denominator by zM−1, which leads to

H(z) =
∑M−1
i=0 bizM−1−i∑N−1
i=0 aizM−1−i = b0zM−1 + · · · + bM−1

a0zM−1 + · · · + aN−1zM−N .

(8.39)
Since the numerator and denominator both have degree (M−1),
H(z) is a proper function.

Similarly, if M < N , multiplication of both the numerator
and denominator of Eq. (8.38) by zN−1 also leads to a proper
function. So no matter how M compares with N , H(z) is a
proper function, and so will be its reciprocal G(z). Inverting
Eq. (8.38) gives

G(z) = 1

H(z)
=
∑N−1
i=0 aiz−i∑M−1
i=0 biz−i . (8.40)

In summary, as long as the system is minimum-phase (its
poles and zeros reside inside the unit circle) and b0 in Eq. (8.39)
is not zero, its transfer function H(z) and inverse transfer
function G(z) are both proper functions and the inverse system
is causal and BIBO stable.

(a) Case 2: b0 = 0 but b1 �= 0

If b0 = 0 but b1 �= 0, the transfer function of the original system
should be rewritten as

H(z) =
∑M−1
i=1 biz−i∑N−1
i=0 aiz−i =

∑M−2
j=0 bj+1z−j z−1∑N−1

i=0 aiz−i = z−1 H̃(z),

(8.41)
where in the numerator we introduce (a) the index j = i − 1
and (b) an auxiliary transfer function H̃(z) defined as

H̃(z) =
∑M−2
j=0 bj+1z−j∑N−1
i=0 aiz−i . (8.42)

IfM−2 = N−1, thenM−N = 1 and H̃(z) is automatically a
proper function. IfM−N > 1, multiplication of the numerator
and denominator by zM−2 renders H̃(z) a proper function (the
numerator and denominator both have degreesM − 2). Also, if
M −N < 1, multiplication of the numerator and denominator
by zN−1 also renders H̃(z) a proper function. Hence, while
the original transfer function H(z) is not a proper function, the
auxiliary transfer function H̃(z) is, as is the auxiliary inverse
transfer function G̃(z) = 1/H̃(z).
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According to property #2 in Table 7-6, in the absence of initial
conditions, multiplication of the z-transform by z−1 is (in the
discrete-time domain) a unit time delay. Hence, the original
system described by H(z) and corresponding impulse response
h[n] can be regarded as a system described by an invertible
auxiliary transfer function H̃(z) in series with a unit time delay.
Functionally, this means that

x[n] System
H(z)

y[n], (8.43a)

y[n] Inverse system
G̃(z)

x′[n] = x[n− 1].

(8.43b)

where G̃(z) is an auxiliary transfer function of the inverse
system:

G̃(z) = 1

H̃(z)
= 1

z H(z)
. (8.44)

The operation described by Eq. (8.43b) accomplishes the
deconvolution operation, except for a time delay. This is as
expected; the condition b0 = 0 and b1 �= 0 in Eq. (8.37) implies
that output y[n] at present discrete time n is not a function of
input x[n] at that same time, but it is a function of x[n− 1] at
time (n− 1), and possibly at earlier times, so there is no way
to recover x[n] from y[n].

Because b0 = 0, the system described by G(z) is not causal,
so it is not possible to recover x[n]. However, it is possible to
recover a delayed version, x[n−1], by using the inverse system
described by Eq. (8.43b).

By extension, if b0 = b1 = 0 and b2 �= 0, the output of the
inverse system will be x[n− 2], and so on.

Example 8-7: Deconvolution of Minimum-Phase System

Given the system

y[n] = x[n] − 5

6
x[n− 1] + 1

6
x[n− 2], (8.45)

(a) determine if it is minimum-phase and (b) solve for x[n] if
y[n] = {12, 8,−7,−2, 1}.
Solution:

(a) The impulse response can be read off directly by
evaluating y[n] with x[n] = δ[n], while keeping in mind that

δ[n−m] =
{

1 n = m,

0 n �= m.
(8.46)

The result is
h[n] =

{
1,− 5

6 ,
1
6

}
, (8.47)

and the corresponding transfer function is

H(z) = 1 − 5

6
z−1 + 1

6
z−2 = z2 − (5/6)z + (1/6)

z2 . (8.48)

The zeros of H(z) are zk = { 1
2 ,

1
3

}
and its poles are pk = {0, 0}.

Because its poles and zeros reside inside the unit circle, the
system is minimum phase, and since b0 = 1 �= 0, it has a BIBO
stable and causal inverse system.

(b) We can solve for x[n] by implementing either of the
following two approaches:

(1) Apply the convolution property of the z-transform, which
entails inverting H(z) to obtain its inverse G(z), obtaining Y(z)
from y[n], solving for X(z) = G(z) Y(z), and then inverse
z-transforming to get x[n].

(2) Simply rewrite Eq. (8.45) so that x[n] is on one side all
by itself, and then evaluate it for n = 0, 1, and 2. While doing
so, we have to keep in mind that x[n] is causal, and therefore
x[i] = 0 for i < 0.

To demonstrate the second approach, we rewrite Eq. (8.45)
as

x[n] = y[n] + 5

6
x[n− 1] − 1

6
x[n− 2]. (8.49)

For y[n] = {12, 8,−7,−2, 1}, we obtain

x[0] = y[0] + 5

6
x[−1] − 1

6
x[−2] = 12 + 0 + 0 = 12,

x[1] = y[1] + 5

6
x[0] − 1

6
x[−1] = 8 + 5

6
(12)− 0 = 18,

x[2] = y[2] + 5

6
x[1] − 1

6
x[0] = −7 + 5

6
(18)− 1

6
(12) = 6.

Further recursions show that x[n] = 0 for n ≥ 3. Hence,

x[n] = {
12, 18, 6

}
.

Example 8-8: Deconvolving a System with b0 = 0

Find the inverse system of

y[n] − 0.5y[n− 1] = 0.5x[n− 1] (8.50)

to obtain x[n] from y[n]. Note that b0 = 0.

Solution: The z-transform of Eq. (8.50) gives

Y(z)− 0.5z−1 Y(z) = 0.5z−1 X(z), (8.51)
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which leads to

H(z) = Y(z)
X(z)

= 0.5z−1

1 − 0.5z−1 = 1

2z − 1
. (8.52)

The absence of a term of power z0 in the numerator means
that b0 = 0, so the system is not invertible. To appreciate the
significance of this fact, we will pursue the deconvolution
problem without taking this fact into account and then repeat it
again using an auxiliary inverse system.

(a) Direct inverse deconvolution

The transfer function of the inverse system is

G(z) = 1

H(z)
= 2z − 1. (8.53)

The corresponding impulse response is

g[n] = {2,−1}, (8.54)

which is noncausal because it is non-zero at time n = −1. The
difference equation for the inverse system is

x[n] = 2y[n+ 1] − y[n], (8.55)

which is noncausal because x[n] at timen depends on y[n+1] at
later time (n+1). This expression could have also been obtained
directly from Eq. (8.50) upon replacingnwithn+1 everywhere.

(b) Auxiliary inverse deconvolution

The noncausal deconvolution result given by Eq. (8.55) is a
consequence of the fact that the inverse system is not causal.
To obtain a causal inverse system, we implement the recipe of
Section 8-4.2, which calls for establishing an auxiliary transfer
function of the inverse system given by

G̃(z) = 1

z H(z)
= 2z − 1

z
= 2 − z−1. (8.56)

If we define G̃(z) = X′(z)/Y(z), we get

X′(z)
Y(z)

= 2 − z−1,

which after cross multiplication and inverse z-transformation
leads to

x′[n] = 2y[n] − y[n− 1]. (8.57)

From Eq. (8.43b), x′[n] = x[n− 1]. Hence,

x[n− 1] = 2y[n] − y[n− 1]. (8.58)

This expression could have also been obtained from Eq. (8.55)
by replacing n with (n− 1) everywhere.

As stated earlier, the auxiliary transfer function approach
does not recover x[n], but it recovers a delayed version of it, and
it does so through a BIBO stable and causal auxiliary transfer
function G̃(z).

Example 8-9: Deconvolution of Minimum-Phase System

Given

x[n]

h[n] = {3, 2, 1}

y[n] = {12, 23, 32, 38, 20, 7},

determine x[n].
Solution: We know the system is causal because h[n] starts at
n = 0, but we also need to determine if it is minimum phase.
The transfer function corresponding to h[n] = {3, 2, 1} is

H(z) = 3 + 2z−1 + z−2 = 3z2 + 2z + 1

z2 . (8.59)

The degrees of the numerator and denominator polynomials are
the same, so H(z) is a proper function.

The roots of the numerator (3z2 + 2z + 1) = 0 are

zk = {−0.33 ± j0.47} = {0.58e±j125◦},

which reside inside the unit circle. The poles are pk = {0, 0}.
Since all of the poles and zeros of H(z) reside inside the unit
circle |z| = 1, the system is minimum phase. Hence, both H(z)
and its inverse G(z) = 1/H(z) are causal and BIBO stable.

Next, we use h[n] = {3, 2, 1} to write down the ARMA
difference equation of the original system:

y[n] = 3x[n] + 2x[n− 1] + x[n− 2]. (8.60)
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Having established that both the system and its inverse are stable
and causal, we can rewrite Eq. (8.60) in the form

x[n] = 1

3
y[n] − 2

3
x[n− 1] − 1

3
x[n− 2]. (8.61)

The given output is of duration N0 = 6. Hence, we recursively
evaluate x[n] for n = 0, 1, . . . , 5, keeping in mind all along
that x[i] = 0 for i < 0. For y[n] = {12, 23, 32, 38, 20, 7}, the
outcome is

x[0] = 1

3
(12)− 2

3
(0)− 1

3
(0) = 4,

x[1] = 1

3
(23)− 2

3
(4)− 1

3
(0) = 5,

x[2] = 1

3
(32)− 2

3
(5)− 1

3
(4) = 6,

x[3] = 1

3
(38)− 2

3
(6)− 1

3
(5) = 7,

x[4] = 1

3
(20)− 2

3
(7)− 1

3
(6) = 0,

and

x[5] = 1

3
(7)− 2

3
(0)− 1

3
(7) = 0.

Hence, the solution of the deconvolution problem is

x[n] = {4, 5, 6, 7}.

8-4.3 Dereverberation

Reverberation of a signal is the act of adding delayed and
geometrically weighted copies of the signal to itself. Each
copy of the signal is equal to the previous copy multiplied
by a reflection coefficient r and delayed by D seconds. The
reverberated version y(t) of a signal x(t) is

y(t) = x(t)+rx(t−D)+r2x(t−2D)+· · · =
∞∑
i=0

rix(t−iD).
(8.62)

Since reflection cannot physically gain strength, |r| < 1.
Reverberation of a voice can make it sound richer and fuller if

the delay is a few hundredths of a second. This is why a singing
voice sounds much better in a confined cavity with reflecting
walls, such as a shower stall. In music recording, reverbing is
called overdubbing.

Reverberation occurs in many natural and artificial systems,
including multiple reflections of sonar signals by the sea floor

and air-sea boundary, reflections by mirrors at the two ends of a
longitudinal, gas-laser cavity, back-and-forth echoes of signals
on mismatched transmission lines, among many others. In many
of these cases, dereverberation of the signal is desired.

Suppose a digital signal processing system with a sampling
rate of fs samples/s is used to convert the original signal x(t)
and reverberated version y(t) into x[n] and y[n], respectively.
A delay ofD seconds is a delay ofDfs samples. The sampling
rate fs is chosen such that the discrete-time delay M is an
integer,

M = Dfs. (8.63)

After sampling, the reverberating system is

y[n] = x[n] + r x[n−M] + r2 x[n− 2M] + · · ·

=
∞∑
i=0

ri x[n− iM]. (8.64)

The goal of dereverberation is to recover x[n] from y[n].
The z-transform of Eq. (8.64) is

Y(z) =
∞∑
i=0

riz−iM X(z) = X(z)
∞∑
i=0

(rz−M)i. (8.65)

In view of the geometric series,

∞∑
i=0

ai = 1

1 − a
if |a| < 1, (8.66)

Eq. (8.65) can be recast in the compact form

Y(z) = X(z)
1 − rz−M , (8.67)

from which we obtain the transfer function

H(z) = Y(z)
X(z)

= 1

1 − rz−M = zM

zM − r
. (8.68)

Transfer function H(z) has M zeros at the origin (z = 0)
and M poles inside the unit circle at pk = {r1/Mej2πk/M ,
k = 0, 1, . . . ,M − 1}. Hence, H(z) is a minimum-phase
system, and it has a BIBO stable and causal inverse system

G(z) = X(z)
Y(z)

= 1 − rz−M. (8.69)

Cross multiplication, followed by an inverse z-transformation,
leads to the original input signal

x[n] = y[n] − r y[n−M]. (8.70)
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(b) Dereverbed signal x[n]

(a) Reverbed signal y[n]
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Figure 8-16: Dereverberation of signal y[n] to recover x[n]
(Example 8-10).

In the spirit of completeness, we note that the impulse response
g[n] of the inverse system is

g[n] = {1, 0, . . . , 0︸ ︷︷ ︸
M−1 zeros

,−r}. (8.71)

Example 8-10: Dereverberation of a Signal

The signal shown in Fig. 8-16(a) was produced by reverbing
a short-duration signal with reflection coefficient r = 0.6 and
time delay M = 1. Compute the original signal.

Solution: Inserting r = 0.6 and M = 1 in Eq. (8.70) gives

x[n] = y[n] − 0.6y[n− 1].
Computing x[n] recursively for each of the given values of y[n],
while recognizing that x[−1] = 0, leads to the plot shown in
Fig. 8-16(b). (See S2 for details.)

Concept Question 8-4: What specific property of the 
reverberation problem permits its solution using an 
inverse system? (See        )

Module 8.6 Dereverberation of a Simple
Signal This module reverbs the short signal shown
for specified values of the reflection coefficient and time
delay between copies. It then dereverbs it to recover the
original signal.

Concept Question 8-5: What is the definition of a
discrete-time minimum phase system? (See        )

Exercise 8-10: Is deconvolution using real-time
signal processing possible for the system
y[n] = x[n] − 2x[n− 1]?
Answer: No. The system has a zero at 2, so it is not
minimum phase. (See S2 )
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Exercise 8-11: A system is given by

y[n] = x[n] − 0.5x[n− 1] + 0.4x[n− 2].

What is the difference equation of its inverse system?

Answer: The system is minimum phase, so its inverse
system is

x[n] = y[n] + 0.5x[n− 1] − 0.4x[n− 2].

(See S2 )

8-5 Bilateral z-Transforms

Section 8-4 seems to indicate that it is impossible to find an
inverse system for a non-minimum-phase system. This is not
quite correct. It is impossible to find a stable and causal inverse
system for a non-minimum-phase system. But it is possible to
find a stable and noncausal inverse system for a non-minimum-
phase system with no zeros on the unit circle. While a noncausal
system cannot be implemented as is, it may be possible to
implement a delayed version of a noncausal system. To explore
this possibility, we need to extend the unilateral z-transform
defined in Chapter 7 to a bilateral z-transform. We perform this
extension in this section.

8-5.1 Definitions

(a) Bilateral z-Transforms

The bilateral or two-sided z-transform is defined as

X(z) =
∞∑

n=−∞
x[n] z−n. (8.72)

This differs from the unilateral z-transform defined in
Eq. (7.58a) in that the lower limit of the summation is changed
from n = 0 to n = −∞. The relation between the unilateral
and bilateral z-transforms is analogous to the relation between
the unilateral and bilateral Laplace transforms, defined in
Eq. (3.117) and Eq. (3.119). The unilateral z-transforms listed
in Table 7-5, and the unilateral z-transform properties listed in
Table 7-6, also apply to the bilateral z-transform, except time
delays and right shifts are now identical, and time advances and
left shifts are also identical.

For example, the unilateral z-transform of x[n] = {3, 1, 4}
is (1 + 4z−1), while the bilateral z-transform of x[n] is
(3z + 1 + 4z−1).

(b) Left-, Right-, and Two-Sided Signals

We offer the following definitions for a signal x[n]. The signal
x[n] is:

• Causal if x[n] = 0 for n < 0.

• Anticausal if x[n] = 0 for n ≥ 0.

• Two-sided if x[n] is neither causal nor anticausal.

• Right-sided if x[n] = 0 for n < N < 0 for some N . For
example, {3, 1, 4 . . . } is right-sided.

• Left-sided if x[n] = 0 for n > N ≥ 0 for some N . For
example, {. . . 3, 1, 4, 1} is left-sided.

8-5.2 Geometric Signals

(a) Causal Geometric Signals

Consider the causal geometric signal xc[n] defined as

xc[n] = an u[n]. (8.73)

Causality is assumed by the presence of u[n]. The bilateral
z-transform Xc(z) of xc[n] is computed by applying Eq. (8.72),
which gives

Xc(z) =
∞∑

n=−∞
an u[n]z−n =

∞∑
n=0

(a
z

)n
. (8.74)

In view of the infinite geometric series

∞∑
n=0

rn = 1

1 − r
if and only if |r| < 1, (8.75)

we can rewrite Eq. (8.74) as

Xc(z) = 1

1 − ( a
z

) = z
z − a

, (8.76)

so long as |a/z| < 1, which requires that |z| > |a|.
Since xc[n] is causal, the result given by Eq. (8.76) agrees

with the unilateral z-transform of x[n] given in Eq. (7.66), and
listed as item #4 in Table 7-5.

This result is only true if |z| > |a|. This condition is listed in
the third column of Table 7-5, under the heading “ROC,” but
it had no significance in Chapter 7. The region of convergence
(ROC) is the set of z values for which the infinite geometric
series used to compute an expression for X(z) converges.
This expression for Xc(z) given by Eq. (8.76) is only true for
z ∈ ROC.
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(b) Anticausal Geometric Signals

Now we define the anticausal geometric signal xa[n] as (note
the signs)

xa[n] = −an u[−n− 1], (8.77)

which is equal to zero forn ≥ 0. The bilateral z-transform Xa(z)
of xa[n] is then

Xa(z) = −
∞∑

n=−∞
an u[−n−1]z−n = −

−1∑
n=−∞

(a
z

)n
. (8.78)

Changing variables from n to n′ = −n gives

Xa(z) = −
∞∑
n′=1

(a
z

)−n′
= −

∞∑
n′=1

( z
a

)n′
. (8.79)

The summation begins at n′ = 1. To take advantage of the
geometric series given by Eq. (8.75), we add and subtract the
n′ = 0 element, namely −(z/a)0 = −1. Thus, Eq. (8.79) is
rewritten as

Xa(z) = −
∞∑
n′=0

( z
a

)n′
+ 1. (8.80)

Use of Eq. (8.75) leads to

Xa(z) = − 1

1 − ( z
a

) + 1 = z
z − a

= Xc(z), (8.81)

provided |z/a| < 1, which requires that |z| < |a|. The two
different signals xc[n] and xa[n] both seem to have the same
bilateral z-transform Xc(z) = Xa(z)! However, the ROCs of the
z-transforms are different. The bilateral z-transform of xc[n]
is Xc(z) only for the ROC {z : |z| > |a|} and the bilateral
z-transform of xa[n] is Xa(z) only for the ROC {z : |z| < |a|}.

In the sequel, we abbreviate {z : |z| > |a|} to {|z| > |a|}, and
“z-transform” will mean the bilateral z-transform.

(c) Two-Sided Geometric Signals

The z-transform of a sum of geometric signals, where each
signal is either causal or anticausal, is the sum of the
z-transforms of each of the individual signals. The ROC of
the sum of the signals is the intersection of the ROCs of the
individual signals. If this is an empty set, the z-transform is
undefined.

Consider the two-sided signal given by

x[n] = an u[n] + bn u[−n− 1]. (8.82)

Using the combination of Eqs. (8.76) and (8.81) leads to

X(z) = z
z − a

− z
z − b

. (8.83)

Case 1: |b| > |a|
The ROC of X(z) is

{|z| > |a|}
⋂

{|z| < |b|} = {|a| < |z| < |b|}.

Case 2: |b| < |a|
The ROC of X(z) is

{|z| > |a|}
⋂

{|z| < |b| < |a|} = ∅.

So the z-transform is undefined.
For the general case where x[n] is the sum of many causal

and anticausal geometric signals, we have

x[n] =
∑
i

Aipni u[n]︸ ︷︷ ︸
causal

+
∑
j

Bjqnj u[−n− 1]
︸ ︷︷ ︸

anticausal

, (8.84a)

X(z) =
∑
i

Ai
z

z − pi
−
∑
j

Bj
z

z − qj
, (8.84b)

and

ROC =
[⋂

i

{|z| > |pi |}
]⋂⎡

⎣⋂
j

{|z| < |qj |}
⎤
⎦

= [max{|pi |}] < |z| < [min{|qj|}]. (8.84c)

From Eq. (8.84c), we see that the ROC of the z-transform of
a sum x[n] of causal and anticausal geometric signals has the
following properties:

� The ROC is an annulus (ring) whose inner radius is
the largest-magnitude pole of the causal part of x[n], and
whose outer radius is the smallest-magnitude pole of the
anticausal part of x[n]. Unless all of the poles of the causal
part of x[n] have smaller magnitudes than all of the poles
of the anticausal part of x[n], the z-transform of x[n] is
undefined. If x[n] is causal, the outer radius is ∞, and if
x[n] is anticausal, the inner radius is 0. �

Example 8-11: z-Transform of Two-Sided Signal

Compute the z-transform of

9(2)n u[n]+8(3)n u[n]−7(4)n u[−n−1]+6(5)n u[−n−1].
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Solution:

X(z) = 9z
z − 2

+ 8z
z − 3

+ 7z
z − 4

− 6z
z − 5

.

The ROC is

{|z| > 2} ∩ {|z| > 3} ∩ {|z| < 4} ∩ {|z| < 5}
= {3 < |z| < 4}.

Example 8-12: Another Two-Sided Signal

Determine the ROC of the z-transform of

x[n] = (−2)n u[n] + ( 1
2 )
n u[−n− 1].

Solution:

ROC = {|z| > | − 2| = 2}
⋂

{|z| < 1
2 } = ∅.

The z-transform is undefined. There is no z for which both
of the two geometric series converge.

(d) ROCs for Finite-Duration Left-Sided and Right-Sided
Signals

The above rules for ROC must be modified slightly for signals
that are not sums of geometric signals:

Signal Type and Length ROC
Causal & finite duration {0 < |z| ≤ ∞}
Anticausal & finite length {0 ≤ |z| < ∞}
Two-sided & finite length {0 < |z| < ∞}
Right-sided signal {0 < |z| < ∞}
Left-sided signal {0 < |z| < ∞}
Impulse δ[n] {0 ≤ |z| ≤ ∞}

These rules are easily established by considering whether

X(z) = · · · + x[−1] z + x[0] + x[1] z−1 + · · · (8.85)

will blow up at z = 0 or |z| → ∞. In particular, if x[n] is causal,
X(z) has the form

X(z) = x[0] + x[1] z−1 + · · · , (8.86)

which blows up at z = 0 but not as |z| → ∞. It is standard
to abuse notation slightly and write |z| = ∞ to emphasize that
|z| = ∞ is included in the ROC.

8-6 Inverse Bilateral z-Transforms

The inverse z-transform of z
z−2 could be either (2)n u[n] or

−(2)n u[−n− 1]! Clearly, this is an unacceptable ambiguity,
but the ambiguity can be resolved by specifying the ROC of
X(z). Specifically, the inverse z-transforms of

• z
z−2 with ROC {z : |z| > 2} is (2)n u[n].

• z
z−2 with ROC {z : |z| < 2} is −(2)n u[−n− 1].

In fact, we will soon realize that it is the ROC, not X(z), that
determines whether the inverse z-transform is stable, causal,
anticausal, or two-sided.

8-6.1 Multiple Inverse z-Transforms

Consider a z-transform X(z) for which the partial fraction
expansion of X(z)

z is

X(z)
z

= A0
1

z − 0
+

N∑
i=1

Ai
1

z − pi
. (8.87)

Multiplying both side by z gives:

X(z) = A0 +
N∑
i=1

Ai
z

z − pi
, (8.88)

where {pi} are the poles of X(z) and {Ai} are their associated
residues. The (causal) inverse unilateral z-transform of X(z) is,
from Eq. (7.92), given by

x[n] = A0 δ[n] +
N∑
i=1

Aipni u[n]. (8.89)

In contrast, the inverse bilateral z-transform is given by

x[n] = A0 δ[n] +
N∑
i=1

Ai

{
pni u[n], if {|z| > |pi |},
−pni u[−n− 1], if {|z| < |pi |},

(8.90)
because there are two choices (causal or anticausal) for each
term in the partial fraction expansion, depending on the choice
of ROC for that term.

This suggests that there are 2N possible inverse z-transforms,
since the choice for each term can be made independently. But
there are actually only N + 1 possible inverse z-transforms,
since the other choices lead to ROCs that are empty sets. To see
why, consider the following two examples.
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Example 8-13: Inverse z-Transform

Compute all of the possible inverse z-transforms of

X(z) = 2z2 − 2.5z
z2 − 2.5z + 1

.

X(z)
z

= 1

z − (1/2)
+ 1

z − 2
. (8.91)

Multiplying through by z gives

X(z) = z
z − (1/2)

+ z
z − 2

. (8.92)

Each of the two terms has two possible inverse z-transforms,
one causal and one anticausal. So it would appear that there are
22 = 4 possible inverse two-sided z-transforms of X(z):

• x1[n] = ( 1
2 )
n u[n] + (2)n u[n],

with ROC

{|z| > 1
2 }
⋂

{|z| > 2} = {|z| > 2} (causal).

• x2[n] = −( 1
2 )
n u[−n− 1] − (2)n u[−n− 1]

with ROC

{|z| < 1
2 }
⋂

{|z| < 2} = {|z| < 1
2 } (anticausal).

• x3[n] = ( 1
2 )
n u[n] − (2)n u[−n− 1]

with ROC

{|z| > 1
2 }
⋂

{|z| < 2} = { 1
2 < |z| < 2} (stable).

• x4[n] = −( 1
2 )
n u[−n− 1] + (2)n u[n]

with ROC

{|z| < 1
2 }
⋂

{|z| > 2} = ∅ (not valid for any z).

So there are actually only 3, not 4, possible inverse two-sided
z-transforms of X(z).

Example 8-14: Inverse z-Transform II

Compute all of the possible inverse z-transforms of

X(z) = z
z − 2

+ z
z − 3

+ z
z − 4

.

Solution: Given that X(z) has three poles, the maximum
possible number of z-transforms is 23 = 8, but not all might
by viable. The bilateral z-transform is

x[n] =
{
(2)n u[n]
−(2)n u[−n− 1]

+
{
(3)n u[n]
−(3)n u[−n− 1]

+
{
(4)n u[n]
−(4)n u[−n− 1],

and the associated ROCs for the various combinations are

• {|z| < 2} ∩ {|z| < 3} ∩ {|z| < 4} = {|z| < 2}.
• {|z| > 2} ∩ {|z| < 3} ∩ {|z| < 4} = {2 < |z| < 3}.
• {|z| < 2} ∩ {|z| > 3} ∩ {|z| < 4} = ∅.

• {|z| > 2} ∩ {|z| > 3} ∩ {|z| < 4} = {3 < |z| < 4}.
• {|z| < 2} ∩ {|z| < 3} ∩ {|z| > 4} = ∅.

• {|z| > 2} ∩ {|z| < 3} ∩ {|z| > 4} = ∅.

• {|z| < 2} ∩ {|z| > 3} ∩ {|z| > 4} = ∅.

• {|z| > 2} ∩ {|z| > 3} ∩ {|z| > 4} = {|z| > 4}.
Hence, excluding the four with null sets, we have only 4 possible
inverse z-transforms:

{|z| < 2}: − (2)n u[−n− 1] − (3)n u[−n− 1] − (4)n u[−n− 1],
{2 < |z| < 3}: (2)n u[n] − (3)n u[−n− 1] − (4)n u[−n− 1],
{3 < |z| < 4}: (2)n u[n] + (3)n u[n] − (4)n u[−n− 1],
{|z| > 4}: (2)n u[n] + (3)n u[n] + (4)n u[n] (causal).

For pairs of complex poles, the same ROC must be used for
each pole and its complex conjugate.
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8-6.2 Stable Inverse z-Transform

In general, there is always one causal and one anticausal inverse
z-transform. If there are no poles on the unit circle {|z| = 1},
then there is also one BIBO stable inverse z-transform. Here
BIBO stable means that the inverse z-transform is absolutely
summable, so it is the impulse response of a BIBO stable system
(see Section 7-4.5).

To compute the BIBO stable inverse z-transform of X(z),
proceed as follows:

• Order the poles {p1 . . .pN } of X(z) in increasing order of
magnitudes (group conjugate poles):

|p1| < · · · < |pM−1| < 1 < |pM | < · · · < |pN |.

• Compute the partial fraction expansion of X(z)/z:

X(z)
z

= A0
1

z − 0
+

N∑
i=1

Ai
1

z − pi
.

• Multiply this by z:

X(z) = A0 +
N∑
i=1

Ai
z

z − pi
.

• The stable inverse z-transform is then

A0 δ[n] +
M−1∑
i=1

Aipni u[n] −
N∑
i=M

Aipni u[−n− 1].

8-7 ROC, Stability, and Causality

We have established that it is the ROC, not X(z), that determines
whether the inverse z-transform is stable or causal. If the ROC
is defined by the form |a| < |z| < |b|, then:

Signal Type ROC
BIBO Stable |a| < 1 < |b|
Causal |b| → ∞
Anticausal {a = 0} ⊂ ROC

Two-sided 0 < |a| & |b| < ∞
Stable & causal |a| < 1 & |b| → ∞

Note that a stable and causal system has an ROC of the form
{|z| > |a| < 1}, so all poles are inside the unit circle.

Example 8-15: ROC, Stability, and Causality

For each of the following ROCs, describe the causality and
stability of the associated z-transforms:

(1) {z : |z| > a > 1}
(2) {z : |z| > a < 1}
(3) {z : |z| < a < 1}
(4) {z : |z| < a > 1}
(5) {z : 1 < a < |z| < b}
(6) {z : a < |z| < b < 1}
(7) {z : 1 > a < |z| < b > 1}

Solution:

(1) {z : |z| > a > 1} causal & unstable.
(2) {z : |z| > a < 1} causal & stable.
(3) {z : |z| < a < 1} anticausal & unstable.
(4) {z : |z| < a > 1} anticausal & stable.
(5) {z : 1 < a < |z| < b} 2-sided & unstable.
(6) {z : a < |z| < b < 1} 2-sided & unstable.
(7) {z : 1 > a < |z| < b > 1} 2-sided & stable.

8-7.1 Deconvolving Non-Minimum-Phase
Multipath Systems

We noted in Section 8-4.1 that a system is called a minimum-
phase system if the transfer function H(z) of the system and
the transfer function G(z) of its inverse (G(z) = 1/H(z)) are
both BIBO stable. To realize BIBO stability, all of the poles
and zeros of H(z) have to reside inside the unit circle. Non-
minimum phase systems arise in:

• Manipulation of flexible links in robotics.

• Rudders in ships and ailerons in planes.

• Driving a car backwards.

• Some multipath systems.

In continuous time, if the system is not minimum phase, there
is no way to reconstruct the input from the output in real time.
But, in discrete-time signal processing, we can reconstruct a
delayed version of the input from the output, if the original
system has no zeros on the unit circle. We can do this by
taking the inverse z-transform and choosing the ROC so that
the resulting inverse system g[n] is stable but non-causal. The
non-causal part of g[n] decays rapidly as n → −∞, so it can
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be truncated to a finite number N of non-causal terms. Then
g[n−N ] is causal, and the output is x[n−N ], a delayed version
of the original signal x[n].

The following example shows how to deconvolve non-
minimum-phase multipath systems.

Example 8-16: Deconvolution of Non-Minimum-Phase
Multipath System

We are given the system

y[n] = x[n] − 3

5
x[n− 1] − 18

25
x[n− 2]. (8.93)

The goal is to solve the deconvolution problem to reconstruct
x[n] from y[n].
Solution: The impulse response is h[n] = {1,− 3

5 ,− 18
25 }. The

transfer function is the z-transform of h[n], or

H(z) = 1 − 3

5
z−1 − 18

25
z−2 = z2 − 3

5 z − 18
25

z2 . (8.94)

The zeros of H(z) are { 6
5 , − 3

5 } and the poles are {0, 0}. Because
one of the zeros (6/5) lies outside the unit circle, the system is
not minimum phase, and therefore it does not have a stable and
causal inverse system. However, we can obtain an approximate
inverse system that is stable and causal. To do so, we start with
the transfer function of the inverse system,

G(z) = 1

H(z)
= z2

z2 − 3
5 z − 18

25

. (8.95)

The partial fraction expansion of G(z)/z is

G(z)
z

= 1/3

z + 3
5

+ 2/3

z − 6
5

. (8.96)

Multiplication by z leads to

G(z) = 1

3

z

z + 3
5

+ 2

3

z

z − 6
5

. (8.97)

The corresponding stable inverse z-transform consists of a
causal component associated with the pole p1 = −3/5 and an
anticausal component associated with pole p2 = 6/5:

g[n] = 1

3

(−3

5

)n
u[n]︸ ︷︷ ︸

causal

− 2

3

(
6

5

)n
u[−n− 1]︸ ︷︷ ︸

anticausal

. (8.98)

−35 −30 −25 −20 −15 −10 −5 0 5 10

−0.4

−0.2

0

0.2

g[n]

n

Figure 8-17: Stable but noncausal inverse filter g[n].

While g[n] is noncausal, |g[n]| < 0.001 for n < −35
(Fig. 8-17). By defining values of |g[n]| < 0.001 as negligible,
g[n− 35] becomes causal, because |g[n− 35]| < 0.001 for
n < 0. Furthermore, |g[n]| < 0.001 for n > 11. So we can
define the approximate inverse filter g̃[n] as

g̃[n] =
{
g[n− 35] 0 ≤ n ≤ 46,

0 otherwise.
(8.99)

Hence, g̃[n] is a delayed causal moving average (MA) of length
11 − (−35)+ 1 = 47. We note that

h[n] ∗ g̃[n] ≈ δ[n− 35]. (8.100)

This is because by time invariance,

y[n] g[n] x[n]

implies that

y[n] g[n− 35] x[n− 35].

We can, to a very good approximation (neglecting
|g[n]| < 0.001), recover x[n] delayed by 35. At the standard
CD sampling rate of 44100 samples/s, this is less than 1
millisecond, which may be quite acceptable.

8-8 Deconvolution and Filtering Using
the DFT

So far, in this book, all signal processing has been performed,
or simulated, in real time, wherein a signal is processed by
passing it through a causal LTI system. In continuous time, the
system might be an electronic circuit or a physical device. In
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discrete time, the system is a difference equation, implemented
on a computer.

For real-time signal processing, a stable and causal system is
required. In many applications, however, the processing need
not be performed in real time, which allows us to use batch
signal processing instead. In batch processing, the entire signal
is recorded and stored (and therefore known for all past and
future times) before it is processed, and when it is processed, it
is processed in its entirety.

� The advantage of batch signal processing is that the
LTI system no longer needs to be causal. �

This flexibility greatly expands the class of systems that can
be used for signal processing, including non-minimum-phase
systems. Batch signal processing usually is performed using the
FFT algorithm of Section 7-17.

� All of the examples to follow in this chapter use batch
signal processing, which requires that the entire signal
be known and available before any signal processing is
performed. �

8-8.1 Deconvolution of Non-Minimum-Phase
Systems

Recall that the objective of deconvolution is to reconstruct the
input x[n] of a system from measurements of its output y[n]
and knowledge of its impulse response h[n]. That is, we seek
to solve y[n] = h[n] ∗ x[n] for x[n], given y[n] and h[n].

Deconvolution using DFT

If x[n] has duration M and h[n] has duration L, then y[n]
has duration N0 = L+M − 1. Let us define the zero-padded
functions

h̃[n] = {h[n], 0, . . . , 0︸ ︷︷ ︸
N0−L zeros

}, (8.101a)

x̃[n] = {x[n], 0, . . . , 0︸ ︷︷ ︸
N0−M zeros

}. (8.101b)

With x̃[n], h̃[n], and y[n] all now of durationN0, we can obtain
their respective N0-point DFTs, X̃[k], H̃[k], and Y[k], which
are interrelated by

Y[k] = H̃[k]X̃[k]. (8.102)

Upon dividing by H̃[k] and taking anN0-point inverse DFT, we
have

x̃[n] = DFT−1{X̃[k]}

= DFT−1
{

Y[k]
H̃[k]

}

= DFT−1
{

DFT{y[n]}
/

DFT{̃h[n]}
}
. (8.103)

Discarding the (N0 −M) final zeros in x̃[n] gives x[n]. The
zero-padding and unpadding processes allow us to perform
the deconvolution problem for any system, whether minimum
phase or not.

FFT implementation issues

(a) To use the FFT algorithm (Section 7-17) to compute the
three DFTs, N0 should be rounded up to the next power of 2
because the FFT can be computed more rapidly.

(b) In some cases, some of the values of H̃[k] may be zero,
which is problematic because the computation of Y[k]/H̃[k]
would involve dividing by zero. A possible solution to the
division-by-zero problem is to change the value ofN0. Suppose
H̃[k] = 0 for some value of index k, such as k = 3. This
corresponds to H̃(z) having a zero at ej2πk/N0 for k = 3,
because by definition, the DFT is the z-transform sampled on
the unit circle at z = ej2πk/N0 for integers k. Changing N0 to,
say,N0 +1 (or some other suitable integer) means that the DFT
is now the z-transform H̃(z) sampled at z = ej2πk/(N0+1), so
the zero at k = 3 when the period was N0 may now get missed
with the sampling at the new period ofN0 + 1. ChangingN0 to
N0 + 1 may avoid one or more zeros in H̃[k], but it may also
introduce new ones. It may be necessary to try multiple values
of N0 to satisfy the condition that H̃[k] �= 0 for all k.

Example 8-17: DFT Deconvolution

In response to an input x[n], an LTI system with an
impulse response h[n] = {1, 2, 3} generated an output
y[n] = {6, 19, 32, 21}. Determine x[n], given that it is of finite
duration.

Solution: The output is of duration N0 = 4, so we should
zero-pad h[n] to the same duration by defining

h̃[n] = {1, 2, 3, 0}. (8.104)

From Eq. (7.169a), the 4-point DFT of h̃[n] is

H̃[k] =
3∑
n=0

h̃[n] e−j2πkn/4, k = 0, 1, 2, 3, (8.105)



“book” — 2016/3/15 — 6:30 — page 452 — #33

452 CHAPTER 8 APPLICATIONS OF DISCRETE-TIME SIGNALS AND SYSTEMS

which yields

H̃[0] = 1(1)+ 2(1)+ 3(1)+ 0(1) = 6,

H̃[1] = 1(1)+ 2(−j)+ 3(−1)+ 0(j) = −2 − j2,

H̃[2] = 1(1)+ 2(−1)+ 3(1)+ 0(−1) = 2,

and

H̃[3] = 1(1)+ 2(j)+ 3(−1)+ 0(−j) = −2 + j2.

Similarly, the 4-point DFT of y[n] = {6, 19, 32, 21} is

Y[k] =
3∑
n=0

y[n] e−j2πkn/4, k = 0, 1, 2, 3,

which yields

Y[0] = 6(1)+ 19(1)+ 32(1)+ 21(1) = 78,

Y[1] = 6(1)+ 19(−j)+ 32(−1)+ 21(j) = −26 + j2,

Y[2] = 6(1)+ 19(−1)+ 32(1)+ 21(−1) = −2,

and

Y[3] = 6(1)+ 19(j)+ 32(−1)+ 21(−j) = −26 − j2.

The 4-point DFT of x[ñ] is, therefore,

X̃[0] = Y[0]
H̃[0] = 78

6
= 13,

X̃[1] = Y[1]
H̃[1] = −26 + j2

−2 − j2
= 6 − j7,

X̃[2] = Y[2]
H̃[2] = −2

2
= −1,

and

X̃[3] = Y[3]
H̃[3] = −26 − j2

−2 + j2
= 6 + j7.

By Eq. (7.169b), the inverse DFT of X̃[k] is

x̃[n] = 1

4

3∑
k=0

X̃[k]ej2πkn/4, n = 0, 1, 2, 3, (8.106)

which yields
x̃[n] = {6, 7, 0, 0}.

Given that y[n] is of duration N0 = 4 and h[n] is of
duration L = 3, it follows that x[n] must be of duration
M = N0−L+1 = 4−3+1 = 2, if its duration is finite. Deletion
of the zero-pads from x̃[n] leads to

x[n] = {6, 7}, (8.107)

whose duration is indeed 2.

8-8.2 Filtering Noisy Signals by Thresholding

In both continuous and discrete time, perfect brick-wall filters
with abrupt boundaries are physically impossible to realize.
To generate approximate brick-wall-like frequency responses,
the filters’ transfer functions must have many (appropriately
placed) poles and zeros.

In contrast, implementing a brick-wall filter in batch signal
processing is a trivial task. All that is necessary is to set the
coefficients of undesired frequency components of X[k] to zero.
Ideal brick-wall filters can be constructed with any desired
frequency response, including lowpass, highpass, bandpass,
and bandreject.

However, even though brick-wall filters can be implemented
easily using the DFT, a filter with a tapered frequency response
may be preferable. The impulse response of a brick-wall
lowpass filter is a discrete-time sinc function, and while its
noncausality is no longer an issue, its slow decay with time
means that the duration of the impulse response is longer
than the duration of the signal. Consequently, the convolution
of the oscillatory impulse response with the signal exhibits
oscillations, called “ringing,” in the filtered signal. The ringing
pattern can be avoided by using a filter with a tapered frequency
response.

If noise with a broad spectrum has been added to a periodic
signal with a distinctive line spectrum, the bulk of the noise
can be removed by setting all frequency components to zero,
except for those associated with the signal’s line spectrum. Only
the noise added to the spectral lines themselves remains. The
process is illustrated by the following two examples.

MATLAB/MathScript Recipe for Brick-Wall
Lowpass Filter

To eliminate all frequency components above F Hz in
a signal sampled at S samples per second and stored in
MATLAB/MathScript as vector X, apply the following
code:

N=length(X);
FX=fft(X);
K=ceil(N*F/S)+1;
FX(K:N+2-K)=0;
Y=real(ifft(FX));

Note that 1 should be added to NF/S because
MATLAB/MathScript indexing starts at 1, not 0.
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(a) Original noise-free signal (b) Original signal plus noise

(c) DFT spectrum of xns(t)

(d) DFT spectrum after thresholding (e) Filtered signal xf (t)
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Figure 8-18: Noise filtering of a periodic signal by thresholding (Example 8-12).

Example 8-18: Noise Filtering by Thresholding

Figures 8-18(a) and (b) display a signal given by

x(t) = 1 + 4 sin(10πt)+ 10 cos(20πt + 0.6435),

before and after broad-spectrum noise was added to it. The goal
is to retrieve the original signal x(t) in Fig. 8-18(a) from the
noisy signal xns(t) in Fig. 8-18(b), without knowledge of the
original signal. The signal-to-noise ratio is −2.56 dB. Develop
a simple technique to retrieve x(t) from the noisy signal.
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Solution:A negative value (in dB) for the signal-to-noise ratio
means that the total noise power is greater than the total signal
power. Inspection of the noisy signal in Fig. 8-18(b) suggests
that:

(1) the signal is a 10 Hz sinusoid (10 cycles over the
waveform’s 1-second recording), plus possibly other
harmonic sinusoids and a dc component, and

(2) the noise has a broad spectrum.

After sampling the continuous-time noisy signal xns(t), at
1000 samples/s, a 1000-point DFT was computed to generate
the spectrum of xns(t). Figure 8-18(c) displays only the first
20 spectral components, as higher frequency components are
judged to contain only noise and no signal. The prominent
components are at k = 0, 5, and 10. These are the components
associated with the periodic signal.

To clarify the example, the signal and noise components at
indices k = 0, 5, 10 are shown separately, although in practice
only their sums are known. Note that since the phases of the
signal and noise components differ, the magnitude of the sum
is not the sum of the magnitudes, but if |X[k]| � |N[k]|, then
|X[k] + N[k]| ≈ |X[k]|.

An easy solution to eliminating most of the noise is to
choose an appropriate threshold and then assign zero values
to all spectral components whose amplitudes are below the
selected threshold. Since the amplitude of the dc component
is approximately 1.0, we set the threshold level at 0.9.

The thresholded spectrum is shown in Fig. 8-18(d). Upon
performing a 1000-point inverse DFT on the thresholded
spectrum, we obtain a filtered discrete-time signal xf [n], with
n = 0, 1, . . . , 1000. Reconstruction of xf [n] to continuous
time leads to signal xf(t) shown in Fig. 8-18(e), which bears
a very close resemblance to the original noise-free waveform
shown in Fig. 8-18(a).

The most remarkable aspect of this example is that we did
not use any knowledge of the signal or noise strengths. The
only assumption we made was that the harmonics of the signal
were larger than any components of the noise, so that a simple
thresholding strategy would eliminate most of the noise while
leaving the signal intact. The threshold value of 0.9 was chosen
in part by trial and error. An important clue is that if the
signal is periodic, the harmonics occur at integer multiples of
some fundamental frequency; the threshold should be chosen
to preserve this structure in the filtered signal. Statistics of the
signal and noise, if known, can be used to compute a value of
the threshold, but this is far beyond the scope of this book. (See

S2 for details.)

Noise filtering by thresholding can be applied not only to
sinusoids, as was demonstrated in Example 8-18, but to other
periodic and nonperiodic signals as well. This is illustrated in
Example 8-19.

Example 8-19: Noise Filtering Trumpet Signal by

Thresholding

The signal of an actual trumpet playing note B has broad-
spectrum noise added to it. The goal is to retrieve the original
signal, shown in Fig. 8-19(a), from the noisy signal, shown in
Fig. 8-19(b). The trumpet signal is sampled at 44,100 samples/s.
The signal-to-noise ratio is 8.54 dB.

Solution: The spectrum of the noisy signal is shown in
Fig. 8-19(c). The threshold is set (by trial and error) at 0.0015.
The thresholded spectrum is shown in Fig. 8-19(d). The inverse
DFT of this spectrum, followed by reconstruction to continuous
time, is shown in Fig. 8-19(e).

Comparing Fig. 8-19(a) and Fig. 8-19(e) shows that the noise
has been virtually eliminated. Listening to the noisy and filtered
trumpet signals would confirm this. Note that the additive white
noise sounds like hissing.

This example reaffirms the conclusions of the previous
example, namely that the thresholding technique is an effective
filtering tool so long as the signal we wish to preserve is periodic
and its spectral components are distinctly larger than those of
the noise. (See S2 for details.)

8-8.3 Removal of Periodic Interference

Periodic interference can be removed easily by simply setting
the harmonics of the interference to zero. No thresholding is
necessary if the period of the interfering signal is known. This
is illustrated in Example 8-20.

Example 8-20: Two-Trumpets Signal, Revisited

We are given the signal of two actual trumpets playing
simultaneously notes A and B. The goal is to use the DFT
to eliminate the trumpet playing note A, while preserving the
trumpet playing note B. We need only know that note B is at a
higher frequency than note A.

Solution: The two-trumpets signal time-waveform is shown
in Fig. 8-20(a), and the corresponding spectrum is shown in
Fig. 8-20(b). We note that the spectral lines occur in pairs of
harmonics with the lower harmonic of each pair associated with
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Figure 8-19: Removing noise by thresholding the noisy
spectrum.

note A and the higher harmonic of each pair associated with
note B.

Since we wish to eliminate note A, we set the lower
component of each pair of spectral lines to zero. The modified
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Figure 8-20: Removing the spectrum of note A.

spectrum is shown in Fig. 8-20(c). The inverse DFT of this
spectrum, followed by reconstruction to continuous time, is
shown in Fig. 8-20(d).

The filtering process eliminated the signal due to the trumpet
playing noteA, while preserving the signal due to note B, almost
completely. This can be confirmed by listening to the signals
before and after filtering.
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Module 8.7 Denoising a Periodic Signal byThresholding This module generates a periodic signal with 2 harmonics,
adds noise to it, and then denoises it by thresholding the spectrum of the noisy signal.

Whereas it is easy to distinguish between the harmonics of
note A and those of note B at lower frequencies, this is not
the case at higher frequencies, particularly when they overlap.
Hence, one cannot be eliminated without affecting the other
slightly. Fortunately, the overlapping high-frequency harmonics
contain very little power compared with the non-overlapping,
low-frequency harmonics, and therefore, their role is quite
insignificant. (See S2 for details.)

Concept Question 8-6: Why can dereverberation be
implemented using real-time signal processing, while
most deconvolution problems require batch signal 
processing? (See        )

Concept Question 8-7: In DFT computation, why do we
zero-pad the output to the next highest power of 2?
(See        )

Concept Question 8-8: For what type of signal and noise
spectra is filtering by thresholding effective at removing 
the noise? (See        )

Exercise 8-12: Use LabVIEW Module 8.7 to replicate
Example 8-18 and produce the time waveforms and
spectra of Fig. 8-18. Note that the dc component is larger.

Answer:
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Module 8.8 Separating Two Trumpet Signals Using the DFT This module adds the waveforms of trumpets playing 
notes A and B and uses the DFT to separate them by setting a band of frequencies around each harmonic of one of the 
trumpets to zero. The module also allows the user to listen to the original (two trumpets) and filtered (one trumpet) signals.

Exercise 8-13: Use LabVIEW Module 8.8 to replicate
Example 8-20 and produce the time waveforms and
spectra of Fig. 8-20. The time waveforms are different.

Answer:

8-9 Computing Spectra of Periodic
Signals

In many system applications (including signal storage and
transmission, sensing and actuating, and adaptive control of

physical systems) knowledge of the spectra of the relevant
signals is key to the effective implementation of those
applications. We cite three simple examples.

(a) CD Capacity: Suppose we wish to compile a set of spoken-
word CDs of a famous speaker or to record audio readings
of certain books. The common CD sampling rate is 44,100
samples/s, so a CD with a capacity of 670 megabytes can hold
about 75 minutes of material. But if we compute the spectrum
of the speaker’s voice and determine that it is limited to less than
5 kHz, we can use a sampling rate of only 2×5 kHz = 10, 000
sample/s. Not only does such a rate exceed the Nyquist rate, but
it also means that we can increase the capacity of a CD from a
little over one hour to about five hours of recorded material.

(b) Noise Filtering: If we know a signal is bandlimited to,
say, 5 kHz, we can use a lowpass filter to eliminate noise at
frequencies above 5 kHz. But if the signal’s spectrum extends
over the range from 5 kHz to 10 kHz, for example, we use
a bandpass filter instead. If the signal is periodic with a line
spectrum, we can eliminate additive noise at all frequencies
except at those pertaining to the signal. Knowledge of the
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signal’s spectrum allows us to design a noise filter to match
it.

(c) Music Transcription: In music transcription, the goal is
to transcribe recorded music to musical staff notation. Many
types of music consist of a series of notes or chords. The
spectrum of each note or chord consists of harmonics of a single
frequency (for a note) or of harmonics of multiple frequencies
(for chords). Knowledge of their fundamental frequency or
frequencies allows us to identify which notes and chords are
being played.

Having established that knowledge of a signal’s spectrum
is useful and important, we will now explore how in practice
to compute that spectrum. Most real-world signals do not
have simple analytic expressions, making it impractical to
obtain their spectra by directly applying the Fourier-series
(for periodic signals) and Fourier-transform (for nonperiodic
signals) techniques of Chapter 5. Instead, the signal is
sampled at an appropriate rate, and then its spectrum is
computed numerically using the DFT. This section presents
the mathematical basis for the DFT computational process,
specifically for periodic signals. A parallel presentation is given
in Section 8-10 for nonperiodic signals.

8-9.1 Fourier Series of a Sampled Signal

Suppose x(t) is a continuous-time periodic signal with
period T0, so that x(t) = x(t + nT0), where n is any integer.
Also, x(t) is bandlimited to fmax (Hz); i.e., at and above
fmax, the signal energy is zero. Strictly speaking, a signal
cannot be bandlimited to a finite-value frequency fmax unless
it is everlasting, and real signals are not everlasting. When
characterizing a real signal as bandlimited tofmax, we mean that
ignoring components of the signal’s spectrum at frequencies
higher than fmax results in negligible distortion of the signal’s
waveform and information content.

Our goal is to compute the complex Fourier coefficients xk
of the Fourier series expansion of x(t). The sequence {xk}
constitutes the spectrum of periodic signal x(t).

(a) Finite Fourier series

Since x(t) is periodic with frequency f0 = 1/T0, its spectrum
consists of harmonics at frequencies kf0 for integer values of k.
Being bandlimited to fmax, the highest-frequency harmonic
of x(t) is at fmax, and the corresponding maximum value of
index k is

K = fmax

f0
= fmaxT0. (8.108)

Hence, the summation index in the Fourier-series expansion
given by Eq. (5.57) is limited to the range from −K to K [or
(2K+1) terms], not from −∞ to +∞.Accordingly, the Fourier
series of a bandlimited signal x(t) is finite, and given by

x(t) =
K∑

k=−K
xkej2πkt/T0 . (8.109)

(b) Sampling

For a periodic signal, the information contained in any one of its
periods is also contained in all other periods. Hence, when we
sample x(t), we need only to sample a single complete period.
From the sampling theorem, we know that in order to ensure
unique reconstruction of the signal it is necessary to sample it
at a sampling rate fs that exceeds the Nyquist sampling rate.
For a signal bandlimited to fmax, the Nyquist rate is 2fmax.
Consequently, the sampling condition is

fs > 2fmax. (8.110)

If one period of x(t), of duration T0, is sampled at N equally
spaced times,

fs = N

T0
. (8.111)

Combining Eqs. (8.108), (8.110), and (8.111) leads to

N > 2K, (8.112)

which states that the number of sampled times should be larger
than twice the value of indexK in the Fourier series summation
given by Eq. (8.109). The condition described by Eq. (8.112)
can be amended to

N ≥ (2K + 1). (8.113)

The N -sampled values of x(t) occur at

t =
( n
N

)
T0, n = 0, 1, . . . , N − 1. (8.114)

Setting t = (n/N)T0 in Eq. (8.109) gives

x
( n
N
T0

)
=

K∑
k=−K

xk ej2πk[(n/N)T0]/T0 =
K∑

k=−K
xk ej2πkn/N ,

n = 0, 1, . . . , N − 1. (8.115)

Note the resemblance of Eq. (8.115) to the DTFS. It is relatively
straightforward to show that the Fourier coefficient xk can
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be computed from the sampled values x(nT0/N) through the
summation

xk = 1

N

N−1∑
n=0

x
( n
N
T0

)
e−j2πkn/N , k = −K, . . . , K.

(8.116)
Index k extends from −K to +K , which includes k = 0. Hence,
we have (2K + 1) Fourier coefficients. To compute (2K + 1)
unknowns, we need at least that many known values of x(t).
Hence, the number of samples, N should equal or exceed
(2K + 1). This is the condition defined by Eq. (8.113).

(c) Computing xk by DFT

When we introduced the DFT in Section 7-15, we defined
the DFT complex coefficients X[k] in terms of a summation
involving discrete-time signal x[n], specifically

X[k] =
N0−1∑
n=0

x[n] e−j2πkn/N0 , k = 0, 1, . . . , N0 − 1.

(8.117)
Because of the close similarity between the forms of
Eqs. (8.116) and (8.117), we can implement the following
sequence:

Step 1: Define x′ ( n
N
T0
) = 1

N
x
(
n
N
T0
)
.

Step 2: Apply an N -point DFT to samples x′ ( n
N
T0
)
, using

the FFT algorithm, to compute xk for k = 0, 1, . . . , K .
Step 3: Use the relationship x−k = x∗

k to compute xk for
negative values of k.

Example 8-21: DFT Computation of Fourier Series

At a sampling rate of 50 samples/s, the number of samples
generated by a periodic signal with period T0 = 0.2 s and
fmax = 25 Hz isN = fsT0 = 50×0.2 = 10 samples. Compute
the Fourier-series coefficients of x(t), given its sampled values:
{9, 0.117, −5.195, 1.859, 11.53, 9, −4.585, −12.8, −5.75,
6.827}.

� Actually, the signal is given by

x(t) = 1 + 4 sin(10πt)+ 10 cos(20πt + 0.6435),

but presumably that information is not available to us.
The actual signal is bandlimited to 10 Hz, so the specified
information that fmax = 25 Hz is conservative. �

3
4
5

2
1
0

5 10 15 20−20 −15 −10 −5 0
k

X[k]

Figure 8-21: DFT spectrum generated from ten sampled values
of x(t).

Solution: A 10-point DFT of the 10 samples is computed
using the command fft in MATLAB or MathScript. We can
either normalize the sampled values by dividing them by 10
prior to computing the DFT, or the DFT output can be divided
by 10 after computing it with the unnormalized samples. The
output is then shifted using the command fftshift so that
dc (f = 0) is at the middle of the spectrum instead of at the
beginning. The magnitude spectrum is plotted in Fig. 8-21 as
a function of k/T0 = k/0.2 = 5k, with k = −4, . . . , 4. (See

S2 for details.)

(d) Interpretation of DFT output

Suppose we are given the output fft(X), where X is a vector
of samples of a signal x(t) sampled at S samples/s (MATLAB
and MathScript use symbol S for sampling rate). The number
of samples is N=length(X). How do we interpret the output
fft(X)?

The DFT/FFT computation treats the signal as if it is periodic,
whether it is or not. The computation assumes that the signal
has a period T0 and the N samples are equally spaced over a
time duration T0. Thus, it assumes the signal is periodic with
period T0 = N/S seconds. It then follows that the signal has
a line spectrum of harmonics at f = k/T0 = kS/N (Hz). The
magnitudes and phases of the harmonics are

abs(fft(X))/N and angle(fft(X)). (8.118)

Only the first half of the output of fft should be used to plot
the one-sided spectrum. The second half of the output is the
mirror image of the first half (by conjugate symmetry), so it
need not be plotted.
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Module 8.9 Computing Spectra of Discrete-
Time Periodic Signals Using the DTFS This 
module generates a periodic signal with 2 harmonics and 
computes its line spectrum (DTFS).

Example 8-22: Interpreting DFT Output

A signal x(t) is sampled at 1024 samples per second and stored
in vector X. Then fft(X)/4096 gives

[8, 0 . . . 0︸ ︷︷ ︸
31

, 2+2i, 0 . . . 0︸ ︷︷ ︸
95

, 6i, 0 . . . 0︸ ︷︷ ︸
3839

,−6i, 0 . . . 0︸ ︷︷ ︸
95

, 2−2i, 0 . . . 0︸ ︷︷ ︸
31

.]

Assuming no aliasing has occurred, what is x(t)?

Solution: The length is N=length(X)=4096 samples. The
duration of the signal is T0 = 4096/1024 = 4 s. There are five
peaks, located at indices K = [1, 33, 129, 3969, 4065]. Note
that the fft indexing starts at K = 1, but DFT indexing starts
at k = 0. Hence we must subtract 1 from indicesK to get DFT
indices k. Based on the output, x[k] = 0 for all k except the
following:

• x0 = 8

• x32 = x∗
4064 = 2 + j2 = 2

√
2 ejπ/4

• x128 = x∗
3968 = j6 = 6ejπ/2

The frequency associated with x32 is

k

T0
= k

S

N
= 32 × 1024

4096
= 8 Hz,

and similarly, the frequency associated with x128 is

k

T0
= k

S

N
= 128 × 1024

4096
= 32 Hz.

Components at indices above 4096/2 = 2048 are discarded for
the one-sided line spectrum.

The signal x(t) is therefore

x(t) = 8 + 4
√

2 cos(16πt + π/4)+ 12 cos(64πt + π/2).

8-9.2 Spectral Leakage

Suppose we are given two signals, namely,

x(t) = 2 cos(880πt), 0 ≤ t < 1, (8.119a)

and

y(t) = 2 cos(881πt), 0 ≤ t < 1. (8.119b)

The two signals are identical in every respect, except that f0 =
440 Hz for x(t) and 440.5 Hz for y(t). Both sinusoids are 1 s
long segments, and both are sampled at fs = 1024 samples/s.

Recall from Chapter 5 that the spectrum of a sinusoid of
frequency f0 consists of two spectral lines located at ±f0.
Given a signal’s duration Td (which should not be confused
with the sinusoid’s period T0) and sampling rate fs, the number
of samples is

N = fsTd.

In the present case, for both signals x(t) and y(t), fs = 1024
samples/s, Td = 1 s, and N = 1024 samples. When we
perform a 1024-point DFT on sampled signal x(t), we obtain
the spectrum shown in Fig. 8-22(a), consistent with our
expectations that the spectrum should consist of lines at
±440 Hz, and their heights should be 1.

In contrast, application of the same steps to signaly(t), whose
frequency is 440.5 Hz, leads to two lines that are spread out
at their bases, as shown in Fig. 8-22(b), and their heights are
significantly lower than 1.

Why do we get different spectra for the 440 Hz and 440.5 Hz
sinusoids when computed using the DFT? The simple answer
has to do with the value of the product f0Td:

x(t): f0Td = 440 × 1 = 440 (which is an integer),
y(t): f0Td = 440.5 × 1 = 440.5 (not an integer).

When f0Td is an integer, the DFT generates an exact Fourier
transform, but when f0Td is not an integer, it generates a
spectrum with spectral leakage (the name given to spectral
lines that are spread out at their bases). Close examination of
the base spread shows that it is a discrete sinc function.
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(a) DFT-computed spectrum of x(t) = 2 cos(880πt)

(b) DFT-computed spectrum of y(t) = 2 cos(881πt)

Y[k]
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Figure 8-22: Spectral leakage (base spread of spectral lines)
occurs when f0Td is not an integer, where f0 is the sinusoid’s
frequency and Td is the segment duration. For x(t) at 440 Hz
and Td = 1 s, f0Td = 440, whereas for y(t) at 440.5 Hz and
Td = 1 s, f0Td = 440.5 is not an integer.

The more elaborate explanation for what causes spectral
leakage when the DFT is used to compute the spectrum of a
periodic signal is related to an implicit assumption of the DFT
that the sampled signal is a single period of a periodic signal.
The spectral-leakage problem arises because in most cases the
sampled signal is not a single period. Instead, it consists of
several periods and a fraction of a period of the periodic signal.

To appreciate the implications of the DFT assumption, we
should distinguish between “sinusoid” and “a segment of a
sinusoid”:

Sinusoid: 2 cos(2πf0t) −∞ < t < ∞,
Td-long segment: 2 cos(2πf0t) 0 ≤ t < Td.

A sinusoid is everlasting, whereas a finite-duration segment is
not. The DFT is formulated to compute the Fourier series of
a periodic signal extending from −∞ to ∞ on the basis of

(a) The red segment is 2 periods long

(b) The red segment is 2.5 periods long

t (s)

0.5

1

0

−0.5

−1
0 1.51 2 2.5 30.5

x(t)

2.5 periods

0.5

1

0

−0.5

−1
0 1.51 2 2.5 30.5

t (s)

x(t)

2 periods

Figure 8-23: Periodic extension generates the correct parent
sinusoid from the available signal segment when the segment
is exactly an integer multiple of the sinusoid’s period, as in (a),
but it fails to do so otherwise.

sampled values taken across one period or multiple periods (but
not fractions of periods).

If the input signal segment is the 1 s long sinusoid shown
in red in Fig. 8-23(a), the DFT assumes that it is adjoined
(preceded and followed) by identical copies over and over in
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time. Thus, x(t) is part of a periodic extension x̃(t) defined as

x̃(t) = {. . . , x(t + Td), x(t), x(t − Td), . . . }. (8.120)

(a) Td/T0 = integer

The red sinusoid segment in Fig. 8-23(a) is exactly two periods
long (Td = 2T0). Consequently, its periodic extension is indeed
the parent sinusoid of which the signal is a part.

(b) Td/T0 �= integer

That is not the case for the red signal segment in Fig. 8-23(b).
The segment is 2.5 periods long, so the replication and adjoining
process generates a periodic extension that is not the true parent
sinusoid.

The DFT computes the Fourier series of a sampled version
of x̃(t). If x̃(t) is a true parent of the periodic signal, which
occurs when the segment length Td is an integer multiple of the
periodic signal’s period T0, no spectral leakage occurs. On the
other hand, if Td/T0 is not an integer, x̃(t) is not the true parent
of x(t) and spectral leakage will occur.

(c) Summary

For a sinusoid x(t) = A cos(ω0t) sampled at fs samples/s over
a duration Td, the discrete-time sinusoid x[n] = A cos(�n)
has angular frequency � = (ω0/fs) and fundamental period
N0 = 2πk/�, where k is the smallest integer that results in an
integer value forN0. The total number of samples isN = fsTd.
When a N -point DFT is used to compute the spectrum of the
discrete-time sinusoid, no spectral leakage occurs if N/N0 is
an integer.

Concept Question 8-9: Why is it possible to compute, 
using the DFT, the exact spectrum of a signal from its 
samples? (See        )

Concept Question 8-10: When does the spectrum of a 
pure sinusoid computed using the DFT contain spectral 
leakage? (See        )

Exercise 8-14: The spectrum of

{cos(0.3πn), n = 0, . . . , N − 1}

is to be computed using the DFT. For what values of N
will there be no spectral leakage?

Answer: N = integer multiple of 20. (See S2 )

8-10 Computing Spectra of
Nonperiodic Signals

In the preceding section, we computed the Fourier series
expansion of a periodic and bandlimited signal by sampling it
in time and then applying the DFT. In this section, we compute
the Fourier transform of a finite-duration (time-limited) and
bandlimited signal by sampling it in both time and frequency,
and also applying the DFT. Of course, a time-limited signal
has an infinite spectrum, so its spectrum is bandlimited by
artificially applying a finite-width window that captures the
most significant part of its spectral energy.

8-10.1 Timelimited-Bandlimited Signals

Our goal is to develop a formulation that takes advantage of
the DFT to compute the continuous-time Fourier transform
(CTFT) of a nonperiodic signal x(t) and its inverse:

X(f ) =
∞∫

−∞
x(t) e−j2πf t dt, (8.121a)

x(t) =
∞∫

−∞
X(f ) ej2πf t df. (8.121b)

The frequency variable is represented by f in Hz, instead of ω
in radians/s. Using f in the material that follows makes the
results somewhat easier to follow.

Signal x(t) and its spectrum X(f ) are defined to be

(1) Time-limited to Td :

x(t) = 0, unless − Td

2
< t <

Td

2
, (8.122a)

(2) Bandlimited to fmax = Bb

2
:

X(f ) = 0, unless − Bb

2
< f <

Bb

2
. (8.122b)

In Chapter 6, we defined the bandwidth B of a lowpass
signal whose positive spectrum extends to frequency fmax
as B = fmax. We also defined the bidirectional bandwidth
extending from −fmax to +fmax as

Bb = 2B = 2fmax. (8.123)

To establish symmetry between the time dimension (over which
the signal is time-limited to Td; i.e., it is zero outside the range
−Td/2 to +Td/2) and the frequency dimension, we defined
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Bb

0
f

|X( f )|

−fmax fmax

x(t)

−Td /2 Td /2
Td

Figure 8-24: Signal x(t) is time-limited to Td and its spectrum is bandlimited to Bb.

spectrum X(f ) in Eq. (8.122b) as bandlimited to Bb/2, rather
than to B. The notational symmetry creates duality between
the time and frequency dimensions, which is useful when
transforming results obtained in either dimension to the other.

Note that x(t) = 0 at the edges of its duration (±Td/2),
which implies that its non-zero duration is slightly shorter
than Td (Fig. 8-24). Similarly, X(f ) is defined to be zero
at ±Bb/2, and therefore the signal’s bandwidth is slightly
narrower than Bb. These may seem like subtle distinctions, but
they will prove significant when we discuss sampling rates in
the next subsection.

For computational reasons, Td and/or Bb are rounded up so
that their dimensionless product

N0 = TdBb, (8.124)

is an odd integer. A related integer we will use shortly is

M = N0 − 1

2
. (8.125)

The fact that N0 is an odd integer guarantees M to be always
an integer.

In preparation for the material in the next subsection, signal
x(t) is defined in Eq. (8.122a) such that its duration Td is
centered at t = 0. Should that not be the case, an additional
preparatory step is needed. For example, if a signal y(t)
is defined over the time span a < t < b, we introduce the
parameters

tc = b + a

2
, Td = b − a, (8.126)

so as to define y(t) relative to a time-centered signal x(t),

x(t) = y(t + tc), −Td

2
< t <

Td

2
. (8.127)

After computing X(f ), the Fourier transform of x(t), using the
procedure outlined in the next subsection, we apply the time-
shift property of the Fourier transform (#4 in Table 5-7) to obtain
the Fourier transform Y(f ) of the original signal y(t),

Y(f ) = X(f ) e−j2πf tc . (8.128)

8-10.2 Sampling in Time

By sampling a nonperiodic signal x(t) of duration Td and
bandwidth Bb (Fig. 8-25(a) at a sampling rate fs = Bb, we
avoid aliasing issues and preserve the signal’s information
content completely. The rate fs = Bb = 2fmax exceeds the
Nyquist rate because in Eq. (8.122b) we defined the spectrum
such that X(f ) = 0 at |f | ≥ fmax, the implication being that the
signal bandwidth is slightly narrower than Bb = 2fmax. For a
signal of duration Td, sampling it at fs = Bb generates a total of
N0 = fsTd = TdBb samples. The sampling times are t = n/Bb,
with n spanning the range between −M and +M , where
M = (N0 − 1)/2. From Eq. (6.150), the sampled continuous-
time signal xs(t) for Ts = 1/fs = 1/Bb is

xs(t) =
∞∑

n=−∞
x(t) δ

(
t − n

Bb

)
=

∞∑
n=−∞

x[n] δ
(
t − n

Bb

)
,

(8.129)
where x[n] = x(n/Bb) is the sampled version of x(t). The
sampled signal is shown in Fig. 8-25(b), along with its spectrum
Xs(f ). From Eq. (6.158), the spectrum of the sampled signal,
Xs(f ), is related to the spectrum of the continuous-time signal,
X(t), by

Xs(t) = fs

∞∑
m=−∞

X(f −mfs) = Bb

∞∑
m=−∞

X(f −mBb),

(8.130)
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(a) x(t) and |X( f )|

(c) Discretized spectrum (expanded view)

(b) xs(t) and |Xs( f )|

Bb

A

0
f

|X( f )|

t

x(t)

−Td /2 Td /2
Td

−Bb/2 Bb/2
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0
f
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1
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Figure 8-25: Continuous-time signal x(t) and its spectrum X(f ); sampling x(t) in time leads to a periodic spectrum of period Bb in
frequency; and discretizing the spectrum at Td samples/Hz generates a line spectrum with an inter-line spacing of 1/Td.

where, to avoid confusion, the summation index has been
changed to m. Sampling in the time domain leads to spectrum
replication in the frequency domain. That is, Xs(f ) is periodic
with period Bb. Also, the spectra X(f ) of the unsampled signal
and the central segment of spectrum Xs(f ) of the sampled

signal are related by the factor Bb,

Xs(f ) = Bb X(f ), −Bb

2
< f <

Bb

2
. (8.131)

From the basic definition of the Fourier transform, Xs(f ) of
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signal xs(t) is

Xs(f ) =
∞∫

−∞
xs(t) e

−j2πf t dt

=
∞∫

−∞

∞∑
n=−∞

x[n] δ
(
t − n

Bb

)
e−j2πf t dt. (8.132)

Exchanging the order of the integration and summation gives

Xs(f ) =
∞∑

n=−∞
x[n]

∞∫
−∞

δ

(
t − n

Bb

)
e−j2πf t dt

=
M∑

n=−M
x[n] e−j2πnf/Bb , (8.133)

where in the summation n is confined to the range −M to +M
since x[n] = 0 outside that range. In view of Eq. (8.131), it
follows that the spectrum X(f ) of the unsampled signal is

X(f ) = 1

Bb
Xs(f ) = 1

Bb

M∑
n=−M

x[n] e−j2πnf/Bb . (8.134)

8-10.3 Sampling in Frequency

Numerical computation of the Fourier transform and its inverse
requires not only that x(t) be sampled in time, but also
that its spectrum X(f ) be sampled in frequency. To avoid
aliasing, X(f ) should be sampled at a rate Td samples per Hz,
analogous to sampling x(t) atBb samples per second. Sampling
a bandwidth Bb at Td samples per Hz generates N0 = TdBb
samples. Thus, both x(t) and its spectrum X(f ) consist of N0
samples each.

Spectrum X(f ) is sampled at frequencies f = k/Td, with k
spanning the range −M to M . The sampled Fourier spectral
components are labeled Xk . Thus,

Xk = X(f )|f=k/Td

= 1

Bb

M∑
n=−M

x[n] e−j2πnf/Bb

∣∣∣
f=k/Td

= 1

Bb

M∑
n=−M

x[n] e−j2πnk/N0 , |k| ≤ M, (8.135)

where N0 = TdBb. By comparing Eq. (8.135) with
Eq. (7.168a), we recognize the summation as anN0-point DFT
of x[n]. That is,

Xk︸︷︷︸
Fourier transform

= 1

Bb
X[k]︸︷︷︸
DFT

, (8.136)

where X[k] is the kth DFT complex coefficient. In the formal
definition of the DFT [Eq. (7.168)], the summation index n
spans the range 0 to N0, but in Eq. (8.135) its range is from
−M toM . However, sinceN0 = 2M+1, both contain the same
number of samples. Furthermore, because the spectrum Xs(f )

is periodic, the DFT can be computed on the basis of any N0-
consecutive samples of x[n].

Use of the Fourier duality allows us to repeat the preceding
analysis that led to Eqs. (8.134) and (8.135) by exchanging t
and f , x(t) and X(f ), Td and Bb. The process leads to the
inverse Fourier transform

x[n] = 1

Td

M∑
k=−M

Xkej2πnk/N0

= 1

TdBb

M∑
k=−M

X[k]ej2πnk/N0

= 1

N0

M∑
k=−M

X[k]ej2πnk/N0 , |n| ≤ M. (8.137)

The final result is theN0-point inverse DFT, expressed in terms
of the DFT Fourier coefficients X[k] (not to be confused with
the Fourier transform component Xk).

8-10.4 Summary

In conclusion, to take advantage of the computational process
of the DFT and its associated FFT algorithm, we note the
following:

(a) A signal x(t) time-limited to Td and bandlimited to Bb
should be sampled at Bb samples/s and its spectra X(f ) can
be represented by a discrete spectrum with spacing of 1/Td
between adjacent spectral components Xk . Both x(t) and X(f )
consist of N0 = TdBb samples.

(b) Application of an N0-point DFT on x[n] generates
DFT components X[k] for |k| ≤ M = (N0 −1)/2. The spectral
components of the continuous signal x(t) are given by
Xk = X[k]/Bb.

(c) Applications of an N0-point inverse DFT on DFT
components X[k] generates x[n] for |n| ≤ M .
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8-10.5 Comparison with Discretization

Returning to the definitions for the Fourier transform and its
inverse given by Eq. (8.121), if we discretize the integrals by
converting them into summations with

t = n 	t, f = k 	f,

	t = 1

Bb
, 	f = 1

Td
,

we obtain the results

Xk = 1

Bb

M∑
n=−M

x

(
n

Bb

)
e−j2πnk/N0 , |k| ≤ M

(8.138a)
and

x

(
n

Bb

)
= 1

Td

M∑
k=−M

Xk ej2πnk/N0 , |n| ≤ M (8.138b)

with N0 = TdBb. The fact that these results, based on
discretizing the integrals, are identical with those given
by Eqs. (8.135) and (8.137) is not surprising, because
the discretization spacings 	t = 1/Bb and 	f = 1/Td,
correspond exactly to the sampling rates of Bb samples/s and
Td samples/Hz used in the denominators of Eqs. (8.135) and
(8.137).

Example 8-23: Computing CTFT by DFT

Use the DFT to compute the Fourier transform of the continuous
signals:

(a) x1(t) = e−|t |,

(b) x2 = 1√
2π
e−t2/2.

Solution:
(a) Our first task is to assign realistic values for the

signal duration Td and the width of its spectrum Bb. It is an
“educated” trial-and-error process. At t = 6, e−6 = 0.0025, so
we will assume that x1(t) ≈ 0 for |t | > 6. Since x1(t) = e−|t |
is symmetrical with respect to the vertical axis,

Td = 2 × 6 = 12 s.

To specify a value for Bb, we need to know X(f ), which is
the quantity we are trying to compute. Because we usually do
not know X(f ), we have to select a value for Bb, perform the

computation, increase the value ofBb, perform the computation
again, and then compare the spectrum obtained with the higher
value of Bb with that obtained with the smaller value. If there
is a discernible difference between the two spectra, Bb should
be increased again and the process repeated until we reach a
point of no discernible change in the computed spectrum of
X(f ). In the present case, that point is reached when Bb = 16.
To generate a symmetrical spectrum, N0 = TdBb should be an
odd integer. Hence, we increase Bb to 16.083 so that

N0 = T0Bb = 12 × 16.083 = 193.

The results, based on a 193-point DFT computation, are shown
in Fig. 8-26(a). For the sake of comparison, we also show
exact values of the Fourier transform of x1(t) = e−|t | at each
of the 193 spectral points. The exact values were calculated
from knowledge of the analytical expression for the Fourier
transform, namely

X1(f ) = 2

4π2f 2 + 1
.

Despite the relatively coarse discretization, the DFT has done
a excellent job of computing X1(f ).

(b) For x2(t) = 1√
2π
e−t2/2,

x2(t) < 0.00013 for |t | ≥ 4.

Hence, we assign

Td = 2 × 4 = 8 s.

By trial and error, we determine that Bb = 1.2 Hz is sufficient
to characterize X2(f ). The combination gives

N0 = TdBb = 8 × 1.2 = 9.6.

To increase the value of N0 to an odd integer, we increase
Bb to 1.375 Hz, which results in N0 = 11. In Fig. 8-26(b)
computed values of the discretized spectrum of x2(t) are
compared with exact values based on evaluating the analytical
expression for X2(f ) = e−2π2f 2

. The comparison provides
an excellent demonstration of the power of the sampling
theorem; representing x2(t) by only 11 equally spaced samples
is sufficient to capture its information content and generate its
Fourier transform with high fidelity.
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Figure 8-26: Comparison of computed spectra with exact values based on analytical expression (Example 8-23).

Concept Question 8-11: Why can Fourier transforms be
computed so accurately with the DFT? (See        )

Concept Question 8-12: Why can some Fourier 
transforms be computed using as few as 11 discretization 
points? (See        )
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Module 8.10a Computing Continuous-Time
Fourier Transforms Using the DFT This module
numerically computes the continuous-time Fourier
transform of a two-sided exponential signal.

Module 8.10b Computing Continuous-Time
Fourier Transforms Using the DFT This module
numerically computes the continuous-time Fourier
transform of a Gaussian signal.

Module 8.10c Computing Continuous-Time
Fourier Transforms Using the DFT This module
numerically computes the continuous-time Fourier
transform of a one-sided exponential signal.
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Summary

Concepts
• Single-frequency signals can be rejected by notch filters.

• Periodic signals can be rejected by comb filters.

• For minimum-phase systems, deconvolution can be performed in real time, using inverse systems.

• For non-minimum-phase systems, deconvolution can be performed using batch processing and the DFT or by using the
bilateral z-transform.

• The Fourier series of periodic signals and Fourier transforms of nonperiodic signals can be computed using the DFT.

Mathematical and Physical Models
Transfer Function of Notch Filter

H(z) = z2 − 2z cos�i + 1

z2 − 2az cos�i + a2

�i = angular frequency of interfering sinusoid

Transfer Function of Comb Filter

Series connection of notch filters

Reverberation

Reverberated signal: y[n] =
∞∑
i=0

ri x[n− iM]

Dereverberated signal: x[n] = y[n] − r y[n−M]

Computation of Fourier Series

Given: x(t) periodic with period T0
and bandlimited to fmax

x(t) =
K∑

k=−K
xkej2πkt/T0

with K = fmaxT0, xk = 1

N
DFT[{x[n]}]

Computation of Fourier Transform

Given: x(t) time-limited to Td/2 and
its spectrum bandlimited to Bb/2

Xk = 1

Bb

M∑
n=−M

x

(
n

Bb

)
e−j2πnk/N0 |k| ≤ M

x[n] = 1

Td

M∑
k=−M

Xkej2πnk/N0 N0 = BbTd

Important Terms Provide definitions or explain the meaning of the following terms:

batch processing
bilateral z-transform
comb filter
deconvolution

dereverberation
half-band filter
minimum-phase system
noncausal inverse z-transform

notch filter
periodic extension
region of convergence (ROC)
reverberation

signal duration
spectral leakage
thresholding

PROBLEMS

Section 8-2: Notch Filters

∗8.1 Design an ARMA difference equation that rejects a
500 Hz sinusoid sampled at 2000 samples per second. Use
a = 0.99.

8.2 Design an ARMA difference equation that rejects a

∗
Answer(s) in Appendix F.

250 Hz sinusoid sampled at 1500 samples per second. Use
a = 0.99.

8.3 Design an ARMA difference equation that rejects a
250 Hz sinusoid sampled at 2000 samples per second. Use
a = 0.99.

8.4 Design an ARMA difference equation that rejects a
750 Hz sinusoid sampled at 2000 samples per second. Use
a = 0.99.

8.5 Design anARMA difference equation that eliminates both
sinusoids cos(π3 n) and cos( 2π

3 n). Use a = 0.99.
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∗8.6 Design an ARMA difference equation that rejects 100 Hz
and 500 Hz sinusoids sampled 1200 samples per second. Use
a = 0.99.

8.7 Design an ARMA difference equation that rejects 500 Hz
and 1000 Hz sinusoids sampled 3000 samples per second. Use
a = 0.99.

8.8 Write a MATLAB or MathScript program that adds a
750 Hz sinusoid to the trumpet signal (note B), designs a notch
filter that eliminates the sinusoid, and then implements the
notch filter. The trumpet signal is sampled at 44,100 samples/s.
Attempt to listen to the trumpet-plus-sinusoid signal before and
after filtering by the notch filter. Use a = 0.99.

Section 8-3: Comb Filters

8.9 Design an ARMA difference equation that eliminates
periodic interference of period = 0.001 s, sampled at 50000
samples per second. Use a = 0.99.

8.10 A triangle wave with period 1/750 s has the truncated
Fourier series expansion

cos(2π750t)+ 1

9
cos(2π(3)750t)+ 1

25
cos(2π(5)750t).

Write a MATLAB or MathScript program that adds this triangle
wave to the trumpet signal, designs a comb filter that eliminates
the triangle wave, and implements the comb filter. The trumpet
signal is sampled at 44,100 samples/s. Attempt to listen to the
trumpet-plus-triangle signal before and after filtering by the
comb filter. Use a = 0.99.

8.11 If x[n] is any real-valued, even, and periodic signal
with period = 8, show that the output of a system
described by y[n] = x[n] − x[n− 2] + x[n− 4] − x[n− 6] is
y[n] = A cos(πn/2) for some constant A.

8.12 If x[n] is any real-valued, zero-mean, and periodic signal
with period = 8, show that the output of a system described by
y[n] = x[n] + x[n− 1] + · · · + x[n− 7] is y[n] = 0.

Section 8-4: Deconvolution and Dereverberation

8.13 Show that a reverbed sinusoid is just another sinusoid at
the same frequency.

∗8.14 Design a dereverbing system for a signal that has been
reverbed with reflection coefficient 0.8 and time delay 0.001
seconds between echoes, sampled 3000 samples/s.

8.15 Solve the following deconvolution problem for x[n]
without using MATLAB or MathScript:

x[n] ∗ {1, 1, 1
2 } = {4, 6, 12, 15, 10, 3}.

(Hint: The system is minimum phase.)

8.16 Solve the following deconvolution problem for x[n]
without using MATLAB or MathScript:

x[n] ∗ {1, 1
2 ,

1
2 } = {8, 6, 11, 8, 5, 2}.

(Hint: The system is minimum phase.)

Section 8-8: Deconvolution and Filtering Using the DFT

8.17 Solve each of the following deconvolution problems for
input x[n]. Use MATLAB or MathScript.

(a) x[n] ∗ {1, 2, 3} = {7, 15, 27, 13, 24, 27, 34, 15}.
(b) x[n] ∗ {1, 3, 5} = {3, 10, 22, 18, 28, 29, 52, 45}.
(c) x[n] ∗ {1, 4, 2, 6, 5, 3} =

{2, 9, 11, 31, 48, 67, 76, 78, 69, 38, 12}.
8.18 Solve each of the following deconvolution problems for
input x[n]. Use MATLAB or MathScript.

(a) x[n] ∗ {3, 1, 4, 2} = {6, 23, 18, 57, 35, 37, 28, 6}.
(b) x[n] ∗ {1, 7, 3, 2} = {2, 20, 53, 60, 53, 54, 21, 10}.
(c) x[n] ∗ {2, 2, 3, 6} =

{12, 30, 42, 71, 73, 43, 32, 45, 42}.
∗8.19 Solve the following deconvolution problem for input
x[n]. Use MATLAB or MathScript. Note that theN -point DFT
is zero at k = N/2.

x[n] ∗ {1, 3, 2} = {3, 10, 13, 15, 16, 26, 37, 18}.

8.20 Solve the following deconvolution problem for input
x[n]. Use MATLAB or MathScript. Note that the DFT at k = 0
is zero for any DFT order! (Hint: Modulate all three signals by
{ej2πk/16}.)

x[n] ∗ {1, 2,−3} = {2, 11, 9,−11, 15,−12, 10,−24}.

8.21 Write a MATLAB or MathScript program that adds a
750 Hz sinusoid to the trumpet signal, and then uses the DFT to
eliminate it. The trumpet signal is sampled at 44,100 samples
per second.Attempt to listen to the trumpet-plus-sinusoid signal
before and after filtering using the DFT.

8.22 A triangle wave with period 1/750 s has the truncated
Fourier series expansion

cos(2π750t)+ 1

9
cos(2π(3)750t)+ 1

25
cos(2π(5)750t).

Write a MATLAB or MathScript program that adds this triangle
wave to the trumpet signal, and then uses the DFT to eliminate
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it. The trumpet signal is sampled at 44,100 samples per second.
Attempt to listen to the trumpet-plus-triangle signal before and
after filtering using the DFT.

8.23 A triangle wave with period 1/20 s has the truncated
Fourier series expansion

cos(2π20t)+ 1

9
cos(2π(3)20t)+ 1

25
cos(2π(5)20t).

Write a MATLAB or MathScript program that adds noise
randn(1,N) to this triangle wave. Use a sampling rate of
44,100 samples per second and signal length N = 11025. Use
thresholding and the DFT to eliminate the noise in the signal.
Plot the noisy and filtered waveforms for 0 ≤ t < 0.25 s.

8.24 A triangle wave with period 1/20 s has the truncated
Fourier series expansion

cos(2π20t)+ 1

9
cos(2π(3)20t)+ 1

25
cos(2π(5)20t).

Write a MATLAB or MathScript program that adds noise
randn(1,N) to this triangle wave. Use a sampling rate of
44,100 samples per second and signal length N = 11025.
Knowing only that: (1) the signal is periodic with period 1/20 s,
(2) the signal is bandlimited to 100 Hz, use the DFT to eliminate
the noise in the signal. Plot the noisy and filtered waveforms
for 0 ≤ t < 0.25 s.

Section 8-9: Computing Spectra of Periodic Signals

8.25 A continuous-time signal x(t) is sampled at 40,000
samples per second, resulting in signal x[n]. The length of x[n]
is 8000 samples. MATLAB or MathScript’s fft function is
applied to x[n], and the output is zero except at the indices
{201, 401, 601, 801, 7201, 7401, 7601, 7801}.
(a) What is the duration of x(t)?

(b) x(t) consists of sinusoids at what specific frequencies, in
Hz?

(c) What is the period of x(t)?

∗8.26 A continuous-time signal x(t) is sampled at 44,100
samples per second, resulting in signal x[n]. The length of x[n]
is 11,025 samples. MATLAB or MathScript’s fft function is
applied to x[n]. The output is zero except at indices 111 and
10,916.

(a) What is the duration of x(t)?

(b) What is the frequency in Hz of x(t)?

(c) What pure tonal note is being played?

8.27 A continuous-time signal x(t) is sampled at 44,100
samples per second, resulting in signal x[n]. The length of x[n]
is 1000 samples. MATLAB or MathScript’s fft function is
applied to x[n], and the output is zero except for these indices:

• At index 51, fft gives 1500 + j2000.

• At index 101, fft gives 2500 + j6000.

• At index 901, fft gives 2500 − j6000.

• At index 951, fft gives 1500 − j2000.

Determine a formula for the signal x(t).

8.28 A continuous-time signal x(t) is sampled at 44,100
samples per second, resulting in signal x[n]. The length of
x[n] is 100 samples. MATLAB or MathScript’sfft function is
applied to x[n], and the output is zero except for these indices:

• At index 2, fft gives 600 + j800.

• At index 3, fft gives 700 + j2400.

• At index 99, fft gives 700 − j2400.

• At index 100, fft gives 600 − j800.

Determine a formula for the signal x(t).

8.29 We are given the discrete-time sinusoidal segment 
{3 cos(0.4πn  + 0.2), n = 0,  . . .  , (N  − 1)}. For what values of 
N will the spectrum computed using the DFT have no spectral 
leakage?

8.30 We are given the discrete-time sinusoidal segment 
{6.2 cos(0.75πn+1), n = 0,  . . .  , (N  −1)}. For what values of 
N will the spectrum computed using the DFT have no spectral 
leakage?

8.31 File P831.mat on the  S2  website contains signals for 
the 12 keys on a touch-tone phone keypad, in the order {1, 2, 
3, 4, 5, 6, 7, 8, 9, ∗, 0, #}. The signal is sampled at 8192 
samples per second. Segment the signal into 12 parts (one per 
key), then use the DFT to determine the frequencies of the 
sinusoids present in the signal for each key. Make a diagram 
that summarizes the frequencies.

Section 8-10: Computing Spectra of Nonperiodic Signals

8.32 Use a 40-point DFT to compute the inverse Fourier
transform of

X(ω) =
(

sin(ω/2)

ω/2

)2

.
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Assume that X(ω) ≈ 0 for |f | > 10 Hz and x(t) ≈ 0 for
|t | > 1 s. Plot the actual and computed inverse Fourier
transforms on the same plot to show the close agreement
between them.

8.33 Use an 80-point DFT to compute the inverse Fourier
transform of

X(ω) H(ω) =
(

sin(ω/2)

ω/2

)2

(1 + e−jω).

Assume that X(ω) ≈ 0 for |f | > 10 Hz and x(t) ≈ 0 for
|t | > 2 s. Plot the actual and computed inverse Fourier
transforms on the same plot to show the close agreement
between them.

LabVIEW Module 8.1

8.34 Replicate the design of the half-band lowpass filter in
Example 8-1.

8.35 In Example 8-1, why must the pole on the positive
real axis have magnitude 0.6, when all of the other poles had
magnitudes 0.8? Redo Problem 8.34, but change the pole at 0.6
to 0.8.

8.36 Design a comb filter that eliminates periodic non-zero-
mean interference with discrete-time period 8 and 2 harmonics.
Use a magnitude of 0.9 for all poles.

8.37 Replicate the design of the notch filter in Example 8-3,
with the following changes:

• The rejected frequency is 1200 Hz.

• The dc gain is close to 1.4.

• The gain is 1.0 at 960 Hz and 1440 Hz.

• The gain exceeds 1.0 outside the range

960 Hz < f < 1440 Hz.

LabVIEW Module 8.2

For Problems 8.38 and 8.39, set the notch frequency to the
frequency we wish to to eliminate, and display all stem plots
and spectra.

8.38 For each part, setf1 = 100 Hz andf2 = 200 Hz, and use
the notch filter with the specified pole magnitude to eliminate
the 200 Hz sinusoid. Confirm that the filtered signal is a
sinusoid.

(a) Use a pole of magnitude 0.8.

(b) Use a pole of magnitude 0.5. Explain why the phases of
the filtered signals in (a) and (b) are different.

(c) Use a pole of magnitude 0.99. Explain why the notch filter
does not work as intended.

8.39 Set f1 = 100 Hz and f2 = 250 Hz. For what range
of pole magnitudes can you eliminate the 200 Hz sinusoid?
Explain your answer.

LabVIEW Module 8.3

In Problems 8.40 to 8.43, the interference level is set to 1, and
the interference and notch frequencies are equal. Display all
stem plots and spectra. Listen to all signals.

8.40 For an interference frequency of 800 Hz, for what pole
radius does the filtered signal most resemble, and sound like,
the original signal?

8.41 For an interference frequency of 1000 Hz, which is very
close to the second harmonic of the trumpet signal, why is it
possible to still eliminate it?

8.42 Repeat Problem 8.41 for an interference frequency of
1500 Hz.

8.43 For an interference frequency of 1500 Hz, what is the
smallest value of pole radius that makes the filtered stem plot
resemble the original stem plot?

LabVIEW Module 8.4

For Problems 8.44 to 8.47, the original signal is a 30 Hz sinusoid
plus periodic interference consisting of 1, 2 or 3 harmonics, with
a specified fundamental frequency (labeled as “interference
frequency”).

8.44 For interference with period 1/60 s and 3 harmonics,
use the comb filter with pole magnitude 0.8 to eliminate
interference, leaving just the 30 Hz sinusoid.

8.45 Repeat Problem 8.44, but use pole radius 0.99. Why does
this not work?

8.46 For interference with period 1/40 s and 3 harmonics,
use the comb filter with pole magnitude 0.8 to eliminate
interference, leaving just the 30 Hz sinusoid.

8.47 Repeat Problem 8.46, but use pole radius 0.99. Why does
this not work?
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LabVIEW Module 8.5

Display all plots and listen to original and filtered sounds.

8.48 Use the comb filter to eliminate the trumpet playing
note A. Use a pole magnitude of 0.99. Confirm that the comb
filter has eliminated one of the two trumpets.

8.49 Repeat Problem 8.48, but eliminate the trumpet playing
note B.

8.50 Repeat Problem 8.49, but use a pole magnitude of 0.8.
Why does this still work? What advantage is there in using a
smaller pole radius?

8.51 Use the comb filter with fundamental frequency of
460 Hz and a pole magnitude of 0.99. Confirm that both
trumpets are still present in the filtered signal.

LabVIEW Module 8.6

8.52 Plot the reverbed signal for reflection coefficient of 0.9
and time delay of 1. The result is a sequence of geometrically
decaying signals. Explain why you cannot just read off the peak
values of each geometrically decaying sequence to reconstruct
the original signal from the reverbed signal.

8.53 Plot the reverbed signal for reflection coefficient of 0.2
and time delay of 5. Why can you (roughly) reconstruct the
original from the reverbed signal?

LabVIEW Module 8.8

Display all plots and spectra and listen to the original and filtered
signals.

8.54 Eliminate the trumpet playing noteA. Use a fundamental
rejection frequency of 435 Hz. Confirm that only one trumpet
signal is left.

8.55 Eliminate the trumpet playing note B. Use a fundamental
rejection frequency of 490 Hz. Confirm that only one trumpet
signal is left.

8.56 Use a fundamental rejection frequency of 460 Hz.
Confirm that both trumpet signals remain, except for the
fundamentals of both trumpet signals.
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Objectives

Learn to:

� Apply discrete-time rectangular, Bartlett, Han-
ning, Hamming, and Blackman data windows.

� Compute spectrograms.

� Design finite-impulse-response (FIR) and
infinite-impulse-response (IIR) filters.

� Use multirate signal processing, including down-
sampling, upsampling, and interpolation.

� Use autocorrelation and cross-correlation in
practical applications.

After learning about data windows and how they are used to
limit the extent of discrete-time signals prior to computing their
spectra, this chapter explores multiple approaches to discrete-
time filter design, multirate signal processing, and correlation,
and illustrates these techniques through examples of biomedical
applications.
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Overview

The first six chapters of this book dealt with continuous-
time signals and systems. Chapter 7 introduced their discrete-
time analogues and Chapter 8 provided application examples
of discrete-time signals and systems. Now, in Chapter 9,
we present additional applications in discrete-time signal
processing that have no obvious continuous-time counterparts.

These applications include: spectral leakage and the
consequent need for the imposition of data windows;
spectrograms, which are time-varying spectra computed using
a series of data windows centered at different times; discrete-
time filter design to remove undesired signal components;
downsampling and upsampling, which require discrete-time
filters and which constitute an important ingredient of wavelet
transforms (Chapter 10); and various forms of correlation, an
important tool for computing time delay, and the period of a
periodic signal, and to classify a signal as one of several possible
types, each with its own set of properties. Additionally, the
utility of correlation is demonstrated through three biomedical
signal processing examples.

9-1 Data Windows

A critical first step in the computation of the spectrum of a
discrete-time signal is to assign an appropriate data window
that limits the extent of the signal and shapes its amplitude
profile. The length of the window and its shape determine the
spectral resolution of the processed signal and the degree of
interference between adjacent sinusoids. This section examines
the spectra of data windows, and the trade-off between the two
aforementioned properties for each of five types of commonly
used windows.

The preceding chapter included several computed spectra of
an actual trumpet signal, for which the spectral lines had broad
bases. This is due in part to the trumpet signal not being perfectly
periodic, but it is also due in part to spectral leakage, so called
because the spectral lines seem to be “leaking.”

Spectral leakage occurs because the spectrum is computed
using only a finite number of samples of the signal. While
spectral leakage cannot be eliminated entirely (except in
special cases), its effects can be mitigated using data windows.
Multiplying the finite number of samples by a data window
reduces the sidelobes, making it easier to interpret and to spot
small spectral peaks.

The concept of spectral leakage was introduced in Section
8-10.2, where it was demonstrated through Fig. 8-22 that the
shape of the spectrum computed for a single sinusoid (of
frequency f0 and sampled over a duration Td) depends on the

product f0Td. More specifically, leakage does not occur only if
f0Td is an integer value. In the present section we examine the
underlying reasons for this conclusion.

9-1.1 Spectrum of a Rectangular Pulse

We start by examining the spectrum of a discrete-time
rectangular pulse of length L given by

wR[n] =
{

1 n = 0, 1, . . . , L− 1,

0 otherwise,
(9.1)

which is equivalent to a constant signal sampled across a
rectangular window with a uniform amplitude of unity. Per
Eq. (7.154a), the DTFT WR(e

j�) of wR[n] is

WR(e
j�) =

∞∑
n=−∞

wR[n] e−j�n =
L−1∑
n=0

1e−j�n. (9.2)

By setting r = e−j� in Eq. (9.2) and taking advantage of the
geometric series relationship

L−1∑
n=0

rn = 1 − rL

1 − r
, (9.3)

the expression for WR(e
j�) can be written as

WR(e
j�) = 1 − e−j�L

1 − e−j�
=

(
ej�L/2 − e−j�L/2

ej�/2 − e−j�/2

)
e−j�L/2

e−j�/2

= sin(�L/2)

sin(�/2)
e−j�(L−1)/2. (9.4)

This is a discrete sinc function multiplied by the factor
e−j�(L−1)/2, which is due to the pulse being delayed by
(L− 1)/2 to make it causal. Recall that delaying a signal byD
multiplies its DTFT by e−j�D .

Ignoring the factor e−j�(L−1)/2, WR(e
j�) is plotted in

Fig. 9-1 for L = 21. We observe that WR(e
j�) does indeed

look like a continuous-time sinc function (multiplied by L).
However, unlike the continuous-time sinc function, WR(e

j�)

is also periodic with period 2π .
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Figure 9-1: Discrete sinc function with L = 21.

9-1.2 Spectrum of a Sinusoidal Segment

Now consider the discrete-time sinusoid

x[n] = 2 cos(�0n), n = 0,±1, . . . (9.5)

defined at all integer values of n. When limited to a causal
segment of finite length L, we obtain the function

y[n] =
{

2 cos(�0n) n = 0, 1, . . . , L− 1

0 otherwise

= 2 cos(�0n) wR[n] = ej�0n wR[n] + e−j�0n wR[n],
(9.6)

with wR[n] as defined by Eq. (9.1). Using the modulation
property of the DTFT, the DTFT of y[n] is given by

Y(ej�) = WR(e
j (�−�0))+ WR(e

j (�+�0)). (9.7)

Upon shifting the expression for WR(e
j�) given by Eq. (9.4)

by ±�0, Eq. (9.7) becomes

Y(ej�) = sin((�−�0)L/2)

sin((�−�0)/2)
e−j (�−�0)(L−1)/2

+ sin((�+�0)L/2)

sin((�+�0)/2)
e−j (�+�0)(L−1)/2. (9.8)

The spectrum of the sinusoidal segment y[n], shown in Fig. 9-2,
consists of two discrete sinc functions, one centered at �0 and
another centered at −�0. Each line in a line spectrum gets
replaced with a discrete sinc function.

9-1.3 Use of Nonrectangular Functions

In Eq. (9.6) the discrete-time sinusoid x[n] was multiplied by a
rectangular pulsewR[n] to produce the sinusoidal segmenty[n].
Sometimes, it may be more useful to multiply x[n] by a window
function w[n] that may have a different amplitude distribution
within the segment 0 ≤ n ≤ L− 1, but is zero outside that
range, the same as wR[n]. Thus, w[n] has the general form

w[n]
{

specified distribution for 0 ≤ n ≤ L− 1,

= 0 otherwise.
(9.9)

The shapes and properties of several specified amplitude
distributions are discussed in later subsections. Accordingly,
for the discrete time sinusoid x[n] defined by Eq. (9.5), we
define yw[n] as

yw[n] =
{

2 cos(�0n) w[n] for 0 ≤ n ≤ L− 1,

0 otherwise,

= 2 cos(�0n) w[n]. (9.10)

By analogy with Eq. (9.7), the DTFT YW(e
j�) of yw[n] is given

by

YW(e
j�) = W(ej (�−�0))+ W(ej (�+�0)), (9.11)

where W(ej�) is the DTFT of w[n]. The spectrum of yw[n]
is a pair of DTFTs W(ej�), one centered at �0 and the other
centered at −�0.
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Figure 9-2: DTFT spectrum of { 2 cos(�0n), 0 ≤ n ≤ 24 }, with �0 = 0.2π = 0.628.

For the rectangular window wR[n], its DTFT is a sinc
function (Fig. 9-1), but for the general case, W(ej�) need not
be a discrete sinc function. It can be any function whose inverse
DTFT w[n] is zero outside the range 0 ≤ n ≤ L− 1.

The function w[n] is called a data window. Multiplying the
given data byw[n] is called windowing the data. So “window”
is both a noun and a verb. It is important to remember that the
data are multiplied by w[n], not convolved with it.

�To use the windoww[n] on data segment x[n], compute
the DFT of w[n] x[n], not of w[n] ∗ x[n]. �

We now introduce two parameters that will guide our choices
for possible data windows.

9-1.4 Parameters of Data Windows

As noted earlier in Section 7-15.3, for a data segment of
length L, increasing the order of the DFT, N , is equivalent
to discretizing the DTFT to more points in the range |�| ≤ π ,
but it does not change the shape of the spectrum. Increasing N
is also equivalent to applying zero-padding to extend the data
segment of length L to create a segment of length N > L.

We now introduce two important parameters of the window
spectrum W(ej�), namely its mainlobe width �M and its
sidelobe attenuation �.

(a) Mainlobe width �M

Figure 9-3 shows a typical spectrum, with a mainlobe centered
at � = 0, and several sidelobes on both sides. The mainlobe
width extends between the first minima on the two sides of the
peak of the spectrum. This is an important parameter because
it is a measure of the resolution of the window—the wider the
mainlobe, the poorer the resolution.

(b) Sidelobe attenuation �

The sidelobe attenuation � is defined as the ratio of the height
of the first sidelobe in the amplitude spectrum to the height of
the mainlobe. It is common practice to express � in dB:

� = −20 log10
|W1|
|W0| [dB], (9.12a)

where |W0| is the peak magnitude of the window spectrum
(usually at � = 0) and |W1| is the peak magnitude of the first
sidelobe (at � = �1 in Fig. 9-3).

Alternatively, we can remove the minus sign and interchange
the two magnitudes, to obtain

� = 20 log10
|W0|
|W1| [dB]. (9.12b)

Sidelobes are a source of interference to neighboring
sinusoids, so it is highly desirable to reduce their levels as much
as possible. As we will see shortly, the sidelobes can be reduced
by tapering the amplitude distribution across the window, but
there is often a trade-off between �M and �.

� For a data segment of length L, lowering the sidelobe
levels may lead to broadening of the mainlobe. �
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(b) dB scale
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Figure 9-3: Magnitude of window spectrum displayed in (a) natural units and in (b) dB, with |W(ej�)|dB = 20 log10 |W(ej�)|. The zero
nulls on the natural scale transform to −∞ on the dB scale.

9-1.5 Rectangular Window

For a rectangular window with constant amplitude, its DTFT
WR(e

j�) is given by Eq. (9.4) as

WR(e
j�) = sin(�L/2)

sin(�/2)
e−j�(L−1)/2. (9.13)

The first nulls of the spectrum of the magnitude |WR(e
j�)|

occur at values of � corresponding to sin(�L/2) = 0, or
equivalently

�L

2
= ±π. (9.14)

Thus, the first nulls are at

�null = ±2π

L
, (9.15)

and the width of the mainlobe between them is

�M = 2|�null| = 4π

L
(rectangular window). (9.16)

� The width of the mainlobe is inversely proportional
to L, so a longer window in the time domain generates a
narrower spectrum in the frequency domain. �
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Figure 9-4: Rectangular window with L = 11.

The peak value of |WR(e
j�)| occurs at � = 0 and has a value

of L. The peak values of the sidelobes can be established by
(1) determining the locations of the sidelobe peaks and then (2)
evaluating the expression for |WR(e

j�)| at those locations. The
process can be accomplished analytically or numerically. Either
approach leads to the conclusion that the sidelobe attenuation
of the rectangular window is

� = 13 dB (rectangular window).

The amplitude across a rectangular window of length L = 11
and the corresponding spectrum are displayed in Fig. 9-4(b).
The rectangular window has the narrowest mainlobe, with a
peak value |W0| = L = 11. The peak value of its first sidelobe

is |W1| = 2.4 (or 2.4/11 = 0.22, relative to the peak value,
which is equivalent to � = 20 log10(11/2.4) = 13 dB).

9-1.6 Bartlett Triangular Window

A data window in essence modulates the amplitude of the
signal contained within it. In a rectangular window, all signal
samples are assigned equal weight, but we can use windows
with different shapes that contain a tapered profile. A triangular
taper assigns a maximum weight to the central sample, as shown
in Fig. 9-5(a), and progressively smaller weights to neighboring
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   = 27 dB
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Figure 9-5: Bartlett window with L = 11.
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Figure 9-6: Hanning window with L = 11.

samples, with the weights assuming a triangular shape given by

wB[n] = 1 − 2

L− 1
|n− L− 1

2
|, n = 0, 1, . . . , L− 1.

(9.17a)

(Bartlett triangular window)

The corresponding spectrum (Fig. 9-5(b)) has a sidelobe
attenuation of 27 dB (compared with only 13 dB for the
rectangular window), but the mainlobe width is twice as wide
as that of the rectangular window,

�M = 8π

L
(Bartlett triangular window). (9.17b)

9-1.7 Hanning Window

A Hanning window (also called a Hann window) offers a
sinusoidal profile (Fig. 9-6(a)) with less taper for samples close
to the central sample and steeper taper for samples close to the
outer edges of the window. It is given by

wHn[n] = 1

2
− 1

2
cos

(
2πn

L− 1

)
, n = 0, 1, . . . , L− 1.

(Hanning window) (9.18)

The corresponding spectrum (Fig. 9-6(b)) has a mainlobe level
with the same width as that of the triangular window, but the
sidelobe attenuation is increased further to 32 dB. The Hann
window is named after Julius von Hann.

9-1.8 Hamming Window

By adjusting the values of the two constant coefficients in
Eq. (9.18), it is possible to increase the sidelobe attenuation
further to 43 dB, without sacrificing any additional increase in
the width of the mainlobe. This optimized window is called a
Hamming window and it is given by

wHm[n] = 0.54 − 0.46 cos

(
2πn

L− 1

)
, n = 0, 1, . . . , L− 1,

(Hamming window) (9.19)

and it is displayed in (Fig. 9-7). The Hamming window is named
after Richard Hamming.

9-1.9 Blackman Window

If the signal-processing application calls for still better noise-
interference performance (i.e., lower sidelobes), we can use the
Blackman window given by

w[n] = 0.42 − 0.5 cos

(
2πn

L− 1

)
+ 0.08 cos

(
4πn

L− 1

)
,

(9.20)

n = 0, 1, . . . , L− 1.

(Blackman window)
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Figure 9-7: Hamming window with L = 11.

The sidelobe attenuation is 58 dB (Fig. 9-8), but it is attained at
the expense of the mainlobe width, which is three times wider
than that of the rectangular filter and 50% wider than that of
the other three types of filters. Table 9-1 provides a summary
of the properties of all five types of data windows.

Example 9-1: Using a Data Window

Use a 256-point DFT to compute the one-sided spectrum of

the segment {cos(0.2πn), 0  ≤ n ≤ 24} using (a) a rectangular 
window and (b) a Hamming window, both of length 25.

Solution: Using MATLAB code Ex91.m (on the book 
website), we obtain the results shown in Fig. 9-9. Comparison 
of the two spectra shows that the Hamming window generates 
a spectrum with a mainlobe that is twice as wide as that 
generated by the rectangular window, but the sidelobes in the 
Hamming window spectrum are barely apparent.

|WBl(e j Ω)|
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0.005
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Figure 9-8: Blackman window with L = 11.
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Table 9-1: Properties of five commonly used data windows of length L.

Name w[n], 0 ≤ n ≤ L− 1 Mainlobe width �M Sidelobe attenuation �

Rectangle wR[n] = 1 4π/L 13 dB

Bartlett wB[n] = 1 − 2
∣∣n− L−1

2

∣∣/ (L− 1) 8π/L 27 dB

Hanning wHn[n] = 0.50 − 0.50 cos
(

2πn
L−1

)
8π/L 32 dB

Hamming wHm[n] = 0.54 − 0.46 cos
(

2πn
L−1

)
8π/L 43 dB

Blackman wBl[n] = 0.42 − 0.50 cos
(

2πn
L−1

)
+ 0.08 cos

(
4πn
L−1

)
12π/L 58 dB

(b) Hamming  window

(a) Rectangular window
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Figure 9-9: Computed spectrum for { cos(0.2πn), 0 ≤ n ≤ 24 } using (a) a rectangular window and (b) a Hamming window (Example 9-1).
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Figure 9-10: Spectrum of y[n] = x[n] w[n] of Example 9-2, computed using (a) a rectangular window and (b) a Hamming window.

9-1.10 The Significance of Data Windows

We established in the preceding subsection that the length
and shape (taper profile) of the data window determine the
width of the mainlobe �M of the associated spectrum and the
sidelobe attenuation �. The obvious question is: which type of
window should one use? The simple answer is: it depends on the
intended application, as illustrated next through the following
two examples.

Example 9-2: Detecting Different Sinusoids

We are given a signal x[n] of length L = 75 composed of the
sum of 4 sinusoids with different amplitudes and frequencies,

namely

x[n] = 5 cos(0.282πn+ 53◦)

+ √
2 cos(0.542πn+ 45◦)

+ 13 cos(0.628πn+ 67◦)
+ 25 cos(0.730πn+ 73◦). (9.21)

Using MATLAB code Ex92.m (on the book website), a 
256-point DFT was used to compute the one-sided
spectrum of y[n] = x[n] w[n], once with a rectangular
window (w[n] = wR[n]) and a second time with a Hamming
window (w[n] = wHm[n]). Both windows are of length 75.
The results are displayed in Fig. 9-10. How many distinct
sinusoids can be discerned from each of the two spectra?
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Figure 9-11: Computed spectra of a segment composed of the sum of two sinusoids of equal amplitude and frequencies �1 = 0.3π and
�2 = 0.31π (Example 9-3).

Solution: In the spectrum of Fig. 9-10(a), it is easy to discern
the presence of three of the four sinusoids, but the fourth one
is obscured by the sidelobes of the other sinusoids. Because
the Hamming window offers much better suppression of the
sidelobes, it is possible to discern all four sinusoids in the
spectrum of Fig. 9-10(b).

We note that because the frequencies of the four sinusoids in
Example 9-2 are spaced sufficiently apart, the broader mainlobe
of the Hamming-window spectrum (by a factor of 2 compared
with that of the rectangular window) did not cause overlap
between the mainlobes of the spectra of the different sinusoids.
Hence, the Hamming window offered a distinct advantage over
the rectangular window, and no disadvantage. However, we
could have reached a very different conclusion had the sinusoids
been spaced more closely together.

Example 9-3: Resolving Two Closely Spaced Sinusoids

Use an N -point DFT to compute the spectrum of
y[n] = x[n] w[n], where w[n] is a data window of length L
and x[n] is a segment, also of length L, composed of the sum

of two sinusoids with equal amplitudes, but slightly different
frequencies, namely �1 = 0.3π and �2 = 0.31π . Consider
the following four cases:

(a) L = 125, N = 512, and a rectangular window.

(b) L = 125, N = 1024, and a rectangular window.

(c) L = 140, N = 512, and a rectangular window.

(d) L = 140, N = 512, and a Hamming window.

How resolvable are the two sinusoids in each case?

Solution: Using MATLAB code Ex93.m (on book website), 
we obtain the four one-sided spectra displayed in Fig. 9-11.

(a) The two closely spaced sinusoids are not resolvable.
(b) Increasing N by a factor of 2 translates into a finer

discretization of the DTFT, but the two sinusoids remain
unresolvable. Hence, resolution is not a discretization issue.

(c) Increasing L (the length of the data window) from 125
to 140 results in a proportionately narrower mainlobe; the
width of the mainlobe of the rectangular window is given by
�M = 4π/L (Table 9-1). Consequently, because the mainlobes
of the spectra of the two sinusoids are now slightly narrower, it
is possible to discern from the spectrum shown in Fig. 9-11(c)
that the mainlobe consists of two partially overlapping peaks.
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(d) Repeating the conditions in (c) but replacing the
rectangular window with a Hamming window causes the
mainlobes of the peaks representing the two sinusoids to double
in width, thereby losing the ability to resolve the two sinusoids.

Data Windows
• To apply a data window to a discrete-time signal
x[n] defined over 0 ≤ n ≤ L− 1, multiply x[n] by
the window function w[n], point by point, to obtain
y[n] = x[n] w[n].

• On the DFT spectrum of a sampled signal containing
multiple sinusoids, two adjacent sinusoids are
distinguishable if their separation exceeds the
spectral resolution of the data window, which is
commonly defined as the width of the mainlobe.

• Among the various types of commonly used data
windows, the rectangular window has the narrowest
mainlobe.

• For any type of data window, increasing the window
length L results in a proportionate reduction in
mainlobe width, and hence better spectral resolution.

• So long as the DTFT has been properly discretized,
increasing the DFT order N does not improve the
spectral resolution.

• Data windows with a tapered amplitude distribution
have sidelobe levels smaller than those exhibited by
the spectrum of a rectangular window, which makes
it easier to discern the presence of weak (small-
amplitude) sinusoids, so long as their frequencies
are separated from others by at least the width of
one mainlobe of the data window’s spectrum.

Concept Question 9-1: Why do we multiply a signal
by a data window, instead of convolving it with the data 
window? (See        )

Concept Question 9-2: Why do most data windows look
alike? (See        )

Exercise 9-1: Compute the coefficients of a 5-point (a)
Bartlett window and (b) Hamming window.

Answer: (a) { 0, 1
2 , 1, 1

2 , 0 },
(b) { 0.08, 0.54, 1.00, 0.54, 0.08 }.

Module 9.1 Discrete-Time Lowpass Filter Design
UsingWindowing This module designs a lowpass filter
of duration 2L+ 1 using a Hamming window on the
inverse DTFT (a sinc function) of a brickwall lowpass
filter frequency response. Cutoff frequency and filter
duration are selectable variables.

9-2 Spectrograms

So far we have considered the spectra of simple signals
consisting of one or a few sinusoids. The spectra of most signals
of practical interest are composed of numerous sinusoids, and
since the signals are time-varying, so are their spectra. Examples
of signals with time-varying spectra include:

• Musical Signals: The note played by, say, a trumpet
changes at specific times, so its line spectrum shifts frequencies
abruptly at specific times.

• Radar and Sonar Signals: The frequency of the
transmitted signal gets Doppler shifted due to the motion of
the illuminated target with respect to the radar antenna or sonar
transducer, and the Doppler shift may vary with time depending
on the illumination configuration.

• Chirp Signals: These are sinusoidal signals whose
frequency changes linearly with time. Bird chirps and dolphin
clicks can be modeled well as chirp signals.

Other examples include non-repetitive speech and many
forms of audio and video signals.
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By way of an example, let us consider the musical signal x(t)
given by

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
k=1

Ak,1 cos
(
2πfk,1t + θk,1

)
, T0 < t < T1

∞∑
k=1

Ak,2 cos
(
2πfk,2t + θk,2

)
, T1 < t < T2

∞∑
k=1

Ak,3 cos
(
2πfk,3t + θk,3

)
, T2 < t < T3

...
...

(9.22)
where duration T0 to T1 defines the first time window, T1 to T2
defines the second time window, and so on. In some but not
all cases, durations Ti to Ti+1 of each note are known because
whole notes have the same duration and half notes have half
of that duration, etc. So, segmenting the signal into multiple
intervals is rather straightforward. Also, in each octave, the
frequencies fk can only take on twelve different values, all
known (but this is not true in the general case).

Spectrograms are a useful tool for analyzing signals with
time-varying spectra.A spectrogram is generated by computing
spectra of segments of the signal using a series of data windows,
with varying delays, and then plotting the computed spectra
alongside each other and viewing the result from above as an
image.

To generate a spectrogram of the musical signal given by
Eq. (9.22), for example, spectra are computed for each of the
individual time durations, and then combined to form an image.
Multiple examples will be presented later in this section.

9-2.1 Continuous-Time Spectrogram

The spectrogram computes the spectral density (squared
magnitude of the Fourier transform) |X(ω)|2 of each segment
{x(t), Ti < t < Ti+1 } of the signal x(t). The signal is sampled,
and the spectrum of each segment is computed using the
DFT with a data window over that interval. Since the Ti are
usually unknown, intervals { t : τ − T/2 < t < τ + T/2 } of
equal lengths T are used, centered at times τ . In continuous
time, the spectrogram S(ω, τ) is defined as

S(ω, τ) =

∣∣∣∣∣∣∣
τ+T/2∫
τ−T/2

w(t − τ + T/2) x(t) e−jωt dt

∣∣∣∣∣∣∣
2

. (9.23)

The squared Fourier transform magnitude is used so that
S(ω, τ) has units of energy. When S(ω, τ) is displayed as an
image with ω and τ as axes, peaks appear as bright pixels.

9-2.2 Discrete-Time Spectrogram

In discrete time, the signal is sampled to x[n], a data window
w[n] (such as one of those described in Section 9-1) is used
and the intervals are defined as {N − L/2 ≤ n ≤ N + L/2 },
centered atN and of lengthL+1, withL even. In discrete time,
the spectrogram S(ej�,N) is defined as

S(ej�,N) =
∣∣∣∣∣∣
N+L/2∑
n=N−L/2

w[n−N + L/2] x[n] e−j�n
∣∣∣∣∣∣
2

.

(9.24)
Here, we consider only non-overlapping intervals and, for
simplicity, we use a rectangular window. Choosing a non-
rectangular window does not affect much the process of
generating and displaying S(ej�,N) as an image.

9-2.3 MATLAB/MathScript Recipe for
Spectrograms

For a signal sampled at S samples per second and stored in
MATLAB/MathScript as vector X, we can apply the following
code to generate a spectrogram and display it as an image. The
interval length is denoted by L.

MATLAB/MathScript Spectrogram Recipe

LX=length(X);%L=interval length
XX=reshape(X,L,length(X)/L);
FXX=abs(fft(XX)).*abs(fft(XX));
imagesc(FXX)

The length of X must be a multiple of the interval length L, so
that an integer number of intervals can be used. The horizontal
axis of the image is the time of the left end (not the center) of the
interval over which the spectrum is computed. The horizontal
axis should be multiplied by 1/S seconds per sample to be
interpreted as seconds.

The vertical axis of the image is the frequency axis
for the spectrum displayed in each vertical slice of the
spectrogram. The vertical axis should be multiplied by S/LHz.
MATLAB/MathScript displays images with the origin at the
upper left corner, but since S(ej�,N) is conjugate symmetric
in the vertical axis, the lower left corner can also be treated as
the origin.
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Figure 9-12: Line spectrum and spectrogram of music signal of Example 9-4. Even though spectrograms are computed in discrete time
using N and � (see Eq. (9.24)), usually they are labeled in continuous time in terms of f (Hz) and τ (time).

Example 9-4: Spectrogram of a Musical Signal

S 8192

Interpret a music signal sampled at 8192 samples per second and 
stored in MATLAB Code Ex94.mat on the book website. The 
signal consists entirely of whole notes of duration 0.3662 
seconds each.

Solution: The line spectrum shown in Fig. 9-12(a) was 
computed from the recorded signal contained on the referenced 
website. The spectrum is a histogram of the musical notes, 
indicating how often each note was played, but not when it 
was played. The spectrogram of the signal, using 26 segments 
of lengths 3000 each, is depicted in Fig. 9-12(b). The duration 
of each segment is L = 3000 = 0.3662 s. The spectrum of each
segment is one sinusoid, and the vertical position of the line
indicates the frequency of that sinusoid. To obtain the frequency
in Hz, we should multiply the vertical index by S

L
= 8192

3000 Hz.

The spectrogram shows that the signal is a piece of music.
It is a pure tonal version of the chorus of “The Victors,” the
fight song of the University of Michigan. An extension of this
example is provided in Problem 9.13, in which the spectrogram
is used to identify two fight songs, making it possible to
eliminate one of them.

9-2.4 Trade-Off between Time and Frequency
Resolution

Consider a sampled signal x[n] of duration N , divided into M
non-overlapping segments each of length L. That is,

N = LM. (9.25)

Since M is an integer (number of segments), it can assume
only certain values, namely those for which N is an integer
multiple of L. The smallest value of M is M = 1 segment,
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(a) 13 segments

(b) 104 segments
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Figure 9-13: Spectrograms with (a) 13 segments and (b) 104 segments.

corresponding to N = L, wherein all N samples are used in
computing the DFT. At the other extreme, the largest possible
value of M is M = N , corresponding to segments of length
L = 1 sample each.

Resolution in time is measured by the length of the processed
segment, L, whereas resolution in the frequency domain is
inversely proportional toL (longer segments generate narrower
mainlobes).

� Hence, for a fixed duration N , increasing L leads
to poorer resolution in time, but better resolution
in frequency (easier discrimination of closely spaced
sinusoids); and conversely, decreasing L allows more
rapid tracking of the spectrum, but at a poorer spectral
resolution. �

Example 9-5: Resolution Trade-Off

The music signal recorded in MATLAB Code Ex94.mat 
(of Example 9-4) consists of 78,000 samples. Subdivide the 
record (a) into 13 segments of lengths 6000 samples each, and 
also (b) into 104 segments of lengths 750 samples each. 
Generate spectrograms for the two cases and compare them.

Solution:The spectrogram using only 13 segments is shown in
part (a) of Fig. 9-13, and that using 104 segments is in part (b).
A longer segment generates a finer-resolution spectrum, so the
spectral lines in Fig. 9-13(a) are distinct, but two spectral lines
appear in every segment, even though the two notes were not
played together. In contrast, when the number of segments is
increased to 104, different notes appear in different segments,
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but the line spectrum representing each sinusoid is smeared
out, because the mainlobe is wider. Thus, the frequencies of the
notes are not indicated as sharply as was the case for the longer
(but fewer) segments. The intent of the example is to illustrate
the trade-off between the time and frequency resolutions.

9-2.5 Chirp Signals

A chirp signal is a sinusoid whose frequency increases or
decreases linearly with time over a specific duration τ . Some
birds and animals can produce chirped sounds, but chirping also
is used as a form of modulation in some high-resolution radar
systems. In general, the frequency of the sinusoid varies linearly
over a bandwidthB extending between a start frequency f1 and
an end frequency f2. For simplicity, we limit our consideration
to the case where the chirp signal starts with 0 Hz at time t = 0
and increases to an upper frequency limit fmax at t = τ . For a
single sinusoid of amplitude A and angular frequency ω, the
signal is given by

x(t) = A cos(ωt),

but for a chirp, ω increases linearly as

ω = αt, (9.26a)

where α is the chirp rate given by

α = 2πfmax

τ
. (9.26b)

Hence,
x(t) = A cos(αt2), 0 ≤ t ≤ τ. (9.27)

As will be demonstrated through Example 9-6, the spectrogram
of a chirp signal is a line with a slope proportional to 2fmax.

Example 9-6: Spectrogram of a Chirp Signal

Compute and plot the spectrogram of a chirp signal with
A = 1, α = 1, and τ = 81.91 s, using a sampling rate of
100 samples/second, and then divide the sampled signal into
32 non-overlapping segments. Also, determine the maximum
frequency fmax.

Solution: Figure 9-14(a) displays the first 20 s of the chirp;
early on the variation is slow as a function of time, but the
oscillations become more rapid as time goes on.

For A = 1, α = 1, and τ = 81.91 s,

x(t) = cos(t2), 0 ≤ t ≤ 81.91 s.

A signal x(t) of 81.91 s in duration and sampled at 100
samples/second yields a sampled signal

x[n] =
{

cos

(
n2

10,000

)
, 0 ≤ n ≤ 8191

}
,

where t was replaced with n/100.
We have a total of N = 8192 samples, which when divided

among M = 32 segments, gives

L = N

M
= 8192

32
= 256.

The spectrogram shown in Fig. 9-14(b) was computed, using 
a 256-point DFT, for 32 segments of x[n]. The details are 
contained in MATLAB Code Ex96.m.

The spectrogram of the chirp signal is a staircase, depicting 
a sinusoid whose frequency increases linearly with time. Based 
on Eq. (9.26b) with α = 1 and τ = 81.91 s, we would conclude 
that the final instantaneous frequency of the chirp signal is

fmax = ατ

2π
= 1 × 81.91

2π
= 13 Hz.

This conclusion is erroneous, because the exact definition of
the instantaneous frequency of a signal x(t) = A cos(φ(t)) is

f = 1

2π

dφ

dt
. (9.28)

For a single sinusoid at frequency f0

φ = 2πf0t (single sinusoid),

and application of Eq. (9.28) leads to f = f0. But for a chirp
signal

φ = αt2 (chirp),

and consequently,

f = 1

2π

d

dt
(αt2) = 2αt

2π
.
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(b) Spectrogram

(a) x(t) = cos (t2)
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Figure 9-14: Chirp signal.

The chirp reaches the true maximum frequency f ′
max at t = τ :

f ′
max = 2ατ

2π
= ατ

π
=

(
2πfmax

τ

)
τ

π
= 2fmax,

where we used Eq. (9.26b) for α. Hence, the final instantaneous
frequency of the chirp is 2fmax, not fmax. So, for the
present case, the maximum frequency is 2 × 13 = 26 Hz.
This conclusion can be confirmed from the spectrogram in
Fig. 9-14(b).

We conclude this section with a spectrogram example of a
spoken phrase. Figure 9-15(a) is a time-domain record of a
3 s long phrase, sampled at 24,000 samples per second, and
in part (b) of the same figure, we show the corresponding
spectrogram. The spectrogram is based on 288 segments, each

250 samples in length (for a total of 288 × 250 = 72,000
samples).

Concept Question 9-3: A time-varying spectrum is a 
contradiction in terms. What does a spectrogram actually 
compute? (See        )

Exercise 9-2: What would the spectrogram of cos(t3)
look like?

Answer: A parabola, since the instantaneous frequency
is

f = 1

2π

dt3

dt
= 3

2π
t2.
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(b) One-sided spectrogram

(a) Sampled record of a spoken phrase
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s

Figure 9-15: Sampled spoken phrase and its corresponding spectrogram.

Exercise 9-3: Use LabVIEW Module 9.2 to display the
spectrogram of “The Victors.” Choose the window length
so that the notes do not overlap in time.

Answer: (See Module 9.2.)

Exercise 9-4: Use LabVIEW Module 9.3 to display the
spectrogram of a chirp with slope 1.0 using window
length 32.

Answer: (See Module 9.3.)
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Module 9.2 Spectrogram ofTonalVersion of“The
Victors” This module computes the spectrogram of a
tonal version of “The Victors.” It implements Examples
9-4 and 9-5 in the text, but with a user-specified number
of segments (window length).

Module 9.3 Spectrogram of a Chirp Signal This
module computes the spectrogram of a chirp signal. It
implements Example 9-6 in the text, but with a user-
specified number of segments (window length) and rate
of frequency increase (chirp slope).

9-3 Finite Impulse Response (FIR)
Filter Design

An important application of discrete-time signal processing is
filtering of discrete-time signals to remove undesired parts of
their spectra. These undesired parts may be interference or
noise. Filtering of continuous-time signals, which was covered
in Chapter 6, involves the use of op-amps, capacitors, inductors,
and resistors, and since these components are imperfect,
continuous-time filtering is also imperfect. In contrast, discrete-
time filtering is performed on a computer with almost no round-
off error, or on a computer chip, in which case round-off can
be significant, but much less so than imperfect physical circuit
components.

In Chapter 8, we showed how placing poles and zeros can be
used to design notch and comb filters. But an attempt (Example
8-1) to design a half-band lowpass filter showed that placing
poles and zeros is not the best way to design filters other than
notch or comb filters. Other techniques are needed.

A discrete-time filter is an LTI system that emphasizes certain
desired frequency components of a signal while reducing or
eliminating others. Notch and comb filters were introduced in
Chapter 8, including examples to illustrate the design process.
In this and the succeeding section we examine two major classes
of discrete-time filters, namely the finite-impulse response
(FIR) filter and the infinite-impulse response (IIR) filter. The
fundamental difference between the two types of filters is that
for the FIR filter its impulse response h[n] has a finite duration
(and is therefore more practical), whereas h[n] of the IIR filter
has an infinite duration.

FIR filtering has mostly supplanted IIR filtering in most
situations of practical interest because, unlike IIR filters, FIR
filters are always stable and cause no phase distortion. However,
IIR filters can be made more selective than FIR filters while
using the same number of memory storage units. By covering
both types of filters, we gain insight into filter design and
implementation.

9-3.1 FIR Filtering Configuration

In the frequency domain, the role of an FIR filter is to
emphasize certain frequency components over others. The
filtering operation can be realized in the frequency domain by
multiplying each frequency component by a specified weight
or, equivalently, by convolving the discrete-time signal x[n]
with the impulse response of the filter, h[n], to obtain an output
signal y[n]:

y[n] = h[n] ∗ x[n]. (9.29)
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If h[n] is causal and given by

h[n] = bn for 0 ≤ n ≤ M, (9.30)

and x[n] is of duration N , then

y[n]=h[n]∗x[n]=b0 x[n]+b1 x[n−1]+· · ·+bM x[n−M],
for 0 ≤ n ≤ N +M. (9.31)

Note that the filter h[n] is of orderM and its duration isM+1.
The FIR filter is similar to the moving average (MA) filter

described earlier in Section 7-3.4 in that the output y[n] at each
discrete time n is equal to the weighted sum of prior nonzero
values of x[n], up to and including the present-time value x[n].

Sometimes, the FIR filter impulse response h[n] may not be
causal; that is, it may be defined over a discrete-time interval that
starts at negative values of n. Consider, for example, the case
where h[n] �= 0 for { −L ≤ n ≤ L }. To perform the filtering
operation, we need to convert h[n] into a causal equivalent,
which is easily realized by simply delaying h[n] by L to obtain
the delayed version h̃[n]:

h̃[n] = h[n− L], for 0 ≤ n ≤ 2L. (9.32)

By invoking the time-shift property of convolution (property #5
in Table 7-4), the original output response y[n] given by

y[n] = h[n] ∗ x[n] =
L∑

i=−L
h[i] x[n− i], (9.33a)

can be rewritten as a delayed response

y[n−L] = h[n−L] ∗x[n] = h̃[n] ∗x[n] =
2L∑
i=0

h̃[i] x[n− i].
(9.33b)

The original noncausal FIR filter h[n] has been converted into
a causal MA system of order 2L. The only consequence is
that the output is now delayed by L time samples, which is
seldom an issue in most practical situations. For example, at
the standard CD sampling rate of 44100 samples/s, a filter of
length L = 100 samples leads to a delay in the filtered output
signal by only 100/44100 = 2.2 ms. Also, in the case of image
processing applications, noncausal filters can be implemented
as is (without a shift) because the entire image is available before
the start of the filtering process.

The effect of the time delay h̃[n] = h[n− L] is equivalent
to the addition of linear phase. The time-delay property of
the DTFT (Table 7-7) states that if H(ej�) is the frequency

response (DTFT) of h[n], then the frequency response of h̃[n]
is

H̃(ej�) = H(ej�)e−j�L, (9.34)

so that the phase of H̃(ej�) is the phase of H(ej�) minus �L,
which is proportional to frequency �. Hence, the term “linear
phase.”

� Linear phase in the frequency domain (DTFT) is
equivalent to time delay in the time domain. �

An example of linear phase is given by Eq. (9.4) for the
rectangular window wR[n].

There are 3 major approaches to FIR filter design:

• Windowing the ideal FIR filter, computed as the inverse
DTFT of the desired frequency response function, usually
using a Hamming window.

• Frequency sampling, in which the desired frequency
response is attained exactly, but only at a finite number
of frequencies, usually equally spaced.

• Minimax, in which the iterative Parks-McClellan algo-
rithm is used to minimize the maximum (minimax) absolute
weighted error.

Before presenting these approaches (in upcoming subsections),
we present some common forms of the desired (ideal) filter
frequency response function.

9-3.2 Desired Frequency Response Functions

Let HD(e
j�) be the desired (ideal) frequency response function

of the FIR filter. Recall that HD(e
j�) is periodic in � with

period 2π , and conjugate symmetric:

HD(e
−j�) = H∗

D(e
j�). (9.35)

A. Forms of frequency response

• For a lowpass filter with cutoff frequency �0:

HD(e
j�) =

{
1 for 0 ≤ |�| < �0,

0 for �0 < |�| ≤ π.
(9.36)

For a bandpass filter with cutoff frequencies �L and �H:

HD(e
j�) =

⎧⎪⎨
⎪⎩

0 for 0 ≤ |�| < �L,

1 for �L < |�| < �H,

0 for �H < |�| ≤ π.

(9.37)
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• For an ideal differentiator (used in digital speedometers
and process control):

HD(e
j�) = j� for |�| < π. (9.38)

For a Hilbert transform (Section 6-12.9):

HD(e
j�) =

{
−j for 0 < � < π,

j for − π < � < 0.
(9.39)

Note that for the differentiator and Hilbert transform,
HD(e

j�) is discontinuous at � = ±π .

B. Forms of impulse response

From conjugate symmetry of HD(e
j�), its inverse DTFT hD[n]

should have the following forms:

• HD(e
j�) for the lowpass and bandpass filters is real and

even, so hD[n] should be real and even (see Section 7-14).

• HD(e
j�) for the differentiator and Hilbert transform is

pure imaginary and odd, so hD[n] should be real and odd.

• We design hD[n] to be real, even or odd, and noncausal.
Then we delay it by half its length to make it causal, as in
Eq. (9.33b).

9-3.3 FIR Filter Design by Windowing

The desired frequency response HD(e
j�) of each of the four

filters described by Eqs. (9.36) to (9.39) is an ideal function with
one or more discontinuities. Consequently, its corresponding
impulse responses hD[n] (i.e., the inverse DTFT of HD(e

j�))
is infinite in duration and is not BIBO stable. To implement the
filtering procedure described in the preceding subsection, we
can truncate hD[n] and delay it appropriately so as to generate
a modified impulse response h[n], such that it is both causal
and BIBO stable.

The modification process is described by the diagram in
Fig. 9-16, using a lowpass filter as an example.

Step 1: The desired frequency response of the filter, HD(e
j�),

with a cutoff frequency�0 = 0.5π , is given by Eq. (9.36) with
�0 = 0.5π . That is,

HD(e
j�) =

{
1 for 0 ≤ |�| < 0.5π,

0 for 0.5π < |�| ≤ π.
(9.40)

Step 2: The corresponding impulse response hD[n] is obtained
by computing the inverse DTFT of HD(e

j�):

hD[n] = 1

2π

0.5π∫
−0.5π

1ej� d� = sin(0.5πn)

πn
. (9.41)

Step 3: The impulse response hD[n] is noncausal and not BIBO
stable, so it is not yet suitable as a lowpass filter. It needs to be
truncated and delayed. Truncation is realized by multiplying
hD[n] by an appropriate window. In this example, we choose a
Hamming window of length 11. Since the Hamming window
now extends over the range −5 ≤ n ≤ 5 instead of 0 ≤ n ≤ 10,
we must replace n with n+ 5 (a time advance by 5). Hence,

w[n] = wHm[n+ 5]

= 0.54 − 0.46 cos

(
2π(n+ 5)

10

)

= 0.54 + 0.46 cos

(
2πn

10

)
, −5 ≤ n ≤ 5. (9.42)

The multiplication yields

h[n] = w[n] hD[n]

=
[

0.54 + 0.46 cos

(
2πn

10

)]
sin(0.5πn)

πn
, (9.43)

− 5 ≤ n ≤ 5.

Step 4: Delaying h[n] by 5 leads to

h̃[n] = h[n− 5]

= 0.54 + 0.46 cos

(
2π(n− 5)

10

)
sin(0.5π(n− 5))

π(n− 5)
,

0 ≤ n ≤ 10. (9.44)

Step 5: In this demonstration example, the input signal x[n]
is the sum of two sinusoids with frequencies �1 = 0.2π and
�2 = 0.7π :

x[n] = cos(0.2πn)+ cos(0.7πn). (9.45)

The delayed output y[n− L] is obtained by convolving x[n]
with h̃[n]:

y[n− L] = h̃[n] ∗ x[n]. (9.46)

The output, displayed in Fig. 9-16, shows that the sinusoid
with �2 = 0.7π in x[n] has been almost (but not completely)
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Figure 9-16: Filtering process using an FIR filter designed using a data window.

filtered out. The lower-frequency sinusoid with �1 = 0.2π
is essentially the same as in the original x[n]. Note the
transients at the beginning and end of the output. These are

caused by the finite length of x[n]. In practice, the input is
so much longer than the filter that these transients become
irrelevant.
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Example 9-7: Window Design of FIR Differentiator

Design an FIR differentiator using: (a) a five-point rectangular
window and (b) a five-point Hamming window.

Solution: The desired frequency response of the ideal
differentiator is given by Eq. (9.38) as

HD(e
j�) = j� for |�| < π.

The corresponding impulse response is its inverse DTFT:

hD[n] = 1

2π

π∫
−π

HD(e
j�) ej�n d�

= 1

2π

π∫
−π

j�ej�n d�

=
{
(−1)n/n n �= 0

0 n = 0

= { . . . , 1
3 ,− 1

2 , 1, 0,−1, 1
2 ,− 1

3 , . . . }. (9.47)

(a) The impulse response of a five-point rectangular window
centered at n = 0 is

wR[n] = { 1, 1, 1, 1, 1 }. (9.48)

One-to-one multiplication of hD[n] and wR[n] gives

h[n] = wR[n] hD[n] = { − 1
2 , 1, 0,−1, 1

2 },
and the delayed version is

h̃R[n] = h[n− 2] = { − 1
2 , 1, 0,−1, 1

2 }.

(b) A five-point Hamming window extending over the range
0 ≤ n′ ≤ 4 is given by Eq. (9.19) as

wHm[n′] = 0.54 − 0.46 cos

(
2πn′

4

)
for 0 ≤ n′ ≤ 4,

(9.49)
where, for convenience, we used the integer variable n′ instead
of n. Before multiplying hD[n] by the Hamming window’s
impulse response (which starts at n′ = 0), we need to shift the
latter by 2 samples so as to center it at n = 0. Upon making the
substitution n′ = n+ 2, we obtain

wHm[n] = 0.54 − 0.46 cos

(
2π

4
(n+ 2)

)
, −2 ≤ n ≤ 2.

(9.50)

Evaluating Eq. (9.50) gives

wHm[n] = { 0.08, 0.54, 1, 0.54, 0.08 }. (9.51)

Multiplication of the sequences given by Eqs. (9.47) and (9.51)
gives

h[n] = wHm[n] hD[n] = { −0.04, 0.54, 0,−0.54, 0.04 }.

Delaying h[n] by 2 leads to

h̃[n] = { −0.04, 0.54, 0,−0.54, 0.04 }.

9-3.4 FIR Filter Design by Frequency Sampling

In the preceding subsection, we examined how a window
function of length 2L+1 can be used to truncate the extent of the
ideal impulse response hD[n], as well as to shape the weighting
pattern across the extent of the impulse response. An alternative
approach is to choose an FIR filter h̃[n] of length 2L+ 1 such
that the DTFT of h̃[n], namely H̃(ej�), is identically equal
to the desired frequency response H̃D(e

j�) at 2L+ 1 choice
frequencies. Such an approach is called frequency sampling.
The choice frequencies can be chosen to be equally spaced or
not equally spaced, depending on the objectives of the filtering
operation. In either case, the specified choice frequencies will
influence how close (or not) H̃(ej�) and H̃D(e

j�) are to one
another at all of the other frequencies.

The design process can be facilitated by symmetry
considerations, so it is common practice to use an applicable
filter from among the following four types of filters:

Type I: odd length/symmetric
Type II: even length/symmetric
Type III: odd length/antisymmetric
Type IV: even length/antisymmetric

Example sequences are given in Table 9-2 for lengths of four
and five. The forms for longer lengths should be evident.

The table also lists “restrictions” associated with the
frequency responses of the four types, specifically the value(s)
of H̃(ej�) at� = 0, π , or both for each type. These restrictions
are important considerations when selecting a filter type. For
example, the Type II filter form automatically satisfies the
condition for a lowpass filter, namely that its H̃(ej�) should
go to zero as � approaches π . Similarly, the filter of Type IV
automatically satisfies the condition for a highpass filter, namely
that its H̃(ej�) is zero at dc (� = 0).

FIR Type I filters offer no restrictions, and the restrictions
listed in Table 9-2 for the other types follow from the forms
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Table 9-2: Forms of FIR filters for lengths of 4 or 5
elements.

Type Form of h̃[n] Restriction(s)

I { b, a, c, a, b } None

II { b, a, a, b } H̃(ejπ ) = 0

III { b, a, 0,−a,−b } H̃(ej0,jπ ) = 0

IV { b, a,−a,−b } H̃(ej0) = 0

of their h[n]. Recall from Eq. (7.65) that the z-transform of a
causal finite-length signal is given by

{ a0, a1, a2, . . . , am } a0 + a1

z
+ a2

z2 + · · · + am

zm
.

(9.52)
Applying this correspondence to the functional forms given in
Table 9-2 for filter types II–IV, and then evaluating them at
z = ejπ or z = ej0, leads to

• Type II: h̃[n] = { b, a, a, b }

H̃(ejπ ) = b + a

ejπ
+ a

ej2π + b

ej3π

= b − a + a − b = 0.

• Type III: h̃[n] = { b, a, 0,−a,−b }

H̃(ejπ ) = b + a

ejπ
+ 0 − a

ej3π − b

ej4π

= b − a + a − b = 0

and

H̃(ej0) = b + a

ej0 + 0 − a

ej0 − b

ej0

= b + a − a − b = 0.

• Type IV: h̃[n] = { b, a,−a,−b }

H̃(ej0) = b + a

ej0 + 0 − a

ej0 − b

ej0 = 0.

� Alternatively, we can compute the DTFT of
{ a0, a1, . . . , am } to obtain H(ej�) directly. �

Types II and III FIR filters automatically satisfy the lowpass
filter criterion of rejecting the signal’s spectrum at � = π ,

and types III and IV automatically satisfy the highpass filter
criterion of rejecting the signal’s spectrum at � = 0 (dc). With
their odd-numbered lengths, types I and III are easier to design
with than types II and IV, so we will henceforth limit our
consideration to symmetric and antisymmetric FIR filters with
odd durations.

9-3.5 FIR Filter Design by Solving a Linear
System of Equations

As noted earlier, the impulse response h[n] of the FIR filter is
of length 2L+1, extending between −L andL. In practice, the
length is a user-specified parameter.

� The idea behind the frequency sampling approach is
to select the 2L+ 1 values of h[n] such that its DTFT
H(ej�)matches the desired frequency responseHD(e

j�)

at exactly 2L+ 1 values of �. �

These select values of� can be chosen to be (a) equally spaced
across the range of � between −π and π , (b) clustered across
a narrow range of particular interest, or (c) distributed so as to
emphasize specific frequency components of interest.

For the equally spaced case, the choice frequencies are given
by

�k = 2πk

2L+ 1
, k = −L, . . . , L, (9.53)

and requiring H(ej�) of the FIR filter to be equal to HD(e
j�)

of the desired filter at those choice frequencies is given
mathematically by

H(ej�)
∣∣∣
�=�k

= HD(e
j�)

∣∣∣
�=�k

,

or equivalently,

L∑
n=−L

h[n] e−j�n
∣∣∣
�=�k

= HD(e
j�)

∣∣∣
�=�k

. (9.54)

Inserting Eq. (9.53) into Eq. (9.54) leads to

L∑
n=−L

h[n] e−j2πnk/(2L+1) = HD(e
j2πk/(2L+1)), (9.55)

k = −L, . . . , L,
which represents a linear system of 2L+ 1 equations (one for
each value of k between −L and L) in 2L+ 1 unknowns.
Solution of the system of equations provides the values of the
unknowns, namely h[n] for −L ≤ n ≤ L.
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Example 9-8: Design of Lowpass Filter Using

Frequency Sampling

Design a Type I FIR lowpass filter of length 5 using frequency
sampling (Table 9-2). The filter should satisfy the following
conditions: H(ej�) = 1 at � = 0, H(ej�) = 0 at � = π , and
H(ej�) = 0.75 at � = π/2.

Solution: A Type I filter of length 5 and centered at n = 0 is
given by

h[n] = { a, b, c, b, a }. (9.56)

The corresponding frequency response is

H(ej�n) =
L∑

n=−L
h[n] e−j�n

= ae−j2� + be−j� + c + bej� + aej2�

= c + 2b cos(�)+ 2a cos(2�). (9.57)

Application of the three specified conditions leads to:

H(ej�) = 1
∣∣∣
�=0

1 = c + 2b + 2a, (9.58a)

H(ej�) = 0
∣∣∣
�=π 0 = c − 2b + 2a, (9.58b)

H(ej�) = 0.75
∣∣∣
�=π/2 0.75 = c − 2a. (9.58c)

Simultaneous solution of the three equations of Eq. (9.58) gives

a = − 1

16
, b = 1

4
, c = 5

8
.

So the filter is

h[n] =
{

− 1
16 ,

1
4 ,

5
8 ,

1
4 ,− 1

16

}
, (9.59a)

and the delayed version is

h̃[n] =
{

− 1
16 ,

1
4 ,

5
8 ,

1
4 ,− 1

16

}
. (9.59b)

9-3.6 FIR Filter Design Parameters

The magnitude spectrum |HD(e
j�)| of an ideal brickwall

lowpass filter looks like a perfect rectangle with sharp edges.
An example was shown earlier in Fig. 9-16. To generate
such a frequency response, the corresponding time-domain
impulse response hD[n] would have to be infinite in duration.
In practice, hD[n] is multiplied by a window function that
truncates its length, and possibly shapes its amplitude profile.
The simplest such window is the rectangular window wR[n]
given by Eq. (9.1). The finite-length filter h[n] = wR[n] hD[n]
exhibits a lowpass spectrum H(ej�) that differs from that of the
ideal filter, HD(e

j�), in a number of ways. Figure 9-17 displays
the impulse response h[n] and its corresponding spectrum
|H(ej�)| for rectangular windows of lengths N = 201 and 21.
Both are for a filter with a cutoff frequency �0 = π/2. In the
transition regions between the passband and the two stopbands,
the slope is much steeper for the spectrum ofh[n] withN = 201
than for the spectrum of the shorter impulse response. Also,
both spectra exhibit ripples, particularly near the edges of the
transition regions, but the character of the ripples is different for
the two cases. Moreover, the ripple effect would look different
had we used a window different from the rectangular function
wR[n].

In general, the deviation of a filter’s spectrum from the desired
ideal spectrum is characterized by the following attributes:

• Passband ripple Rp: Relative to the ideal spectrum with
|HD(e

j�)| = 1 in the passband, the spectrum of a real
filter exhibits fluctuations that range between a minimum
1 − Rp and a maximum 1 + Rp (Fig. 9-17(b)).

• Stopband rippleRs: This is the peak value of the sidelobes
in the stopband.

• Rolloff rate Sg: This is the slope at the middle of the
transition region between the passband and stopband.

The FIR filter design approaches considered thus far—
namely, the windowing and frequency sampling methods of
Sections 9-3.3 and 9-3.4—can be implemented relatively easily
and neither method requires excessive computation. Their
spectra, however, are not optimized to meet specific design
criteria, such as the maximum acceptable passband ripple or
the minimum acceptable sidelobe attenuation. Consequently, a
filter designer would have to pursue a “trial and error” approach
in the hope of approaching an impulse response h[n] with
an acceptable spectrum. An alternative, and more systematic,
approach is to use an error criterion to iteratively arrive at a
“quasi optimal” design of h[n]. This is the idea behind the Parks
and McClellan algorithm described in the next subsection.
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(a) Near-ideal lowpass filter with N = 201

(b) Truncated lowpass filter with N = 21
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Figure 9-17: A finite-length impulse response generates a spectrum with a ripple component in the passband and sidelobes in the stopband.

9-3.7 FIR Filter Design Using the Minimax
Criterion

This subsection presents an approach to FIR filter design that
allows the filter designer to prioritize the relative importance of
the order of the FIR filter, the size of the ripples in its passband(s)
and stopband(s), and the rolloff rates in the transition regions
between the passband(s) and stopband(s). It uses an iterative
algorithm, called the Parks-McClellan algorithm, to minimize
the weighted maximum magnitude of the difference between
the ideal desired frequency response HD(e

j�) and the designed
frequency response H(ej�). The weighted error E(ej�) is
defined as

E(ej�) = W(ej�) |HD(e
j�)− H(ej�)|, (9.60)

whereW(ej�) is the weight assigned to penalize the error at�.
The weighting function is selected by the designer to emphasize
or de-emphasize the importance of the deviation between the
desired spectrum and the spectrum of the filter under design,

at specific frequencies. Since H(ej�) is related to the impulse
response h[n] by

H(ej�) =
N−1∑
n=0

h[n] e−j�n, (9.61)

the selectable parameters of h[n] are its length N and the
amplitudes of its components { h[0], h[1], . . . , h[N − 1] }.
The Parks-McClellan algorithm is configured to minimize the
maximum value of E(ej�) across the range of �, which
explains the meaning of the term “minimax.” It is an iterative
algorithm that typically converges in 3–5 iterations for simple
filters, such as lowpass and highpass filters. More iterations may
be required for more complicated filters.

Notationally, the minimax criterion is expressed as

MIN MAX
h[n] �

{E(ej�) },

where the L amplitudes of h[n] are the selectable variables,
0 ≤ � ≤ π , and E(ej�) is the error defined by Eq. (9.60).
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Filters designed using the minimax criterion tend to have
gains that oscillate (“ripple”) around the desired gain, but the
size of the ripple is constant. So these filters are often called
equiripple filters.

9-3.8 Parks-McClellan Algorithm Implementation

A proof that the Parks-McClellan algorithm converges to the
solution of the minimax criterion, as stated by Eq. (9.60),
requires many pages of complicated mathematics, including
such topics as Chebyschev polynomials, Chebyschev approx-
imation theory, Remez exchange theorem, and alternation
theorem. Instead, we present a summary of how to implement
the Parks-McClellan algorithm in MATLAB, followed by two
examples to illustrate its operation.

N , F , and G are input parameters, defined as follows:

• N is the order of the FIR filter. The filter is of lengthN+1.

• F is a vector of pairs of normalized frequencies:
F = �/π , extending over the range from 0 to 1. F must
be even in length and include both 0 and 1.

• G is a vector of gains representing an initial |H(ej�)| at
normalized frequencies F .

The MATLAB Signal Processing Toolbox command firpm
designs a filter with output h[n]. [The command is not available
in MathScript.] Note that H(ej�) is the frequency response used
to initialize the iterative process, whereas h[n] is the impulse
response corresponding to the final frequency response after
convergence has been achieved. That is, h[n] is not the impulse
response corresponding to H(ej�).

The default design is a symmetric h[n], suitable for lowpass,
highpass, and bandpass filters. To obtain an antisymmetrich[n],
suitable for an ideal Hilbert transform given by

HD(e
j�) =

{
−j for 0 < � < π,

j for − π < � < 0,
(9.62)

it is necessary to use the command

h=firpm(N,[0 1],[1 1],’hilbert’);

The frequency response of the designed filter will then be
pure imaginary.

A differentiator given by

HD(e
j�) = j�, |�| < π, (9.63)

can be designed by the command

h=firpm(N,[0 1],[0 pi],’hilbert’);

The ripples in E(ej�) have the same amplitudes, but ripples
near � = 0 create a larger percentage error than ripples near
� = π . To make the percentage errorsE(ej�)/|�| have same-
sized ripples at all frequencies �, use instead the command

h=firpm(N,[0 1],[0 pi],’differentiator’);

Example 9-9: Parks-McClellan Lowpass Filter

Apply the Parks-McClellan algorithm to design a half-band
(cutoff frequency �0 = 0.5π ) lowpass filter of order 21
(which means that the duration of its impulse response is
N + 1 = 21 + 1 = 22). Specify the transition region to be
between � = 0.4π and � = 0.6π . Display the gain of the
frequency response after 1, 2, and 3 iterations.

Solution: Given the specified information, we begin by
defining the initial frequency response as

|H(ej�)| =

⎧⎪⎨
⎪⎩

1 for 0 ≤ � < 0.4π,

dc for 0.4π < |�| < 0.6π,

0 for 0.6π < |�| ≤ π,

where “dc” stands for “don’t care.” We have specified a unity
gain in the passband (0 to 0.4π ) and zero gain in the stopband
(≥ 0.6π ), but assigned no specifications across the transition
region. Hence, N , F , and G are defined as

N = 21, F = [0.0 0.4 0.6 1.0],
G = [1.0 1.0 0.0 0.0].

Application of the MATLAB command

h=firpm(N,F,G)

generates the three plots shown in Fig. 9-18. The algorithm
was stopped after 1, 2, and 3 iterations, and then the DTFT was
computed for each case.

• The gain plot for |H(ej�)| realized after 1 iteration is
shown in red. It exhibits approximately flat responses in
the passband and stopband, and an approximately linear
profile in the transition region (with |H(ej�)| = 0.5 at the
cutoff frequency �0 = 0.5π ).

• The output of the algorithm after 2 iterations is displayed
in green. The frequency response includes ripples in the
passband and stopband, but the rolloff rate (slope) in the
transition region is much greater.
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Figure 9-18: Results of Parks-McClellan algorithm after:
1 iteration (red); 2 iterations (green); 3 iterations (blue).

• The blue plot corresponds to three iterations. It is similar to
the two-iteration response, but the slope is slightly steeper
in the transition region, and the ripples are now smaller
and have equal amplitudes across both the passband and
the stopband. The frequency response remains essentially
unchanged with the application of additional iterations.

If the objective of the filter designer is to avoid ripples, then
h[n] corresponding to the red frequency response would be
the preferred option, but if small ripples can be tolerated so
as to achieve a steep response in the transition region, h[n]
corresponding to the blue response would be the better choice.
In the present example, the transition region extended from
0.4π to 0.6π . Making it narrower or wider can impact the size
of the ripples. Also, increasing the filter order would decrease
the ripple amplitude, but increase their number.

Example 9-10: Equiripple Bandpass Filter

Implement the Parks-McClellan algorithm for a bandpass filter
defined by the initial frequency response

|H(ej�)| =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for 0 ≤ |�| < 0.2π,

dc for 0.2π < |�| < 0.3π,

1 for 0.3π < |�| < 0.7π,

dc for 0.7π < |�| < 0.8π,

0 for 0.8π < |�| ≤ π.

Compare filters of order: (a) N = 40 and (b) N = 60. Allow
the algorithm to converge.

Solution:
(a) N = 40,

F = [0.0 0.2 0.3 0.7 0.8 1.0],
G = [0.0 0.0 1.0 1.0 0.0 0.0],

and

h=firpm(N,F,G),

which leads to the two-sided plots shown in part (a) of Fig. 9-19.
The frequency response includes noticeable-size ripples in

the passbands and stopbands, but the rolloffs are fairly sharp.
(b) Upon changingN to 60, implementation of the MATLAB

code with the same values for F and G leads to the plot for
|H(ej�)| shown in Fig. 9-19(b), which exhibits smaller-size
ripples and sharper rolloffs.

Concept Question 9-4: Why are FIR filter impulse
responses almost always even or odd? (See        )

Concept Question 9-5: What is the difference between
an FIR filter and an MA system? (See        )

Concept Question 9-6: What does the frequency
sampling design procedure do? (See        )

Concept Question 9-7: What does the Parks-McClellan
design procedure do? (See        )

Exercise 9-5: Design a differentiator of length 3 using a
rectangular data window. Interpret your answer.

Answer: h[n] = { 1, 0,−1 } becomes

y[n] = x[n+ 1] − x[n− 1],

which is a difference operator.
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(a) N = 40

(b) N = 60
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Figure 9-19: Parks-McClellan bandpass filters with (a) N = 40 and (b) N = 60.
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9-4 Infinite Impulse Response (IIR)
Filter Design

9-4.1 Overview of IIR Filter Design

An IIR filter has the form of an ARMA difference equation (see
Section 7-3):

y[n] + a1 y[n− 1] + · · · + aN y[n−N ]
= b0 x[n] + b1 x[n− 1] + · · · + bM x[n−M],

(9.64)

for a set of constant coefficients {an, 1 ≤ n ≤ N} and
{bn, 0 ≤ n ≤ M}, and constant orders (N,M). An IIR filter
can also be specified by its transfer function

H(z) = Y(z)
X(z)

= b0 + b1z−1 + · · · + bMz−M

1 + a1z−1 + · · · + aMz−N , (9.65)

or its impulse response

h[n] =
N∑
i=1

Cipni u[n], (9.66)

where {pi} are the poles of the transfer function H(z) and {Ci}
are constants determined by partial fraction expansion (Section
7-8). Since the discrete-time index n is unbounded, h[n] is
infinite in duration, and therefore it is called an infinite impulse
response (IIR) filter.

9-4.2 Notch Filters: FIR versus IIR

An IIR filter can be much more selective in frequency than an
FIR filter with the same number of coefficients. To illustrate
with an example, let us design FIR and IIR notch filters that
reject a 125 Hz sinusoid, and let us use a sampling rate
fs = 1000 samples/s. The discrete-time frequency to be
rejected is

�0 = 2π
f0

fs
= 2π

125

1000
= π

4
. (9.67)

(a) FIR notch filter

To reject �0 = π/4, the notch filter’s transfer function H(z)
must have two conjugate zeros at e±jπ/4. Also, causality

requires H(z) to have at least as many poles. By placing two
poles at the origin in the complex plane, we generate a causal
impulse response of finite duration. Thus,

H(z) = (z − ejπ/4)(z − e−jπ/4)
z2

= 1 − 2

z
cos

(π
4

)
+ 1

z2 = 1 − 1.414

z
+ 1

z2 . (9.68)

The corresponding impulse response is

h[n] = { 1,−1.414, 1 }, (9.69)

and by application of the convolution property (#4 in
Table 7-4), the output y[n] is given by

y[n] = x[n] ∗ h[n] =
2∑
i=0

x[n− i] h[i]

= x[n] h[0] + x[n− 1] h[1] + x[n− 2] h[2]
= x[n] − 1.414x[n− 1] + x[n− 2].

(9.70)

The magnitude of the frequency response H(ej�), obtained
by setting z = ej� in Eq. (9.68), is shown graphically in
Fig. 9-20(a). The response does have a null at �0 = π/4, but
it is not very selective, as it also eliminates nearby frequencies.

(b) IIR notch filter

The transfer function of the IIR notch filter must also have zeros
at e±jπ/4, but its two poles can be placed very close to these
zeros, just inside the unit circle so as to insure BIBO stability
(Section 8-2). We will select poles at 0.99e±jπ/4. Consequently,
its transfer function is given by

H(z) = (z − ejπ/4)(z − e−jπ/4)
(z − 0.99ejπ/4)(z − 0.99e−jπ/4)

= z2 − 2 cos(π/4) z + 1

z2 − 2(0.99) cos(π/4) z + 0.992

= z2 − 1.414z + 1

z2 − 1.40z + 0.98
. (9.71)

The corresponding ARMA difference equation is given by

y[n] − 1.40y[n− 1] + 0.98y[n− 2]
= x[n] − 1.414x[n− 1] + x[n− 2]. (9.72)
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(a) FIR filter

(b) IIR filter
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Figure 9-20: (a) FIR and (b) IIR notch filters, both designed to
eliminate a sinusoid with �0 = π/4.

Upon replacing z with ej� and then computing |H(ej�)| as
a function of � over the range 0 to π , we obtain the plot
displayed in Fig. 9-20(b). We observe that the IIR notch filter is
highly selective; it only eliminates�0 = π/4, but leaves nearby
frequencies unaffected.

The FIR notch filter requires one multiplication and two
additions per recursion, and two memory registers to store the
two most recent input values x[n− 1] and x[n− 2]. The IIR
notch filter requires three multiplications and four additions
per recursion, and four memory registers to store the two most
recent input values x[n− 1] and x[n− 2] and the two most
recent output values y[n− 1] and y[n− 2]. However, the IIR
notch filter is far more selective.

The impulse response h[n] of the IIR filter is the inverse
z-transform of H(z). Using the methods of Section 7-8, h[n] is
found to be

h[n] = δ[n] − 0.0202(0.99)n−1

· cos
(π

4
(n− 1)− 2.3512

)
u[n− 1], (9.73)

which has infinite duration but is absolutely summable, so the
IIR notch filter is BIBO stable. We should note, however, that
if the poles are very close to the unit circle, roundoff error due
to finite precision in a DSP chip can make a mathematically
stable filter unstable. Also, the transient response is very long,
because (0.99)n decays very slowly as a function of n.

The philosophy behind IIR filter design is to take a
continuous-time filter, such as the Butterworth filter of Section
6-8, and transform it into a discrete-time filter. The process has
led to two major approaches to IIR filter design:

• Impulse invariance: the continuous-time impulse re-
sponse of a particular filter of interest, denoted here as
ha(t), is sampled to a discrete-time impulse response h[n].

• Bilinear transform: the continuous-time transfer function
Ha(s) of a particular filter of interest is mapped to a
discrete-time transfer function H(z).

Throughout this section, the subscript “a” designates a
continuous-time (analog) LTI system.

9-4.3 IIR Filter Design Using Impulse Invariance

The idea behind designing an IIR filter using impulse invariance
is to sample the impulse responseha(t) of a suitable continuous-
time filter using a sampling interval Ts. This gives

h[n] = Ts ha(nTs). (9.74)

Multiplication by Ts is required dimensionally. To see why this
is necessary, consider the RC circuit first presented in Fig. 2-5
and which reappears throughout Chapters 2 and 3. The input and
output of this circuit are both voltages, so its transfer function
should be dimensionless. Indeed, from Eq. (4.43), its transfer
function is

Ha(s) = 1/RC

s + 1/RC
,

which is dimensionless. But the impulse response of this RC
circuit is, from Eq. (2.17),

ha(t) = 1

RC
e−t/RC u(t) ,

which has units of 1/time. In discrete time, however, H(z), h[n],
z, and n are all dimensionless. So to make the units match, it is
necessary to scale ha(t) as in Eq. (9.74).

The recipe for IIR filter design using impulse invariance is
as follows:

(1) Select a suitable continuous-time filter, such as a
Butterworth filter, with transfer function Ha(s).
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(2) Compute its continuous-time impulse response
ha(t) = L−1{Ha(s)} using the inverse Laplace transform,
if ha(t) is not already known.

(3) Select the sampling interval Ts so that the sampling
frequency 1/Ts exceeds the Nyquist frequency (double the
maximum frequency in the spectrum) of ha(t).

(4) Sample ha(t) to generate h[n] = Ts ha(nTs).

� Impulse invariance generates stable filters. �

FIR filters are always BIBO stable, regardless of the method
used to generate them. This is because the impulse response of
an FIR filter is necessarily absolutely summable (see Section
7-4.5). However, an IIR filter is only stable if all of its poles lie
inside the unit circle (see Section 7-11). So an issue that must
be addressed in any IIR filter design procedure is whether the
transformation from continuous time to discrete time preserves
stability; does stability of the continuous-time filter guarantee
stability of the discrete-time filter designed from it?

Recall from Section 3-7 that a continuous-time system is
BIBO stable if and only if all of its poles lie in the OLHP.
The OLHP is the open left half of the complex s plane, i.e.,
Re{s} < 0. We now show that the transfer function H(z)
designed using impulse invariance of Ha(s) has all of its poles
inside the unit circle if Ha(s) has all of its poles in the OLHP.
That is, impulse invariance preserves stability.

Let the poles of Ha(s) be {pi}, and let {Ai} be the residues
of the partial fraction expansion of Ha(s). Then the impulse
response ha(t) = L−1{Ha(s)} is

ha(t) =
N∑
i=1

Aiepi t u(t). (9.75)

Applying the continuous-to-discrete-time mapping defined by
Eq. (9.74) leads to

h[n] = Ts ha(nTs) =
N∑
i=1

(AiTs)(e
piTs)n u[n]. (9.76)

Note that we used the property

u(nTs) =
{

1 for n > 0,

0 for n < 0,
(9.77)

which is the same as u[n] if we define u(0Ts) = 1.

The poles of the transfer function H(z) designed using
impulse invariance are {epiTs}. Poles {pi = −ai + jbi} are in
the OLHP if and only if ai > 0, in which case the discrete-time
poles {epiTs} have magnitudes

|epiTs | = |e−aiTs | · |ejbiTs | = e−aiTs < 1. (9.78)

The discrete-time poles lie inside the unit circle, and therefore
the discrete-time system is stable.

Example 9-11: Impulse Invariance IIR Filter

The continuous-time filter

Ha(s) = s + 0.1

(s + 0.1)2 + 16
(9.79)

has a sharp resonant peak at ω0 = 4 rad/s in its frequency
response Ha(jω). This is because its poles {−0.1±j4} are close
to the imaginary axis (see Section 6-5). Use impulse invariance
to design an IIR filter that also has a sharp resonant peak in its
frequency response. Keep Ts unspecified.

Solution: Using entry #14 in Table 3-2, we obtain the
continuous-time impulse response:

ha(t) = L−1{Ha(s)} = e−0.1t cos(4t) u(t). (9.80)

Per Eq. (9.74), the discrete-time impulse response designed
using impulse invariance is given by

h[n] = Ts ha(nTs) = Ts e
(−0.1Ts)n cos((4Ts)n) u[n]. (9.81)

By comparison with entry #6 in Table 7-5, the corresponding
discrete-time transfer function is

H(z) = Z{h[n]} = Ts
z2 − ze−0.1Ts cos(4Ts)

z2 − z2e−0.1Ts cos(4Ts)+ e−0.2Ts
.

(9.82)
The poles of H(z) are the roots of the denominator when set
to zero. By construction, these are {epiTs} = {e−0.1Tse±j4Ts}.
For small Ts, these poles are very close to the unit circle, and
they produce a sharp resonant peak in the frequency response
H(ej�) at �0 = 4Ts.

A plot of the frequency response H(ej�), obtained by
replacing z with ej� in Eq. (9.82), is displayed in Fig. 9-21.
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Figure 9-21: One-sided frequency response for the IIR design in
Example 9-11, with Ts = 0.01. As expected, there is a resonant
peak at �0 = 4Ts = 0.04.

9-4.4 IIR Filter Design Using Bilinear
Transformation

The idea behind designing an IIR filter using bilinear
transformation is to map the given continuous-time transfer
function Ha(s) to the discrete-time transfer function H(z) using
the bilinear transformation

s = 2

T

(
z − 1

z + 1

)
, (9.83)

where T is a positive transformation factor (T > 0). The
bilinear transformation gets its name from the functional form
of Eq. (9.83), being the ratio of two linear functions. Here, T is
a constant to be specified, and should not be confused with the
sampling interval Ts used in impulse invariance.

The resulting discrete-time transfer function H(z) is then

H(z) = Ha(s)

∣∣∣∣
s = 2

T

(
z − 1

z + 1

). (9.84)

The recipe for IIR filter design using the bilinear
transformation is as follows:

(1) Select a suitable continuous-time filter, such as a
Butterworth filter, with transfer function Ha(s).

(2) Denote the degree of the denominator polynomial of Ha(s)
as N .

(3) Choose an appropriate value for T , which usually depends
on the filter specifications.

(4) Replace s with s = 2
T

(
z−1
z+1

)
everywhere in the expression

for Ha(s). Call the result H(z).

(5) Simplify H(z) by multiplying it by (z + 1)N/(z + 1)N .
This converts H(z) into a ratio of two polynomials.

A simple example of IIR filter design by bilinear transformation
follows.

Example 9-12: Bilinear Transformation IIR Filter

Use the bilinear transformation to design a discrete-time
lowpass filter from a second-order continuous-time Butterworth
lowpass filter with cutoff frequency ω0 = 1 rad/s. Use T = 2 s
to make the algebra easier to follow.

Solution: From Table 6-3, the second-order continuous-time
lowpass Butterworth filter with ω0 = 1 rad/s has transfer
function

Ha(s) = 1

s2 + √
2s + 1

. (9.85)

The bilinear transformation with T = 2 is

s = z − 1

z + 1
. (9.86)

Substituting Eq. (9.86) into Eq. (9.85) gives the discrete-time
transfer function

H(z) = 1(
z − 1

z + 1

)2

+ √
2

(
z − 1

z + 1

)
+ 1

. (9.87)

Multiplying Eq. (9.87) by
(

z+1
z+1

)2
leads to

H(z) = (z + 1)2

(z − 1)2 + √
2(z − 1)(z + 1)+ (z + 1)2

= z2 + 2z + 1

(2 + √
2)z2 + (2 − √

2)
. (9.88)

Transfer function H(z) has poles at{
±j

√
2 − √

2√
2 + √

2

}
,

both of which lie inside the unit circle, so the discrete-time
filter is BIBO stable. H(z) has a double zero at {−1}, so it rejects
� = π (see Section 8-1) and is therefore a (crude) lowpass filter.
It may be implemented using the ARMA difference equation

y[n] + 2 − √
2

2 + √
2
y[n− 2]

= 1

2 + √
2
(x[n] + 2x[n− 1] + x[n− 2]), (9.89)

which requires only 4 additions and two multiplications per
recursion, since multiplyingy[n−1] by 2 is equivalent to adding
it to itself.
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9-4.5 Bilinear Transformation and BIBO Stability

� The bilinear transformation generates stable filters. �

Now, we show that the bilinear transformation maps the
OLHP in the s plane for the continuous-time filter to the interior
of the unit circle in the z plane for the discrete-time filter, thereby
preserving stability. Next we show that the reverse process
also is true, confirming that the bilinear transformation is an
invertible transformation. Finally, we show that the bilinear
transformation maps the imaginary axis s = jω to the unit circle
z = ej� in a one-to-one mapping. This allow a discrete-time
filter designer to map a specific continuous-time frequency ω
to a specific discrete-time frequency �.

(a) OLHP to interior of unit circle

The poles {pi = −ai + jbi} of Ha(s) are all in the OLHP if
ai > 0. We now show that the bilinear transformation maps the
entire left OLHP, Re[s] < 0, to the interior |z| < 1 of the unit
circle.

Solving the bilinear transformation given by Eq. (9.83) for z
in terms of s gives

s = 2

T

(
z − 1

z + 1

)
z = 1 + sT/2

1 − sT/2
. (9.90)

For a pole at s = −a + jb,

z = (1 − aT /2)+ j (bT /2)

(1 + aT /2)− j (bT /2)
. (9.91)

The squared magnitude |z|2 of z is

|z|2 = (1 − aT /2)2 + (bT /2)2

(1 + aT /2)2 + (bT /2)2
. (9.92)

Since all poles {pi = −ai + jbi} are located in the OLHP,
it follows that ai > 0 for all i. Hence, for the pole under
consideration, −aT < aT since a > 0 and T > 0. Adding
1 + (aT /2)2 to both sides of this inequality leads to

(
1 − aT

2

)2

<

(
1 + aT

2

)2

. (9.93)

Consequently, the numerator of Eq. (9.92) is smaller than the
denominator, which implies that |z|2 < 1. Hence, the OLHP of
s is mapped to the interior |z| < 1 of the unit circle, thereby
demonstrating that the bilinear transformation, like impulse
invariance, preserves stability.

(b) Interior of unit circle to OLHP

Conversely, we now show that the bilinear transformation also
maps the interior |z| < 1 of the unit circle to the OLHP of s.

Recall that for any complex number z we have

zz∗ = |z|2,
z − z∗ = j2 · Im[z], (9.94)

Upon multiplying both the numerator and denominator on the
right-hand side of Eq. (9.83) by (z∗ + 1), we have

s = 2

T

z − 1

z + 1

[
z∗ + 1

z∗ + 1

]

= 2

T

zz∗ + z − z∗ − 1

(z + 1)(z∗ + 1)
= 2

T

|z|2 − 1

|z + 1|2 + j
4

T

Im[z]
|z + 1|2 .

(9.95)

The real part of this expression is

Re(s) = 2

T

|z|2 − 1

|z + 1|2 < 0, (9.96)

if and only if |z| < 1. So, the bilinear transformation also maps
the inside of the unit circle |z| = 1 to the OLHP of s.

9-4.6 Frequency Warping

The significance of the bilinear transformation as a filter
design technique is that it maps the imaginary axis defined
by Re[s] = 0 to the unit circle |z| = 1. This follows from the
previous subsection by setting a = 0. Equally significant is the
fact that the frequency response H(ej�) of the discrete-time
filter has the same shape as the frequency response Ha(jω) of
the continuous-time filter. The difference is that the frequency
axis has been warped, to compress the interval {0 ≤ ω ≤ ∞}
to {0 ≤ � ≤ π}. We now prove this assertion.

Upon setting z = ej� in Eq. (9.83), the bilinear transforma-
tion becomes

s = 2

T

ej� − 1

ej� + 1
= 2

T

ej�/2 − e−j�/2

ej�/2 + e−j�/2

[
ej�/2

ej�/2

]

= 2

T

2j sin(�/2)

2 cos(�/2)
= j

2

T
tan

(
�

2

)
. (9.97)

By definition, from Eq. (3.2), s = σ + jω. Since the
expression for s given by Eq. (9.97) is purely imaginary, it
follows that

ω =
(

2

T

)
tan

(
�

2

)
, (9.98)
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which is known as the prewarping formula. Continuous-time
frequency ω maps to discrete-time frequency �.

The tangent function maps the interval {0 ≤ � ≤ π} to the
interval {0 ≤ ω ≤ ∞}.

The discrete-time frequency response H(ej�) is the
continuous-time frequency response Ha(jω) nonlinearly
compressed in frequency:

H(ej�) = Ha(s)

∣∣∣∣
s = j

2

T
tan

(
�

2

) (9.99)

Example 9-13: IIR Filter Design Using Prewarping

Repeat Example 9-11 using the bilinear transformation instead
of impulse invariance. Design the filter such that the peak of
the continuous-time filter at ω0 = 4 rad/s maps to �0 = π/2
for the discrete-time filter.

Solution: First, we choose T to map ω = 4 rad/s to � = π/2
using the prewarping formula given by Eq. (9.98):

ω =
(

2

T

)
tan

(
�

2

)

4 =
(

2

T

)
tan

π/2

2
= 2

T
,

which has the solution T = 1
2 .

Second, we use this value of T in the bilinear transformation
formula given by Eq. (9.83):

s = 2

1/2

z − 1

z + 1
= 4

z − 1

z + 1
. (9.100)

Third, we apply the bilinear transformation given by Eq. (9.84)
to the expression for Ha(s) given by Eq. (9.79):

H(z) = Ha(s)|s=4
(

z−1
z+1

) = 4 z−1
z+1 + 0.1(

4 z−1
z+1 + 0.1

)2 + 16
. (9.101)

Simplification of Eq. (9.101) leads to

H(z) =
1
8 z2 + 0.0061z − 0.119

z2 + 0.0006z + 0.9512
. (9.102)

By setting the numerator of Eq. (9.102) equal to zero and solving
for the roots, we obtain the zeros of H(z). A similar procedure
applied to the denominator yields the value of the poles. The
process yields the following poles and zeros of H(z):

0 0.5 1 1.5 2 2.5 3

1

2

3

4

5

Ω

|H(e j Ω)|

Figure 9-22: IIR resonant filter designed using the bilateral
transformation with a peak at �0 = π

2 .

• Poles at {−0.0003 ± j0.9753} ≈ {0.9753e±jπ/2}
• Zeros at {−1, 0.951}.

The zero at −1 confirms that the frequency response H(ej�) is
zero at� = π (see Section 8-1). The zero at 0.951 confirms that
the frequency response is close to zero at � = 0. The poles at
0.9753e±jπ/2 confirm that there will be a large peak at� = π

2 ,
as desired.

To perform the bilinear transformation in MATLAB, we first
expand the denominator in Eq. (9.79) to obtain:

Ha(s) = s + 0.1

(s + 0.1)2 + 16
= s + 0.1

s + 0.2s + 16.01
. (9.103)

Next, we use the coefficients of the polynomials in the
numerator and denominator in the command

[B A]=bilinear([1 0.1], [1 0.2 16.01], 2),

with the last entry representing the factor 1/T = 1/(1/2) = 2.
The output is

B=[0.125 0.0061 -0.119]
A=[1.000 0.0006 0.9512],

which are the coefficients of the numerator and denominator in
the expression for H(z) in Eq. (9.102).

The frequency response H(ej�) is obtained from Eq. (9.102)
by replacing z with ej�:

H(ej�) =
1
8 e

j2� + 0.0061ej� − 0.119

ej2� + 0.0006ej� + 0.9512
. (9.104)

A plot of the magnitude of H(ej�) is displayed in Fig. 9-22. We
note that the filter’s frequency response exhibits a large peak at
�0 = π/2, as desired.
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Example 9-14: Lowpass Filter Design

Use the bilinear transformation to design a discrete-time
lowpass filter with cutoff frequency �0 = π

3 from a third-
order continuous-time Butterworth lowpass filter with cutoff
frequency ω0 = 1 rad/s.

Solution: From Table 6-3 the third-order continuous-time
lowpass Butterworth filter with ω0 = 1 rad/s has transfer
function

Ha(s) = 1

s3 + 2s2 + 2s + 1
. (9.105)

We must choose T in the bilinear transformation so that the
continuous-time cutoff frequency ω0 = 1 rad/s is mapped to
the discrete-time cutoff frequency �0 = π

3 . This is performed
using the prewarping formula given by Eq. (9.98) as follows:

ω = 2

T
tan

�

2

1 =
(

2

T

)
tan

π/3

2
= 2√

3 T
, (9.106)

which has the solution T = 2/
√

3 .
We use this value of T in the bilinear transformation formula

given by Eq. (9.83):

s = 2

T

z − 1

z + 1
= √

3
z − 1

z + 1
. (9.107)

Substituting Eq. (9.107) into Eq. (9.105) gives the discrete-time
transfer function

H(z) =
1(√

3 z−1
z+1

)3 + 2
(√

3 z−1
z+1

)2 + 2
(√

3 z−1
z+1

)
+ 1

. (9.108)

Multiplying Eq. (9.108) by
(

z+1
z+1

)3
gives, after much algebra,

H(z) =
(z + 1)3

(7 + 5
√

3)z3 − (3 + 7
√

3)z2 + (7
√

3 − 3)z + (7 − 5
√

3)
.

(9.109)

Transfer function H(z) has a triple zero at {−1}, so it rejects
� = π (see Section 8-1), and is therefore a lowpass filter. The

j1

−j1

−1 1

(a) Pole-zero diagram

3 zeros

(b) Frequency response

0.2

0.4

0.6

0.8

1

Ω

|H(e j Ω)|

Ω0
0 0.5 1 1.5 2 2.5 3

Figure 9-23: (a) Pole-zero diagram for the IIR Butterworth
lowpass filter with cutoff frequency �0 = π

3 , and (b) the
corresponding frequency response.

π
3

pole-zero diagram is shown in Fig. 9-23(a). Note the triple zero 
at −1 and the arc of poles in the right half of the z plane.

The frequency response H(ej�), obtained by setting z = ej�  

in Eq. (9.109), is shown in Fig. 9-23(b). The filter is indeed 
a lowpass filter with cutoff frequency �0 = . Like its 
continuous-time namesake, the filter gain is strictly decreasing, 
with absolutely no ripple at all. The rolloff is gradual, but it 
could be made sharper by using a higher-order Butterworth 
filter. The discrete-time lowpass filter can be implemented as 
an ARMA difference equation of order (3,3).

The MATLAB code for this example is on the book website 
(Ex914.m).
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9-4.7 Comparison of Different Approaches to
Filter Design

We conclude this section by comparing the frequency responses
of half-band lowpass filters designed using various FIR and IIR
filter design techniques.

Example 9-15: Lowpass Filter Designs

Design a half-band (cutoff frequency �0 = π
2 ) lowpass filter

using 20 coefficients in an MA or ARMA difference equation,
with the following specifications:

(a) Hamming window.

(b) Frequency sampling.

(c) Minimax with transition 0.4π to 0.6π .

(d) Discrete-time 10th-order Butterworth filter using the
bilinear transformation.

Solution: The results are shown in Fig. 9-24. For each 
of the first three design techniques, the impulse response is 
represented by the stem plot in the left half of the figure and 
the frequency response is given by the continuous plot in the 
right half. They are all quite similar. The minimax design has 
a sharper transition, but also has ripples in the passband and 
stopband. For the Butterworth filter, which exhibits the steepest 
slope in the transition region, we display the pole-zero diagram 
instead of the impulse response.

The MATLAB code for this example is on the book website 
(Ex915.m).

Concept Question 9-8: Why would you ever use an IIR 
filter, when FIR filters have no phase distortion and are 
guaranteed to be stable? (See        )

Concept Question 9-9: Why is the bilinear transforma-
tion of a piecewise-constant gain also piecewise constant?
(See        )

Exercise 9-6: Using the continuous-time filter

ha(t) = δ(t)− 3e−3t u(t)

and Ts = 2, design a discrete-time filter using impulse
invariance.

Answer: The impulse is just feedthrough.

h[n] = δ[n] − Ts ha(nTs) = δ[n] − 6e−6n u[n].

Exercise 9-7: Using the continuous-time filter Ha(s) =
s/(s + 1) and T = 2, design a discrete-time filter using
bilinear transformation.

Answer: Setting s = 2
2

z−1
z+1 in Ha(s) gives

H(z) = (z − 1)/(z + 1)

1 + (z − 1)/(z + 1)

= z − 1

(z + 1)+ (z − 1)
= 1

2
(1 − z−1).

So h[n] = { 1
2 ,− 1

2 } is actually FIR here!

Exercise 9-8: We wish to design an IIR discrete-
time lowpass filter with cutoff frequency �0 = π

2 using
bilinear transformation with T = 0.001. Determine the
continuous-time lowpass filter cutoff frequency ω.

Answer:

ω = 2

T
tan

(
�0

2

)
= 2

0.001
tan

(
π/2

2

)

= 2000 tan
(π

4

)
= 2000 rad/s.

Exercise 9-9: Using bilinear transformation with
T = 0.1, the continuous-time frequency ω = 20 rad/s
maps to what discrete-time frequency?

Answer:

20 = ω = 2

0.1
tan

(
�

2

)
1 = tan

(
�

2

)

� = π

2
.

Exercise 9-10: Use bilinear transformation with T = 2
to design an IIR ideal differentiator.

Answer: From Chapter 3, Ha(s)=s, s = 2
2

z−1
z+1 . So

H(z) = z − 1

z + 1
= Y(z)

X(z)

y[n] + y[n− 1] = x[n] − x[n− 1].
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(a) Hamming window
design

(b) Frequency sampling
design

(c) Minimax criterion
design

(d) Butterworth filter
design
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Figure 9-24: Half-band lowpass filter designed using: (a) Hamming window, (b) frequency sampling, (c) minimax criterion, and (d)
Butterworth filter, all for a cutoff frequency �0 = π/2.
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9-5 Multirate Signal Processing

Recall from Section 6-13 that sampling a continuous-time
signal x(t) at a sampling rate fs entails recording the values
of x(t) at integer multiples of the sampling interval Ts = 1/fs
and storing them as a discrete-time signal x[n]:

x[n] = x(nTs) = x

(
n

fs

)
,

for all integers n. Sampling x(t) at a different sampling rate
produces a different discrete-time signal, but x(t) can always
be reconstructed from any sampled discrete-time version, so
long as fs satisfies the Nyquist criterion, which states that fs
should exceed the highest-frequency component fmax present
in the spectrum of x(t) by at least a factor of 2. That is, fs
should exceed 2fmax. If the Nyquist criterion is not satisfied,
the reconstructed continuous-time signal will be an aliased
version of x(t), which differs from the true x(t). More details
are available in Section 6-13.

Let x1[n] be the samples resulting from a sampling at a rate
fs1 and x2[n] be the samples resulting from sampling at fs2 :

x1[n] = x(n/fs1),

x2[n] = x(n/fs2). (9.110)

The goal of multirate signal processing is to compute the
samples x2[n] from the samples x1[n], that is, to change the
sampling rate from fs1 to fs2 after the fact.

One obvious way to accomplish the change in sampling rate
would be to reconstruct x(t) from x1[n] and then resample x(t)
at sampling rate fs2 to obtain x2[n]. But if fs2/fs1 is a rational
number (ratio of two integers), this can be performed directly
in the discrete-time (n) domain. The goal of this section is to
demonstrate the process.

� We assume throughout that the original sampling rate,
fs1 , exceeds 2fmax. Furthermore, to avoid generating an
aliased signal, fs2 should exceed 2fmax as well. �

9-5.1 Operations of Multirate Signal Processing

(a) fs1/fs2 = integer

If the original sampling rate fs1 is an integer multiple of the new
sampling rate fs2 , then obtaining x2[n] from x1[n] is trivial. For

example, if fs1 = 1000 sample/s and fs2 = 500 sample/s, then
the sampling intervals are Ts1 = 1 ms and Ts2 = 2 ms. Thus,

x1[n] = {. . . , x(0), x(.001), x(.002), x(.003), . . . },
x2[n] = {. . . , x(0), x(.002), x(.004), x(.006), . . . }

= {. . . , x1[0], x1[2], x1[4], x1[6], . . . }. (9.111)

So x2[n] can be obtained from x1[n] simply by discarding every
other value of x1[n]. The extension to larger integer ratios of fs2

to fs1 should be apparent. This is called downsampling. Note
that downsampling may induce aliasing if fs2 is not greater than
2fmax.

(b) fs1/fs2 = 1/integer

If the new sampling rate, fs2 , is an integer multiple of the
original sampling rate, fs1 , then obtaining x2[n] from x1[n]
is more complicated. For example, if fs1 = 500 sample/s and
fs2 = 1000 sample/s, the sampling intervals are Ts1 = 2 ms and
Ts2 = 1 ms, in which case

x1[n] = {. . . , x(0), x(.002), x(.004), x(.006), . . . }
x2[n] = {. . . , x(0), x(.001), x(.002), x(.003), . . . }

= {. . . , x1[0], ?, x1[1], ?, x1[2], ?, x1[3], . . . }. (9.112)

Half of the values of x2[n] are known values of x1[n]. The other
values of x2[n] are not yet known, and these are designated by
the symbol “?”. We show below that these unknown values can
be computed by first replacing them with zeros (this is called
upsampling or zero-stuffing), and then filtering the result with a
discrete-time lowpass filter with cutoff frequency�0 = π

2 (this
is called interpolation).

If we wish to change the sampling rate by a rational
but non-integer factor, we use a combination of upsampling
and interpolation and downsampling. The collection of these
techniques is called multirate signal processing.

(c) Multirate signal processing applications

The most important application of multirate signal processing
is oversampling. Recall from Section 6-13 that the final stage
of reconstructing a signal x(t) from its samples x(nTs) involves
the use of a continuous-time (analog) lowpass filter, such
as a Butterworth filter. Since this filter is a physical device,
a fast rolloff requires many physical components (op-amps,
resistors, capacitors, wires). If the sampling rate fs = 1/Ts
greatly exceeds double the maximum frequency in the spectrum
of x(t), this filter will be small. But a huge sampling rate means
more numbers need to be stored and processed. Instead, using
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upsampling and interpolation, we can compute the samples that
would have resulted from a huge sampling rate, without actually
using a huge sampling rate. In effect, we will replace a fast-
rolloff continuous-time filter with a fast-rolloff discrete-time
filter, which can be implemented using a computer.

We present in a later section an application that involves the
use of the musical circle of fifths to synthesize the sounds of
a musical instrument playing all musical notes from the sound
of a musical instrument playing a single note. If a snippet of a
musical instrument playing a single note can be found, a music
synthesizer for that instrument playing all possible notes can
be programmed on a computer. Multirate signal processing will
also be used in the next chapter for the discrete-time wavelet
transform.

The next few sections address the following operations of
multirate signal processing:

• Downsampling (also known as decimating).

• Upsampling (also known as zero-stuffing).

• Interpolation (low-pass filtering).

• Multirate processing (combining multiple operations).

� Throughout, we should keep in mind that spectra of
discrete-time signals must repeat in � every 2π (and
possibly more often). �

9-6 Downsampling

9-6.1 Downsampling in the Time Domain

Downsampling, also called decimation, reduces the sampling
rate by an integer factor. This is very easy to do. To change
the sampling rate from 1200 samples/s to 600 samples/s, we
simply omit every other sample. To change the rate from 1200
sample/s to 400 samples/s, we simply omit two out of three
samples, keeping only every third sample.

Downsampling by an integer factor L is depicted using the
notation

x[n] L y[n] = x[Ln]. (9.113)

The MATLAB/MathScript recipe for downsampling by L is:

Y=X[1:L:end];

For example, for L = 3, we have:

y[0] = x[0], y[1] = x[3], y[2] = x[6], y[3] = x[9], . . . ,

so if x[n] is given by

x[n] = {. . . , 3, 1, 4, 1, 5, 9, 2, 6, 5, 8, . . . },

then downsampling it by 3 gives

y[n] = {. . . , 3, 1, 2, 8, . . . }.

We could also retain x[n] at times n = 1, 4, 7, . . . . This
would be a different polyphase component of x[n]. Usually,
we assume that downsampling retains x[0] specifically.

9-6.2 Downsampling in the z-Transform Domain

By extending the unilateral z-transform defined by Eq. (7.58a)
to the bilateral z-transform as defined in Eq. (8.72), we have

X(z) = ZZZ{x[n]} =
∞∑

n=−∞
x[n] z−n. (9.114)

This is analogous to the extension of the unilateral Laplace
transform to the bilateral Laplace transform in Section 3-9.

Given that X(z) is the bilateral z-transform of x[n], we now
seek to find an expression for Y(z) in terms of X(z), where Y(z)
is the bilateral z-transform of

y[n] = x[Ln]. (9.115)

That is, y[n] is a downsampled version of x[n] and L is its
downsampling integer factor.

(a) L = 2

As a first step towards relating Y(z) to X(z), we consider the
simple case whereL = 2. The bilateral z-transform Y(z) is then
given by

Y(z) =
∞∑

n=−∞
y[n] z−n

=
∞∑

n=−∞
x[2n] z−n

= · · · + x[−2] z + x[0] + x[2] z−1 + · · · . (9.116)



“book” — 2016/3/15 — 6:32 — page 514 — #41

514 CHAPTER 9 FILTER DESIGN, MULTIRATE, AND CORRELATION

Next, we write the sums for X(z) and X(−z):

X(z) = · · · + x[−2] z2 + x[−1] z + x[0]
+ x[1] z−1 + x[2] z−2 + · · · , (9.117a)

X(−z) = · · · + x[−2] z2 − x[−1] z + x[0]
− x[1] z−1 + x[2] z−2 − · · · . (9.117b)

The sum of the expressions is

X(z)+ X(−z) =
· · · + 2x[−2] z2 + 2x[0] + 2x[2] z−2 + · · · . (9.118)

All odd powers of z, as well as all x[n] for odd timesn, have been
eliminated. If we replace z with z1/2 everywhere in Eq. (9.118),
the new sum becomes equal to twice the sum in Eq. (9.116),
from which we conclude that

Y(z) = 1

2
[X(z1/2)+ X(−z1/2)] (L = 2). (9.119)

Hence, given x[n] and its corresponding z-transform X(z), we
can apply Eq. (9.119) to obtain the z-transform of Y(z) directly
from X(z).

(b) L ≥ 2

The relationship given by Eq. (9.119) applies to L = 2. For
L ≥ 2, the relationship takes the form

Y(z) = 1

L

L−1∑
k=0

X(e−j2πk/L z1/L) (L ≥ 2). (9.120)

To derive Eq. (9.120), we start by introducing the switching
function s[n] defined as

s[n] = 1

L

L−1∑
k=0

ej2πnk/L. (9.121)

For n = multiple of L, 2πnk/L is either zero or a multiple
of 2π . Hence,

s[n] = 1, for n = multiple of L. (9.122)

For n �= multiple of L, we can use the finite geometric series
relationship

L−1∑
k=0

rk = rL − 1

r − 1
for r �= 1, (9.123)

to express s[n] as

s[n] = 1

L

[
(ej2πn/L)L − 1

ej2πn/L − 1

]

= 1

L

[
1 − 1

ej2πn/L − 1

]
= 0, for n �= multiple of L.

(9.124)

Combining the results given by Eqs. (9.122) and (9.124) with
Eq. (9.121) leads to

s[n] = 1

L

L−1∑
k=0

ej2πnk/L (9.125a)

=
{

1 for n = multiple of L,

0 otherwise.
(9.125b)

The z-transform of the product s[n] x[n] is given by

ZZZ{s[n] x[n]} = 1

L

L−1∑
k=0

ZZZ{ej2πnk/L x[n]}. (9.126)

The z-scaling property of the z-transform (property #5 in
Table 7-6) states that

an x[n] X
( z

a

)
.

If we set a = ej2πk/L, the scaling property allows us to rewrite
Eq. (9.126) in the form:

ZZZ{s[n] x[n]} = 1

L

L−1∑
k=0

X(e−j2πk/L z). (9.127)

By application of Eq. (9.125b), the product s[n] x[n] is given
by

s[n] x[n] =
{. . . , x[0], 0, . . . , 0︸ ︷︷ ︸

L−1

, x[L], 0, . . . , 0︸ ︷︷ ︸
L−1

, x[2L], . . . },

(9.128)

and its z-transform is

ZZZ{s[n] x[n]}
= {· · · + x[0] + 0 + · · · + 0︸ ︷︷ ︸

L−1

+x[L] z−L

+ 0 + · · · + 0︸ ︷︷ ︸
L−1

+x[2L] z−2L + · · · }

= {· · · + x[0] + x[L] z−L + x[2L] z−2L + · · · }.
(9.129)
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For the downsampled signal

y[n] = x[Ln] = {. . . , x[0], x[L], x[2L], . . . }, (9.130)

its z-transform is

Y(z) = {· · · + x[0] + x[L] z−1 + x[2L] z−2 + · · · }. (9.131)

If we replace z with zL everywhere in Eq. (9.131), we end up
with the same expression we have on the right-hand side of
Eq. (9.129). Furthermore, the right-hand sides of Eqs. (9.127)
and (9.129) are both equal to ZZZ{ s[n] x[n] }. The net result is
that

Y(zL) = ZZZ{s[n] x[n]} = 1

L

L−1∑
k=0

X(e−j2πk/L z). (9.132)

Replacing z with z1/L gives

Y(z) = 1

L

L−1∑
k=0

X(e−j2πk/L z1/L), (9.133)

which is identical with Eq. (9.120), thereby affirming the
relationship between the z-transform of the original signal,
X(z), and the transform of the downsampled signal, Y(z).

9-6.3 Downsampling in the Frequency Domain

The DTFT Y(ej�) of y[n] can be obtained from Y(z) upon
setting z = ej�. Application of the recipe to Eq. (9.133) leads
to

Y(ej�) = 1

L

L−1∑
k=0

X(e−j2πk/Lej�/L) = 1

L

L−1∑
k=0

X(ej (�−2πk)/L).

(9.134)
The downsampled discrete-time signal y[n] = x[Ln], in effect,
compresses time by a factor of L, which causes the frequency
response X(ej�) to expand in the frequency domain by the
same factor. Consequently, the period increases from 2π for
X(ej�) to 2πL for X(ej�/L). The spectrum of any discrete-
time signal, including Y(ej�), must be periodic with period 2π .
This condition is accommodated by the transformation given
by Eq. (9.133) through the addition of L− 1 copies of the
expanded spectrum X(ej�/L), shifted in frequency by 2πk from
the original copy. The net consequence is that Y(ej�) is indeed
periodic with period 2π , as required.

� Downsampling by L stretches the spectrum by L. �

(b) Spectrum of downsampled signal y[n]

(a) Spectrum of original signal x[n]

Ω
0

12 12 12

2π−2π

Ω
0

4

6π−6π −4π 4π−2π 2π

Figure 9-25: Comparison of spectra of the original signal and
the signal downsampled by 3. The red spectra represent the new
copies introduced as a result of the downsampling operation.

Example 9-16: Downsampling in the Frequency Domain

A signal has the spectrum shown in Fig. 9-25(a). Plot the
spectrum of the signal after downsampling it by a factor of 3.

Solution: Downsampling by a factor of 3 causes the spectrum
to stretch out by the same factor and causes the amplitude to
decrease, also by the same factor. Additionally, new copies of
the spectrum are introduced as shown in Fig. 9-25(b).

9-6.4 Downsampling a Sinusoid

Downsampling a discrete-time sinusoid by an integer factor L
can be expressed symbolically as

sin(�0n) L sin(�0Ln) = sin((�0L)n).

(9.135)
The frequency of the downsampled sinusoid is higher by a
factor L. Figure 9-26 displays plots for

x[n] = sin(0.1πn)

and for
y[n] = x[2n] = sin(0.2πn).

Even though the amplitudes of both x[n] and y[n] are the same,
the amplitudes of their corresponding spectra differ by a factor
of 2. This is because from Eq. (9.120), the spectrum of the
downsampled signal is multiplied by the factor 1/L.

Concept Question 9-10: Does downsampling always
cause aliasing? (See        )
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(a) x[n]

(b) y[n] = x[2n]

Figure 9-26: Effect of downsampling on a sinusoid: (a) x[n] =
sin(0.1πn); (b) y[n] = x[2n] = sin(0.2πn).

Exercise 9-11: cos(0.6πn) 3 ?

Exercise 9-12: cos(0.8πn) 4 ?

Answer: ω = 0.8π becomes ω = 3.2π , which aliases to 
ω = 0.8π , since cos(3.2π) ≡ cos(−0.8π) ≡ cos(0.8π) .

9-7 Upsampling

9-7.1 Upsampling in the Time Domain

Sometimes, the term upsampling is used to denote the
combination of two sequential operations: zero stuffing
and interpolation. To maintain notational symmetry in this
presentation, we will use upsampling to mean zero stuffing only.
Interpolation follows later in Section 9-8.

To upsample a discrete-time signal x[n] by an integer
factor L, we simply insert L− 1 zeros between each pair of
adjacent samples of x[n]. The resultant upsampled signal y[n]

is then given by

y[n] = {. . . , x[0], 0, . . . , 0︸ ︷︷ ︸
L−1

, x[1], 0, . . . , 0︸ ︷︷ ︸
L−1

, x[2], . . . }.

Upsampling by a factor L is depicted notationally as

x[n] L

y[n] =
{
x[n/L] for n/L = integer,

0 for n/L �= integer.
(9.136)

For example, if L = 3,

y[0] = x[0], y[3] = x[1], y[6] = x[2], . . .
y[1] = y[2] = y[4] = y[5] = y[7] = y[8] = · · · = 0.

The MATLAB/MathScript recipe for upsampling by L is:

Z=[X;zeros(L-1,length(X))];Y=Z(:)’;

Example 9-17: Upsampling in the Time Domain

Upsample the signal

x[n] = {. . . , 3, 1, 4, 1, 5, 9, . . . }
by a factor of 2.

Solution: Inserting 2 − 1 = 1 zero between samples gives

y[n] = {. . . , 3, 0, 1, 0, 4, 0, 1, 0, 5, 0, 9, . . . }
9-7.2 Upsampling in the z-Transform Domain

From Eq. (9.114), the bilateral z-transform of the discrete-time
signal x[n] is given by the sum

X(z) = {· · · + x[−2] z2 + x[−1] z + x[0]
+ x[1] z−1 + x[2] z−2 + · · · }. (9.137)

Upsampling x[n] by a factor of 2 yields

y[n] = {. . . , x[−2], 0, x[−1], 0, x[0], 0, x[1], 0, x[2], . . . },
(9.138)

and its z-transform is

Y(z) = {. . . , x[−2] z4 + 0 + x[−1] z2 + 0 + x[0] + 0

+ x[1] z−2 + 0 + x[2] z−4 + · · · }. (9.139)

Comparison of Eq. (9.137) with Eq. (9.139) leads to the
conclusion that

Y(z) = X(z2) (for L = 2). (9.140)

For the general case,

Y(z) = X(zL) (L ≥ 2). (9.141)

�

Answer:   �    =     0 .6π  b ecomes  �   =     1.8π , which aliases 
to     = 0.2π, since cos(1.8π) ≡ cos(−0.2π) ≡ cos(0.2π). 
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9-7.3 Upsampling in the Frequency Domain

The DTFT Y(ej�) of y[n] is found by setting z = ej� in
Eq. (9.141):

Y(ej�) = X(ej�L). (9.142)

Since upsampling stretches discrete time by a factor of L,
frequency is compressed by L in the spectrum of X(ej�L),
relative to the spectrum of X(ej�). The period of X(ej�L) is
2π/L and the spectrum repeats every 2π , as required for any
DTFT.

� Upsampling by L compresses the spectrum by L. �

Example 9-18: Upsampling in Frequency Domain by 2

Given the spectrum of signal x[n] shown in Fig. 9-27(a), plot
the spectrum of the signal after upsampling it by a factor of 2.

Solution: We denote the upsampled signal y[n] and its
frequency response

Y(ej�) = X(ej2�).

The spectrum Y(ej�) shown in Fig. 9-27(b) has the same
amplitude as that of the original signal, but its width is narrower
by a factor of 2, and repeats every π .

Concept Question 9-11: Can upsampling ever cause
aliasing? (See        )

(b) Spectrum Y(e j Ω) of upsampled signal y[n]

(a) Spectrum X(e j Ω) of original signal x[n]

Ω
−π 0 π 2π−2π

Ω
−π 0 π 2π−2π

Figure 9-27: Upsampling by a factor of 2 causes the spectrum to
narrow by the same factor and to repeat at twice the rate (Example
9-18).

Exercise 9-13: cos(0.4πn) 4 ?

Answer: ω = {0.4π, (2−0.4)π, (2+0.4)π, (4−0.4)π}
become ω = {0.1π, 0.4π, 0.6π, 0.9π}. The input was a
single sinusoid, but the output is four sinusoids.

Exercise 9-14: cos(0.8πn) 4 ?

Answer: ω = {0.8π, (2−0.8)π, (2+0.8)π, (4−0.8)π}
become ω = {0.2π, 0.3π, 0.7π, 0.8π}. The input was a
single sinusoid, but the output is four sinusoids.

9-8 Interpolation

Interpolating a signal x(t) with specified values at times
t = nT , where n = 0, 1, . . . , entails assigning values to x(t)
at times t �= nT , based on the given values {x(nT )}. A
simple example is linear interpolation wherein over every
interval between nT and (n+ 1)T , the newly assigned values
of x(t) vary linearly between x(nT ) and x((n+ 1)T ). In
essence, interpolation connects the dots between given values
of {x(nT )}.

Interpolation can also be implemented entirely in discrete
time. Let us consider a discrete-time signal x[n] that gets
upsampled by a factorL to generate an upsampled version xu[n]
given by:

xu[n] = {. . . , x[0], . . . . . . , x[1], . . . . . . , x[2], . . . }
= {. . . , xu[0], 0, . . . , 0︸ ︷︷ ︸

L−1

, xu[L], 0, . . . , 0︸ ︷︷ ︸
L−1

, xu[2L], . . . },

(9.143)

where xu[nL] = x[n]. The upsampled signal can be interpo-
lated by replacing the zero values with the values that make
the interpolated xu[n] have a maximum frequency of π/L.
The interpolation task can be accomplished by filtering xu[n]
using a brickwall lowpass filter with a cutoff frequency π/L.
As noted earlier, when a signal is upsampled by a factor L,
its spectrum shrinks by the same factor. For any discrete-time
signal, its one-sided spectrum extends between zero and π ,
so the spectrum of the upsampled xu[n] extends to π/L, and
repeats afterward. Accordingly, the frequency response of the
ideal brickwall lowpass filter should be

H(ej�) =
{
L for 0 ≤ |�| < π/L,

0 for π/L < |�| < π.
(9.144a)
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The corresponding impulse response is

h[n] = L
sin(πn/L)

πn
. (9.144b)

In the frequency domain, the spectrum Y(ej�) of the lowpass-
filtered signal y[n] is

Y(ej�) = H(ej�) Xu(e
j�), (9.145)

where Xu(e
j�) is the spectrum of xu[n]. Multiplication in the

frequency domain is equivalent to convolution in the discrete-
time domain. Hence,

y[m] =
∞∑

n=−∞
xu[n] h[m−n] =

∞∑
n=−∞

xu[n] L sin
(
π
L
(m− n)

)
π(m− n)

.

(9.146)
Hence, xu[n] is the upsampled signal given by Eq. (9.143), and
y[m] is the interpolated version. Signal y[m] preserves the val-
ues of xu[n] specified at n = {. . . ,−2L,−L, 0, L, 2L, . . . },
but also assigns values at L− 1 locations between values of
n that are multiples of L, for every n. Each interpolated value
of y[m] is obtained by applying a weighted average to xu[n],
with the weighting provided by the sinc function contained in
Eq. (9.146).

We asserted earlier that y[m] preserves the values of
xu[n] for n equal to a multiple of L. To demonstrate the
validity of this statement, we introduce two new variables:
n′ = n/L and m′ = m/L. Since xu[n] = 0 except for n a
multiple of L, index n′ = {. . . ,−2,−1, 0, 1, 2, . . . } denotes
the times of the nonzero specified values of x[n] = x[n′L].
The uninterpolated values of y[m] = y[m′L] are those at
m′ = {. . . ,−2,−1, 0, 1, 2, . . . }.

Upon replacing n with n′L and m with m′L in Eq. (9.146),
we have

y[m′L] =
∞∑

n′=−∞
xu[n′L] L sin((π/L)(m′L− n′L))

π(m′L− n′L)

=
∞∑

n′=−∞
xu[n′L] sin(π(m′ − n′))

π(m′ − n′)

=
∞∑

n′=−∞
xu[n′L] δ[m′ − n′] = xu[m′L]. (9.147)

Hence, y[m] does indeed preserve xu[n] at the latter’s nonzero
specified values.

� Following upsampling with interpolation removes
duplicate copies of the spectrum. �

(b) Spectrum Xu(e j Ω) of upsampled signal xu[n]

(c) Spectrum Y(e j Ω) of interpolated signal y[m]

(a) Spectrum X(e j Ω) of original signal x[n]

Ω
−π 0 π 2π−2π

Ω
−π 0 π 2π−2π

Ω
−π 0 π 2π−2π

Figure 9-28: The combination of upsampling and interpolation.

Upsampling a signal x[n] by a factor L not only compresses
the spectrum of x[n] in frequency by a factor of L, but it
also introduces additional copies of the compressed spectrum
centered at frequencies � = 2πk/L for k = 0, 1, . . . , L− 1.
An example is shown in Fig. 9-28(b) for L = 2. The additional
copies of the spectrum get removed by the lowpass filter
during the interpolation operation. The combined operations of
upsampling and interpolation compress the spectrum without
introducing additional copies of the spectrum (Fig. 9-28(c)).

Concept Question 9-12: Can upsampling and interpola-
tion ever cause aliasing? (See        )

9-9 Multirate Signal Processing
Examples

We now examine various sequences of downsampling,
upsampling, and interpolation.

9-9.1 Upsampling Followed by Downsampling

Upsampling by L, followed by downsampling by L, yields the
original signal:

x[n] L L x[n]. (9.148)

This is because upsampling inserts zeros and downsampling
promptly removes the zeros.
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9-9.2 Downsampling Followed by Upsampling

Reversing the order of the process given by Eq. (9.148) leads
to

x[n] L L

{. . . , x[0], 0, . . . , 0︸ ︷︷ ︸
L−1

, x[L], 0, . . . , 0︸ ︷︷ ︸
L−1

, x[2L], . . . }.

(9.149)

The process changes all values to zero, except for those at times
n that are multiples of L.

9-9.3 Downsampling Followed by Upsampling
and Interpolation

If there is no aliasing in the downsampling step in the sequence
represented by Eq. (9.149), the addition of an interpolation step
leads to restoration of x[n]:

x[n] L L h[n] = L
sin

(
π
L
n
)

πn
x[n].

(9.150)

9-9.4 Upsampling Followed by Interpolation and
Downsampling

To multiply the effective sampling rate by a rational number
M/N , the signal can be upsampled by M , interpolated, then
downsampled by N :

x[n] M h[n] = M
sin

(
π
M
n
)

πn
N y[n].

(9.151)
The MATLAB/MathScript recipe for multirate signal process-
ing a sampling with rate M/N is

MATLAB/MathScript

L=length(X);Z=[X;zeros(M-1,L)];Y=Z(:)’;
F=fft(Y);F(L/2:L*M+2-L/2)=0;Y=ifft(F);
Y=Y(1:N:end);

Performing upsampling before downsampling avoids aliasing,
provided the final sampling rate (after the downsampling step)
exceeds twice the maximum frequency in the spectrum of the
original signal x[n].

Example 9-19: Multirate Signal Processing

Combinations

Consider the following three systems:

(a)
x(t) = sinusoid

f0 = 600 Hz
Sampling

fs = 2400 samples/s

Reconstruction ?3
x[n]

(b)
x(t) = sinusoid

f0 = 500 Hz
Sampling

fs = 2400 samples/s

?Reconstruction3 2
x[n]

(c)
x(t) = sinusoid

f0 = 500 Hz
Sampling

fs = 2400 samples/s

?Reconstruction32
x[n]

h[n]

In each case, the input is a sinusoid x(t) at the designated
frequency f0, which gets sampled at fs = 2400 samples/s.
The reconstruction step converts discrete-time sinusoids into
continuous-time sinusoids. Determine the frequencies of the
output sinusoids, in Hz. Also, in part (c), specify the cutoff
frequency of the brickwall lowpass filter h[n]. For simplicity,
ignore the back-and-forth conversion between continuous-time
frequency in Hz and discrete-time frequency � = 2πf/fs.

Solution:
(a) Per Section 6-13.4, when a continuous-time sinusoid x(t)

of frequency f0 is sampled at a rate fs to produce x[n], the
spectrum of x[n] contains components at

±{f0, f0 ± fs, f0 ± 2fs, . . . }.
In the present case, f0 = 600 Hz and fs = 2400 samples/s.
Hence, the frequency components of the sampled signal are

±{600, 1800, 3000, . . . }.
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Upsampling x[n] by 3 shrinks its spectrum by the same factor.
So, the components of the output signal after reconstruction are
those indicated at the output of the following diagram:

Sinusoids at
{200, 600,

and 1000} Hz
Reconstruction3x[n]

.

Since f0 = 600 Hz, the Nyquist rate is 1200 Hz. Consequently,
higher-frequency components will not survive the reconstruc-
tion process.

(b) Sampling the 500 Hz sinusoid at 2400 samples/s
generates frequency components at

±{500, 1900, 2900, 4300, . . . }.
Downsampling by 3 expands the spectrum by the same factor.
Also, another consequence of downsampling is that extra
components get added to make the spectrum periodic with
period 2400 Hz (in continuous-time equivalent). Hence,

±{3 × 500 − fs, 3 × 1900 − 2fs,
    3 × 2900 −3fs, 3 × 4300 − 4fs}
= ±{900, 1500, 3300,…}

3x[n]

.

Upsampling by 2 divides the frequencies by 2. Hence, after
reconstruction,

Sinusoids at
{450, 750} Hz

Reconstruction3 2x[n]

.

The 3300/2 = 1650 Hz component is above the Nyquist rate,
so it gets removed in the reconstruction process.

(c) Sampling the 500 Hz sinusoid generates the same
frequency components as in part (b). Upsampling by 2 shrinks
the spectrum by half. Hence

±{250, 950, 1450,…}2x[n]
.

To perform the proper interpolation after upsampling by a factor
L = 2, the lowpass filter should have a cutoff frequency

�0 = π

L
= π

2
.

The corresponding continuous-time cutoff frequency is

f0 = �0fs

2π
= π

2
× 2400

2π
= 600 Hz.

The lowpass filter removes all components of the upsampled
signal except for ±250 Hz. The final step of downsampling by
3 increases the remaining frequency component by a factor of
3 to 750 Hz. Hence,

Sinusoid at
750 Hz32x[n] h[n]

.

Concept Question 9-13: Why would we ever want to
downsample? (See        )

9-10 Oversampling by Upsampling

As noted earlier in Section 6-13, sampling a continuous-time 
signal at fs samples/s creates a spectrum with extra copies of 
the original signal spectrum, repeated every fs Hz along the 
frequency axis (Fig. 9-29(b)). Ultimately, most discrete-time 
signals must be converted back (reconstructed) to  continuous 
time so they may be physically heard or displayed. To perform 
the reconstruction process with minimal distortion, it is 
necessary to eliminate the extra spectral copies and retain only 
the original spectrum of the signal. This calls for the use of an 
appropriate lowpass filter such as the Butterworth filter 
presented in Section 6-9 and depicted pictorially in Fig. 6-39. 
The filtering process is performed by a physical filter 
composed of op amps, resistors, and capacitors.As we will 
explain shortly, the degree of complexity of the filter (number 
of stages and components) is governed (in practice) by the 
ratio of the sampling rate fs to the Nyquist rate of the signal, 
2fmax.

For a fixed-duration continuous-time signal, the sampling 
rate determines the total number of discrete samples used to 
represent the signal. A high sampling rate translates into more 
computer storage space to store the samples, as well as more 
computation when the samples are used to perform signal 
processing tasks. Hence, from the standpoint of signal 
processing, the sampling rate should be selected to be as low 
as possible. To avoid loss of information, however, fs should 
exceed the Nyquist rate of 2fmax. This means that the signal 
should be sampled at a rate only slightly greater than the 
Nyquist rate. Such a choice, however, places a stringent 
constraint on the roll-off rate Sg (Fig. 6-3(a)) of the lowpass 
filter in the transition band between the passband and rejection 
band. A steeper slope (higher roll-off rate) requires more op-
amp stages, and therefore more hardware (Fig. 6-19(c)).

To reduce the cost and complexity of the lowpass filter, we 
can sample the original signal at a rate many times greater than 
the Nyquist rate, thereby creating greater spacing along the 
frequency axis between the central spectrum and the copies 
generated by the sampling process. Hence, far fewer op-amp 
stages are needed because the roll-off rate need not very high, 
but the higher sampling rate means that we have many more 
samples to deal with.
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(a) Spectrum of x(t)

(b) Spectrum of sampled version xs(t)

(c) Spectrum of the lowpass filter

0
f

|X( f )|

−fmax fmax

|Xs( f )|
fmax|X(0)|

−fmax
0 fmax

f

Filter
|Xs( f )|

−fmax
0 fmax

f

Figure 9-29: (a) Spectrum of x(t), (b) spectrum of the sampled
version xs(t), and (c) spectrum of the lowpass filter used to
remove the extra spectral copies in the reconstruction process.

Instead of having to make the difficult trade-off between
hardware complexity and data volume, we can circumvent the
issue by adding one step prior to the reconstruction step. We
can start by sampling the original signal at a rate only slightly
higher than the Nyquist rate, but before we apply the lowpass
filtering, we apply upsampling and interpolation to the discrete
signal so as to widen the gap between the central spectrum
and its neighboring copies. Upsampling by a factor L causes
the central spectrum and all of its copies to shrink by the
same factor, and interpolation then removes the extra copies,
leaving the (narrower) copies, thereby increasing the frequency
space between them. The process is called oversampling. For

example, “32X oversampling” means that the implemented
oversampling rate is 32 times the actual sampling rate fs. The
signal is sampled at fs, goes through all of the intended signal
processing steps, and then just before reconstructing it into a
continuous-time signal, it is upsampled and interpolated. This
next-to-final step relaxes the constraints on the structure and
complexity of the hardware of the lowpass filter, and yet the
high data rate occurs only at the very end of the process.

9-10.1 Case Study: Reconstruction with and
without Oversampling

To illustrate the utility of oversampling, we consider a specific
scenario twice, once without the use of oversampling, and again
with oversampling. We will demonstrate that for the specific
system described shortly:

� With ×1 oversampling (i.e., no oversampling), a 10th-
order Butterworth filter is required to meet the specified
criteria. Using the Sallen-Key circuit of Fig. 6-43, a 10th-
order filter requires 5 op amps, 10 capacitors, and 10
resistors.

In contrast, with 11× oversampling, only a 2nd-order
filter, composed of 1 op amp, 2 capacitors, and 2 resistors,
is needed, representing a saving of 80% in hardware
components! �

9-10.2 Without Oversampling

Consider a continuous-time signal x(t) with a corresponding
frequency spectrum (Fourier transform)

X(f ) =
∞∫

−∞
x(t) e−j2πf t dt. (9.152)

The spectrum has bandwidthB, with X(f ) = 0 for |f | > B Hz.
The total bidirectional bandwidth is Bb = 2B, and fmax = B

(see Fig. 6-52(a)).
The Nyquist rate, which is the minimum sampling rate that

permits perfect reconstruction of x(t) from its samples, is 2B
samples/s. To be on the safe side, x(t)was sampled at 1.5 times
the Nyquist rate; that is, at fs = 3B. The equivalent sampling
interval is Ts = 1/fs = 1/(3B), and the sampled signal is then
given by Eq. (6.150) as

xs(t) =
∞∑

n=−∞
x[n] δ(t − nTs) =

∞∑
n=−∞

x[n] δ
(
t − n

3B

)
.

(9.153)
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(a) System block diagram

(b) Spectra of sampled signal and lowpass filter

|Xs( f )|

−B−2B 2B 7B6B5B4B3B−3B−4B−5B−6B−7B B0

0.01

0.995

f

y(t)

10th-order
lowpass filter

x(t)
x[n] x[n]

LL

A/D D/A h(t)

δ  t − 3B
n( )

LL

δ  t − 3B
n( )

Digital
computer

M( f ) of Butterworth filter

Figure 9-30: Signal x(t) is sampled at 3B samples/s, 1.5 times the Nyquist rate to generate x[n], which is then lowpass-filtered by a
10th-order Butterworth filter h(t). The A/D converter changes the sampled signal into a binary sequence for computer storage and signal
modification, and the D/A converts the digital signal back into analog discrete-time format.

A system block diagram is shown in Fig. 9-30(a). As noted
earlier, the sampling process generates copies of the spectrum
at a spacing of fs = 3B, as depicted in Fig. 9-30(b). Because
the central spectrum extends toB and the first copy starts at 2B,
it is necessary to use a highly selective continuous-time lowpass
filter in order to reconstruct x(t) from x[n]. The desired filter
performance is specified in terms of its gain function M(f ):

0.995 ≤ M(f ) ≤ 1 for 0 ≤ |f | ≤ B,

0 ≤ M(f ) ≤ 0.01 for 2B ≤ |f | ≤ ∞. (9.154)

The specifications call for a gain between 0.995 and 1 in the
passband, and no greater than 0.01 in the stop band. The steep
change in gain level has to occur between f = B and f = 2B.

The filter performance is to be realized using a Butterworth
lowpass filter. From Example 6-20, the gain function of a
Butterworth lowpass filter with cutoff frequency fc, gain at dc
(0 Hz) of 1, and order N is given by

M(f ) = 1√
1 + (f/fc)2N

. (9.155)

Our unknowns are fc and N , and the specifications call for
M(B) = 0.995 and M(2B) = 0.01. That is,

0.995 = 1√
1 + (B/fc)2N

, (9.156a)

0.01 = 1√
1 + (2B/fc)2N

. (9.156b)

Upon squaring the two equations and then combining them
together to solve for the unknown quantities, we obtain:

N = 10, fc = 3
√

2 B = 1.259B.

Hence, a 10th-order filter is required.

9-10.3 With 11× Oversampling

The system shown is Fig. 9-31(a) is similar to the one
in Fig. 9-30(a), except for the addition of two operations,
namely upsampling by 11 and interpolation by a discrete-time
Butterworth filter with impulse responseh1[n]. The upsampling
and interpolation increases the sampling rate of x(t) from 3B to
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(a) System block diagram

(b) Spectra of upsampled signal xu[n] and lowpass filter

M2( f )

−B 34B33B32B−32B−33B−34B B0

0.01

0.995

f

y(t)

2nd-order
lowpass

filter

x(t)
x[n] x[n]

LL

D/ADigital
computer

xu[n]
11 h1[n] h2(t)

δ  t − 3B
n( )

LL

δ  t − 3B
n( )

A/D

Figure 9-31: Modified version of the system and associated spectrum shown in Fig. 9-30; the modified system includes upsampling by 11
followed by interpolation performed by a discrete-time filter with impulse response h1[n].

an apparent rate of 33B. Consequently, the separation between
the central spectrum and the neighboring copy increases fromB

(as in Fig. 9-30(b)) to 31B (Fig. 9-31(b)). Accordingly, the
specifications on the gain function of the analog Butterworth
filter h2(t) are now given by

0.995 ≤ M2(f ) ≤ 1 for 0 ≤ |f | ≤ B,

0 ≤ M2(f ) ≤ 0.01 for 32B ≤ |f | ≤ ∞. (9.157)

The equations analogous to Eq. (9.156) are

0.995 = 1√
1 + (B/fc)2N

, (9.158a)

0.01 = 1√
1 + (32B/fc)2N

, (9.158b)

which together lead to the solution:

N = 2, fc = 3.162B.

The upsampling/interpolation operations allowed us to realize
the same final result using only a 2nd-order filter instead of a
10th-order filter.

9-10.4 Discrete-Time Interpolation Filter

The block diagram shown in Fig. 9-31(a) includes an
interpolation filter with impulse response h1[n]. The spectrum
of the original signal x(t) extends between −B and +B. When
sampled at a rate fs = 3B, the discrete-time signal x[n] extends
over � between

�min = −2πfmax

fs
= −2πB

3B
= −2π

3
,

and �max = |�min|. The spectrum of x[n] is depicted in black
in Fig. 9-32(a).

Upsampling x[n] by 11 shrinks the spectrum by the same
factor, and adds copies at fs, as depicted by the blue spectrum
shown in Fig. 9-32(b). The function of the interpolation filter
h1[n] is to remove the higher frequency copies. Its proposed
frequency response H1(e

j�), which is shown in red, obeys the
following specifications:

0.995 ≤ |H1(e
j�)| ≤ 1 for 0 ≤ |�| ≤ 2π

33
,

0 ≤ |H1(e
j�)| ≤ 0.01 for

4π

33
≤ |�| ≤ 62π

33
.

(9.159)



“book” — 2016/3/15 — 6:32 — page 524 — #51

524 CHAPTER 9 FILTER DESIGN, MULTIRATE, AND CORRELATION

(a) Spectrum of x[n]

(b) Spectra of x[n] after upsampling by 11 (in blue) and Butterworth filter (in red)
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Figure 9-32: Discrete-time spectra of x[n] in black, xu[n] (after upsampling x[n] by 11) in blue, and Butterworth filter in red.

� This is a highly selective filter, except now it
is a discrete-time filter that can be implemented
computationally. �

The filter specifications are identical in form to those given
earlier by Eq. (9.154), except for scaling the frequency by
� = 2πf/(33B). That is, for an equivalent continuous-time
Butterworth filter, the order should be N = 10 and the cutoff
frequency should be fc = 3

√
2 B. The equivalent discrete-time

cutoff frequency is

�c = 3
√

2 × 2πB

33B
= 3

√
2 × 2π

33
. (9.160)

The filter h1[n] can be designed using the bilinear trans-
formation introduced in Section 9-4.4. The prewarping
formula relating continuous-time angular frequency ω = 2πf
to discrete-time angular frequency � is given by Eq. (9.98) as

ω = 2

T
tan

(
�

2

)
. (9.161)

We choose the prewarping factor T by matching the cutoff
frequency ωc in continuous time to the cutoff frequency �c in
discrete time. The latter is given by Eq. (9.160) and the former
is

ωc = 2πfc = 2π 3
√

2 B. (9.162)

Upon replacing ω with ωc and � with �c in Eq. (9.161), we
have

ωc = 2

T
tan

(
�c

2

)
,

or

2π 3
√

2 B = 2

T
tan

(
3
√

2
2π

2 × 33

)
.

The angle of the tangent function is very small, which allows
us to use the approximation tan θ ≈ θ . Consequently, we
determine that

T = 1

33B
.

Despite the fact that the prewarping formula is basically
nonlinear in character, the tangent approximation makes the
relationship between ω and � essentially linear, thereby
satisfying the conditions specified by Eq. (9.159).

The actual discrete-time filter H(z) is designed from the
continuous-time Butterworth filter H(s) as follows:

(1) H(s) is a 10th-order Butterworth filter with cutoff
frequency ωc = 2π 3

√
2 B. From Table 6-3 and Eq. (6.96), the

10 poles of a 10th-order Butterworth filter are:

{ωce
±j98◦

, ωce
±j116◦

, ωce
±j134◦

, ωce
±j152◦

, ωce
±j170◦}.

These 10 poles are in 5 complex conjugate pairs. We label the
5 pole angles as

θ1 = 98◦, θ2 = 116◦, θ3 = 134◦, θ4 = 152◦, θ5 = 170◦.
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For the first pair of conjugate poles:

(s − ωce
j98◦

)(s − ωce
−j98◦

) = s2 − 2ωc cos(98◦) s + ω2
c ,

(9.163)
and similarly for the other 4 complex conjugate pairs of poles.

(2) The transfer function H1(s) of the 10th-order Butterworth
lowpass filter with cutoff frequency ωc is

H1(s) =
5∏
k=1

ω2
c

s2 − 2ωc cos(θk)s + ω2
c
. (9.164)

At dc(s = jω = 0), the gain of H1(jω) is 1.
(3) Bilinear transformation is performed by substituting for

s in H1(s) the bilinear transform

s = 2

T

z − 1

z + 1
= 66B

z − 1

z + 1
. (9.165)

The transfer function for the discrete-time Butterworth filter is
then

H1(z) = H1(s)

∣∣∣∣
s=

(
66B z−1

z+1

) (9.166)

=
5∏
k=1

ω2
c[

66B z−1
z+1

]2 − 2ωc cos(θk)
[
66B z−1

z+1

]
+ ω2

c

.

(9.167)

As presented in Section 7-10, the corresponding impulse
response h1[n], the poles and zeros, and the ARMA difference
equation can all be obtained from H1(z). TheARMA difference
equation requires 18 storage registers to implement it, and each
recursion requires 18 multiplications and 18 additions. The 18
multiplications can be reduced to 13 by taking advantage of the
even symmetry of the right-hand side of the ARMA difference
equation. The upsampled x[n] is 91% zeros, so the computation
of filtering with h[n] is reduced to 9%.

Concept Question 9-14: Why can upsampling and 
interpolation obviate the need for a continuous-time 
lowpass filter with many circuit elements? (See        )

9-11 Audio Signal Processing

Suppose we are given a snippet of a trumpet playing a single
note. The goal is to generate snippets of the trumpet playing all
of the other musical notes from the single note. We can do this
using multirate filtering and the “circle of fifths” from music
theory.

A
A# / B 

B

C

DE

F

G Increasing
frequency

C# / D 

D# / E 

F# / G 

G# / A 

Figure 9-33: Letter names of the pitches (notes) in Western
music, arranged by frequency. The notes are arranged in a circle
because the pattern repeats itself every octave.

9-11.1 Music Notation and Frequencies

An octave is the distance or interval between two musical
pitches whose frequency ratio is 1 : 2. Pitches, or musical notes,
are assigned letter names according to their frequency, and notes
an octave apart are assigned the same letter. In most Western
music, the octave is partitioned into 12 distinct pitches, as shown
in Fig. 9-33. The symbols “�” and “” are read as “sharp” and
“flat,” respectively; A� and B are alternative names for the
same note. The white keys of the piano keyboard produce A, B,
C, D, E, F, and G, while the black keys produce the other five
notes.

For at least 200 years, most keyboard instruments have
been tuned according to the system of equal temperament,
in which the ratio of the frequencies of any pair of adjacent
notes is 21/12 ≈ 1.0595. This system was adopted to ensure
that the frequency ratios of intervals and chords would remain
unchanged in music in all possible keys. The most common
pitch standard used for tuning instruments today isA = 440 Hz,
where A is the A above middle C on the piano. Table 9-3 shows
the approximate frequencies of the twelve notes from this A up
to the next G�.

The interval between adjacent notes is called a semitone.
We note from Table 9-3 that the ratio between the frequencies
of notes that are 7 semitones apart, such as A (440 Hz) and
E (659 Hz), is approximately 2 : 3. This is not a coincidence:
this frequency ratio is basic to Western music as well as the
musics of many other cultures, and one of the advantages of
the equal-temperament system is that it incorporates a close
approximation to the 2 : 3 ratio.
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Table 9-3: Frequencies of the twelve notes fromA = 440 Hz
to G� in order of increasing frequency, in the equal-
temperament system.

Note Frequency (Hz)
A 440
A� 440 × 21/12 ≈ 466
B 440 × 22/12 ≈ 494
C 440 × 23/12 ≈ 523
C� 440 × 24/12 ≈ 554
D 440 × 25/12 ≈ 587
D� 440 × 26/12 ≈ 622
E 440 × 27/12 ≈ 659
F 440 × 28/12 ≈ 698
F� 440 × 29/12 ≈ 740
G 440 × 210/12 ≈ 784
G� 440 × 211/12 ≈ 830

A

B

B

C

D E

F

G Ascending
fifths

D

E

F# / G 

A

Figure 9-34: The circle of fifths. The circle is usually portrayed
rotated clockwise by 90◦ in music theory, so that C is at the top.

If we proceed clockwise around the circle of Fig. 9-33 by
taking repeated jumps of 7 “hours” (semitones) each, we will
visit every note, since 7 and 12 are relatively prime. By taking
the notes in this order, we can create another circle known as
the circle of fifths (Fig. 9-34), so called because adjacent notes
in this circle are five letter names apart; for example, D and A,
which are adjacent on the circle, are spanned by D, E, F, G,
and A.

Table 9-4: Frequencies of 12 notes from A = 440 Hz up to
the next G�, derived by multiplying 440 by successive powers
of 3/2 and then dividing by powers of 2 as needed to bring
the result within the octave range 440–880 Hz.

Note Frequency (Hz)
A 440
E 440 × (3/2)1 ≈ 660
B 440 × (3/2)2/2 ≈ 495
F� 440 × (3/2)3/2 ≈ 742
C� 440 × (3/2)4/22 ≈ 557
G� 440 × (3/2)5/22 ≈ 835
D� 440 × (3/2)6/23 ≈ 626
A� 440 × (3/2)7/24 ≈ 470
F 440 × (3/2)8/24 ≈ 705
C 440 × (3/2)9/25 ≈ 529
G 440 × (3/2)10/25 ≈ 793
D 440 × (3/2)11/26 ≈ 595

9-11.2 Application of Multirate Signal Processing

By repeatedly upsampling by 2 and downsampling by 3, we can
start with the snippet of a trumpet playing note A and multiply
that frequency (440 Hz) by powers of 3

2 . This sweeps out all of
the 12 notes, in the order shown inTable 9-4. Extra upsamplings
by 2 are frequently necessary to keep the frequencies within this
octave. We can then obtain the 12 notes in all other octaves by
upsampling and downsampling by 2 to synthesize the same note
in a different octave.

Ironically, this would be easier to implement in continuous
time. A variable speed tape recorder or record turntable could
implement multirate processing by speeding up or slowing
down the tape or turntable, using a variable-speed motor. The
music “group” Alvin and the Chipmunks (the vocals were
actually sung by one person) was recorded in this way in 1958
by speeding up the playback by a factor of two on a variable-
speed tape recorder. It was then necessary to (literally!) cut and
paste snippets of tape. The original Chipmunks record won the
first Grammy award for best-engineered nonclassical album in
1959.

Concept Question 9-15: Why does the circle of fifths 
make it simple to use multirate filtering to generate all 
notes from a single note? (See        )



“book” — 2016/3/15 — 6:32 — page 527 — #54

9-12 CORRELATION 527

9-12 Correlation

The term correlation encompasses three different types of
relationships between two real-valued signals x[n] and y[n]:

(a) Autocorrelation

rx[n] = x[n] ∗ x[−n], (9.168a)

and the duration of rx[n] is 2N − 1, where N is the duration of
x[n].

(b) Cross-Correlation

rxy[n] = x[n] ∗ y[−n], (9.168b)

and the duration of rxy[n] is Nx +Ny − 1, where Nx and Ny
are the durations of x[n] and y[n], respectively.

(c) Correlation

rxy[0],
which denotes the simultaneous presence or absence of signals
x[n] and y[n].

Whereas the autocorrelation and cross-correlation operations
generate new signals, correlation generates a single number.

9-12.1 Autocorrelation

The convolution operation of two discrete-time signals, as given
by Eq. (7.51a), involves the multiplication of one of the signals
with a reflected and delayed image of the other. The correlation
functions defined in this section involve a similar form of
convolution, but without the reflection.

The autocorrelation rx[n] of x[n] is given by

rx[n] = x[n] ∗ x[−n] =
∞∑

i=−∞
x[i] x[i + n]. (9.169)

The lag n of rx[n] has units of time, but strictly speaking, it is
an index. Lag is the delay of x[n] relative to a copy of itself.

Based on the definition for rx[n], the expressions for lags
n = 0, ±1, and ±2 are

rx[0] = · · · + (x[−1])2 + (x[0])2 + (x[1])2 + · · ·
rx[±1] = · · · + x[−1] x[0] + x[0] x[1] + x[1] x[2] + · · ·
rx[±2] = · · · + x[−1] x[1] + x[0] x[2] + x[1] x[3] + · · · .

Properties of rx[n]
Property 1: rx[n] is an even function: rx[n] = rx[−n].

Property 2: rx[0] =
∞∑

i=−∞
(x[i])2 ≥ 0 = energy of x[n].

Property 3: rx [0] ≥ rx [n] for any lag n.

Property 4: The DTFT Rx (e
j�) of rx [n] is related to the 

DTFT X(ej�) of x[n] as follows:

Rx (e
j�) = X(ej�) X(e−j�) = X(ej�) X∗(ej�) = |X(ej�)|2.

(9.170) 
The final step was obtained by using the time-reversal and 
conjugate symmetry properties of the DTFT. Note that Rx (e

j�) 
is a real and even function.

Property 5: Delaying x[n] by D does not affect rx [n].
This property can be demonstrated by applying the time-

delay property of the DTFT, which states that the DTFT of 
x′[n] = x[n − D] is given by

X′(ej�) = X(ej�) e−j�D. (9.171)

The DTFT of x′[n] is

Rx′(ej�) = |X′(ej�)|2 = |X(ej�) e−j�D|2
= |X(ej�)|2 = Rx(ej�). (9.172)

Thus, the DTFTs of the autocorrelation rx[n] of x[n] and
of rx′ [n] of the delayed version x′[n] = x[n−D] are the
same. Since the DTFTs are the same, it follows that the
autocorrelations themselves are the same.

MATLAB/MathScript Recipe

Computing the Autocorrelation of X

N=length(X);M=nextpow2(2*N-1);
RX=real(ifft(abs(fft(X,M)).̂ 2));
RX=fftshift(RX) puts rx(0) in the middle.

Example 9-20: Autocorrelation of x[n] = {3, 1, 4}

Compute rx[n] of x[n].
Solution:

rx[0] = 32 + 12 + 42 = 26,

rx[±1] = (3)(1)+ (1)(4) = 7,

rx[±2] = (3)(4) = 12.

Hence,
rx[n] = {12, 7, 26, 7, 12}.

rx[n] is even and rx[0] ≥ rx[n], as expected.
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9-12.2 Using Autocorrelation to Compute Period
of Noisy Signal

Suppose x[n] is a signal with unknown period N . The goal is
to estimate N from the noisy observations

y[n] = x[n] + w[n], (9.173)

where w[n] is white Gaussian noise (Section 6-10.1) with zero
mean and variance σ 2.

The autocorrelation ry[n] of y[n] is

ry[n] = (x[n] + w[n]) ∗ (x[−n] + w[−n])
= x[n] ∗ x[−n] + w[n] ∗ w[−n]

+ x[n] ∗ w[−n]︸ ︷︷ ︸
rxw[n]≈0

+ x[−n] ∗ w[n]︸ ︷︷ ︸
rxw[−n]≈0

≈ rx[n] + rw[n] ≈ rx[n] + σ 2δ[n]. (9.174)

The final expression of Eq. (9.174) ignores the terms involving
correlations between x[n] andw[n] becausew[n] is zero-mean
uncorrelated noise.

Since the signal period is N ,

x[n] = x[n+N ],
and the autocorrelations at lags N , 2N , etc., are

rx[N ] =
∑

x[i] x[i +N ] =
∑

x[i] x[i] = rx[0],
rx[2N ] =

∑
x[i] x[i + 2N ] =

∑
x[i] x[i] = rx[0],

...
... (9.175)

which leads to the conclusion that rx[n] is periodic with
period N . So, to a good approximation,

ry[n] ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ 2 + ∑
x2[i] for n = 0,∑

x2[i] for n = N,∑
x2[i] for n = 2N,

...
...

0 otherwise.

(9.176)

So the period N is found by searching for large peaks in ry[n],
which will be at n = 0, N, 2N, . . . . The peak at n = 0 is much
larger, because σ 2 is added to it.

To illustrate with an example, we show in parts (a) and (b)
of Fig. 9-35 a trumpet signal before and after the addition of
random noise to it. The autocorrelation of the noisy signal
is displayed in Fig. 9-35(c). Ignoring the peak at n = 0, the
next highest peak is at n = 90 and multiples thereof. The
original signal had been sampled at 44100 samples/s. Hence,
the frequency of the signal corresponding to the peak at n = 90
is given by

f = fs

90
= 44100

90
= 490 Hz.

9-12.3 Cross-Correlation

The cross-correlations rxy[n] and ryx[n] of signals x[n] and
y[n] are defined as

rxy[n] = x[n] ∗ y[−n] =
∞∑

i=−∞
x[i] y[i − n], (9.177a)

ryx[n] = y[n] ∗ x[−n] =
∞∑

i=−∞
y[i] x[i − n]. (9.177b)

Upon replacing i with (i + n) in the infinite summation, we
have

ryx[n] =
∞∑

i=−∞
x[i] y[i + n] = rxy[−n]. (9.177c)

The lag n of rxy[n] and ryx[n] represents the delay of one signal
relative to the other.

Writing out the definition of rxy[n] for n = 0, 1, 2 gives

rxy[0] = . . . x[−1] y[−1] + x[0] y[0] + x[1] y[1] + · · · ,
rxy[1] = . . . x[0] y[−1] + x[1] y[0] + x[2] y[1] + · · · ,
rxy[2] = . . . x[0] y[−2] + x[1] y[−1] + x[2] y[0] + · · · .

Cross-correlation, unlike autocorrelation, is not an even
function. The DTFT Rxy(e

j�) of rxy[n] is related to X(ej�)
and Y(ej�) by

Rxy(e
j�) = X(ej�) Y∗(ej�). (9.178)

The MATLAB/MathScript recipe for computing cross-
correlation is

L=length([X Y]);M=nextpow2(L-1);
RXY=real(ifft(fft(X,M).*conj(fft(Y,M))));
RXY=fftshift(RXY)

Example 9-21: Compute Cross-Correlation

Compute the cross-correlation of x[n] = {3, 1, 4} and
y[n] = {2, 7, 1}.
Solution: The duration of rxy isNx+Ny−1 = 2+2−1 = 5.
The elements of rxy[n] are

rxy[−2] = (3)(1) = 3,

rxy[−1] = (3)(7)+ (1)(1) = 22,

rxy[0] = (3)(2)+ (1)(7)+ (4)(1) = 17,

rxy[1] = (1)(2)+ (4)(7) = 30,

rxy[2] = (4)(2) = 8.

Hence,
rxy[n] = {3, 22, 17, 30, 8}.
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(a) Noise-free signal x[n]

(b) Noisy signal y[n]

(c) Autocorrelation ry[n]

50 100 150 200 250 300
−0.4
−0.2

0
0.2
0.4

n

x[n]

50 100 150 200 250 300

−2

0

2

y[n]

n

50 100 150 200 250 300
0

1

2

3

x 10
4

ry[n]

n

Figure 9-35: Estimating the period of a trumpet signal. (a) Noise-free signal, (b) noisy signal, (c) autocorrelation of noisy signal. The period
is 90, corresponding to a frequency f = 490 Hz.

9-12.4 Using Cross-Correlation to Compute Time
Delay

Letx[n] be a known signal with unknown time delay�.Without
loss of generality, let the energy of x[n] be one. The goal is to
estimate � from the noisy observations

y[n] = x[n−�] + w[n], (9.179)

where w[n] is white Gaussian noise. The cross-correlation
ryx[n] is

ryx[n] = (x[n−�] + w[n]) ∗ x[−n]
= x[n−�] ∗ x[−n]︸ ︷︷ ︸

rx [n−�]
+ w[n] ∗ x[−n]︸ ︷︷ ︸

rwx [n]≈0

≈ rx[n−�] ≈ δ[n−�]. (9.180)

Even though the final approximation rx[n−�] ≈ δ[n−�] is
rather tenuous, the cross-correlation of the observations with
the known signal is expected to have a peak at n = �.

In part (a) of Fig. 9-36, we display a short random pulse
x[n] delayed by an unknown�, relative to a reference discrete-
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(b) Signal x[n] embedded in noise
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(a) Signal x[n]
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(c) Cross-correlation ryx[n]
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Figure 9-36: Time-delay estimation: (a) noiseless delayed pulse, (b) noisy delayed pulse, (c) cross-correlation.

time scale, and in part (b) we show the signal after adding
it to white noise. Because (a) the amplitude variations of
the signal and the noise are comparable to one another, and
(b) both the signal and the noise are random in nature,
it is difficult to discern the presence of the signal in the
pattern shown in Fig. 9-36(b). Computing the cross-correlation

between the known signal x[n] and the recorded noisy signal
y[n] entails multiplying y[n] with many shifted versions
of x[n]. The peak in the record of ryx[n], displayed in
Fig. 9-36(c), corresponds to the shift that generates the highest
correlation, from which we deduce that the unknown delay is
� = 300.
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9-12.5 Correlation

The correlation rxy[0] between signals x[n] and y[n], both of
duration N , is given by

rxy[0] =
N−1∑
i=0

x[i] y[i]. (9.181)

If the two signals are initially not of the same duration, then
zero-padding (Section 7-15.2) should be applied to make their
lengths the same.

The sum in Eq. (9.181) is the inner product of vectors x and
y with components x[i] and y[i], namely

xT y = ||x|| · ||y|| cos θ, (9.182)

where xT is the transpose of x and θ is the angle between the two
vectors. To compute the inner product in MATLAB/MathScript,
we use

X′ ∗ Y.
The correlation rxy[0] is a measure of signal similarity

between signals x[n] and y[n]. To quantify the degree of
similarity, we consider the following inequality:

0 ≤
N−1∑
n=0

[
x[n]√
rx[0] ± y[n]√

ry[0]

]2

. (9.183)

Since the quantity on the right-hand side is raised to the second
power, the inequality always applies. Expanding Eq. (9.183)
gives

0 ≤
N−1∑
n=0

x2[n]
rx[0] +

N−1∑
n=0

y2[n]
ry[0] ± 2

N−1∑
n=0

x[n] y[n]√
rx[0] ry[0] . (9.184)

By property #2 of the autocorrelation function, Eq. (9.184)
simplifies to

0 ≤ 1 + 1 ± 2
rxy[0]√
rx[0] ry[0] . (9.185)

The equality part of the inequality in Eq. (9.185) should apply
when x[n] = y[n], which requires that

± rxy[0]√
rx[0] ry[0] ≤ 1 . (9.186)

Equivalently, we choose the negative sign in Eq. (9.185) and
rewrite the expression as

0 ≤ 2

[
1 − |rxy[0]|√

rx[0] ry[0]

]
, (9.187)

which leads to the Cauchy-Schwartz inequality

|rxy[0]| ≤ √
rx[0] ry[0] . (9.188)

The ratio of the correlations represents the angle θ defined in
connection with Eq. (9.182). That is,

cos θ = rxy[0]√
rx[0] ry[0] = rxy[0]√

ExEy
, (9.189)

whereEx = rx[0] is the energy of x[n], and a similar definition
applies to Ey .

The factor cos θ is called the correlation coefficient of
x[n] and y[n], and represents an energy-normalized version
of correlation. The closer θ is to zero, the more similar are x[n]
and y[n], excluding a scale factor.

9-12.6 Classification of Signals

Suppose y[n] is a noisy signal consisting of white noise w[n]
added to one of L possible signals:

y[n] = w[n] +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1[n], or

x2[n], or
...

xL[n].

(9.190)

The identity of the specific signal contained in y[n] is unknown,
so to identify it, we choose the signal that minimizes the quantity

N−1∑
n=0

[
y[n]√
ry[0] − xi[n]√

rxi [0]

]2

, (9.191)

which represents the squared-distance between the energy-
normalized data y[n] and each of the energy-normalized signals
xi[n]. By applying the algebra steps that led earlier to the
Cauchy-Schwartz inequality of Eq. (9.188), it is easy to show
that minimizing Eq. (9.191) is equivalent to computing the
correlation ryxi [0] for {x1[n], x2[n], . . . , xL[n]} and then
choosing the signal xi[n] that generates the largest (closest to
1.0) correlation coefficient:

cos θi = ryxi [0]√
ry[0] rxi [0] =

N−1∑
n=0

y[n] xi[n]
√√√√N−1∑

n=0

y2[n]
N−1∑
n=0

x2
i [n]

. (9.192)
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(a) Noisy signal

(b) Clarinet signal

(c) Trumpet signal
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Figure 9-37: Waveforms of (a) noisy signal, (b) clarinet signal, and (c) trumpet signal.

By way of illustration, Fig. 9-37(a) displays a noisy signal
with a signal-to-noise ratio of −5.95 dB. The negative sign
signifies that, on average, the noise is much larger than the
signal. Suppose we know that the signal contained in the noisy
signal is the waveform of either a clarinet (x1[n]) or a trumpet
(x2[n]). To determine which one of the two musical signals is

contained in the noisy waveform, we compute the correlation
coefficient between the noisy signaly[n] and the musical signals
x1[n] and x2[n]. Using MATLAB, we obtain the results:

cos θ1 = 0.441 (clarinet),
cos θ2 = −0.055 (trumpet).
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Module 9.4 Use of Autocorrelation to Estimate
Period This module generates a periodic signal, adds
noise to it, and computes its autocorrelation. The first peak
of the autocorrelation indicates the period. Period and
noise level are both set by sliders.

The distinction between the magnitudes of the two correlation
coefficients is sufficiently large for us to conclude that the
unknown signal embedded in the noisy signal is that of the
clarinet. The signal-to-noise ratio of −5.95 dB means that the
energy content of the signal is only about 25% of that of the
noise. Had the signal been larger, correlation coefficient cos θ1
would have been closer to 1.0, but cos θ2 would remain close
to 0.

Using correlation to classify signals can also be used as a tool
to determine the time delay of a signal. In the example presented
earlier in Fig. 9-36, signal x[n] was delayed by an unknown
delay �, and cross-correlation was performed to determine �.
An analogous procedure that would lead to the same result is to
formulate the time-delay problem as

y[n] = w[n] +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x[n], or

x[n− 1], or
...

xL[n− L],

(9.193)

where the unknown delay � may assume any value between

Module 9.5 Use of Cross-Correlation to Estimate
Time Delay This module generates a signal, delays it,
adds noise to the delayed signal, and computes the cross-
correlation between original and noisy delayed signals.
The peak in the cross-correlation indicates the delay.
Delay and noise level are both set by sliders.

0 and L. Because all of the signals x[n− i] have the same
energy, no energy normalization is necessary, so it is sufficient
to compute

√
EyExi cos θi =

N−1∑
n=0

y[n] xi[n] =
N−1∑
n=0

y[n] x[n−i] = ryx[i].
(9.194)

The unknown delay � is the index i for which cos θi is the
closest to 1.0. This is because Exi are all equal.

Concept Question 9-16: What are the applications of
each of the three forms of correlation in this section?
(See        )

Exercise 9-15: Use LabVIEW Module 9.4 to estimate
the period of the waveform with period 0.005 and noise
level 1.

Answer: (See Module 9.4.)



“book” — 2016/3/15 — 6:32 — page 534 — #61

534 CHAPTER 9 FILTER DESIGN, MULTIRATE, AND CORRELATION

Exercise 9-16: Use LabVIEW Module 9.5 to estimate the
time delay of the signal when its actual delay is 0.3 and
the noise level is 1.

Answer: (See Module 9.5.)

9-13 Biomedical Applications

We now demonstrate how the signal correlation properties
presented in the preceding section can be used in support of
three biomedical applications:

• Computation of heartbeat rate from an electrocardiogram
(EKG) using autocorrelation.

• Classification of an EKG record into one of three possible
types of waveforms, only one of which is considered
“normal.”

• Computation of time delay in ultrasound.

9-13.1 Electrocardiograms (EKGs)

An electrocardiogram (EKG) is a record of the electrical
potential of the heart, measured as a function of time using a
number of wire leads taped to the surface of the chest. To remove
possible 60 Hz interference picked up by the wire leads, a notch
filter (Section 8-2) is used before recording the EKG.

Under normal conditions, the EKG waveform exhibits a
periodic pattern with a period of about 1 s, corresponding to 60
beats per minute. The rate may change, of course, with physical
activity and/or emotional stress.

EKG waveforms are used for diagnosing heart malfunctions.
Three synthetic EKG waveforms (with good resemblance to
actual EKG waveforms) are displayed in Fig. 9-38. The first
is an example of a waveform belonging to a heart operating
normally, whereas the waveforms in parts (b) and (c) are
associated with hearts characterized by atrial flutter and atrial
fibrillation, respectively. The three waveforms are each 10 s in
duration, sampled at 100 samples/s, thereby generating records
of 1000 samples each. Strictly speaking, the horizontal axes in
the three plots shown in Fig. 9-38 should be discrete time n, but
we opted to display t in seconds instead.

Whereas the “normal heart” waveform in Fig. 9-38(a)
consists of regular pulses at 1 pulse per second, separated by
minor fluctuations, the flutter waveform (Fig. 9-38(b)) contains

(a) EKG of normal cardiac activity

(b) EKG of heart with atrial flutter

(c) EKG of heart with atrial fibrillation
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Figure 9-38: EKGs: (a) normal; (b) atrial flutter, (c) atrial
fibrillation.

three additional bumps (pulses) in the waveform. This means
that the spectrum of the flutter waveform will be dominated by
a component at 240 beats per minute or, equivalently, 4 Hz.

The fibrillation waveform is Fig. 9-38(c) consists entirely of
equal-amplitude bumps at 300 beats per minute, corresponding
to a spectral line at 5 Hz. Atrial fibrillation is a serious heart
condition requiring a pacemaker to correct its behavior into
normal cardiac action.

9-13.2 Measuring Heart Rate by Autocorrelation

To simulate the effects of additive noise, zero-mean white
Gaussian noise with a standard deviation σ = 0.5 was added to
each of the three signal waveforms of Fig. 9-38. Only 2 s long
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(a) Normal case (b) Flutter case

(c) Fibrillation
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Figure 9-39: Noisy signals y1[n] through y3[n] and their corresponding autocorrelation functions.
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segments are used, and labeled

yi[n] = xi[n] + w[n]

with i =

⎧⎪⎨
⎪⎩

1 for normal,

2 for flutter waveform,

3 for fibrillation waveform.

(9.195)

Autocorrelation functions were then computed for the three
noisy signals and plotted as shown in Fig. 9-39. The results
indicate:

(a) A peak at n corresponding to t = 1 s (or f = 1 Hz) for the
waveform belonging to the heart operating normally.

(b) A peak at 0.25 s (and its multiples), with a corresponding
frequency of 4 Hz, for the heart with atrial flutter.

(c) A peak at 0.2 s (and its multiples) with a corresponding
frequency of 5 Hz, for the heart afflicted with atrial
fibrillation.

9-13.3 Measuring Heart Rate from the Spectrum

The heartbeat rate can also be deduced from the spectrum of the
noisy signal, instead of from the autocorrelation. The plots in
Fig. 9-40 are computed spectra corresponding to noisy signals
y1[n] to y3[n] of Eq. (9.195), except that in the present case
the amplitude of noise has been doubled to σ = 1.0, compared
with 0.5 for the previous case. It is clear from the three spectra
that the dominant nonzero Hz spectral lines are at 1 Hz for
y1[n], 4 Hz for y2[n], and 5 Hz for y3[n], consistent with the
results obtained earlier using autocorrelation. The advantage of
using the spectrum over the autocorrelation is that the period is
easier to measure from the spectrum, even when the noise level
is higher.

9-13.4 Ultrasound Time Delay

In ultrasound imaging, a short pulse (on the order of 1 μs in
duration) is transmitted by an acoustic transducer into a body
part. The pulse propagates into the body through soft tissue, but
is reflected by body material with distinctly different acoustic
indices of refraction, such as bones, organs, and inclusions.
Part of the reflected energy is received and recorded by the

(a) Normal

(b) Flutter

(c) Fibrillation
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Figure 9-40: Spectra of noisy EKG waveforms for (a) normal
heart, (b) heart with flutter, and (c) heart with fibrillation.

transducer. The time delay td between the transmitted and
received pulse is the two-way travel time between the transducer
and the reflecting organ or inclusion:

td = 2
R

υ
, (9.196)

where R is the range between the transducer and the reflecting
organ or inclusion, and υ is the acoustic velocity in soft tissue
(≈ 1.54 mm/μs). Unfortunately, the signal received by the
transducer consists of not only the reflections from organs of
interest, but also reflections of lower-level intensity from the
soft-body tissue surrounding those organs. This second group
of reflections manifest themselves as the equivalent of additive
random noise.
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(b) Cross-correlation rxy[n]

(a) Received signal
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Figure 9-41: Ultrasound (a) received signal y[n] and (b) cross-correlation of y[n] and the transmitted signal x[n].

The range to an organ of interest can be discerned by
computing the cross-correlation between the received signal
and a copy of the transmitted signal. Because of the extensive
amount of noise accompanying the signal reflected by a
certain organ, it is almost impossible to discern the reflection
from the signal waveform of the received signal displayed in
Fig. 9-41(a), but the delay time is clearly evident in the plot
of the cross-correlation function rxy[n], where x[n] is a copy

of the transmitted signal pulse and y[n] is the noisy received
signal. The duration of the transmitted pulse is only 1μs, while
the duration of the received pulse is 100μs. From Fig. 9-41(b),
rxy[n] has a peak at t = 30μs. Hence, by Eq. (9.196), the range
to the reflecting organ is

R = υtd

2
= 1.54 mm × 30

2
= 2.31 cm.
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Summary

Concepts

• A data window is used to compute the spectrum of a
signal from a short segment of that signal. Windows
suppress side lobes, but may broaden main lobes.

• Spectrograms depict a time-varying signal spectrum by
segmenting the signal using data windows, computing
the spectrum of each segment, and displaying the result
as an image.

• Discrete-time filters have impulse responses that have
either finite durations (FIR) or infinite durations (IIR).

• FIR filters can be designed by: (1) using a data window
on the inverse DTFT of the desired frequency response,
(2) computing the impulse response of a function whose
frequency response matches samples of the desired
frequency response, or (3) using a minimax criterion,
which generates an equiripple frequency response.

• IIR filters are designed from a given continuous-time
filter, such as a Butterworth filter, by: (1) sampling
the impulse response of the continuous-time filter, or
(2) performing a bilinear transformation on the transfer
function of the continuous-time filter.

• Downsampling a signal by L keeps only every Lth
sample and deletes all other values. It stretches the
spectrum of the signal by a factor of L, and introduces
L− 1 copies of one period of the spectrum to keep it
periodic with period 2π .

• Upsampling a signal by L, also known as zero-stuffing,
inserts L− 1 zeros between adjacent samples of the
signal. It compresses the spectrum of the signal by a
factor of L, so that its period is 2π/L.

• Interpolation of a signal upsampled by L is performed
by lowpass filtering the upsampled signal, using cutoff
frequency 2π/L. This maintains the nonzero values of
the upsampled signal, and changes its zero values to the
values that make the interpolated upsampled signal have
a maximum frequency of 2π/L.

• Multirate signal processing uses upsampling by L,
interpolation, and downsampling by M , in that order,
to alter the sampling rate by a factor of L/M .

• The autocorrelation of a signal is the convolution of the
signal with its time reversal. Autocorrelation is used to
compute the period of a periodic signal.

• The cross-correlation of two signals is the convolution
of one signal with the time reversal of the other. Cross-
correlation is used to compute time delay.

• The correlation of two signals is the zeroth lag of their
cross-correlation, or equivalently, their inner product.
Correlation is used to classify a signal as one of several
possible signals.

• Autocorrelation, cross-correlation, and correlation have
applications to EKG and ultrasound imaging.

Mathematical and Physical Models

xwindowed[n] = x[n] w[n]
Hamming window w[n] = 0.54 − 0.46 cos(2πn/(L− 1))

Spectrogram

S(ej�,N) =
∣∣∣∣∣∣
N+L/2∑
n=N−L/2

w[n−N + L/2] x[n] e−j�n
∣∣∣∣∣∣
2

Bilinear transformation s = 2

T

z − 1

z + 1

Frequency (pre)warping ω = 2

T
tan

(
�

2

)

Upsampling

x[n] L y[n] Y(ej�) = X(ej�L)

Downsampling

x[n] L y[n] y[n] = x[Ln]

Autocorrelation rx[n] = x[n] ∗ x[−n]
Cross-correlation rxy[n] = x[n] ∗ y[−n]
Correlation rxy[0] =

∑
x[n] y[n]
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Important Terms Provide definitions or explain the meaning of the following terms:

autocorrelation
bilinear transformation
chirp
correlation
cross-correlation
data window
downsampling

EKG
equiripple design
FIR filter
frequency sampling
frequency (pre)warping
Hamming window
IIR filter

impulse invariance
interpolation
mainlobe
minimax criterion
multirate
Parks-McClellan algorithm
rectangular window

resolution
sidelobe
spectral leakage
spectrogram
upsampling
windowing inverse DTFT
zero-stuffing

PROBLEMS

Section 9-1: Data Windows

9.1 This problem demonstrates the utility of data windows.
Signal x(t) = cos(200πt)+ 0.02 cos(400πt) is observed for
only 0 ≤ t < 0.1. Then, x(t) is sampled at a sampling rate of
1000 samples/second.

(a) Compute and plot the spectrum of x(t) from its samples.

(b) Repeat (a) using a Hamming window instead of a
rectangular window.

(c) What does the plot in (b) show that the plot in (a) does not?

9.2 Signal x[n] = sin(0.3πn)+ sin(0.4πn) is observed for
1 ≤ n ≤ L for some L. The goal is to determine the smallest
value of L that resolves the two peaks. Plot the spectrum using

plot(abs(fft(sin(0.3*pi*[1:L])
+sin(0.4*pi*[1:L]),N))).

∗(a) Estimatethe minimum value of L needed to split (resolve)
the two peaks using the optics resolution formula
|ω2 − ω1| ≥ 2π/L.

∗(b) Using N = 256, find the smallest value of L that resolves
the two peaks. “Resolves” means there is a dip (but not
all the way to zero) between two peaks. Provide two plots
with consecutive values of L with unsplit and split peaks.

(c) Repeat (b) with N doubled to 512. How does this affect
resolution?

(d) Repeat (b) using a Hamming window. How does this affect
resolution?

9.3 Load MATLAB file P93.mat.
X1 is 75 samples of a sum of sinusoids.

(a) Plot its spectrum: plot(abs(fft(X1,256))). How
many sinusoids are there?

∗
Answer(s) in Appendix F.

(b) Repeat (a) using a Hamming window. Now how many
sinusoids are there?

(c) Estimate the frequencies of the sinusoids using the plot
from part (b). The sampling rate was 1000 samples/second.

∗9.4 The four plots shown in Fig. P9.4 are actual plots of signal
spectra using either a length L = 10 or 20, either a DFT order
N = 64 or 256, and either a Hamming or a rectangular window.
For each plot, choose which values of L and N and which
window was used.

(a)

(b)

(c)

(d)

Figure P9.4: Computed spectra for Problem 9.4.

9.5 For a window of duration L, where L � 3π (which is
true in practice), show that the ratio of the height of the first
sidelobe to the height of the mainlobe is

(a) −13 dB for a rectangular window.

(b) −27 dB for a Bartlett window.
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9.6 This problem shows how data windows suppress
sidelobes. Recall that a Hanning window is given by

wHn[n] = 1

2
− 1

2
cos

(
2πn

L− 1

)

for 0 ≤ n ≤ L−1.Advance in time by (L−1)/2 and change the
denominator of the cosine fromL−1 toL and defineL′ = L−1
to obtain

w′[n] =
{

1
2 + 1

2 cos(2πn/(L′ + 1)) for |n| ≤ L′/2,
0 for |n| > L′/2.

(a) Compute the DTFT W(ej�) ofw′[n].Your answer should
have three terms. Hint: Use the modulation property of the
DTFT.

(b) Plot each term, and their sum, separately using different
colors.

(c) Using the plots, explain how using this window helps
suppress sidelobes.

9.7 The spectrum of x[n] = 2 cos(�0n) w[n], where w[n]
is a rectangular pulse of length N , consists of two discrete
sinc functions, centered at ±�0. These two sinc functions are
spectral leakage. But Section 8-9.2 showed that if N is an
integer multiple of 2π/�0, then the spectrum of x[n] computed
using a DFT of order N is zero except at the two DFT indices
corresponding to ±�0, so there is no spectral leakage. Explain
what happened to the discrete sinc functions.

Section 9-2: Spectrograms

9.8 This problem shows how a spectrogram tracks a sudden
frequency change. Let

x(t) =
{

cos(200πt) for 0 ≤ t < 0.5,

cos(400πt) for 0.5 ≤ t < 1.0.

Use a sampling rate of 2000 samples/second:

(a) Depict the spectrogram using 20 bins of 100 samples each
using
imagesc(abs(fft(reshape(X’,100,20))))

(b) Depict the spectrogram using 25 bins of 80 samples each
using
imagesc(abs(fft(reshape(X’,80,25))))

(c) Explain why the spectrograms look different.

9.9 Repeat part (b) of Problem 9.8 using rectangular and
Hamming windows.

9.10 Load MATLAB file P910.mat. It contains two 
variables X1 and X2.

(a) Listen to X1 using soundsc(X1,10000). Describe it.

(b) Depict its spectrogram using
imagesc(abs(fft(reshape(X1’,100,100)))).
Describe the signal using its spectrogram.

9.11 Load MATLAB file P910.mat. It contains two 
variables X1 and X2.

(a) Listen to X2 using soundsc(X2,10000). Describe it.

(b) Depict its spectrogram using
imagesc(abs(fft(reshape(X2’,100,100)))).
Describe the signal using its spectrogram.

9.12 Load  MATLAB  file  P912.mat.     Y  is  part  of  the 
Michigan fight song.

(a) Listen to Y using soundsc(Y,44100). Describe it.

(b) Depict only the lowest frequencies of its spectrogram using
YY=abs(fft(reshape(Y,32768,15)));
imagesc(YY(30769:32768,:))

Explain what this spectrogram is depicting.

9.13 Load MATLAB file P913.mat.
X2 is the sum of tonal versions of two fight songs.

(a) Listen to X2 using soundsc(X2,8192). Describe it.

(b) Depict spectrogram using
imagesc(abs(fft(reshape(X2’,3000,26)))).
This should make it apparent that the two songs are in
different octaves.

(c) Eliminate one of the songs by setting some values of
fft(X2) to zero. Plot the spectrogram of result Y using
imagesc(abs(fft(reshape(Y’,3000,26)))).
Listen to Y using soundsc(Y,8192). Describe it.

Section 9-3: FIR Filter Design

9.14 Let h[n] be a lowpass filter with cutoff frequency �0.

(a) Show that 2h[n] cos(�cn) is a bandpass filter with cutoff
frequencies �c −�0 and �c +�0.

(b) Show that h[n] cos(πn) is a highpass filter with cutoff
frequency π −�0.

(c) Show that H(−z) is a highpass filter with cutoff frequency
π −�0.
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9.15 Design a discrete-time bandpass filter with cutoff
frequencies π/4 and 3π/4 using:

(a) A 5-point rectangular window.

(b) Frequency sampling at � = { 0, π/3, 2π/3, π }. Use a
filter of duration five.

(c) Compare your answers to (a) and (b).

9.16 A Hilbert transformer has the frequency response

H(ej�) =
{

−j for 0 < � < +π,
+j for − π < � < 0,

and a corresponding impulse response

h[n] = 1 − (−1)n

πn
,

withh[0] = 0. Design a discrete-time Hilbert transformer using
∗(a) A 5-point rectangular window.
∗(b) Frequency sampling at � = π/3 and 2π/3.

(c) Compare your answers with (a) and (b).

9.17 Design a 31-point half-band (i.e., with cutoff frequency
at π/2) lowpass, discrete-time filter by windowing the ideal
impulse response using a Hamming window. Plot the impulse
response and plot the gain of the resulting filter for 0 ≤ � ≤ π .

9.18 Design a 31-point bandlimited (to π ) ideal differentiator
by windowing the ideal impulse response using a Hamming
window. Plot the impulse response and plot the gain of the
resulting filter for 0 ≤ � ≤ π .

9.19 Design a 31-point bandpass filter with cutoff frequencies
π/4 and 3π/4 by windowing the ideal impulse response using a
Hamming window. Plot the impulse response and plot the gain
of the resulting filter for 0 ≤ � ≤ π .

9.20 This problem is about a frequency sampling FIR filter
design that uses an inverse DFT. We wish to design a symmetric
noncausal FIR filter

h[n] = {h[−L] . . . h[0] . . . h[L]}
of odd length 2L+ 1 using the frequencies

� =
{

0,± 2π

2L+ 1
,± 4π

2L+ 1
,± 6π

2L+ 1
, . . . ,± 2πL

2L+ 1

}
.

(a) Show that h[n] can be computed without solving a linear
system of equations using only an inverse DFT of order
2L+ 1 and some reordering of the gains. Hint: The DFT
and DTFS differ by only a scale factor.

(b) Design a noncausal lowpass filter h[n] = {a, b, c, b, a}
with the gains specified in the following table:

� 0 ± 2π
5 ± 4π

5

H(ej�) 1 1
2 0

by solving a linear system of equations.

(c) Design h[n] by computing an inverse DFT.

9.21 Repeat Problem 9.20 to design a lowpass filter with

� 0 ± 2π
5 ± 4π

5

H(ej�) 1 1 0

9.22 This problem requires MATLAB’s Signal Processing
Toolbox. Use the Parks-McClellan algorithm to design a half-
band (cutoff frequency �0 = π/2) lowpass filter of order 21
(the impulse response duration is 22). The gain is to be

|H(ej�)| =

⎧⎪⎨
⎪⎩

1 for 0 ≤ |�| ≤ 0.45π,

dc for 0.45π < |�| < 0.55π,

0 for 0.55π ≤ |�| ≤ π.

Optional: Display the gains computed after 1, 2, 3, and 4
iterations by setting the maximum number of iterations to be 1,
2, 3, 4 in the mfile.

9.23 Determine the FIR filter h[n] of lengthL that minimizes
the mean square error

e = 1

2π

π∫
−π

|HD(e
j�)−

L−1∑
n=0

h[n] e−j�n|2 d�,

where HD(e
j�) is the desired frequency response. Hint: Use

Parseval’s theorem for the DTFT.

Section 9-4: IIR Filter Design

9.24 The impulse response of a brickwall lowpass filter with
cutoff frequency �0 = π/2 is

h[n] = sin(π2 n)

πn
.

This h[n] is clearly noncausal. Show that h[n] is also not BIBO
stable.



“book” — 2016/3/15 — 6:32 — page 542 — #69

542 CHAPTER 9 FILTER DESIGN, MULTIRATE, AND CORRELATION

∗9.25 Using the analog system Ha(s) = 1000/(s + 1000) and
T = 0.001, design a discrete-time filter using:

(a) Impulse invariance (find the impulse response).

(b) Bilinear transformation (find the transfer function).

9.26 Using the analog filter

Ha(s) = 1

(s + 1)2

and T = 2, design a digital filter using:

(a) Impulse invariance (find the impulse response).

(b) Bilinear transformation (find the impulse response).

9.27 Using the analog filter

Ha(s) = 1

s2 + s + 1

and T = 2, design a digital filter using

(a) Impulse invariance (find the impulse response).

(b) Bilinear transformation (find the transfer function).
∗9.28 Use bilinear transformation with T = 2 to design an IIR
double differentiator.

9.29 Find the gain of an IIR filter designed using the bilinear
transformation with T = 2 for a continuous-time Butterworth
filter of order N and cutoff frequency �0 = 1.

9.30 We are given an analog filter whose gain (frequency
response magnitude) is as given in Fig. P9.30.

f  (kHz)

Gain

3

2

1

0
0 22/   3 2   3

Figure P9.30: Plot for Problem 9.30.

Draw the gain of an IIR filter design using the bilinear
transformation with T = 0.001/2π s.

9.31 A continuous-time filter has the frequency response
H(jω) shown in Fig. P9.31. The bilinear transformation is used
to design a discrete-time filter from this filter. If T = 1.02, plot
the frequency response H(ej�) of the resulting discrete-time
filter and the frequency response H(jω) of the continuous-time
filter on the same plot.

0 0.5 1 1.5 2 2.5 3 3.50

1

2

3

4

H( jω)

ω

Figure P9.31: Frequency response H(jω) of Problem 9.31.

9.32 Prove that the bilinear transformation maps:

(a) The imaginary axis Re[s] = 0 to the unit circle |z| = 1.

(b) The left half-plane Re[s] < 0 to the interior of the unit
circle |z| < 1.

(c) The right half-plane Re[s] > 0 to the exterior of the unit
circle |z| > 1.

Hence, a discrete-time filter designed from a stable continuous-
time filter is also stable.

9.33 Use the bilinear transformation to design a discrete-
time Butterworth filter with cutoff frequency �0 = π/2 from
a continuous-time Butterworth filter of order three. Compute
the transfer function, poles, and zeros, and difference equation.
Note: This problem does not require MATLAB/MathScript.

9.34 Use the bilinear transformation to design a discrete-time
Butterworth filter with cutoff frequency �0 = 2π/3 from a
continuous-time Butterworth filter of order three. Compute the
transfer functions, poles, and zeros, and difference equation.
Note: This problem does not require MATLAB/MathScript.

9.35 Show that if the bilinear tranformation is used to
design a discrete-time Butterworth filter with cutoff frequency
�0 = π/2 from a continuous-time Butterworth filter of any
order, then the zeros are all at −1 and the poles are all on the
imaginary axis.

Section 9-5: Multirate Signal Processing

9.36 Design a multirate system that converts a 300 Hz
sinusoid sampled at 1000 samples/s to 450 Hz sinusoid without
any aliasing.

9.37 A spoken-word recording is bandlimited to a maximum
frequency of 4410 Hz. It is sampled at 11025 samples/s and
burned onto a CD to be sold in stores. But CD players operate a
44100 samples/s. Design a discrete-time system that upsamples
the samples at 11025 samples/s to 44100 samples/s. Using a
Hamming window on the impulse response of an ideal lowpass
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filter, design the discrete-time lowpass filter in this system to
meet these specifications:

(a) All portions of the spoken-word baseband spectrum are
passed with gain > 0.9899.

(b) All portions of the first image spectrum are rejected with
gain < 0.0101.

9.38 Prove that these systems are equivalent if and only if L
and M are relatively prime:

{ x[n] M L y[n] } ≡

{ x[n] L M y[n] }.

Hint: Use time domain.

9.39 Prove the so-called noble identities:

(a)

{ x[n] H(z) L y[n] } ≡

{ x[n] L H(zL) y[n] }.

Hint: Use z-transforms.

(b)

{ x[n] L H(z) y[n] } ≡

{ x[n] H(zL) L y[n] }.

Hint: Use time domain.

9.40 Let x[n] be bandlimited to π/2, so X(ej�) = 0 for
π/2 < |�| ≤ π . Filter x[n] using

x[n] 2 2 h[n] = 2
sin(πn/2)

πn
y[n].

Show by direct computation (perform the convolution) that
y[n] = x[n] for even n values.

∗9.41 For the system

cos(0.6πn) L y[n],

for which of these values ofL: { 2, 3, 4, 5, 6 }, does y[n] include
a component A cos(0.6πn)?

9.42 A signal x(t) bandlimited to 499 Hz is sampled at 1000
samples/s, giving x[n]. We have only a poor analog lowpass
filter to perform digital-to-analog conversion. Design a DSP
system that will allow good reconstruction of x(t) from its
samples x[n]. You may use a discrete-time sinc function as
a digital filter.

9.43 A more realistic version of the previous problem is as
follows: A signal with maximum frequency B Hz is sampled
at double its Nyquist rate. Design an oversampling DSP
system with upsampling by 10 and interpolation. Give the
specifications for the discrete-time and continuous-time filters.
The copies of the signal spectrum induced by sampling are
considered to have been eliminated if the filter gain for them is
0.001 or less.

9.44 You are given the signal of a trumpet playing a note. Use
multirate filtering and the circle of fifths to generate the signal
of the trumpet playing all musical notes.

Section 9-12: Correlation

9.45 This problem investigates fractional time delay (time
delay by a non-integer). Consider a system

y[n] = x

[
n− 1

2

]
,

which makes no sense since n is an integer. But we can
implement a time delay of 1

2 as follows:

(a) Determine the frequency response of a system that delays
the input by 1

2 .

(b) Compute the impulse response of a system that delays the
input by 1

2 .

(c) Interpret your answer to (b) in terms of upsampling and
interpolation.

9.46 Signals x[n] and y[n] are given by

x[n] = A cos

(
2π

M

N
n+ θ1

)

and

y[n] = B cos

(
2π

M

N
n+ θ2

)
,

and both have period N .

(a) Show that the correlation coefficient between x[n] and
y[n] is cos(θ1 − θ2).

(b) Show that the correlation coefficient between
A cos(2π M

N
n) and B sin(2π M

N
n) is zero.

For pairs of periodic signals, correlation is defined over a single
period of the signals.
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9.47 Signals x[n] and y[n] are given by

x[n] = A cos

(
2π

L

N
n

)

and

y[n] = B cos

(
2π

M

N

)
,

where 0 ≤ L,M ≤ N . Show that unless L = M , the correla-
tion between x[n] and y[n] is zero. For pairs of periodic signals,
correlation is defined over a single period of the signals. Note:
This result is still true even if x[n] and y[n] have nonzero phase
shifts.

9.48 Show that if the spectra of two signals do not overlap,
their cross-correlation is zero.

9.49 For each of the following two signals, show that its
autocorrelation is just the signal itself.

(a)

x1[n] = sin(�0n)

πn

for any constant |�0| < π .

(b)

x2[n] = sin(�0n)

πn
2 cos(�1n)

for any constants |�0| < π and |�1| < π
2 .

9.50 A causal signal x[n] of duration 3 has

rx[n] = {6, 14, 41, 14, 6}.

Determine x[n]. There are four solutions, all closely related to
each other.

9.51 A causal signal x[n] of length 2N+1 has a known rx[n]
of length 4N + 1. The 2N zeros of X(z) are in N complex
conjugate pairs, none on the unit circle. Show that if x[0] �= 0,
then the solution of x[n] ∗ x[−n] = rx[n] can be satisfied by
2N+1 different signals x[n].

LabVIEW Module 9.1

9.52 Design a lowpass filter with the specified duration and
cutoff frequency. Specify whether the impulse response looks
like a windowed sinc function.

(a) Duration 41 and cutoff 200 Hz.

(b) Duration 21 and cutoff 100 Hz.

(c) Duration 41 and cutoff 400 Hz.

9.53 Although the sampling rate is not specified, explain how
you can determine that the sampling rate is 1000 sample/s.

LabVIEW Module 9.2

9.54 In each of these problems, display the spectrogram for
the specified length.

(a) Length 26. The display is the notes of the chorus of what
famous college fight song? Hint: The authors’ affiliation.

(b) Length 20. How is the display related to the display of the
previous problem? What are the additional features that
appear in this spectrogram?

(c) Repeat (b) for window length 50.

9.55 What simple action could be taken to reduce the
additional features appearing in the spectrograms in (b) and
(c) of Problem 9.54?

LabVIEW Module 9.3

9.56 In each of these problems, display the spectrogram for
the specified window length and chirp slope.

(a) Slope 1.0 and window length 45.

(b) Slope 1.5 and window length 58.

(c) Slope 1.5 and window length 16.

9.57 Why is each spectrogram segment thicker in (c) of
Problem 9.56?
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Objectives

Learn to:

� Compute the 2-D discrete-space Fourier trans-
form of an image.

The one-dimensional (1-D) discrete-time signals and systems
tools are extended in this chapter to 2-D spatial images, which
then are used to perform image-processing enhancements,
including denoising, edge detection, and deconvolution. This is
followed by a treatment of the discrete-space wavelet transform
and examples of its many applications, including inpainting and
compressed sensing.

� Denoise an image.

� Apply edge detection and deconvolution.

� Use the wavelet transform in image denoising,
inpainting, and compressed sensing.

545
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Overview

With the exception of the image examples presented in
Sections 5-13 and 6-1, the preceding nine chapters dealt
exclusively with one-dimensional (1-D) signals and systems,
and the dimension under consideration was either continuous
time t or discrete time n. An image is a two-dimensional
(2-D) configuration, and the two dimensions are spatial rather
than temporal. A discrete-space image consists of a 2-D array
of numbers, often referred to as pixels (short for picture
elements). Many, but not all, of the transformations and
techniques developed for 1-D signals are extendable to 2-D
images. The first part of this chapter provides the 1-D to 2-D
signal-processing extension tools and associated nomenclature
and notation. These tools are then used to perform Fourier-
based image-processing enhancements, such as denoising,
edge detection, and deconvolution.

The second major topic treated in this chapter is the
discrete-space wavelet transform and its applications in image
compression and denoising. In recent years, the wavelet
transform has become an important tool in image processing
because it can offer a performance superior to that provided by
Fourier-based techniques for denoising and compression.

Compressed sensing, the third topic of this chapter, makes
use of the fact that many signals and images of interest
can be represented using a sparse (mostly zero-valued) linear
combination of wavelet functions. This means that a signal or
image can be reconstructed from a set of linear combinations of
itself that is much smaller in size than the signal or image itself.
This is useful for: deconvolution, reconstruction of a signal
or image from a relatively small number of 2-D DFT values,
and restoring missing pixels. We present an introduction to this
topic, showing the reader how to make use of it without getting
into the details of why it works so well.

10-1 Image Processing Basics

10-1.1 Extending 1-D to 2-D

An image is an array of numbers, called pixels, while a signal
is a vector of numbers. We denote an image as {x[m, n],
0 ≤ m ≤ M , 0 ≤ n ≤ N}, analogous to the representation x[n]
of a 1-D signal. Often, but not always, the upper left corner
of an image is designated to be location [0, 0] (the origin),
with indices m and n increasing downward and rightward,
respectively. So x[m, n] is the intensity (brightness) of the
pixel in the (m+ 1)th row and (n+ 1)th column of the image
(Fig. 10-1). This follows MATLAB/Mathscript matrix notation,
except that in MATLAB/Mathscript matrix notation the origin
has coordinates [1, 1] because in MATLAB, indexing does
not include zero. Note that this is not the same as Cartesian
coordinates, in which the origin is the lower left corner of the
image.

A discrete-time linear time-invariant system is characterized
by an impulse response h[n]. The analogous 2-D system
response is called the point-spread function h[m, n], which
will be introduced shortly. Unlike the common image format in
which the origin is located at the upper left corner, the format
used with h[m, n] often defines the origin at the center of the
image. Hence, when applying a multistep process to an image,
it is critically important to keep track of the coordinate systems
associated with each step, and to make the necessary spatial
shifts to align them when necessary.

� Image x[m−M, n−N ] represents image x[m, n]
shifted down by M and to the right by N . �

An example is shown in Fig. 10-1.

Image x[m,n]
Image x[m − 1, n − 2]

Row 5 of x[m,n]

Column 3 of x[m,n]

m

n

Figure 10-1: Image x[m− 1, n− 2] is image x[m, n] shifted down by 1 and to the right by 2.
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Color images consist of three separate images, each
representing a different color. Usually these colors are red,
green, and blue. A color image is a triplet of pixel values at
each location [m, n]:

{xred[m, n], xgreen[m, n], xblue[m, n].}

In this book, we limit our attention to grayscale (black and
white) images, described by a single pixel value x[m, n] at each
location [m, n]. In grayscale images, the brightness at location
[m, n] is proportional to x[m, n], scaled so that the maximum
value of x[m, n] is depicted as white, and the minimum value
of x[m, n] is depicted as black. Since most images are non-
negative (x[m, n] ≥ 0), black usually depicts x[m, n] = 0.

A grayscale image with pixels x[m, n] stored in the
M ×N MATLAB/Mathscript array X can be displayed
using imagesc(X),colormap(gray). Omitting
colormap(gray) results in a depiction of the image
using colors to represent different values. This should not be
confused with a color image.

As we will see shortly, the following concepts generalize in
a straightforward manner from 1-D to 2-D:

• LTI, impulses, convolution, impulse response (now called
point-spread function).

• Frequency (now called wavenumber) response.

• Fourier transforms and the sampling theorem.

• DTFT (now called DSFT), DFT, FFT, z-transforms.

In contrast, the following concepts do not generalize in a useful
manner from 1-D to 2-D:

• Laplace transforms and difference equations.

• Transfer functions, poles and zeros.

• Partial fraction expansions.

10-1.2 2-D Sampling

Usually, a discrete-space image is obtained by sampling a
continuous-space image signal x(ξ, η) at spatial locations
ξ = mTs and η = nTs for some small discretization length Ts.
The discrete form of x(ξ, η) is denoted x[m, n]. In some cases,
however, the image is generated in discrete format directly, as
part of the sensing process.An example is a camera that acquires
images via an array of sensors composed of charge-coupled
devices (CCDs).

10-1.3 2-D Reconstruction

The 2-D Fourier transform of a continuous-space image signal
was introduced in Chapter 5 in the form of Eq. (5.143a):

X(ω1, ω2) = F [x(ξ, η)]

=
∞∫

−∞

∞∫
−∞

x(ξ, η) e−jω1ξ e−jω2η dξ dη, (10.1)

where (ξ, η) are the (horizontal, vertical) image coordinates,
x(ξ, η) is the image intensity, and (ω1, ω2) are spatial
frequencies—called wavenumbers—along the vertical and
horizontal directions in the frequency domain. The 2-D Fourier
transform consists of two transformations, one from ξ in the
spatial domain toω1 in the frequency domain, and another from
η to ω2.

If the spectrum X(ω1, ω2) is bandlimited to a maximum
wavenumber ωmax along both wavenumber dimensions, then

ω1(max) = ω2(max) = ωmax. (10.2)

To satisfy the Nyquist sampling criterion, the sampling lengthTs
(which is proportional to the reciprocal of the sampling
wavenumber ωs) should be short enough to guarantee that

ωs = 2π

Ts
> 2ωmax. (10.3)

In Section 6-13.6, we explained how the sinc interpolation
formula given by Eq. (6.161) can be applied to reconstruct a
continuous-time signal x(t) from its samples x[n] = x(nTs).
The process is equally applicable to discretized images,
except that the interpolation process has to be performed
both horizontally and vertically (or vice versa). To obtain
x(ξ, η) from x[m, n] = x(mTs, nTs), the 2-D sinc interpolation
formula assumes the form

x(ξ, η) =
∞∑

m=−∞

∞∑
n=−∞

x(mTs, nTs)

×
sin

(
π

Ts
(ξ −mTs)

)
· sin

(
π

Ts
(η − nTs)

)
(
π

Ts
(ξ −mTs)

)
·
(
π

Ts
(η − nTs)

) .

(reconstruction from discrete to continuous)

(10.4)

The interpolation process is equally applicable to other
manifestations of of x[m, n], such as after getting denoised
or filtered to enhance certain features. If the available image
x[m, n] was generated in discrete space to start with, we can
still apply the interpolation formula by choosing a value of Ts
that is sufficiently short as to produce a visually acceptable
continuous-space image.



“book” — 2016/3/15 — 6:32 — page 548 — #4

548 CHAPTER 10 IMAGE PROCESSING, WAVELETS, AND COMPRESSED SENSING

10-1.4 LSI Systems

A 2-D system with input x[m, n] and output y[m, n] is denoted
as

x[m, n] SYSTEM y[m, n].

The system is considered linear-shift invariant (LSI) if it
satisfies the following properties:

(a) Shift Invariant

If

x[m, n] LSI y[m, n],

it then follows that, for any integers M and N ,

x[m−M, n−N ] LSI y[m−M, n−N ].
(10.5)

(b) Scalable

For any constant c,

cx[m, n] LSI cy[m, n]. (10.6)

(c) Superposition

If

x1[m, n] LSI y1[m, n]

and x2[m, n] LSI y2[m, n],

it then follows that, for any constants c1 and c2,

c1x1[m, n]+c2x2[m, n] LSI c1y1[m, n]+c2y2[m, n].
(10.7)

10-1.5 Point-Spread Function

In 2-D, impulse δ[m, n] is defined as

δ[m, n] =
{

1 for m = n = 0,

0 otherwise.
(10.8)

The impulse response of a 2-D LSI system is called the point-
spread function (PSF) of the system and is denoted h[m, n].
By analogy with Eq. (7.46),

δ[m, n] LSI h[m, n]. (10.9)

In medical imaging systems, the PSF h[m, n] is sometimes
measured directly by imaging a small bead, which acts like
a 2-D impulse δ[m, n]. The spread of the bead by the imperfect
imaging system is the point-spread function of that imaging
system. A similar procedure is used in astronomy, wherein
h[m, n] of the imaging telescope is determined by measuring
the image of a tiny star acting like an impulse.

� The PSF of an imaging system is the identity image of
that system. �

10-1.6 2-D Convolution

By analogy with Eq. (7.51a), the response of a 2-D LSI system
to any image x[m, n] is given by the 2-D convolution of x[m, n]
with the system’s PSF h[m, n]:

y[m, n] = x[m, n] ∗ ∗h[m, n]

=
∞∑

i=−∞

∞∑
j=−∞

x[i, j ] h[m− i, n− j ]. (10.10)

Note that the symbol for 2-D convolution consists of 2 stars: ∗∗.
Also note that convolving the PSF of an imaging system with
an image is no different mathematically from convolving two
images together.

Example 10-1: 2-D Convolution of 2 × 2 Images

Compute the 2-D convolution[
1 2
3 4

]
∗ ∗

[
5 6
7 8

]
.
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Solution: The definition given by Eq. (10.10) entails
multiplication of the first matrix by a shifted version of the
second matrix, which translates into[

1 2
3 4

]
∗ ∗

[
5 6
7 8

]

= 1

⎡
⎣5 6 0

7 8 0
0 0 0

⎤
⎦+ 2

⎡
⎣0 5 6

0 7 8
0 0 0

⎤
⎦+ 3

⎡
⎣0 0 0

5 6 0
7 8 0

⎤
⎦+ 4

⎡
⎣0 0 0

0 5 6
0 7 8

⎤
⎦

=
⎡
⎣ 5 16 12

22 60 40
21 52 32

⎤
⎦ .

Note how each member of the first matrix is multiplied by a
shifted version of the second matrix, and then all four matrices
are added together. The 2-D convolution can be implemented
in MATLAB/Mathscript by the command

conv2([1 2; 3 4], [5 6; 7 8]).

Concept Question 10-1: What 1-D concepts generalize
usefully to 2-D? (See        )

Concept Question 10-2: What 1-D concepts do not
generalize usefully to 2-D? (See        )

10-2 Discrete-Space Fourier
Transform

For a nonperiodic discrete-time signal x[n], we defined its
discrete-time Fourier transform (DTFT) in Eq. (7.154a) as

X(ej�) =
∞∑

n=−∞
x[n] e−j�n,

where � is an angular frequency in discrete time. The 2-D
analogue of the DTFT is the discrete-space Fourier transform
(DSFT), computed by applying a DTFT to the rows and then
a second DTFT to the columns (or vice versa). That is,

X(ej�1 , ej�2) = DSFT(x[m, n])

=
∞∑

m=−∞

∞∑
n=−∞

x[m, n] e−j (�1m+�2n).

(10.11)

The DSFT is periodic in�1 and�2, both with periods 2π . The
inverse DSFT is computed by applying the inverse DTFT twice,
once for rows and then for columns (or vice versa):

x[m, n] = DSFT−1[X(ej�1 , ej�2)]

= 1

4π2

π∫
−π

π∫
−π

X(ej�1 , ej�2)

· ej (�1m+�2n) d�1 d�2.

(10.12)

10-2.1 Conjugate Symmetry Properties of the
DSFT

(1) If the image x[m, n] is real-valued, then its DSFT has
conjugate symmetry:

X∗(ej�1 , ej�2) = X(e−j�1 , e−j�2), (10.13a)

|X(ej�1 , ej�2)| = |X(e−j�1 , e−j�2)|, (10.13b)

−∠X(ej�1 , ej�2) = ∠X(e−j�1 , e−j�2), (10.13c)

(2) If x[m, n] is real and an even function:

x[m, n] = x[−m,−n],

then X(ej�1 , ej�2) is real and an even function also:

X(ej�1 , ej�2) = X(e−j�1 , e−j�2).

(3) If x[m, n] is real and an odd function:

x[m, n] = −x[−m,−n],

then X(ej�1 , ej�2) is pure imaginary and an odd function:

X(ej�1 , ej�2) = −X(e−j�1 , e−j�2).

The second and third properties require that x[m, n] be
defined for negative values of indices m and n. If [0, 0] is
in the center of the image, property 2 implies that the image
has diagonal symmetry: pixel [2, 3], for example, has the same
brightness as pixel [−2,−3], and pixel [2,−3] has the same
brightness as pixel [−2, 3]. Property 3 is applicable only if the
image brightness is scaled so that “zero brightness” is defined to
be at some intermediate level between black and white, thereby
allowing the brightness to be both positive and (artificially)
negative in intensity.
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10-2.2 Wavenumber Response

� The DSFT of the point-spread function h[m, n] is the
wavenumber response H(ej�1 , ej�2):

H(ej�1 , ej�2) = DSFT(h[m, n])

=
∞∑

m=−∞

∞∑
n=−∞

h[m, n] e−j (�1m+�2n).

(10.14)

Related properties include

ej (�1m+�2n) H(ej�1 , ej�2) H(ej�1 , ej�2) ej (�1m+�2n)

(10.15a)
and

cos(�1m+�2n) H(ej�1 , ej�2)

|H(ej�1 , ej�2)| cos(�1m+�2n+ θ), (10.15b)

where θ is the phase angle of H(ej�1 , ej�2). These two
properties are extensions of their 1-D counterparts given by
Eqs. (7.124) and (7.127). Equation (10.15b) can be derived from
Eq. (10.15a) in the same way that Eq. (7.127) can be derived
from Eq. (7.124).

10-2.3 2-D Spectrum

Since the DSFT is doubly periodic in�1 and�2, it is customary
to depict the 2-D spectrum over the ranges −π < �1, �2 < π ,
with the origin (�1, �2) = (0, 0) at the center of the frequency
plane. This is analogous to two-sided 1-D spectra. In MATLAB/
Mathscript, depicting the 2-D spectrum with the origin at the
center of an image stored in array X of sizeM×N is performed
using

imagesc(fftshift(abs(fft2(X,M,N)))).
(10.16)

An important difference from 1-D signals is that most images
have all non-negative pixel values. The appearance of the 2-D
spectrum of a non-negative image gets dominated by a single
bright dot at the origin (�1, �2) = (0, 0). This is the dc value
of the spectrum, and is given by

X(ej0, ej0) =
M−1∑
m=0

N−1∑
n=0

x[m, n]. (10.17)

The dc value is the sum of MN non-negative pixel values,
making it much larger than other values in the spectrum.

Instead of displaying an image of the 2-D spectrum
|X(ej�1 , ej�2)|, it is common practice to display an image of
its logarithm:

log10 |X(ej�1 , ej�2)|.
An example is shown in Fig. 10-2. The original image, displayed
in part (a), is a group of numbers, and its linear and logarithmic
spectra are displayed in parts (b) and (c), respectively. The
logarithmic format compresses the range of the spectrum, so
it reduces the dominance by the central pixel. Consider, for
example, a central pixel with a magnitude of 100, another pixel
with a magnitude of 20, and a third one with a magnitude of 10.
On a linear scale, the latter two pixels appear almost black,
compared to the white pixel at the center. The logarithmic values
of 10, 20, and 100 are 1, 1.3, and 2, so the range 10 to 100 gets
compressed to 1 to 2, thereby allowing a viewer to “see” the
lower intensity pixels. The logarithmic scale also is used in the
Richter scale for earthquakes, stellar magnitudes in astronomy,
and in displaying quantitative data that extend over multiple
orders of magnitude.

Note the appearance of multiple bright lines in the spectrum
shown in Fig. 10-2(c). These lines are associated with the
geometrical shapes of the letters in the original image. For
example, the horizontal segments of the letters, such as the top
and bottom parts of the letter E, are responsible for generating
the vertical line in the spectrum. The direction of the spectral
line is orthogonal to the direction of the segments responsible
for generating that line. Similar associations apply to the other
spectral lines. This is explained in Problem 10.20.

An alternative to displaying the spectrum in black and white
using a logarithmic scale is to display it in color without
the logarithmic compression. The available range of colors is
mapped onto the available range of values of |X(ej�1 , ej�2)|.
The result is displayed in Fig. 10-2(d).

Example 10-2: 2-D Two-Point Average

Image {x[m, n], 0 ≤ m ≤ 9, 0 ≤ n ≤ 9} is displayed in
Fig. 10-3(a) using a colormap display of pixel values. The actual
pixel values are shown in Fig. 10-3(b). The image consists of
102 = 100 pixels.

Image x[m, n] is defined by the analytical expression

x[m, n] = x1[m] x2[n],
where

x1[m] = 9 − 2(4.5 −m), 0 ≤ m ≤ 9,

x2[n] = 10(1 − e−0.14n), 0 ≤ n ≤ 9.
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Ω2

Ω1

Ω2

Ω1

n
m

Ω2

Ω1
(a) 2-D image (b) Linear spectrum

(c) Logarithmic spectrum (d) Linear spectrum in color format

Figure 10-2: (a) 2-D image x[m, n], (b) spectrum |X(ej�1 , ej�2 )| in linear scale, (c) logarithmic spectrum log10 |X(ej�1 , ej�2 )|, and (d)
linear spectrum in color format, with different colors representing different values of |X(ej�1 , ej�2 )|.

A 2-D version of the 1-D two-point averager is a system that
averages the pixel values in a 2 × 2 block of the image. Its
point-spread function is given by

h[m, n] = 1

4

[
1 1
1 1

]
.

The pixel at the origin (upper left corner) is underlined, just as
it is in a 1-D bracket notation. It is understood, by definition,
that h[m, n] = 0 outside the 2 × 2 block. That is,

h[m, n] =
{

1
4 for 0 ≤ m, n ≤ 1,

0 otherwise.

Apply the 2-D two-point averager to the image in Fig. 10-3(b),
and display the output image y[m, n], by:

(a) performing the convolution directly in the discrete-space
domain, and

(b) computing the DSFTs of x[m, n] and h[m, n],
multiplying them, and then computing the inverse DSFT of
the product to obtain y[m, n].
Solution:

(a) Application of the convolution operation given by
Eq. (10.10) leads to the smoothed image y[m, n] displayed in
Fig. 10-3(c). Since image x[m, n] is N1 ×N1 with N1 = 10,
and h[m, n] is N2 ×N2 with N2 = 2, the size of the convolved
image y[m, n] is N3 ×N3 with

N3 = N1 +N2 − 1 = 10 + 2 − 1 = 11.

The smoothing effect of the averager is quite noticeable,
particularly when we compare the right sides of images x[m, n]
in Fig. 10-3(a) and y[m, n] in Fig. 10-3(c).

(b) Using MATLAB/Mathscript (Eq. (10.16)), the DSFTs
X(ej�1 , ej�2) of x[m, n] and H(ej�1 , ej�2) of h[m, n] were
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1
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7
8
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n
m

(a) Colormap of x[m,n]
(d) Magnitude of DSFT X(e jΩ1,e jΩ2) of image x[m,n]

(e) Magnitude of DSFT H(e jΩ1,e jΩ2) of h[m,n]

(f ) Magnitude of DSFT Y(e jΩ1,e jΩ2) of image y[m,n](c) Smoothed image y[m,n]

(b) Pixel values

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 3 5 7 9 10 11 12 13 14

0 3 5 7 9 10 11 12 13 14

0 5 10 14 17 20 23 25 27 29

0 5 10 14 17 20 23 25 27 29

0 8 15 21 26 30 34 37 40 43

0 8 15 21 26 30 34 37 40 43

0 10 20 27 34 40 45 50 54 57
0 10 20 27 34 40 45 50 54 57

−π
−π

π

π0

0 Ω2

Ω1

Figure 10-3: (a) Original image, (b) pixel values of x[m, n], (c) smoothed image y[m, n], (d) DSFT X(ej�1 , ej�2 ) of x[m, n], (e) DSFT
H(ej�1 , ej�2 ) of h[m, n], and (f) Y(ej�1 , ej�2 ) = X(ej�1 , ej�2 ) H(ej�1 , ej�2 ).

computed and their magnitudes were then displayed in parts (d)
and (e) of Fig. 10-3. The product

Y(ej�1 , ej�2) = H(ej�1 , ej�2) X(ej�1 , ej�2) (10.18)

was computed and its magnitude is displayed in Fig. 10-3(f).
Finally, the inverse DSFT of Y(ej�1 , ej�2) was computed
using Eq. (10.12). As expected, the result is identical with
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the smoothed image obtained in part (a) of the solution, and
displayed in Fig. 10-3(c).

Concept Question 10-3:Why is it difficult to display 2-D
spectra of images? (See        )

Exercise 10-1: Use LabVIEW Module 10.1 to show the
effect of drastic lowpass filtering on the letters image. Set
both sliders to their minimum values.

Answer:

10-3 2-D DFT

Whereas image signal x[m, n] is defined in discrete space, its 
DSFT X(ej�1 , ej�2 ) is defined in continuous 2-D wave-
number space (�1, �2). The same correspondence is true for 
the point spread function h[m, n] and its transform 
H(ej�1 , ej�2 ). Recall from Section 7-15 that the discrete 
Fourier transform (DFT) is a numerical recipe for representing 
the spectrum of a nonperiodic signal in terms of a finite set of 
discrete frequency components. The DFT representation 
provides the platform for applying the highly efficient fast 
Fourier transform (FFT) to compute the spectra of signals of 
interest.

Module 10.1 Effect of Lowpass Filtering an
Image This module applies a 2-D brickwall lowpass
filter to the “letters” image using the 2-D DFT. The cutoff
wavenumbers are selectable indices.

The DFT is equally applicable to 2-D discrete-space signals.
For an (M×N) image x[m, n], the wavenumber space (�1, �2)

is discretized into

�1 = 2π
k1

M
, k1 = 0, 1, . . . ,M − 1, (10.19a)

�2 = 2π
k2

N
, k2 = 0, 1, . . . , N − 1, (10.19b)

and the summations in Eq. (10.11) are limited to finite ranges
extending between 0 andM−1 form and between 0 andN−1
for n. The two modifications convert the definitions for the
DSFT and its inverse given by Eqs. (10.11) and (10.12) into

X[k1, k2] =
M−1∑
m=0

N−1∑
n=0

x[m, n] e−j2π(k1(m/M)+k2(n/N))

2-D DFT

(10.20a)
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and its inverse 2-D DFT,

x[m, n] =
1

MN

M−1∑
k1=0

N−1∑
k2=0

X[k1, k2] ej2π(k1(m/M)+k2(n/N)).

Inverse 2-D DFT

(10.20b)

The 2-D DFT of x[m, n] can be computed rapidly using a
2-D version of the FFT. In MATLAB/Mathscript, the 2-D DFT
of the image stored in array X can be computed using

fft2(X)=fft(fft(X).’),

which applies the 1-D FFT to each row, and then to each column.
The orders M and N of the 2-D DFT can be made larger than
the size of the image by zero-padding the image, just as in 1-D
(see Section 8-8).

Image processing is usually performed using batch process-
ing, often using the 2-D DFT, computed using the 2-D FFT.
The FFT is even more important in 2-D than in 1-D, since 2-D
images often contain more samples (pixels) than 1-D signals.

10-3.1 2-D Cyclic Convolution

The 1-D cyclic convolution of two finite-duration signals was
presented in Section 7-15.5. The cyclic aspect is a consequence
of converting the nonperiodic signals into periodic signals in
preparation for applying the DFT to compute their spectra.

For two images of equal size, with M rows and N columns,
the 2-D cyclic convolution consists of a 1-D cyclic convolution
applied to each row, and then to each column, or vice versa.
The 2-D extension of Eq. (7.184) is

yc[m, n] = x1[m, n] c© c© x2[m, n]
= DFT−1(X1[k1, k2] X2[k1, k2])

= 1

MN

M−1∑
k1=0

N−1∑
k2=0

X1[k1, k2] X2[k1, k2]

· ej2π(k1(m/M)+k2(n/N)). (10.21)

Example 10-3: Cyclic Convolution of Two 2 × 2 Images

This example is intended to demonstrate the procedure involved
in the application of the DFT method to compute the cyclic
convolution of two images. Hence, image size is limited to 2×2.

Apply the DFT method to obtain the cyclic convolution of

x1[m, n] =
[

1 2
3 4

]
, x2[m, n] =

[
5 6
7 8

]
.

Solution:WithM = N = 2, application of Eq. (10.20a) yields

X1[k1, k2] =
[

10 −2
−4 0

]
, X2[k1, k2] =

[
26 −2
−4 0

]
.

Their point-by-point product is

X1[k1, k2] X2[k1, k2] =
[

10 × 26 (−2)× (−2)
(−4)× (−4) 0 × 0

]

=
[

260 4
16 0

]
.

From Eq. (10.21), the cyclic convolution of x1[m, n] and
x2[m, n] can be obtained from the inverse 2-D DFT of
X1[k1, k2] X2[k1, k2], which yields

yc[m, n] = 1

22

[
260 + 4 + 16 260 + 16 − 4
260 + 4 − 16 260 − 4 − 16

]
=
[

70 68
62 60

]
.

This 2-D cyclic convolution can be implemented in MAT-
LAB/Mathscript as

FX=fft2([1 2;3 4]);FY=fft2([5 6;7 8]);
Y=real(ifft2(FX.*FY));

Concept Question 10-4: Is there a 2-D version of the
FFT? (See        )

10-4 Downsampling and Upsampling
of Images

The concepts of downsampling (decimation) and upsampling
(zero-padding) and interpolation generalize directly from
1-D signals to 2-D images. Downsampling in 2-D involves
downsampling in both directions. For example:

x[m, n] (2,3) x[2m, 3n].
The downsampling factor in this case is 2 along the vertical
direction and 3 along the horizontal direction. To illustrate the
process, we apply it to a 5 × 7 image:⎡
⎢⎢⎢⎢⎣

1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35

⎤
⎥⎥⎥⎥⎦ (2,3)

⎡
⎣ 1 4 7

15 18 21
29 32 35

⎤
⎦ .
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Upsampling in 2-D involves upsampling in both directions.
Upsampling a signal x[m, n] by a factor 2 along the vertical
and by a factor 3 along the horizontal, for example, is denoted
symbolically as

x[m, n] (2,3)

⎧⎪⎨
⎪⎩
x
[
m
2 ,

n
3

]
for m = integer multiple of 2

and n = integer multiple of 3,

0 otherwise.

Applying this upsampling operation to a simple 2 × 2 image
yields

[
1 2
3 4

]
(2,3)

⎡
⎢⎢⎣

1 0 0 2
0 0 0 0
3 0 0 4
0 0 0 0

⎤
⎥⎥⎦ .

Downsampling and upsampling are used extensively in image
processing operations. A few examples follow.

10-4.1 Thumbnail Images

Thumbnail images are miniature-size versions of full-size
images, designed to contain sufficient detail so as to resemble
their full-size parents, but with only a fraction of the number
of pixels contained in the parent images. The size reduction
allows for the simultaneous use of many thumbnail images on
computer screens and in printed matter.

Reducing the size of an image is accomplished by
downsampling it, but the downsampling step should be
preceded with a lowpass-filtering step to avoid introducing
aliasing into the downsampled image. Specifically, if x[m, n] is
the original full-size image, xth[m, n] is the thumbnail image to
be created from x[m, n], and the size reduction factor is L×L,
the two-step process is:

Step 1: Apply lowpass filtering to x[m, n] using a brickwall
lowpass filter with cutoff wavenumber �0 = π/L in both
directions. The process reduces the maximum wavenumber of
X(ej�1 , ej�2) from π to π/L. The lowpass-filtered image is
denoted x̃[m, n].

Step 2: Downsample the filtered image x̃[m, n] by a factorL
in both directions. The result is the thumbnail image xth[m, n],
which satisfies the Nyquist criterion, and therefore is immune
to aliasing. The filtering step reduces the wavenumber range by
a factor of L and the downsampling increases it by the same
factor. Hence, the maximum wavenumber of the thumbnail
image is again � = π . The lowpass filter eliminates aliasing.

To illustrate the process with an example, let us consider
the clown image shown in Fig. 10-4(a), which is composed

of 200 × 200 pixels. Our goal is to downsample by L = 4
in both directions. Figure 10-4(b) displays a downsampled
version of the original image x[m, n], without the a priori
application of lowpass filtering. For comparison, the image
shown in Fig. 10-4(c) had undergone lowpass filtering
before downsampling. The latter image is a better thumbnail
representation than the former, because the absence of the
lowpass filtering step allowed aliasing to occur in the
downsampling process.

10-4.2 Upsampling and Interpolating Small
Images

Sometimes we may need to create a large image from a small 
one; i.e., to perform the reverse of the thumbnail image 
process. Enlarging an M × M image by an integer factor L to 
LM × LM requires upsampling and interpolation. The 
upsampling involves multiplying the number of rows and 
columns by L and inserting many zeros, and the interpolation 
entails subjecting the upsampled image to a lowpass filter with 
a cutoff wavenumber �0 = π/L and gain L2. Application of 
the two-step process to the thumbnail image in Fig. 10-4(c) 
led to the image in Fig. 10-5, which should be identical with 
the lowpass-filtered version of the original clown image of 
Fig. 10-4(a).

Concept Question 10-5: Why is lowpass filtering before
downsampling needed to produce a thumbnail image?
(See        )

10-5 Image Denoising

The spectral content of an image carries information about the 
spatial variability contained in the image. Low wavenumbers 
in the spectrum are associated with slowly varying 
spatial tones across the image, and high wavenumbers are 
associated with fast (sudden) spatial variations, such as 
edges between high (white) and low (dark) brightness levels. 
Consequently, the distribution of energy in the wavenumber 
spectrum depends on the shapes and sizes of the objects 
contained in the image, as well as on the degree of 
tonal contrast between the different objects or between the 
objects and the background.

Noise also has a spectrum and the shape of the noise 
spectrum is related to the mechanism that generates the noise, 
but in most circumstances the noise behaves like a Gaussian 
random process. In communication systems, white noise refers 
to a zero-mean random process with a Gaussian amplitude 
distribution (Section 6-10.1). Its corresponding spectrum has a 
(“flat”) uniform distribution in the frequency domain, akin to 
white light containing spectral components of 
all colors. 
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Figure 10-4: (a) Clown image x[m, n], (b) image xd[m, n], obtained by downsampling x[m, n] by L = 4 in both directions, (c) x̃d[m, n],
obtained by lowpass filtering x[m, n] with a lowpass filter with cutoff wavenumber �0 = π/4, followed by downsampling by a factor of 4.
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Figure 10-5: Image x̃[m, n], generated by upsampling and
interpolating image x̃d[m, n] in Fig. 10-4(c).

  In an image, the pixel intensity is often non-negative, so 
the zero  reference is some level intermediate between the 
tones of black and very bright white.

Image denoising refers to the (partial) removal of additive 
noise from an image. A relatively simple way to denoise an 
image is to set the high-wavenumber components of the noisy 
image to zero, which can be implemented using a 2-D 
brickwall lowpass filter.An important consideration is the 
cutoff wavenumber �c selected for the filter, relative to the 
image spectrum. Consider, for example, the 1-D image 
spectrum shown in Fig. 10-6, corresponding to a single row of 
a particular image.

Ω
Ωc1Ωc2

Image spectrum Filter 2 Filter 1

Noise spectrum

Figure 10-6: 1-D spectrum of a single image row (black), noise spectrum (red), and spectra of two candidate brickwall lowpass filters (blue).

   Also shown is the white noise spectrum, and lowpass spectra 
for two candidate filters. Filter #1 preserves most of the image 
spectrum (thereby preserving edges of objects), but does not 
remove much of the noise. In contrast, Filter #2 removes 
much more of the noise, but by filtering out high-wavenumber 
components, it also blurs the edges of objects in the image.

To illustrate with a real image example, we started with 
the image shown earlier in Fig. 10-2(a). The image size is 
256× 256 and the (signal) pixel amplitude xs[m, n] was set at 0 
for black pixels and at 255 for white pixels. Next, noise xn[m, n] 
was added to each pixel of the image xs[m, n]. Each value of 
xn[m, n] had a random value between 0 and 500. Consequently, 
the amplitudes of the noisy image,

y[m, n] = xs[m, n] + xn[m, n],
have a range from 0 to a maximum of 755. The noisy image is 
displayed in Fig. 10-7(a).

Recall from Section 6-10.2 that the signal-to-noise ratio 
(SNR) is a measure of how significant (or insignificant) the 
presence of noise is and the degree to which it is likely to distort 
the information carried by the signal. For a 2-D image, SNR in 
dB is defined as

(10.22)

where xs[m, n] is the amplitude of the noise-free image pixel
(m, n), xn[m, n] is the amplitude of the noise added to pixel
(m, n), and the summations are performed over all image
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Figure 10-7: Image denoising by three lowpass filters with different cutoff wavenumbers.
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pixels. For the synthesized image shown in Fig. 10-7(a),
SNR = −12.8 dB, which means that the total signal power
across the image is only 5% of the total noise added to the
image. In other words, the image is very noisy!

A colormap depiction of the spectrum of the noisy image
is shown in Fig. 10-7(b), which also is 256 × 256 pixels.
In � space, spectrum pixel (128, 128) corresponds to the dc
value (�1, �2) = (0, 0) of the spectrum. For the purpose of
comparison, three new images were generated, all displayed
along the left-hand side of Fig. 10-7, and their corresponding
spectra are displayed in the right-hand column. To generate the
filtered image shown in Fig. 10-7(c), we applied a brickwall
lowpass filter with cutoff wavenumber �c1 = 75π/128 to the
spectrum of the noisy image, and then transformed the filtered
spectrum back to the spatial domain. Similar processes with
narrower filters were applied to the spectra in parts (f) and (h)
of Fig. 10-7.

Comparison of the filtered images provides a qualitative
sense of what happens to the image as the cutoff wavenumber
is moved progressively towards the center of the spectrum.

(a) The spectrum of the original noisy image in Fig. 10-7(a)
extends to ±π .

(b) The spectrum of the image in Fig. 10-7(c) extends to
±75π/128, or approximately (75/128)2 = 34% of the central
spectrum of the original noisy image. Some of the noise has
been removed, without distorting the shapes of the letters.

(c) Narrowing the spectrum to (50/128)2 ≈ 15% of the
spectrum of the original noisy image removes more noise, and
the shapes of the letters are only slightly distorted (Fig. 10-7(e)).

(d) The narrowest filter removes all but (25/128)2 ≈ 4%
of the image spectrum. Consequently, the edges of the letters
appear fuzzy (Fig. 10-7(g)).

These images illustrate the trade-off inherent in lowpass
filtering; we can reduce noise, but at the expense of distorting
the image.

Concept Question 10-6: What is the trade-off inherent in
denoising using the 2-D DFT? (See        )

Exercise 10-2: Use LabVIEW Module 10.2 to denoise
the letters image using a lowpass filter. Set “K” to 0.5, L 
to 5, and noise level to 100.

Answer:

10-6 Edge Detection

An edge in an image is a sharp boundary between two different
regions of an image. Here “sharp” means a width of at most a
few pixels, and a “boundary” means that significant differences
exist in the pixel values between the two sides of the edge.
“Significant” is not clearly defined; its definition depends on
the characteristics of the image and the reason why edges are
of interest. This is a nebulous definition, but there is no uniform
definition of an edge.

The goal of edge detection is to determine the locations [m, n]
of edges in an image x[m, n]. Edge detection is used to segment
an image into different regions, or to determine the boundaries
of a region of interest. For example, a medical image may
consist of different human organs. Interpretation of the image
is easier if (say) the region of the image corresponding to the
pancreas is identified separately from the rest of the image.
Identification of a face is easier if the eyes in an image of the
face are identified as a region separate from the rest of the image
of the face. Ideally, an edge is a contour that encloses a region
of the image whose values differ significantly from the values
around it. Edge detection also is important in computer vision.
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Module 10.2 Denoising a Noisy Image Using 
Lowpass Filtering This module adds noise to the 
“letters” image and convolves it in both directions with a 
sinc function to which a Hamming window of length L 
is applied. The cutoff and noise level are selectable 
parameters. The goal is to demonstrate the trade-offs in 
filtering a noisy image.

10-6.1 1-D Edge Detection

We start by examining a simple 1-D edge-detection method,
as it forms the basis for a commonly used 2-D edge-detection
algorithm.

An obvious approach to detecting the locations of sharp
changes in a 1-D signal x(t) is to compute its derivative
x′(t) = dx/dt . Rapid changes of x(t) with t generate
derivatives with large magnitudes, and slow changes generate
derivatives with small magnitudes. The times t0 at which |x′(t0)|
is large represent potential edges of x(t). The threshold for
“large” has to be defined in the context of the signal x(t) itself.

For a 1-D discrete-time signal x[n], the discrete-time
counterpart to the derivative is the difference operator

d[n] = x[n+ 1] − x[n]. (10.23)

(a) x[n]

(b) y[n]

(c) z[n] with ∆ = 1

x[n]

n0 5 10 15 20 25 300

2

4

6

y[n]

n

0 5 10 15 20 25 30−2

0

2

4

n
0 5 10 15 20 25 30

0

0.5

1

z[n]

Figure 10-8: Edge detection by thresholding absolute values of
differences: (a) original signal x[n], (b) y[n] = x[n+ 1]−x[n],
(c) z[n] with 	 = 1.

The difference d[n] is large when x[n] changes rapidly with n,
making it possible to easily pinpoint the time n0 of an edge. As
simple as it is, computing the difference d[n] and thresholding
|d[n]| is a very effective method for detecting 1-D edges. If the
threshold is set at a value 	, the edge-detection algorithm can
be cast as

z[n] =
{

1 for |d[n]| > 	,

0 for |d[n]| < 	.
(10.24)

The times ni at which z[ni] = 1 denote the edges of x[n].
Specification of the threshold level	 depends on the character
of x[n]. In practice, for a particular class of signals, the
algorithm is tested for several values of	 so as to determine the
value that provides the best results for the intended application.

For the signal x[n] displayed in Fig. 10-8(a), the difference
operator d[n] was computed using Eq. (10.24) and then plotted
in Fig. 10-8(b). It is evident that |d[n]| exhibits significant
values atn = 5, 14, and 21. Setting	 = 1 would detect all three
edges, as shown in part (c) of the figure, but had we chosen 	
to be 2, for example, only the edge at n = 15 would have been
detected. The choice depends on the intended application.
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n
m

0

0

(m1,n0)

n0

VE
@ n0

(m2,n0)

Figure 10-9: Vertical edge VE at n = n0 extends from m = m1
to m = m2.

10-6.2 2-D Edge Detection

The 1-D edge detection method can be extended to edge
detection in 2-D images. Let us define a vertical edge (VE) as
a vertical line at n = n0, extending from m = m1 to m = m2,
as shown in Fig. 10-9. That is,

VE = { [m, n]: m1 ≤ m ≤ m2; n = n0 }. (10.25)

The total length of VE is (m2 −m1 + 1).
One way to detect a vertical edge is to apply the difference

operator given by Eq. (10.23) to each row of the image. In 2-D,
the difference operator for row m is given by

d[m, n] = x[m, n+ 1] − x[m, n]. (10.26)

If d[m, n] satisfies a specified threshold for a group of
continuous pixels (all at n = n0) extending between m = m1
and m2, then we call the group a vertical edge. In real images,
we may encounter situations where d[m, n] may exhibit a large
magnitude, but it is associated with a local variation in tone,
not an edge. A vertical edge at n = n0 requires that not only
d[m, n0] at row m be large, but also that d[m+ 1, n0] at the
row abovem and d[m−1, n0] at the row below rowm be large
as well. All three differences should be large and of the same
polarity in order for the three pixels to qualify as a vertical edge.

This requirement suggests that a vertical edge detector should
not only compute horizontal differences, but also vertical sums
of the differences. The magnitude of a vertical sum becomes an
indicator of the presence of a true vertical edge. A relatively
simple edge operator is illustrated in Fig. 10-10 for both

(a) dH[m,n]

−10

0
0 −2

−1

1
2
1

Pixel [m,n]

(b) dV[m,n]

12

−2
0 0

−1

1
0

−1

Figure 10-10: Point spread functions dH[m, n] (in red) and
dV[m, n] (in blue).

a horizontal-direction vertical-edge detector dH[m, n] and
a vertical-direction horizontal-edge detector dV[m, n]. Each
detector consists of a 3 × 3 window centered at the pixel of
interest. Detector dH[m, n] computes the difference between
the values of pixel [m, n+ 1] and pixel [m, n− 1], whose
positions are to the left and right of pixel [m, n], respectively.
Similar differences are performed for the row above and the row
below rowm. Then, the three differences are added up together,
with the middle difference assigned twice the weight of the two
other differences. The net result is

dH[m, n] = x[m+ 1, n+ 1] − x[m+ 1, n− 1]
+ 2x[m, n+ 1] − 2x[m, n− 1]
+ x[m− 1, n+ 1] − x[m− 1, n− 1].

(10.27)

The coefficients of the six terms of Eq. (10.27) are the nonzero
weights shown in Fig. 10-10(a).
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Computing dH[m, n] for every pixel is equivalent to
convolving image x[m, n] with the window’s point spread
function hH[m, n] along the horizontal direction. That is,

dH[m, n] = x[m, n] ∗ ∗hH[m, n], (10.28)

with

hH[m, n] =
⎡
⎣1 0 −1

2 0 −2
1 0 −1

⎤
⎦ . (10.29)

To compute dH[m, n] for all pixels [m, n] in the image, it is
necessary to add an extra row above of and identical with the
top row, and a similar add-on is needed at the bottom end of
the image. The decision as to whether or not a given pixel is
part of a vertical edge is made by comparing the magnitude of
dH[m, n] with a predefined threshold	whose value is selected
heuristically (based on practical experience for the class of
images under consideration).

Horizontal edges can be detected by a vertical-direction edge
detector dV[m, n] given by

dV[m, n] = x[m, n] ∗ ∗hV[m, n], (10.30)

where hV[m, n] is the point spread function (PSF) for a pixel
(m, n). By exchanging the roles of the rows and column in
Eq. (10.29), we have

hV[m, n] =
⎡
⎣ 1 2 1

0 0 0
−1 −2 −1

⎤
⎦ . (10.31)

Of course, most edges are neither purely horizontal nor purely
vertical, so an edge at an angle different from 0◦ or 90◦ (with
0◦ denoting the horizontal dimension of the image) should
have edge components along both the horizontal and vertical
directions. Hence, the following edge-detection gradient is
often used:

g[m, n] =
√
d2

H[m, n] + d2
V[m, n] . (10.32)

For each pixel [m, n], we define the edge indicator z[m, n] as

z[m, n] =
{

1 if g[m, n] > 	,

0 if g[m, n] < 	,
(10.33)

where 	 is a prescribed gradient threshold. In the image,
pixels for which z[m, n] = 1 are shown in white, and those
with z[m, n] = 0 are shown in black. Usually, the value of 	
is selected empirically by examining a histogram of g[m, n] or
through repeated trials.

n
m

(a) Letters image

(b) Edge-detected image
50 100 150 200 250

50

100

150

200

250

Figure 10-11: Application of the Sobel edge detector to the
image in (a) with 	 = 200 led to the image in (b).

Sobel edge detector examples

The gradient algorithm given by Eq. (10.33) is known as the
Sobel edge detector, named after Irwin Sobel, who developed
it in 1968, when computer-based image processing was in its
infancy and only simple algorithms could be used. Application
of the Sobel edge detector to the letters image in part (a) of
Fig. 10-11 leads to the image in part (b). Through repeated
applications using different values of 	, it was determined
that 	 = 200 provided an image with clear edges, including
diagonal and curved edges. The value specified for 	 depends
in part on the values assigned to black and white tones in the
image.

The Sobel edge detector does not always capture all of
the major edges contained in an image. When applied to the
clown image of Fig. 10-12(a), the edge detector identified
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(b) Sobel edge-detected image

Figure 10-12: Application of the Sobel edge detector to the
image in (a) captures some of the edges in the image, but also
misses others.

some parts of continuous edges, but failed to identify others,
which suggests the need for a detector that can track edges and
complete edge contours as needed. Such a capability is provided
by the Canny edge detector, the subject of the next subsection.

10-6.3 Canny Edge Detector

The Canny edge detector is a commonly used algorithm that
extends the capabilities of the Sobel detector by applying
preprocessing and postprocessing steps. The preprocessing step

involves the use of a 2-D Gaussian PSF to reduce image noise
and to filter out isolated image features that are not edges.
After computing the Sobel operator given by Eq. (10.32), the
Canny algorithm performs an edge thinning step, separating
detected edges into different candidate categories, and then
applies certain criteria to decide whether or not the candidate
edges should be connected together. The five-step process of
the Canny detection algorithm are:

Step 1: Image x[m, n] is blurred (filtered) by convolving it
with a truncated Gaussian point spread function. An example
of a practical function that can perform the desired operation is
the 5 × 5 PSF given by

hG[m, n] = 1

159

⎡
⎢⎢⎢⎢⎣

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

⎤
⎥⎥⎥⎥⎦ . (10.34)

The standard deviation of the truncated Gaussian function is
1.4.

Application of hG[m, n] to image x[m, n] generates a filtered
image x1[m, n] given by

x1[m, n] = hG[m, n] ∗ ∗x[m, n]. (10.35)

Step 2: For image x1[m, n], compute the horizontal and vertical
edge detectors given by Eqs. (10.28) and (10.30).

Step 3: Compute the gradient magnitude and orientation:

g[m, n] =
√
d2

H[m, n] + d2
V[m, n] (10.36a)

and

θ [m, n] = tan−1
(
dV[m, n]
dH[m, n]

)
. (10.36b)

For a vertical edge, dV[m, n] = 0, and therefore θ [m, n] = 0.
Similarly, for a horizontal edge, dH[m, n] = 0 and θ = 90◦.

Step 4: At each pixel [m, n], round θ [m, n] to the nearest
of { 0◦, 45◦, 90◦, 135◦ }. Next, determine whether to keep the
value of g[m, n] of pixel [m, n] as is or to replace it with zero.
The decision logic is as follows:

(a) For a pixel [m, n] with θ [m, n] = 0◦, compare the value
of g[m, n] to the values of g[m, n+ 1] and g[m, n− 1],
corresponding to the pixels at the immediate right and left of
pixel [m, n]. If g[m, n] is the largest of the three gradients, keep
its value as is; otherwise, set it to zero.
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(b) For a pixel [m, n] with θ = 45◦, compare the value of
g[m, n] to the values of g[m+ 1, n− 1] and g[m− 1, n+ 1],
corresponding to the pixel neighbors along the 45◦ diagonal. If
g[m, n] is the largest of the three gradients, keep its value as is;
otherwise, set it to zero.

(c) For a pixel [m, n] with θ = 90◦, compare the value
of g[m, n] to the values of g[m− 1, n] and g[m+ 1, n],
corresponding to pixels immediately above and below pixel
[m, n]. If g[m, n] is the largest of the three gradients, keep its
value as is; otherwise, set it to zero.

(d) For a pixel [m, n] with θ = 135◦, compare the value of
g[m, n] to the values of g[m− 1, n− 1] and g[m+ 1, n+ 1].
If g[m, n] is the largest of the three gradients, keep its value as
is; otherwise, set it to zero.

The foregoing operation is called edge thinning, as it avoids
making an edge wider than necessary in order to indicate its
presence.

Step 5: Replace the edge indicator algorithm given by
Eq. (10.33) with a double-threshold algorithm given by

z[m, n] =

⎧⎪⎨
⎪⎩

2 if g[m, n] > 	2,

1 if 	1 < g[m, n] < 	2,

0 if g[m, n] < 	1.

(10.37)

The edge indicator z[m, n] may assume one of three values,
indicating the presence of an edge (z[m, n] = 2), the possible
presence of an edge (z[m, n] = 1), and the absence of an edge
(z[m, n] = 0). The middle category requires resolution into one
of the other two categories. This is accomplished by converting
pixel [m, n] with z[m, n] = 1 into an edge if any one of its
nearest 8 neighbors is a confirmed edge. That is, pixel [m, n] is
an edge location only if it adjoins another edge location.

The values assigned to thresholds 	1 and 	2 are selected
through multiple trials. For example, the clown edge-image
shown in Fig. 10-13 was obtained by applying the Canny
algorithm to the clown image with	1 = 0.05 and	2 = 0.125.
This particular combination provides an edge-image that
successfully captures the contours that segment the clown
image.

Edge detection can be implemented in MATLAB’s Image
Processing Toolbox using the commands

E=edge(X,’sobel’,T1) for Sobel and

E=edge(X,’canny’,T1,T2) for Canny.

(b) Canny edge-detected image

Figure 10-13: The Canny edge detector provides better edge-
detection performance than the Sobel detector in Fig. 10-12.

The image is stored in array X, the edge image is stored in
array E and T1 and T2 are the thresholds. MATLAB assigns
default values to the thresholds, computed from the image, if
they are not specified.

Concept Question 10-7: What is the general concept
behind edge detection? (See        )
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10-7 Image Deconvolution

When our eyes view a scene, they form an approximate image of
the scene, because the optical imaging process performed by the
eyes distorts the true scene, with the degree of distortion being
dependent on the imaging properties of the eyes’ lenses. The
same is true when imaging with a camera, a medical imaging
system, and an optical or radio telescope. Distortion can also be
caused by the intervening medium between the imaged scene
and the imaging sensor. Examples include the atmosphere when
a telescope is used to image a distant object, or body tissue when
a medical ultrasound sensor is used to image body organs. In
all cases, the imaging process involves the convolution of a
true image scene x[m, n] with a point spread function h[m, n]
representing the imaging sensor (and possibly the intervening
medium). The recorded (sensed) image y[m, n] is, therefore,
given by

y[m, n] = h[m, n] ∗ ∗x[m, n]. (10.38)

The goal of image deconvolution is to deconvolve the recorded
image so as to extract the true image x[m, n], or a close
approximation of it. Doing so requires knowledge of the PSF
h[m, n]. In terms of size:

• x[m, n] is the unknown true image, with size (M ×M).

• h[m, n] is the known PSF, with size (L× L).

• y[m, n] is the known recorded image, with size
(L+M − 1)× (L+M − 1).

As noted earlier, the PSF of the imaging sensor can be
established by imaging a small object representing an impulse.

Since convolution in the discrete-time domain translates into
multiplication in the frequency domain, the DSFT-equivalent
of Eq. (10.38) is given by

Y(ej�1 , ej�2) = H(ej�1 , ej�2) X(ej�1 , ej�2). (10.39)

Before we perform the frequency transformation of y[m, n], we
should round up (L+M − 1) to N , where N is the smallest
power of 2 greater than (L+M − 1). The rounding-up step
allows us to use the fast radix-2 2-D FFT to compute 2-D DFTs
of order (N×N).Alternatively, the Cooley-Tukey FFT (Section
7-17) can be used, in which case N should be an integer with a
large number of small factors.

Sampling the DSFT at �1 = 2πk1/N and �2 = 2πk2/N

for k1 = 0, 1, . . . , N − 1 and k2 = 0, 1, . . . , N − 1 provides
the DFT complex coefficients Y[k1, k2].

A similar procedure can be applied to h[m, n] to obtain
coefficients H[k1, k2], after zero-padding h[m, n] so that it also
is of size (N ×N). The DFT equivalent of Eq. (10.39) is then
given by

Y[k1, k2] = H[k1, k2] X[k1, k2]. (10.40)

The objective of deconvolution is to compute the DFT
coefficients X[k1, k2], given the DFT coefficients Y[k1, k2] and
H[k1, k2].

10-7.1 Nonzero H[k1, k2] Coefficients

In the ideal case where none of the DFT coefficients H[k1, k2]
are zero, the DFT coefficients X[k1, k2] of the unknown image
can be obtained through simple division,

X[k1, k2] = Y[k1, k2]
H[k1, k2] . (10.41)

Exercising the process for all possible values of k1 and k2 leads
to an (N ×N) 2-D DFT for X[k1, k2], whereupon application
of an inverse 2-D DFT process yields a zero-padded version of
x[m, n]. Upon discarding the zeros, we obtain the true image
x[m, n]. The deconvolution procedure is straightforward, but
it hinges on a critical assumption, namely that none of the
DFT coefficients of the imaging system’s transfer function is
zero. Otherwise, division by zero in Eq. (10.41) would lead to
undeterminable values for X[k1, k2].

10-7.2 Image Deconvolution Example

To demonstrate the performance of the deconvolution process,
we used a noise-free version of the letters image, shown in
Fig. 10-14(a), which we denote x[m, n]. Then, we convolved it
with a truncated 2-D Gaussian PSF (a common test PSF) given
by

h[m, n] = e−(m2+n2)/20, −10 ≤ m, n ≤ 10. (10.42)

The PSF represents the imaging system. The convolution
process generated the blurred image shown in Fig. 10-14(b),
which we label y[m, n]. The image sizes are:

• Original letters image x[m, n]: 256 × 256

• Gaussian PSF h[m, n]: 21 × 21

• Blurred image y[m, n]: 256 + 21 − 1 = 276 × 276
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(c) Deconvolved image x[m,n]

Figure 10-14: The blurred image in (b) was generated by
convolving x[m, n] with a Gaussian PSF, and the image in (c)
was recovered through deconvolution of y[m, n].

After zero-padding all three images to 280 × 280, the Cooley-
Tukey 2-D FFT was applied to all three images using the
recipe in Section 7-17. Then, Eq. (10.41) was applied to find

coefficients X[k1, k2], which ultimately led to the deconvolved
image x[m, n] displayed in Fig. 10-14(c). The deconvolved
image matches the original image shown in Fig. 10-14(a).
The process was successful because none of the H[k1, k2]
coefficients had zero (or near-zero) values and Y[k1, k2] was
noise-free.

10-7.3 Tikhonov Image Regularization

All electronic imaging systems generate some noise of their
own. The same is true for the eye-brain system. Hence,
Eq. (10.40) should be modified to

Y[k1, k2] = H[k1, k2] X[k1, k2] + V[k1, k2], (10.43)

where V[k1, k2] represents the spectrum of the additive noise
contributed by the imaging system.The known quantities are the
measured image Y[k1, k2] and the PSF of the system, H[k1, k2],
and the sought-out quantity is the true image X[k1, k2]. Dividing
both sides of Eq. (10.43) by H[k1, k2] and solving for X[k1, k2]
gives

X[k1, k2] = Y[k1, k2]
H[k1, k2] − V[k1, k2]

H[k1, k2] . (10.44)

In many practical applications, H[k1, k2] may assume very
small values for large values of (k1, k2). Consequently, the
second term in Eq. (10.44) may end up amplifying the noise
component and may drown out the first term. To avoid the noise-
amplification problem, the deconvolution can be converted into
a regularized estimation process. Regularization involves the
use of a cost function that trades off estimation accuracy
(of x[m, n]) against measurement precision. The process
generates an estimate x̂[m, n] of the true image x[m, n].
Accuracy refers to a bias associated with all pixel values of
the reconstructed image x̂[m, n] relative to x[m, n]. Precision
refers to the ± uncertainty associated with each individual pixel
value due to noise.

A commonly used regularization model is the Tikhonov
regularization, which seeks to minimize the cost function

e =
N−1∑
m=0

N−1∑
n=0

[(y[m, n]−h[m, n]∗∗x̂[m, n])2 + (λ x̂[m, n])2],
(10.45)

where zero-padding to sizeN×N has been implemented so that
all quantities in Eq. (10.45), except for λ, are of the same order.
The parameter λ is non-negative and it is called a regularization
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parameter. The first term on the right-hand side of Eq. (10.45)
represents the bias error associated with x̂[m, n] and the second
term represents the variance. Setting λ = 0 reduces Eq. (10.45)
to the unregularized state we dealt with earlier in Section 10-7.1,
wherein the measurement process was assumed to be noise-free.
For realistic imaging processes, λ should be greater than zero,
but there is no simple method for specifying its value, so usually
its value is selected heuristically (trial and error).

The estimation process may be performed iteratively in the
discrete-time domain by selecting an initial estimate x̂[m, n]
and then recursively iterating the estimate until the error e
approaches a minimum level. Alternatively, the process can be
performed in the frequency domain using a Wiener filter, as
discussed next.

10-7.4 Wiener Filter

The frequency domain DFT equivalent of the Tikhonov cost
function given by Eq. (10.45) is

E = 1

MN

N−1∑
k1=0

N−1∑
k2=0

[|Y[k1, k2] − H[k1, k2] X̂[k1, k2]|2

+ λ2|X[k1, k2]|2]. (10.46)

The error can be minimized separately for each (k1, k2)

combination. The process can be shown (Problem 10.5) to lead
to the solution

X̂[k1, k2] = Y[k1, k2] H∗[k1, k2]
|H[k1, k2]|2 + λ2 , (10.47)

where H∗[k1, k2] is the complex conjugate of H[k1, k2].
The quantity multiplying Y[k1, k2] is called a Wiener filter
G[k1, k2]. That is,

X̂[k1, k2] = Y[k1, k2] G[k1, k2], (10.48a)

with

G[k1, k2] = H∗[k1, k2]
|H[k1, k2]|2 + λ2 . (10.48b)

The operation of the Wiener filter is summarized as follows:

(a) For values of (k1, k2) such that |H[k1, k2]| 
 λ, the
Wiener filter implementation leads to

X̂[k1, k2] ≈ Y[k1, k2] H∗[k1, k2]
|H[k1, k2]|2 = Y[k1, k2]

H[k1, k2] , (10.49a)

which is the same as Eq. (10.41).
(b) For values of (k1, k2) such that |H[k1, k2]| � λ, the

Wiener filter implementation leads to

X̂[k1, k2] ≈ Y[k1, k2] H∗[k1, k2]
λ2 . (10.49b)

In this case, the Wiener filter may underestimate the value of 
X̂[k1, k2], but it avoids the noise amplification problem that 
would have occurred with the use of the unregularized 
deconvolution given by Eq. (10.41).

Wiener filter deconvolution example

To demonstrate the capabilities of the Wiener filter, we 
compare image deconvolution performed with and without 
regularization. The demonstration process involves images at 
various stages, namely:

• x[m, n]: true letters image (Fig. 10-15(a)).

• y[m, n] = h[m, n] ∗ ∗x[m, n]+ v[m, n]: the imaging pro-
cess not only distorts the image (through the PSF), but
also adds random noise v[m, n]. The result, displayed in
Fig. 10-15(b), is an image with signal-to-noise ratio of
10.8 dB, which means that the random noise energy is
only about 8% of that of the signal.

• x̂1[m, n]: estimate of x[m, n] obtained without regulariza-
tion (i.e., using Eq. (10.41)). Image x̂1[m, n], displayed in
Fig. 10-15(c), does not show any of the letters present in
the original image, despite the fact that the noise level is
small relative to the signal.

• x̂2[m, n]: estimate of x[m, n] obtained using the Wiener
filter of Eq. (10.47) with λ2 = 5. The deconvolved image
(Fig. 10-15(d)) displays all of the letters contained in the
original image, but some high wavenumber noise also is
present (see S2 for more details).

10-7.5 Median Filtering

Median filtering is used to remove salt-and-pepper noise, often
due to bit errors or shot noise associated with electronic devices.
The concept of median filtering is very straightforward:
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Figure 10-15: (a) Original noise-free undistorted letters image x[m, n], (b) blurred image due to imaging system PSF and addition of random
noise v[m, n], (c) deconvolution using Eq. (10.41), and (d) deconvolution using Eq. (10.47) with λ2 = 5.

� A median filter of order L replaces each pixel with the
median value of theL2 pixels in theL×L block centered
on that pixel. �

For example, a median filter of orderL = 3 replaces each pixel
[m, n] with the median value of the 3 × 3 = 9 pixels centered
at [m, n]. Figure 10-16(a) shows an image corrupted with salt-
and-pepper noise, and part (b) of the same figure shows the
image after the application of a median filter of order L = 5.

Concept Question 10-8:Why is Tikhonov regularization
needed? (See        )

Exercise 10-3: Use LabVIEW Module 10.3 to
deconvolve the letters image from a noisy blurred version
of it. Set the noise level to 1000 and L to 1.

Answer: (See Module 10.3.)
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Figure 10-16: Median filtering example: (a) letters image
corrupted by salt-and-pepper noise, and (b) image after
application of median filtering using a 5 × 5 window.

Module 10.3 Deconvolution from a Noisy Blurred
Image Using Wiener Filter This module blurs the
“letters” image with the 2-D Gaussian PSF used in
Section 10-7.2, adds noise to the blurred image, and then
deconvolves the image using a Wiener filter. The noise
level and Tikhonov regularization parameter λ (L) are
selectable parameters.

10-8 Overview of the Discrete-Time
Wavelet Transform

The wavelet transform is an important signal processing tool
for representing signals or images that consist mostly of
slowly varying regions, with a few fast-varying regions. Like
the discrete Fourier transform (DFT), it represents signals or
images as a linear combination of basis functions. Because
basis functions play a vital role in this section, we begin with a
review of what they are and how they relate to signal processing.

10-8.1 Basis Functions

The general form of the decomposition of a signal x[n] into
basis functions {φk[n]} with coefficients {xk} is

x[n] =
∞∑
k=1

xk φk[n]. (10.50)

The coefficients {xk} are the transform of x[n] using the basis
functions {φk[n]}. For the DFT, for example, the basis functions
are the complex exponential functions φk[n] = ej2π(k/N)n.

Basis functions {φk[n]} should be orthogonal, which means
that, for some constant C,

∞∑
n=−∞

φi[n] φ∗
j [n] = Cδ[i − j ]. (10.51)

If the basis functions {φk[n]} are orthogonal, the coefficients xk
can be computed from x[n] using

xk = 1

C

∞∑
n=−∞

x[n] φ∗
k [n]. (10.52)

If C = 1, the basis functions are orthonormal, in which case
Parseval’s theorem holds:

∞∑
n=−∞

x2[n] =
∞∑

k=−∞
|xk|2. (10.53)

Similar relationships apply to the exponential form of the
continuous-time Fourier series, the DTFS, and the DFT. Our
current interest is in the wavelet transform.

A note on nomenclature: we use the term discrete time
wavelets to represent wavelet decompositions of discrete-
time signals and images. In the literature, the “discrete
wavelet transform” represents continuous-time signals and
images using discrete-indexed continuous-time basis wavelet
functions. The “continuous wavelet transform” represents
continuous-time signals using continuous-indexed continuous-
time basis wavelet functions. In this chapter we consider only
discrete-time signals and images.
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10-8.2 Advantage of Wavelets over DFT

One characteristic of the DFT is that signals and images, even
with only a few fast-varying segments such as edges, require
high-wavenumber complex exponentials to represent them.
Hence, most or all of the DFT values X[k1, k2] are nonzero.
In contrast, the basis functions used in wavelet transforms are
localized in time and frequency. This means that a signal that
is mostly slowly-varying but has a few localized fast-varying
regions requires only a few low-resolution basis functions to
represent the slowly-varying regions, and a few high-resolution
basis functions to represent just the localized fast-varying
regions. Many of the wavelet transform values are thus zero
(or near zero). This feature leads to the following three major
applications of wavelet transforms:

• Compression of signals and images: they are represented
in the wavelet transform domain by many fewer numbers
than in the original signal or image. The JPEG-2000 image
compression standard uses the wavelet transform.

• Compressed sensing of signals and images: since the
signal or image in the wavelet transform domain requires
many fewer numbers to represent it, it can be reconstructed
from many fewer observations than would be required to
reconstruct the original signal or image. An introduction
to compressed sensing is presented later in this chapter.

• Filtering of signals and images: since the signal or image
in the wavelet transform domain requires many fewer
numbers to represent it, thresholding small values of the
wavelet transform of a noisy signal or image to zero
reduces the noise in the original signal or image. We will
show that the combination of thresholding and shrinkage
gives results far superior to using the 2-D DFT for noise
reduction.

After this Overview section, we present the Haar wavelet
transform, which is the simplest wavelet transform, and yet
illustrates many features of the family of wavelet transforms.
We then present quadrature-mirror filters (QMFs) and derive
the Smith-Barnwell condition for perfect reconstruction of
the original signal from its wavelet transform. We conclude
our treatment of wavelets by deriving the Daubechies wavelet
function, which is the most commonly used wavelet function
because it has multiple zeros at z = 1, and so it sparsifies
many real-world signals. Finally, examples of signal and image
compression and denoising are provided.

10-8.3 Historical Overview

Wavelet transforms can be viewed as a generalization of filter
banks and subband coding. A filter bank is a set of bandpass

filters connected in parallel; each bandpass filter passes a
different range of frequencies. So the signal input into the
filter bank is separated into different components, each of
which consists of a different part of the spectrum of the
input signal. The right half of Fig. 6-65, which is a receiver
for frequency-domain-multiplexing of signals, is a filter bank
that separates the received signal into different frequency
bands (before modulating them back down to baseband). The
DFT can be viewed as an extreme case of a filter bank; the
DFT separates x[n] into individual complex exponentials at
frequencies �k = 2πk/N .

Filter banks are used in audio signal processing. In human
hearing, some frequencies cannot be heard as well as others.
Also a large component at one frequency can mask a component
at another frequency. So it makes sense to keep only the
frequency bands that humans can hear. This is the basic
idea behind coding of signals: omit the frequency bands that
contribute little to the perception of the signal. This is called
subband coding. The mp3 coding of music uses this idea (and
many others).

For sampled signals, and especially for images that are
inherently sampled into pixels, it was recognized that separating
frequency bands using a parallel bank of filters is inefficient.
Since the bandwidth of the output of each filter in a bank of
L filters is only 1

L
of the bandwidth of the original signal,

the sampling rate for each output can be reduced to 1
L

of the
sampling rate of the original signal, as discussed in Section
6-13.13 on bandpass sampling.

An efficient tree-like filter structure for separating a 1-D
sampled signal into different frequency bands (subband
decomposition) is shown in Fig. 10-17, in which g[n] is a
lowpass filter and h[n] is a highpass filter. The concept is easily
extendable to 2-D images.

The input signal x[n] with spectrum (DTFT) X(ej�) is
separated into a low-frequency-band signal xL[n] whose
spectrum is roughly

XL(e
j�) =

{
X(ej�) for 0 ≤ |�| < π/2,

0 for π/2 < |�| ≤ π,

and a high-frequency-band signal xH[n] whose spectrum is
roughly

XH(e
j�) =

{
0 for 0 ≤ |�| < π/2,

X(ej�) for π/2 < |�| ≤ π.

Each signal can be downsampled by 2 without aliasing
(see Section 6-13.3), resulting in xLD[n] = xL[2n] and
xHD[n] = xH[2n]. There are now two different signals, each
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Figure 10-17: Tree-like filter structure for subband decomposition. The diamond-shaped operations denote lowpass and highpass frequency
filters, realized through cyclic convolution.

of which is sampled only half as often as x[n], so the total
number of samples is unaltered, and each represents a different
frequency band of the original signal.

This same decomposition can then be applied to each of
the two downsampled signals xLD and xHD. This results in
four signals, each of which is sampled only one fourth as
often as x[n], so the total number of samples is the same, and
each represents a different frequency band of bandwidth π/4.
Repeating this decompositionN times,x[n] can be decomposed
into 2N signals, each of which represents a different frequency
band of bandwidth π/2N and is sampled only 1/2N as often as
x[n]. Use ofN = 5, resulting in 25 = 32 subbands, is a common
choice.

10-8.4 Significance of Wavelets

The wavelet transform differs from this subband coding in that
x[n] is not recursively decomposed explicitly into lower and
higher frequency bands, although the decomposition is still
roughly into lower and higher frequency bands. Instead, the
lower frequency bands are replaced with signals that represent
slowly-varying parts of x[n], and the higher frequency bands
are replaced with signals that represent fast-varying parts of
x[n]. The latter signals are mostly zero-valued if x[n] is slowly-
varying most of the time. Real-world signals and images do tend
to consist of mostly slowly-varying regions, containing a few
localized regions in which they are fast-varying. Wavelets are
good at representing such signals with wavelet transforms that
are mostly zero-valued.

To see why representing a signal using only a few wavelet
transform components is useful, consider periodic signals. A
periodic signal x(t) with period T0 and maximum frequency
B Hz can be represented in the frequency domain using only

BT0 frequencies, since its spectrum consists of harmonics at
frequencies k/T0 Hz for integers k. The maximum frequency
B Hz must equal N/T0 for some integer N , or equivalently,
N = BT0 frequencies. Instead of storing x(t), we can generate
it using BT0 sinusoidal generators, each of which requires only
an amplitude and phase. So x(t) can be compressed into 2BT0
(plus a dc term, if present) numbers.

If noise had been added to x(t), most of the noise can be
eliminated because any part of the spectrum of the noisy x(t)
that is not at a harmonic k/T0 Hz is noise and can be filtered
out, as was done in Sections 6-10 and 8-8. We will perform
similar actions on signals and images that are not periodic, but
which have wavelet transforms that are mostly zero-valued.
This includes many real-world signals and images.

10-8.5 Review of Cyclic Convolution

Cyclic convolutions will be used throughout forthcoming
sections to compute the wavelet transforms of signals and
images, so a short review of cyclic convolutions is in order.
Cyclic convolution was covered in Section 7-15.5.

The cyclic or circular convolution of two signals h[n] and
x[n], each having durationN , was defined earlier by Eq. (7.177)
as

yc[n] = h[n] c© x[n] =
N−1∑
i=0

h[i] x[(n− i)N ], (10.54)

where, without loss of generality,N0 has been replaced withN ,
n1 replaced with i, x1[n] replaced with h[n], and x2[n]
replaced with x[n]. Using cyclic convolutions instead of linear
convolutions amounts to sampling all DTFTs at � = 2π k

N
,

which is equivalent to replacing all DTFTs with N th-order
DFTs (see Section 7-15).
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For applications involving wavelets, the following conditions
apply:

• Batch processing is used almost exclusively. This is
because the entire original signal is known before
processing begins, so the use of noncausal filters is not
a problem.

• The order N of the cyclic convolution is the same as the
duration of the signal x[n], which usually is very large.

• Filtering x[n] with a filter h[n] will henceforth mean
computing the cyclic convolution h[n] c© x[n]. The
durationL of filter h[n] is much smaller thanN (L � N ),
so h[n] gets zero-padded (see Section 8-8.1) with (N−L)
zeros. The result of the cyclic convolution is the same as
h[n] ∗ x[n], except for the first L− 1 values, which are
aliased, and the final L− 1 values, which are no longer
present, but added to the first L− 1 values.

• Filtering x[n] with the noncausal filter h[−n] gives the
same result as the linear convolution h[−n] ∗ x[n], except
that the noncausal part of the latter will alias the finalL−1
places of the cyclic convolution.

• Zero-padding does not increase the computation, since
multiplication by zero is known to give zero, so it need
not be computed.

• For two filters g[n] and h[n], both of length L,
g[n] c© h[n] consists of g[n] ∗ h[n] followed by
N − (2L+ 1) zeros.

• As long as the final result has lengthN , linear convolutions
may be replaced with cyclic convolutions and the final
result will be the same.

To illustrate some of these properties, let h[n] = {1, 2} and
x[n] = {3, 4, 5, 6, 7, 8}. Then N = 6, L = 2, and

h[n] ∗ x[n] = {3, 10, 13, 16, 19, 22, 16}
h[n] c© x[n] = {16 + 3, 10, 13, 16, 19, 22}
h[−n] ∗ x[n] = {6, 11, 14, 17, 20, 23, 8}
h[−n] c© x[n] = {11, 14, 17, 20, 23, 6 + 8}

Note that h[n] c© x[n] is determined from h[n]∗x[n] by adding
the final value of h[n] ∗ x[n] to its initial value, and then
eliminating that final value from the sequence altogether.

10-9 Haar Wavelet Transform
The Haar transform is by far the simplest wavelet transform,
and yet it illustrates many of the concepts of how the wavelet
transform works.

10-9.1 Single-Stage Decomposition

Consider the finite-duration signal x[n]

x[n] = {a, b, c, d, e, f, g, h}. (10.55)

Define the lowpass and highpass filters with impulse responses
ghaar[n] and hhaar[n], respectively, as

ghaar[n] = {1, 1}, (10.56a)

hhaar[n] = {1,−1}. (10.56b)

Recall from Example 7-23 that the frequency responses of these
filters are the DTFTs given by

Ghaar(e
j�) = 1 + e−j� = 2 cos(�/2)e−j�/2, (10.57a)

Hhaar(e
j�) = 1 − e−j� = 2 sin(�/2)je−j�/2, (10.57b)

which have lowpass and highpass frequency responses,
respectively.

Define the average (lowpass) signal xL[n] as

xL[n] = x[n] c© ghaar[n] (10.58a)

= {a + h, b + a, c + b, d + c, e + d . . . }

and the detail (highpass) signal xH[n]

xH[n] = x[n] c© hhaar[n] (10.58b)

= {a − h, b − a, c − b, d − c, e − d . . . }.

Next, define the downsampled average signal xLD[n] as

xLD[n] = xL[2n] = {a + h, c + b, e + d, g + f } (10.59a)

and the downsampled detail signal xHD[n] as

xHD[n] = xH[2n] = {a − h, c− b, e− d, g− f }. (10.59b)

The signal x[n] of duration 8 has been replaced by the
two signals xLD[n] and xHD[n], each of durations 4, so
no information about x[n] has been lost. We use cyclic
convolutions instead of linear convolutions so that the
cumulative length of the downsampled signals equals the
length of the original signal. Using linear convolutions, each
convolution with ghaar[n] or hhaar[n] would lengthen the signal
unnecessarily.As we shall see, using cyclic convolutions instead
of linear convolutions is sufficient to recover the original signal
from its Haar wavelet transform.
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x[n]

xL[n] xLD[n] xLDU[n]
ghaar[n]

hhaar[n]
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xH[n] xHD[n]
2

x[n]

2 ghaar[−n]1
2

xHDU[n]
2 hhaar[−n]1

2

Figure 10-18: Single-stage Haar decomposition and reconstruction of x[n].

10-9.2 Single-Stage Reconstruction

The signal x[n] can be reconstructed from xLD[n] and xHD[n]
as follows:

1. Define the upsampled (zero-stuffed) signal xLDU[n] as

xLDU[n] =
{
xLD[n/2] for n even

0 for n odd

= {a + h, 0, c + b, 0, e + d, 0, g + f, 0},
(10.60a)

and the upsampled (zero-stuffed) signal xHDU[n] as

xHDU[n] =
{
xHD[n/2] for n even

0 for n odd

= {a − h, 0, c − b, 0, e − d, 0, g − f, 0}.
(10.60b)

Note that downsampling by 2 followed by upsampling by 2
replaces values of x[n] with zeros for odd times n.

2. Next, filter xLDU[n] and xHDU[n] with filters ghaar[−n]
and hhaar[−n], respectively.

As noted earlier in Section 10-8.4, the term “filter” in the
context of the wavelet transform means “cyclic convolution.”
Filters ghaar[n] and hhaar[n] are called analysis filters, because
they are used to compute the Haar wavelet transform. Their time
reversals ghaar[−n] and hhaar[−n] are called synthesis filters,
because they are used to compute the inverse Haar wavelet
transform (that is, to reconstruct the signal from its Haar wavelet
transform). The reason for using time reversals here is explained
below.

The cyclic convolutions of xLDU[n] with ghaar[−n] and
xHDU[n] with hhaar[−n] yield:

xLDU[n] c© ghaar[−n] = {a+h, c+b, c+b, . . . , a+h},
(10.61a)

xHDU[n] c© hhaar[−n] = {a − h, b − c, c − b, . . . , h− a}.
(10.61b)

3. Adding the outcomes of the two cyclic convolutions and
dividing the sum by 2 gives x[n]:
x[n] = 1

2 xLDU[n] c© ghaar[−n] + 1
2 xHDU[n] c© hhaar[−n].

(10.62)
The single-stage Haar decomposition and reconstruction is
depicted in Fig. 10-18.

It is still not evident why this is worth doing. The following
example provides a partial answer.

Consider the finite-duration (N = 16) signal x[n]:

x[n] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 for 0 ≤ n ≤ 4

1 for 5 ≤ n ≤ 9

3 for 10 ≤ n ≤ 14

4 for n = 15.

(10.63)

The Haar-transformed signals are

xLD[n] = xL[2n] = {8, 8, 8, 2, 2, 4, 6, 6},
xHD[n] = xH[2n] = {0, 0, 0, 0, 0, 2, 0, 0}. (10.64)

These can be derived as follows. We have

x[n] = {4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4},
xL[n] = x[n] c© {1, 1}

= {8, 8, 8, 8, 8, 5, 2, 2, 2, 2, 4, 6, 6, 6, 6, 7},
xH[n] = x[n] c© {1,−1}

= {0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1},
xLD[n] = xL[2n] = {8, 8, 8, 2, 2, 4, 6, 6},
xHD[n] = xH[2n] = {0, 0, 0, 0, 0, 2, 0, 0}.
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x[n]

xH[n] xHD[n]
hhaar[n]

ghaar[n]
ghaar[n]

2
xL[n] xLD[n]

xLDH[n]

xLDL[n]

2

xLDHD[n]

2 xLDLD[n]

2hhaar[n]

Figure 10-19: Two-stage Haar analysis filter bank. Note that only the upper half of the first stage is decomposed further.

The original signal x[n] can be recovered from xLD[n] and
xHD[n] by

xLDU[n] = {8, 0, 8, 0, 8, 0, 2, 0, 2, 0, 4, 0, 6, 0, 6, 0},
xHDU[n] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0},
xLDU[n] c© {1, 1} = {8, 8, 8, 8, 8, 2, 2, 2, 2, 4, 4, 6, 6, 6, 6, 8},
xHDU[n] c© {−1, 1} = {0, 0, 0, 0, 0, 0, 0, 0, 0,−2, 2, 0, 0, 0, 0, 0},
xLDU[n] c© {1, 1} + xHDU[n] c© {−1, 1}

2
=

{4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4} = x[n].
We observe that the outcome of the second cyclic convolution

is sparse (mostly zero-valued). The Haar transform allows x[n],
which has duration 16, to be represented using the eight values
of xLD[n] and the single nonzero value (and its location n = 5)
of xHD[n]. This saves almost half of the storage required for
x[n]. Hence, x[n] has been compressed by 43%.

Even though x[n] is not sparse, it was transformed, using
the Haar transform, into a sparse representation with the same
number of samples, meaning that most of the values of the Haar-
transformed signal are zero-valued. This reduces the amount
of memory required to store x[n], because only the times at
which nonzero values occur (as well as the values themselves)
need be stored. The few bits (0 or 1) required to store locations
of nonzero values are considered to be negligible in number
compared with the many bits required to store the actual nonzero
values. Since the Haar transform is orthogonal, x[n] can be
recovered perfectly from its Haar-transformed values.

10-9.3 Multistage Decomposition and
Reconstruction

In the simple example used in the preceding subsection, only
1 element of the Haar-transformed signal xHD[n] is nonzero,

but all 8 elements of xLD[n] are nonzero. We can reduce the
number of nonzero elements of xLD[n] by applying a second
Haar transform stage to it. That is, xLD[n] can be transformed
into the two signals xLDLD[n] and xLDHD[n] by applying the
steps outlined in Fig. 10-19. Thus,

xLD[n] = {8, 8, 8, 2, 2, 4, 6, 6}, 
xLDL[n] =  xLD[n] c© {1, 1}

= {14, 16, 16, 10, 4, 6, 10, 12}, 
xLDH[n] = xLD[n]   c© {1, −1}

= {2, 0, 0,−6, 0, 2, 2, 0},
xLDLD[n] = xLDL[2n] = {14, 16, 4, 10},
xLDHD[n] = xLDH[2n] = {2, 0, 0, 2}.

(10.65)

Signal xLDHD[n] is again sparse: only two of its four values are
nonzero. So x[n] can now be represented by the four values
of xLDLD[n], the two nonzero values of xLDHD[n], and the one
nonzero value of xHD[n]. This reduces the storage required for
x[n] by 57%.

The average signal xLDLD[n] can in turn be decomposed
even further. The result is an analysis filter bank that computes
the Haar wavelet transform of x[n]. This analysis filter bank
consists of a series of sections like the left half of Fig. 10-18,
connected as in Fig. 10-19, except that each average signal
xLL[n] is decomposed further. The signals computed at the
right end of this analysis filter bank constitute the Haar
wavelet transform of x[n]. Reconstruction of x[n] is shown
in Fig. 10-20.

10-9.4 Haar Wavelet Transform Filter Banks

Decomposition

A signal x[n] of duration N = 2K (with K an integer) can
be represented by the Haar wavelet transform through a
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Figure 10-20: Reconstruction by a two-stage Haar synthesis filter bank.

K-stage decomposition process involving cyclic convolutions
with filters ghaar[n] and hhaar[n], as defined by Eq. (10.56). The
signal x[n] can be zero-padded so that its length is a power of 2,
if that is not already the case, just as is done for the FFT. The
sequential process is:

Stage 1:

x[n] hhaar[n] 2 x̃1[n] = xHD[n],

x[n] ghaar[n] 2 X̃1[n] = xLD[n].

Stage 2:

X̃1[n] hhaar[n] 2 x̃2[n] = xLDHD[n],

X̃1[n] ghaar[n] 2 X̃2[n] = xLDLD[n].
...

Stage K:

X̃K−1[n] hhaar[n] 2 x̃K [n],

X̃K−1[n] ghaar[n] 2 X̃K [n].

The Haar transform of x[n] consists of the combination of
K + 1 signals:

Duration ⇒
{ x̃1[n]︸ ︷︷ ︸
N/2

, x̃2[n]︸ ︷︷ ︸
N/4

, x̃3[n]︸ ︷︷ ︸
N/8

, . . . , x̃K [n]︸ ︷︷ ︸
N/2K

, X̃K [n]︸ ︷︷ ︸
N/2K

}.

(10.66)

To represent x[n], we need to retain the “high-frequency”
outputs of all K stages (i.e., { x̃1[n], x̃2[n], . . . , x̃K [n] }), but 
only the final output of the “low-frequency” sequence, namely
X̃K [n]. The total duration of all of the K + 1 Haar transform 
signals is

N

2
+ N

4
+ N

8
+ · · · + N

2K
+ N

2K
= N, (10.67)

which equals the durationN of x[n]. We use cyclic convolutions
instead of linear convolutions so that the total lengths of the
downsampled signals equals the length of the original signal.
Were we to use linear convolutions, each convolution with
ghaar[n] or hhaar[n] would lengthen the signal unnecessarily.

• The x̃k[n] for k = 1, 2, . . . , K are called detail signals.

• The X̃K [n] is called the average signal.

Reconstruction

The inverse Haar wavelet transform can be computed in reverse
order, starting with { X̃K [n], x̃K [n], x̃K−1[n], . . . }.

Stage 1:

X̃K [n] 2 1
2 ghaar[−n] AK−1[n],

x̃K [n] 2 1
2 hhaar[−n] BK−1[n],

X̃K−1[n] = AK−1[n] + BK−1[n].
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Stage 2:

X̃K−1[n] 2 1
2 ghaar[−n] AK−2[n],

x̃K−1[n] 2 1
2 hhaar[−n] BK−2[n],

X̃K−2[n] = AK−2[n] + BK−2[n].
...

Stage K:

X̃1[n] 2 1
2 ghaar[−n] A0[n],

x̃1[n] 2 1
2 hhaar[−n] B0[n],

x[n] = A0[n] + B0[n].

10-9.5 Haar Wavelet Transform in the Frequency
Domain

As noted in Section 10-8, the original objective of subband
coding was to decompose a signal into different frequency
bands. Wavelets are more general than simple subbanding in
that decomposition of the spectrum of the input into different
bands is not the explicit purpose of the wavelet transform.
Nevertheless, the decomposition does approximately allocate
the signal into different frequency bands, so it is helpful to
track and understand the approximate decomposition.

Recall from Eq. (10.57) that Ghaar(e
j�) is approximately

a lowpass filter and Hhaar(e
j�) is approximately a highpass

filter. Hence, at the output of the first stage of the Haar wavelet
transform:

• X̃1[n] is the lowpass-frequency part of x[n], covering the
approximate range 0 ≤ |�| ≤ π/2, and

• x̃1[n] is the highpass-frequency part of x[n], covering the
approximate range π/2 ≤ |�| ≤ π .

At each stage, downsampling expands the spectrum of each
signal to the full range 0 ≤ |�| ≤ π . Hence, at the output of
the second stage,

• X̃2[n] covers the frequency range 0 ≤ |�| ≤ π/2 of
X̃1[n], which corresponds to the range 0 ≤ |�| ≤ π/4 of
x[n].

X3[n]
band

x3[n]
band

x2[n]
band

x1[n]
band

Ω0 π/8 π/4 π/2 π

˜ ˜ ˜~

Figure 10-21: Approximate frequency-band coverage by
components of the Haar wavelet transform for K = 3.

• x̃2[n] covers the frequency range π/2 ≤ |�| ≤ π of
X̃1[n], which corresponds to the range π/4 ≤ |�| ≤ π/2
of x[n].

The Haar wavelet transform decomposes the spectrum of
X(ej�) into octaves, with

Octave
π

2k
≤ |�| ≤ π

2k−1 represented by x̃k[n].

 reduced by a factor of 2k using downsampling.
For a signal of duration N 2K , the Haar wavelet transform 

decomposes x[n] into N + 1
=
components, namely X̃K [n] and{ x̃1[n], x̃2[n], . . . , x̃K [n] }, with each component representing

a frequency octave. The spectrum decomposition is illustrated 
in Fig. 10-21 for K = 3. Because the different components 
cover different octaves, they can be sampled at different rates. 
Furthermore, if the signal or image consists of slowly-varying 
segments with occasional fast-varying features, as many real-
world signals and images do, then x̃k[n] for small k will be 
sparse, requiring few samples to represent it.

10-9.6 Normalized Haar Functions

Each stage in the Haar reconstruction process, such as in the 
2-stage diagram shown in Fig. 10-20, includes the summation
of 2 signals, both of which need to be divided by a factor of 2.
To avoid the division step, we can replace the Haar functions
defined by Eq. (10.56) with normalized versions given by

g̃haar[n] = 1√
2

{1, 1} ,

h̃haar[n] = 1√
2

{1,−1} .
(10.68)

These are called the normalized Haar scaling (lowpass)
and wavelet (highpass) functions, respectively. They are also
energy-normalized:

1∑
n=0

g̃haar[n]2 =
1∑
n=0

h̃haar[n]2 = 1. (10.69)
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(a) Decomposition

(b) Reconstruction
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2
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g[−n]˜

h[−n]˜

Figure 10-22: Two-stage decomposition and reconstruction using the normalized Haar functions.

In terms of these normalized Haar functions, the two-stage
decomposition and reconstruction diagrams shown earlier
in Figs. 10-19 and 10-20 assume the forms displayed in
Fig. 10-22.

Concept Question 10-9: What is the difference between
using the Haar wavelet transform and a set of bandpass 
filters? (See        )

Concept Question 10-10: How is it possible that the
wavelet transform requires less computation than the 
FFT? (See        )

10-10 The Family of Wavelet
Transforms

The preceding section focused on the Haar wavelet transform,
which is only one member of an extended family of wavelet
transforms. A few other members are treated in future sections.

Common among all of these members of the wavelet transform
family are a set of formulations and orthogonality properties,
so we devote the present section to a presentation that applies
to all wavelet transforms. For the sake of easier readability, the
presentation will adhere to the following notational guidelines:

• x[n] is of duration N with N = 2K and K is a positive
integer.

• g[n] is a scaling function of duration 2 or longer. Its
specific form depends on the specific wavelet transform.
For the Haar wavelet transform, ghaar[n] is of duration 2
and is defined by Eq. (10.56a).

• h[n] is a wavelet function of duration 2 or longer. Its
specific form depends on the specific wavelet transform.
For the Haar wavelet transform, hhaar[n] is of duration 2
and is defined by Eq. (10.56b).

• All convolutions are cyclic, and the “mod N” notation is
suppressed for easy readability.
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• Most limits on summations (which quickly become very
complicated expressions) are omitted.

10-10.1 First Recursion Step

When introduced earlier in Section 10-9.4, X̃1[n] and x̃1[n]
were defined as the cyclic convolutions of x[n] with g[n] and
h[n], respectively, followed by downsampling, which replaces
n with 2n. That is,

X̃1[n] =
N−1∑
i=0

x[i] g[2n− i]. (10.70)

In stage 2, X̃2[n] is the cyclic convolution of X̃1[n] and g[n],
followed by downsampling:

X̃2[n] =
N−1∑
i=0

X̃1[i] g[2n− i]

=
N−1∑
i=0

N−1∑
j=0

x[j ] g[2i − j ] g[2n− i]

=
N−1∑
j=0

x[j ]
N−1∑
i=0

g[2i − j ] g[2n− i]. (10.71)

Changing variables from i to i′ = 2n− i gives

X̃2[n] =
∑
j

x[j ]
∑
i′
g[2(2n− i′)− j ] g[i′]

=
∑
j

x[j ]
∑
i′
g[22n− 2i′ − j ] g[i′]

=
∑
j

x[j ] g(2)[22n− j ], (10.72)

where g(2)[n] is defined as

g(2)[n] =
∑
i′
g[n− 2i′] g[i′]. (10.73)

Note that g(2)[n] is the convolution of g[n] with an upsampled
g[n].

Similarly, x̃2[n] is the cyclic convolution of X̃1[n] and h[n],
followed by downsampling. Repeating the earlier argument
gives

x̃1[n] =
N−1∑
i=0

x[i] h[2n− i] (10.74a)

and
x̃2[n] =

∑
j

x[j ] h(2)[22n− j ], (10.74b)

where h(2)[n] is defined as

h(2)[n] =
∑
i′
h[n− 2i′] g[i′]. (10.75)

Note that h(2)[n] is the convolution of g[n] and an upsampled
h[n].

10-10.2 Continuing Recursion Steps

For stage k, where k is between 1 and K , continuing the
recursion process leads to

X̃k[n] =
N−1∑
i=0

x[i] g(k)[(2kn− i)], (10.76a)

x̃k[n] =
N−1∑
i=0

x[i] h(k)[(2kn− i)], (10.76b)

where filters g(k)[n] and h(k)[n] can be computed recursively
ahead of time using the two formulas

g(k+1)[n] =
L∑
i=0

g[i] g(k)[(n− 2ki)], (10.77a)

h(k+1)[n] =
L∑
i=0

h[i] g(k)[(n− 2ki)], (10.77b)

and initialized using

g(1)[n] = g[n], (10.78a)

h(1)[n] = h[n]. (10.78b)

These formulas are simpler than they appear—each recursion
is a cyclic convolution of the preceding filter with g[n] or h[n],
upsampled by 2, k times.

As an aside, an alternative method for computing g(k)[n]
and h(k)[n] is to use the z-transform. Since convolution in the
time domain corresponds to multiplication in the frequency
domain, we can transform g[n] and h[n] to the z-domain to
obtain G(z) and H(z), and then use the following formulas to
compute G(k)(z) and H(k)(z):

G(k)(z) = G(z) G(z2) G(z4) . . .G(z2k−1
), (10.79a)

H(k)(z) = G(z) G(z2) G(z4) . . .H(z2k−1
). (10.79b)

Inverse transformation to the discrete-time domain yields
g(k)[n] and h(k)[n]. An example of this operation is given later
in Section 10-10.5.
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10-10.3 Reconstruction

Given X̃K [n] and { x̃1[n], x̃2[n], . . . , x̃K [n] }, reconstruction
uses similar cyclic convolutions, except that the synthesis
functions are g[−n] and h[−n], instead of g[n] and h[n]. The
reconstructed x[n] is given by

x[n] =
K∑
k=1

N−1∑
i=0

x̃k[i] h(k)[(2ki−n)]+
N−1∑
i=0

X̃K [i] g(K)[(2Ki−n)].
(10.80)

10-10.4 Expansion in Basis Functions

The preceding expressions may seem different from the
expansion in basis functions given by Eq. (10.50), but in fact
they can be cast in that form. If in Eq. (10.76), we replace n
with m, and then i with n, we have

X̃k[m] =
N−1∑
n=0

x[n] g(k)[(2km− n)], (10.81a)

x̃k[m] =
N−1∑
n=0

x[n] h(k)[(2km− n)]. (10.81b)

Next, replacing i with m in Eq. (10.80) gives

x[n] =
K∑
k=1

N−1∑
m=0

x̃k[m] h(k)[(2km− n)]

+
N−1∑
m=0

X̃K [m] g(K)[(2Km− n)]. (10.82)

The formulations in Eqs. (10.82) and (10.81) have, respectively,
the same form as Eqs. (10.50) and (10.52),

φm,k,g[n] = g(k)[(2km− n)], (10.83a)

φm,k,h[n] = h(k)[(2km− n)]. (10.83b)

Note that we have not shown that the basis functions are
orthonormal, as defined by Eq. (10.51). However, since
the output of the decomposition matches the input of the
reconstruction, the basis functions must be orthogonal.

10-10.5 Haar Transform Functions

The multistage decomposition and reconstruction expressions
developed in the preceding subsections apply to any member of
the wavelet transform family. By way of an example, we now
repeat them for the specific case of the Haar wavelet transform.
We start by defining g[n] and h[n] as the normalized Haar
functions given by Eq. (10.68),

g[n] = g̃haar[n] = 1√
2

{1, 1}, (10.84a)

h[n] = h̃haar[n] = 1√
2

{1,−1}. (10.84b)

The recursion process is initialized by

g(1)[n] = g̃haar[n] = 1√
2

{1, 1}, (10.85a)

h(1)[n] = h̃haar[n] = 1√
2

{1,−1}. (10.85b)

Then, Eq. (10.77) with k = 1 gives

g(2)[n] = g[0] g(1)[n− 0]︸ ︷︷ ︸
i=0

+ g[1] g(1)[n− 21]︸ ︷︷ ︸
i=1

= 1√
2

1√
2

{1, 1} + 1√
2

1√
2

{0, 0, 1, 1}

= 1

2
{1, 1, 1, 1}, (10.86a)

and

h(2)[n] = h[0] g(1)[n− 0]︸ ︷︷ ︸
i=0

+h[1] g(1)[n− 21]︸ ︷︷ ︸
i=1

= 1√
2

1√
2

{1, 1} − 1√
2

1√
2

{0, 0, 1, 1}

= 1

2
{1, 1,−1,−1}. (10.86b)

Similarly, Eq. (10.77) with k = 2 gives

g(3)[n] = g[0] g(2)[n− 0]︸ ︷︷ ︸
i=0

+ g[1] g(2)[n− 22]︸ ︷︷ ︸
i=1

= 1√
2

1

2
{1, 1, 1, 1} + 1√

2

1

2
{0, 0, 0, 0, 1, 1, 1, 1}

= 1

2
√

2
{1, 1, 1, 1, 1, 1, 1, 1}, (10.87a)
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and

h(3)[n] = h[0] g(2)[n− 0]︸ ︷︷ ︸
i=0

+h[1] g(2)[n− 22]︸ ︷︷ ︸
i=1

= 1√
2

1

2
{1, 1, 1, 1} − 1√

2

1

2
{0, 0, 0, 0, 1, 1, 1, 1}

= 1

2
√

2
{1, 1, 1, 1,−1,−1,−1,−1}. (10.87b)

Further recursions are straightforward to compute.

10-10.6 Haar Wavelet Transform by
Matrix-Vector Product

For a signal x[n] of duration N = 8, K = log2N = 3. The
completely decomposed normalized Haar wavelet transform
can be computed using the matrix-vector product:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃1[0]
x̃1[1]
x̃1[2]
x̃1[3]
x̃2[0]
x̃2[1]
x̃3[0]
X̃3[0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= HHH

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[7]
x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10.88)

where the matrix HHH is defined as

HHH = 1

2
√

2

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 2 0 0 0 0 0 0
0 0 −2 2 0 0 0 0
0 0 0 0 −2 2 0 0
0 0 0 0 0 0 −2 2

−√
2 −√

2
√

2
√

2 0 0 0 0
0 0 0 0 −√

2 −√
2

√
2

√
2

−1 −1 −1 −1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10.89)

The elements of matrix HHH are obtained from the computed
values of functions g(k)[n] and h(k)[n] for k = 1, 2, and 3.
Specifically:

• x̃1[0]: The top row (Row 1) represents a zero-padded
version of h(0)[n], with its elements arranged in reverse
order (because the cyclic convolution multiplies x[i] by
h(1)[2n− i] = h[2n− i].

• x̃1[1], x̃1[2], and x̃1[3]: Rows 2 through 4 from the top
represent Row 1, shifted successively by 2 to the right.

• x̃2[0]: Row 5 represents h(2)[n] with zero padding and
reversal.

• x̃2[1]: Row 6 represents Row 5 with 2 × 2 = 4 shifts to
the right.

• x̃2[2] and x̃2[3] are zero; hence, they are not listed in the
column on the left-hand side of Eq. (10.88).

• x̃3[0]: Row 7 represents h(3)[n] with reversal.

• x̃3[1] = x̃3[2] = x̃3[3] = 0. Hence, they are not included.

• X̃3[0]: Row 8 represents g(3)[n] with reversal (which
is irrelevant in the present case because all elements of
g(3)[n] are the same).

The inverse length-8 Haar wavelet transform can be
computed using the matrix-vector product

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[7]
x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= HHHT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃1[0]
x̃1[1]
x̃1[2]
x̃1[3]
x̃2[0]
x̃2[1]
x̃3[0]
X̃3[0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10.90)

Note thatHHH−1 = HHHT , soHHH is an orthogonal matrix.This means
that if x[n] is perturbed to x[n] + δx[n]—due to noise or other
errors—then the wavelet transform {̃xk[n]} of x[n] (including
X̃0[n]) is perturbed by δx̃k[n], and the energies of the two
perturbations are equal:

7∑
n=0

(δx[n])2 =
3∑
k=1

∑
n

(δx̃k[n])2. (10.91)

This implies that a small change in any of the x̃k[n] will result
in a small change in the reconstructed x[n]. So thresholding
small values of x̃k[n] to zero will have only a small effect on the
reconstructed x[n]. This is useful for compression, as illustrated
later.

Concept Question 10-11: What is the significance of the
orthonormality of the wavelet transform? (See        )
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Exercise 10-4:Show that g̃haar[n] and h̃haar[n] are energy-
normalized functions.

Answer: From Eq. (10.68) we have

(1/
√

2)2 + (1/
√

2)2 = (1/
√

2)2 + (−1/
√

2)2 = 1.

Exercise 10-5: Show that HHH−1 = HHHT for Eq. (10.89).

Answer: The product HHHHHHT = I ; hence HHHT = HHH−1.

10-11 Non-Haar Single-Stage Perfect
Reconstruction

We demonstrated in earlier sections that the Haar wavelet
transform is capable of perfect reconstruction of x[n]. Now, we
explore the conditions that need to be satisfied so as to perfectly
reconstruct x[n] by any non-Haar wavelet transform that obeys
the basis-functions formulation given in Section 10-10. These
conditions pertain to non-Haar g[n] and h[n] functions.

We consider only FIR filters g[n] and h[n] of lengths
L+ 1, with L being an odd integer. Even though the time-
reversed impulse responses g[−n] and h[−n] used in the
synthesis (reconstruction) filter bank are noncausal, their
delayed versions g[−(n− L)] and h[−(n− L)] are causal:

g[−(n− L)] = g[L− n] = { g[L], g[L− 1], . . . , g[0] }.

As a precursor to the derivation of the conditions required for
perfect reconstruction, it will prove useful to provide a review
of relevant downsampling and upsampling relationships.

10-11.1 Review of Downsampling and
Upsampling

The topics of downsampling and upsampling were covered in
Sections 9-6 and 9-7. We restate the key results here.

Downsampling a signal x[n] by 2 means deleting every other
value of x[n]. The result of downsampling by 2 is

x[n] 2 y[n] = x[2n]
= { . . . , x[0], x[2], x[4], . . . }.

(10.92)

The z-transforms X(z) of x[n] and Y(z) of y[n] are related by

Y(z) = 1

2
X(z1/2)+ 1

2
X(−z1/2).

Downsampling by 2

(10.93)

Upsampling a signal x[n] by 2 means inserting zeros between
successive values of x[n]. The result of upsampling by 2 is

x[n] 2 y[n] =
{
x[n/2] for n even

0 for n odd,
(10.94a)

y[n] = { . . . , x[0], 0, x[1], 0, x[2], 0, x[3], . . . }. (10.94b)

The z-transforms X(z) of x[n] and Y(z) of y[n] are related by

Y(z) = X(z2).

Upsampling by 2

(10.95)

10-11.2 Derivation of Perfect Reconstruction
Condition Using z-Transforms

The diagram in Fig. 10-23 represents one-stage decomposition
and reconstruction processes involving scaling and wavelet
functions g[n] andh[n] belonging to any member of the wavelet
transform family. In view of the downsampling property given
by Eq. (10.93), the z-transforms XHD(z) of xHD[n] and XLD(z)
of xLD[n] are given by

XHD(z) = 1

2
[H(z1/2) Xin(z1/2)+ H(−z1/2) Xin(z1/2)]

(10.96a)

XLD(z) = 1

2
[G(z1/2) Xin(z1/2)+ G(−z1/2) Xin(−z1/2)].

(10.96b)

Here, Xin(z) is the z-transform of the input xin[n], and XHD(z)
and XLD(z) are the outputs of the decomposition process. For
the reconstruction process of Fig. 10-23, use of the upsampling
relationship given by Eq. (10.95), in combination with the
sampling property of the z-transform (property #8 inTable 7-6),
leads to:

Xout(z) = H(1/z) XHD(z2)+ G(1/z) XLD(z2). (10.97)
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xin[n] xout[n]

xL[n] xLD[n] xLDU[n]
g[n]

h[n] 2
xH[n] xHD[n]

2

2

g[−n]

xHDU[n]

2

h[−n]

Figure 10-23: Single-stage wavelet decomposition and reconstruction.

Substituting Eq. (10.96) into Eq. (10.97) gives

Xout(z) = 1

2
H(1/z) [H(z) Xin(z)+ H(−z) Xin(−z)]

+ 1

2
G(1/z) [G(z) Xin(z)+ G(−z) Xin(−z)].

(10.98)

Perfect reconstruction means that Xout(z) = Xin(z). Setting
Xin = Xout = X in Eq. (10.98) and then rearranging terms leads
to{

1 − 1
2 [H(1/z) H(z)+ G(1/z) G(z)]

}
X(z)

+ 1
2 [H(1/z) H(−z)+ G(1/z) G(−z)] X(−z) = 0.

(10.99)

To satisfy this equation for any X(z), it is necessary to satisfy
two conditions:

(a) The coefficient of X(z) must be zero, which requires

H(1/z) H(z)+ G(1/z) G(z) = 2. (10.100)

(b) The coefficient of X(−z) in Eq. (10.98) must also be zero.
Thus, we need to satisfy the condition

H(1/z) H(−z)+ G(1/z) G(−z) = 0. (10.101)

To guarantee perfect reconstruction, both Eq. (10.100) and
Eq. (10.101) must be satisfied by G(z) and H(z). The two
conditions can be converted into a specific condition on G(z)
alone, and a second condition on H(z) in terms of G(z). Several
solution methods are available, two of which will be pursued
in the present and succeeding subsections.

The condition given by Eq. (10.101) can be satisfied by
setting

H(z) = −G(−1/z) z−L, (10.102)

where L is any odd integer. Replacing z with 1/z gives

H(1/z) = −G(−z) zL, (10.103)

and replacing z with −z in Eq. (10.102) gives

H(−z) = −G(1/z) (−z)−L. (10.104)

Since L is odd, (−z)−L = −z−L. Hence,

H(−z) = G(1/z) z−L. (10.105)

Using Eqs. (10.103) and (10.105), the product constituting the
first term in Eq. (10.101) becomes

H(1/z) H(−z) = [−G(−z) zL · G(1/z) z−L]
= −G(−z) G(1/z), (10.106)

which satisfies Eq. (10.101).
Having demonstrated that the relationship between H(z) and

G(z) given by Eq. (10.102) does indeed satisfy the second of
the two conditions, we now use Eqs. (10.102) and (10.103) in
Eq. (10.100) in order to obtain an expression for G(z) alone:

[−G(−z) zL][−G(−1/z) z−L] + G(1/z) G(z) = 2.
(10.107)

Simplification of Eq. (10.107) reduces to

G(−z) G(−1/z)+ G(1/z) G(z) = 2, (10.108)

which is known as the Smith-Barnwell condition for perfect
reconstruction. Any g[n] with a z-transform G(z) that satisfies
Eq. (10.108) will result in perfect reconstruction of x[n] at the
output of Fig. 10-23 if H(z) is determined from G(z) using
Eq. (10.102).

Once g[n] has been specified, h[n] can be obtained by
implementing the inverse z-transform to Eq. (10.102). Using
properties #3, 5, and 8 in Table 7-6, we can easily show that

h[n] = (−1)n g[L− n]. (10.109)

By selecting the odd integerL in Eq. (10.102) to be the same as
the order of the scaling function g[n]—which means that g[n]
is of duration L+ 1—then g[L− n] is causal, and so is h[n].
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Figure 10-24: |G(ej�)| and |H(ej�)| for the Haar transform.
This QMF Pair has symmetry about the � = π/2 axis.

10-11.3 Perfect Reconstruction Condition Using
the DTFT

The conditions for perfect reconstruction, given by
Eqs. (10.102) and (10.108), can also be derived in the
�-domain by setting z = ej� and repeating all of the steps
given in the preceding subsection. Alternatively, we can convert
Eqs. (10.102) and (10.108) into the �-domain by noting that

−z = −ej� = e±jπ ej� = ej (�±π), (10.110a)

1

z
= e−j�, (10.110b)

and

−1

z
= e−j (�±π). (10.110c)

Transformation of Eqs. (10.102) and (10.108) to the�-domain
gives

H(ej�) = −G(e−j (�±π)) e−j�L (10.111)

and

G(ej (�±π)) G(e−j (�±π))+G(e−j�) G(ej�) = 2, (10.112)

which is equivalent to

|G(ej (�±π))|2 + |G(ej�)|2 = 2. (10.113)

Filters G(ej�) and H(ej�) are like complementary filters; if
G(ej�) is a lowpass filter, then H(ej�) is a highpass filter,
because its frequency response is shifted by π and the DTFT
is periodic in � with period 2π . To illustrate, we show in
Fig. 10-24 the behavior of |Ghaar(e

j�)| and |Hhaar(e
j�)| of the

Haar wavelet transform given by Eq. (10.57). The two spectra

are mirror images of one another with respect to the � = π/2
axis. Hence, G(ej�) and H(ej�) are called a pair of quadrature
mirror filters (QMF).

The relationship between G(ej�) and H(ej�) given by
Eq. (10.111) in the �-domain is equivalent to the relationship
between h[n] and g[n] given by Eq. (10.109) in the discrete-
time domain.

10-11.4 Orthogonality of Single-Stage Basis
Functions

In the preceding subsection„ we showed that if perfect
reconstruction occurs, then the wavelet transform can be written
as an expansion in basis functions, as in Eq. (10.82), with
the wavelet transform computed using Eq. (10.81). The basis
functions were given by Eq. (10.83) as

φm,k,g[n] = g(k)[2km− n],
φm,k,h[n] = h(k)[2km− n].

(10.114)

We did not show formally that the set of basis functions
{φm,k,g[n], φm,k,h[n] } are orthonormal. Now that we have de-
rived the Smith-Barnwell condition for perfect reconstruction,
we can quickly show the orthonormality of these basis functions
for k = 1. The extension to larger values of k can be performed
using induction, but it is too lengthy to give here.

For k = 1, Eq. (10.114) becomes

φm,1,g[n] = g[2m− n],
φm,1,h[n] = h[2m− n]. (10.115)

The basis functions {φm,1,g[n]} are orthonormal if, for any m1
and m2,

∞∑
n=−∞

φm1,1,g[n] φm2,1,g[n] =

∞∑
n=−∞

g[2m1 − n] g[2m2 − n] = δ[m1 −m2]. (10.116)

Changing variables from n to n′ = 2m2 − n gives

∞∑
n=−∞

g[2m1 − n] g[2m2 − n]

=
∞∑

n′=−∞
g[2m1 − 2m2 + n′] g[n′]

= rg[2(m1 −m2)], (10.117)
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where rg[n] is the autocorrelation of g[n], which was defined
in Section 9-12.1 as

rg[n] = g[n] ∗ g[−n] =
∞∑

i=−∞
g[n+ i] g[i]. (10.118)

Hence, the basis functions {φm,1,g[n]} are orthonormal if
rg[2(m1 −m2)] = δ[m1 −m2].

Using the time-reversal property of the z-transform (entry #8
of Table 7-6), the z-transform of rg[n] is

Rg(z) = G(z) G(1/z). (10.119)

Consequently, the Smith-Barnwell condition for perfect
reconstruction, Eq. (10.108), which we repeat here as

G(−z) G(−1/z)+ G(z) G(1/z) = 2. (10.120)

is actually equivalent to

Rg(−z)+ Rg(z) = 2. (10.121)

In the derivation of the expression given by Eq. (10.93) for the
z-transform of a downsampled signal, we noted that for any
polynomial Rg(z), the sum Rg(z)+ Rg(−z) is a polynomial
whose coefficients of odd powers of z are zero. Consequently,
in view of Eq. (10.94b), the inverse z-transform of the Smith-
Barnwell condition of Eq. (10.108) is that rg[n] be equal to 0
for even and nonzero n.

However, the basis functions {φm,1,g[n]} are orthonormal
if rg[2(m1 −m2)] = δ[m1 −m2]; i.e., rg[n] = 0 for even and
nonzero n. This is precisely the Smith-Barnwell condition, so
the basis functions {φm,1,g[n]} are orthonormal if the Smith-
Barnwell condition is satisfied.

Upon repeating the above argument after replacing g[n]
with h[n], we can show that the basis functions {φm,1,h[n]}
are orthonormal if h[n] is determined from g[n] using
Eq. (10.109) and g[n] satisfies the Smith-Barnwell condition
(Exercise 10-8).

Concept Question 10-12: What is the Smith-Barnwell
condition for? (See        )

Exercise 10-6: Show that the normalized Haar scaling
function g̃haar[n] in Eq. (10.68) satisfies the Smith-
Barnwell condition given by Eq. (10.113).

Answer: See S2
.

Exercise 10-7: Show that Eq. (10.109) with L = 1
holds for the normalized Haar scaling and wavelet basis
functions in Eq. (10.68).

Answer: See S2
.

Exercise 10-8: Show that if g[n] satisfies the Smith-
Barnwell condition and h[n] is determined from g[n]
using Eq. (10.109), thenh[n] satisfies the Smith-Barnwell
condition.

Answer: See S2
.

10-12 Daubechies Scaling and Wavelet
Functions

A commonly used wavelet transform relies on a pair of 
functions known as the dbL Daubechies scaling and wavelet 
functions, gdbL[n], and hdbL[n], respectively, attributed to 
Ingrid Daubechies, who also made many other wavelet-related 
contributions. The scaling function gdbL[n] is characterized by 
a z-transform GdbL(z) that has L zeros at z = −1, in addition 
to satisfying the Smith-Barnwell condition given by Eq. 
(10.108). The corresponding wavelet function hdbL[n], 
obtained through Eq. (10.109), is characterized by a z-
transform HdbL(z) that has L zeros at z = 1. This latter 
property is responsible for the success of the dbL Daubechies 
wavelet functions in sparsifying many real-world signals and 
images. Sparsifying a signal means making most of its 
members zero-valued. More details are forthcoming in the

10-12.1 H(z) with Multiple Zeros at z = 1

(a) Definition of piecewise-polynomial signals

A signal x[n] is defined to be piecewise-Lth-degree poly-
nomial if it has the form

x[n] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L∑
k=0

a0,k n
k −∞ < n ≤ N0,

L∑
k=0

a1,k n
k N0 < n ≤ N1,

L∑
k=0

a2,k n
k N1 < n ≤ N2,

...

(10.122)



“book” — 2016/3/15 — 6:32 — page 585 — #41

10-12 DAUBECHIES SCALING AND WAVELET FUNCTIONS 585

Signal x[n] is segmented into intervals, and in each interval x[n]
is a polynomial in time n and of degreeL. The timesNi at which
the coefficients {ai,k} change values are sparse, meaning that
they are scattered over time n. In continuous time, such a signal
would be a spline, except that for a spline the derivatives of the
signal must match at the knots (the times where the coefficients
{ai,k} change values). The idea here is that the coefficients {ai,k}
can change completely at the times Ni ; there is no smoothness
requirement. Indeed, these times Ni are the edges of x[n].

We first consider piecewise-constant, then piecewise-linear,
then piecewise-polynomial signals, and in each case we
examine the effect of zeros of H(z) at z = 1.

(b) Piecewise-constant signals

If a transfer function H(z) has a single zero at z = 1, it can be
expressed in the form

H(z) = (z − 1) Q(z), (10.123)

where Q(z) is a rational function. The inverse z-transform of
(z−1) is {1,−1}. The overall impulse response of LTI systems
connected in series is the convolution of their impulse responses
(see Section 2-5.2). Hence, the system with transfer function
H(z) can be implemented by two systems connected in series:

x[n] w1[n] = x[n+ 1] − x[n] w1[n] q[n] y[n],
(10.124)

where q[n] is the inverse z-transform of Q(z).
Now let x[n] be piecewise constant, meaning that x[n] has

the form

x[n] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0 −∞ < n ≤ N0,

a1 N0 < n ≤ N1,

a2 N1 < n ≤ N2,

...

(10.125)

The value of x[n] changes only at a few scattered times. The
amount by which x[n] changes between n = Ni and n = Ni+1
is the jump ai+1 − ai :

x[n+ 1] − x[n] =
{

0 for n �= Ni,

ai+1 − ai for n = Ni.
(10.126)

This can be restated as

x[n+ 1] − x[n] =
∑
i

(ai+1 − ai) δ[n−Ni], (10.127)

0 5 10 15 20 25 30
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−1
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(a) x[n]

(b) x[n + 1] − x[n]

Figure 10-25: A system with a zero at z = 1 compresses
piecewise-constant signals: (a) A piecewise-constant signal, (b)
signal differences.

and is illustrated in Fig. 10-25, where we observe that
x[n+ 1] − x[n] is zero-valued, except at junctions between
adjacent segments. This property causes the wavelet transform
of x[n] to be sparsified as well. Consider the convolution

x[n] ∗ h[n] = x[n] ∗ {1,−1} ∗ q[n]
= (x[n+ 1] − x[n]) ∗ q[n]
=
∑
i

(ai+1 − ai) δ[n−Ni] ∗ q[n]

=
∑
i

(ai+1 − ai) q[n−Ni]. (10.128)

In the final step, we used the time-shift property of convolution
(entry #5 in Table 7-4). In practice, q[n] is a very short (length
3 or 4) FIR filter, so x[n] ∗ h[n] is still mostly zero-valued.

The normalized Haar wavelet function

h̃haar[n] = 1√
2

{1,−1}

has transfer function

H̃haar(z) = z − 1√
2 z
,

which has a zero at z = 1. So the Haar wavelet transform
compresses piecewise constant signals. For the Haar wavelet
function, Q(z) = 1/(

√
2 z).
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(c) Piecewise-linear signals

A transfer function H(z)with two zeros at z = 1 can be written
as:

H(z) = (z − 1)2 Q(z) (10.129)

for some rational function Q(z). The inverse z-transform of
(z − 1) is {1,−1}, so the inverse z-transform of (z − 1)2 is

ZZZ
−1{(z − 1)2} = {1,−1} ∗ {1,−1}. (10.130)

The overall impulse response of LTI systems connected in series
is the convolution of their impulse responses (see Section 2-5.2).
So the system with transfer function H(z) can be implemented
by three systems connected in series:

x[n] w1[n] = x[n + 1] − x[n]          w1[n]

w2[n] = w1[n + 1] − w1[n]          w2[n]

q[n]          y[n],

(10.131)
where q[n] is the inverse z-transform of Q(z).

A piecewise linear signal x[n] has the form

x[n] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0,1 n+ a0,0 −∞ < n ≤ N0,

a1,1 n+ a1,0 N0 < n ≤ N1,

a2,1 n+ a2,0 N1 < n ≤ N2,

...

(10.132)

Proceeding as we did earlier for the case of a piecewise-constant
x[n], taking differences, and then taking differences of the
differences, ends up sparsifying the piecewise-linear signal
x[n]. The process is illustrated in Fig. 10-26. The bottom signal
in Fig. 10-26 is in turn convolved with q[n], resulting in a series
of scaled and delayed values of q[n]. As noted earlier, q[n]
usually is a very short FIR filter, so x[n] ∗ h[n] is still mostly
zero-valued.

(d) Piecewise-polynomial signals

In the preceding parts of this subsection, we used a transfer
function H(z) with a single zero at z = 1 to compress a
piecewise-constant signal, and another with 2 zeros to compress
a piecewise-linear signal. In both cases, the objective is to
compress the signal to a highly sparsified function y[n]. Now,
we extend our examination to the general case of a piecewise-
polynomial signal.

0 5 10 15 20 25 30 35−2
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1

(a) x[n]

(b) w1[n] = x[n + 1] − x[n]

(c) w2[n] = w1[n + 1] − w1[n]

Figure 10-26: A system with 2 zeros at z = 1 compresses
piecewise-linear signals. (a) Signal x[n], (b) differences of signal
x[n], (c) differences of the middle signal.

Let us consider a signal x[n] given by a polynomial of degree
L− 1:

x[n] = a0 n
L−1 + a1 n

L−2 + · · · + aL−1, (10.133)

where a0 through aL−1 are constant coefficients. To sparsify
the signal, we need to use a transfer function H(z) that has L
zeros at z = 1, which means that we can express it in the form

H(z) = (z − 1)L Q(z) (10.134)

for some rational function Q(z). The system can be regarded as
a series connection of the L+ 1 systems:

x[n] w1[n] = x[n + 1] − x[n]          w1[n]

w2[n] = w1[n + 1] − w1[n]          w2[n]

w3[n] = w2[n + 1] − w2[n]          w3[n] . . . wL[n]

q[n]          y[n],

(10.135)
where q[n] is the inverse z-transform of Q(z).
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The process in Eq. (10.135) includes L forward difference
operators, labeled w1[n] through wL[n]. The first difference
operation yields

w1[n] = x[n+ 1] − x[n]. (10.136)

To compute w1[n], we need x[n]—which is given by
Eq. (10.133)—and x[n+ 1], which can be obtained from
Eq. (10.133) by replacing n with n+ 1:

x[n+ 1] = a0 (n+ 1)L−1 + a1 (n+ 1)L−2 + · · · + aL−1.

(10.137)

Application of the binomial expansion to (n+ 1)L−1 yields

(n+1)L−1 = nL−1+(L−1) nL−2+terms of degree < (L−2).
(10.138)

Use of the expressions given by Eqs. (10.133), (10.137), and
(10.138) in Eq. (10.136) leads to

w1[n] = (L− 1) nL−2 + terms of degree < (L− 2).

Hence, the difference operator w1[n] results in a polynomial
of degree L− 2, compared to x[n] which is of degree L− 1.
Each additional difference-operator step reduces the degree of
the output by 1, so after L such steps, the final output wL[n]
will be a polynomial of degree zero. Consequently, signals that
are piecewise-polynomial functions of time n, also of degree
L− 1, will be compressed to zero, except in the vicinity of the
times at which the polynomial coefficients change. At these
times, scaled and delayed versions of the impulse response
q[n] = ZZZ

−1{Q(z)} will appear. Since in practice q[n] is a short
FIR filter of length 3 or 4, y[n] will be mostly zero-valued.

The continuous-time analogue of the forward difference
operator is the time derivative:

w(t) = dLx

dtL

for any (L− 1)th degree piecewise-polynomial x(t) defined
over 1 or more time segments. Each derivative step reduces the
degree of the polynomial by 1, so at the end of L derivative
steps, the polynomial is reduced to zero, except at the boundary
between different time segments.

10-12.2    Computation of the dbL Daubechies
                 Scaling Function

We now derive the dbL Daubechies scaling function g[n], 
whose z-transform has L zeros at z = −1 and satisfies the 
Smith-Barnwell condition given by Eq. (10.108) for perfect 
reconstruction. The dbL Daubechies wavelet function 
compresses piecewise-polynomial signals of degree L − 1 to 
zero, except near the times n at which the polynomial 
coefficients change. Some authors use the nomenclature that 
the D2L D  aubechies wavelet function has L zeros, so that the 
“DL D aubechies wavelet” function is undefined for L odd. 
This seems wasteful, so we use dbL to denote L zeros.

From Eq. (10.102), the z-transform H(z) of the 
wavelet 

function h[n] has L zeros at z = 1 if the z-transform 
G(z) of 
the scaling function g[n] has L zeros at z = −1.

Let g[n]  b e the dbL  D aubechies scaling function.   For its

G(z) = (z + 1)L

zL
Q(z) = (1 + z−1)L Q(z), (10.139)

for some polynomial Q(z) in z−1 (so that q[n] and g[n] are
causal) of degree L− 1. After specifying the scaling function
design procedure, it will become evident why Q(z) should have
degree L− 1.

The z-transform G(z)of the scaling function must also satisfy
the Smith-Barnwell condition given by Eq. (10.108):

G(−z) G(−z−1)+ G(z) G(z−1) = 2. (10.140)

Let r[n] be the autocorrelation of q[n]:
r[n] = r[−n] = q[n] ∗ q[−n]. (10.141)

The z-transform R(z) of r[n] is then

R(z) = R(1/z) = Q(z) Q(1/z). (10.142)

Substituting Eq. (10.139) and Eq. (10.142) in the Smith-
Barnwell condition given by Eq. (10.140) gives

(1 − z)L(1 − z−1)L R(−z)+ (1 + z)L(1 + z−1)L R(z) = 2.
(10.143)

This is a linear system of equations of size L in the z-transform
of the unknown function r[n]. Its solution determines R(z).

Now that the complete procedure has been specified, we
examine why Q(z) should have degree L− 1. We start by
supposing that Q(z) has degree L− 1, in which case:

• From Eq. (10.139), G(z) has degree 2L− 1.
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• From Eq. (10.142), R(z) has degree 2L− 2.

• In Eq. (10.143), each term has degree 4L− 2.

• In Eq. (10.143), coefficients of (−z)m are identical to those
for zm. These terms cancel for odd m. So the coefficients
of odd powers of z cancel.

• In Eq. (10.143), equations for negative powers of z are
identical to those for positive powers of z. This reduces by
half the number of independent equations.

• Equation (10.143) is L equations in L unknowns r[n].
Hence, if Q(z) is of degree L− 1, as supposed earlier,
then there are just enough unknowns to satisfy the linear
equations in the inverse z-transform of Eq. (10.143), as
illustrated further in the next subsection.

Next, we show how to compute Q(z) from R(z). From
Eq. (10.142), R(z) = R(1/z), so if z0 is a zero of R(z) then
1/z0 is also a zero of R(z). Since r[n] is real-valued, the zeros
also occur in complex conjugate pairs: z∗

0 is also a zero. In
conclusion, the zeros of R(z) occur in conjugate reciprocal
quadruples, each of which has the form, for some zero z0,

{ z0, z∗
0, 1/z0, 1/z∗

0 }.

Q(z) is then computed from R(z) by performing a spectral
factorization of R(z), as follows:

• Zeros of R(z) inside the unit circle (|z0| < 1) are assigned
to be the zeros of Q(z).

• Zeros of R(z)outside the unit circle (|z0| > 1) are assigned
to be the zeros of Q(1/z).

• In practice, there are no zeros of R(z) on the unit circle
(|z0| = 1).

This determines the minimum-phase Q(z), and hence G(z), to
a scale factor determined by Eq. (10.143). The procedure is
illustrated in Section 10-12.3.

10-12.3 Computation of the D2 Daubechies
Scaling Function for L = 2

From Eq. (10.141), r[n] = r[−n]. Hence, for L = 2, R(z) can
be written as

R(z) = r[1] z + r[0] + r[1] z−1, (10.144)

in which case Eq. (10.143) becomes

(1 + z)2(1 + z−1)2(r[1] z + r[0] + r[1] z−1)

+ (1 − z)2(1 − z−1)2(−r[1] z + r[0] − r[1] z−1) = 2.
(10.145)

Expanding Eq. (10.145) gives

(z2 + 4z + 6 + 4z−1 + z−2)

× (r[1]z + r[0] + r[1] z−1)

+ (z2 − 4z + 6 − 4z−1 + z−2)

× (−r[1]z + r[0] − r[1] z−1) = 2. (10.146)

The two polynomials being added in Eq. (10.146) both have
degree 6, since the powers of z in Eq. (10.146) vary from −3
to +3. However, the coefficients of odd powers of z cancel,
and the coefficients of negative powers of z are identical to
the coefficients of the corresponding positive powers of z. So
equating coefficients of powers of z in Eq. (10.146) yields two
equations (the coefficients of z1 and z3) in two unknowns (r[0]
and r[1]). Equating coefficients of z2 and z0, respectively, gives
the two equations

2r[0] + 8r[1] = 0,

12r[0] + 16r[1] = 2,
(10.147)

which jointly have the solution

r[0] = 1/4, r[1] = −1/16. (10.148)

Hence R(z) of Eq. (10.144) becomes

R(z) = −(1/16)z−1 + 1/4 − (1/16)z. (10.149)

The two zeros of R(z) (the roots of R(z) = 0) are

z0 = z∗
0 = 2 − √

3 = 0.2679, (10.150a)

1

z0
= 1

z∗
0

= 2 + √
3 = 3.7321. (10.150b)

The complex conjugate quadruple condenses to just a pair, since
both zeros are real-valued.

The spectral factorization of R(z) is performed by choosing
z0 to be the zero of Q(z), since |z0| < 1. Then, Eq. (10.139)
becomes, for some constant C,

G(z) = C(1 + z−1)2(1 − 0.2679z−1)

= C(1 + 1.7321z−1 + 0.4642z−2 − 0.2679z−3).

(10.151)
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Table 10-1: Coefficients of Daubechies scaling functions.

g[n] db1 db2 db3 db4
g[0] 0.7071 0.4830 0.3327 0.2304

g[1] 0.7071 0.8365 0.8069 0.7148

g[2] 0 0.2241 0.4599 0.6309

g[3] 0 –0.1294 –0.1350 –0.0280

g[4] 0 0 –0.0854 –0.1870

g[5] 0 0 0.0352 0.0308

g[6] 0 0 0 0.0329

g[7] 0 0 0 –0.0106

The z-transform of the scaling function G(z) has been
determined to a scale factor C. The constant C is computed
by inserting Eq. (10.151) into Eq. (10.140). This gives
C = 0.4830. With this newly found value of C, inverse
z-transforming Eq. (10.151) leads to theD2 Daubechies scaling
function g[n]:

g[n] = { 0.4830, 0.8365, 0.2242,−0.1294 }, (10.152)

whose duration is 4. From Eq. (10.109), the causal db2 
Daubechies wavelet function h[n] is
h[n] = (−1)n g[3 − n]

= { −0.1294,−0.2242, 0.8365,−0.4830 }. (10.153)

Note that g[n] and h[n] are energy-normalized:

3∑
n=0

g[n]2 =
3∑
n=0

h[n]2 = 1. (10.154)

This concludes the procedure for calculating g[n] and h[n] for 
L = 2. Repeating the procedure for L = 1, 3, and 4 leads to the 
coefficients of the db1, db2, db3, and db4 Daubechies scaling 
functions listed in Table 10-1. The corresponding wavelet 
functions can be obtained from these scaling functions using 
Eq. (10.109).

10-12.4 Amount of Computation

The total amount of computation required to compute the dbL 
Daubechies wavelet transform of a signal x[n] of duration N can 
be determined as follows. The duration of the dbL 
Daubechies wavelet and scaling functions is 2L. 
Convolving both of these with x[n] requires 2(2L)N = 4LN 
multiplications-and-additions (MADs).    But since the results 

will be downsampled by two, only half of the convolution 
outputs must be computed, reducing the number to 2LN .

At each successive decomposition, these functions are 
convolved with the average signal from the previous stage. 
So these functions are convolved with signals with respective 
durations,

{X̃1[n]︸ ︷︷ ︸
N/2

, X̃2[n]︸ ︷︷ ︸
N/4

, . . . , X̃K [n]︸ ︷︷ ︸
N/2K

},

where K is the number of decomposition stages. The total
number of MADs required is therefore

2L

(
N + N

2
+ N

4
+ · · · + N

2K

)
< 4LN. (10.155)

The additional computation for computing more decomposi-
tions (i.e., increasing K) is minimal.

Since L is small, this is comparable to the amount of
Ncomputation 2 log2(N) required to compute the DFT, using 

the FFT, of a signal x[n] of duration N . But the DFT requires 
complex additions and multiplications, while the wavelet 
transform uses only real additions and multiplications. So the 
savings are even greater than they first appear.

In summary, the dbL Daubechies scaling g[n] and 
wavelet h[n] functions have the following properties:

• Both g[n] and h[n] have durations 2L.

• Lowpass G(z) has L− 1 zeros at z = −1.

• Highpass H(z) has L− 1 zeros at z = 1.

• Convolution with h[n] sparsifies signals that are
piecewise-(L− 1)th-degree polynomial signals.

• Computation of the complete wavelet transform of x[n] of
duration N requires 4LN real MADs.

Given gdbL[n] and hdbL[n] for L = 2, namely Eqs. (10.152) 
and (10.153), let us apply them to compute the db2 
Daubechies wavelet transform of the piecewise-linear signal 
shown in Fig. 10-27(a). The two-stage procedure involves the 
computation of average signals X̃1[n] and X̃2[n], and detail 
signals x̃1[n] and x̃2[n], using Eqs. (10.70), (10.72), and (10.74). 
The results are displayed in parts (b) to (e) of Fig. 10-27. We 
note that

• Average signals X̃1[n] and X̃2[n] are low-resolution
versions of x[n].

• Detail signals x̃1[n] and x̃2[n] are sparse (mostly zero),
and their nonzero values are small in magnitude.
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(a) x[n]

(c) x1[n]˜

(e) x2[n]˜
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Figure 10-27: (a) Piecewise linear signal x[n], (b) stage-1 detail
signal x̃1[n], (c) stage-2 average signal X̃2[n], and (e) stage-2
detail signal x̃2[n].

• The db2 wavelet transform of the given x[n] consists of

x̃1[n], x̃2[n], and X̃2[n].

These patterns explain the terms “average” and “detail.” The db2 
wavelet transform of the given x[n] consists of x̃1[n], x̃2[n], and 
X̃2[n].

Concept Question 10-13: Why does the wavelet
transform sparsify real-world signals and images?
(See        )

Concept Question 10-14: What attribute of Daubechies 
wavelet functions makes them sparsify piecewise-
polynomial functions? (See        )

Exercise 10-9: Show that db1 Daubechies scaling 
function g[n] is the normalized Haar scaling function
g̃haar[n].
Answer: See S2

.

Exercise 10-10: Show that db1 Daubechies scaling 
function g[n] is orthogonal to even-valued translations
of g[n].
Answer: See S2

.

Exercise 10-11: Show that a system with two zeros at
z = 1 compresses signals linear in time n to zero.

Answer: See S2
.

10-13 2-D Wavelet Transform

The real power of the wavelet transform becomes apparent when
it is applied to 2-D images. A 512 × 512 image has more than a
quarter-million pixel values. Storing a sparse representation of
an image, rather than the image itself, saves a huge amount of
memory. Compressed sensing (covered later in Section 10-15)
becomes very powerful when applied to images.

10-13.1 Image Analysis Filter Bank

The generalization of the wavelet transform from signals to
images is straightforward if separable scaling and wavelet
functions are used. In this book we restrict our attention to
separable functions; i.e., the 2-D filter g2[m, n] = g[m] g[n].
With g[n] and h[n] denoting scaling and wavelet functions,
such as the Haar or Daubechies functions, the image analysis
filter bank performs the following operations:
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(1) Stage-1 decomposition

x[m, n] g[m] g[n] (2,2) x̃
(1)
LL [m, n]

(10.156a)

x[m, n] g[m] h[n] (2,2) x̃
(1)
LH[m, n]

(10.156b)

x[m, n] h[m] g[n] (2,2) x̃
(1)
HL[m, n]

(10.156c)

x[m, n] h[m] h[n] (2,2) x̃
(1)
HH[m, n]

(10.156d)

(2) Stage-2 to stage-K decomposition

x̃
(1)
LL [m, n] g[m] g[n] (2,2) x̃

(2)
LL [m, n]

(10.157a)

x̃
(1)
LL [m, n] g[m] h[n] (2,2) x̃

(2)
LH[m, n]

(10.157b)

x̃
(1)
LL [m, n] h[m] g[n] (2,2) x̃

(2)
HL[m, n]

(10.157c)

x̃
(1)
LL [m, n] h[m] h[n] (2,2) x̃

(2)
HH[m, n]

(10.157d)

The decomposition process is continued as above, until output
x̃KLL[m, n] is reached, where K is the total number of stages.

(3) Final wavelet transform

At the conclusion of the decomposition process, x[m, n]
consists of:

(a) The coarsest average image x̃(K)LL [m, n].
(b) Three detail images at each stage:

{ x̃(K−1)
LH [m, n], x̃(K−1)

HL [m, n], x̃(K−1)
HH [m, n] }

{ x̃(K−2)
LH [m, n], x̃(K−2)

HL [m, n], x̃(K−2)
HH [m, n] },

up to the largest (in size) three detail images:

{ x̃(1)LH[m, n], x̃(1)HL[m, n], x̃(1)HH[m, n] }.

The average images x̃(k)LL [m, n] are analogous to the average
signals X̃k[n] of a signal, except that they are low-resolution
versions of a 2-D image x[m, n] instead of a 1-D signal x[n].
In 2-D, there are now three detail images, while in 1-D there is
only one detail signal.

In 1-D, the detail signals are zero except near edges,
representing abrupt changes in the signal or in its slope. In
2-D, the three detail images play the following roles:

(a) x̃(k)LH[m, n] picks up vertical edges,

(b) x̃(k)HL[m, n] picks up horizontal edges,

(c) x̃(k)HH[m, n] picks up diagonal edges.

10-13.2 Image Synthesis Filter Bank

The image synthesis filter bank combines all of the detail
images, and the coarsest average image, x̃(K)LL [m, n], into the
original image x[m, n], as follows:

x̃
(K)
LL [m, n] (2,2) g[−m] g[−n] A

(K)
LL [m, n]

x̃
(K)
LH [m, n] (2,2) g[−m] h[−n] A

(K)
LH [m, n]

x̃
(K)
HL [m, n] (2,2) h[−m] g[−n] A

(K)
HL [m, n]

x̃
(K)
HH [m, n] (2,2) h[−m] h[−n] A

(K)
HH [m, n]

Average signal x̃(K−1)
LL [m, n] is the sum of the above four

outputs:

x̃
(K−1)
LL [m, n] = A

(K)
LL [m, n] + A

(K)
LH [m, n]

+ A
(K)
HL [m, n] + A

(K)
HH [m, n]. (10.158)

Here {A(K)LL [m, n], A(K)LH [m, n], A(K)HL [m, n], A(K)HH [m, n] } are
just four temporary quantities to be added. The analogy to signal
analysis and synthesis filter banks is evident, except that at each
stage there are three detail images instead of one detail signal.

Repetition of the reconstruction step represented by
Eq. (10.158) through an additional K − 1 stages leads to

x[m, n] = x̃
(0)
LL [m, n].
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The condition for perfect reconstruction is the 2-D version of
the Smith-Barnwell condition defined by Eq. (10.113), namely

|G2(e
j�1 , ej�2)|2 + |G2(e

j (�1+π), ej (�2+π))|2
+ |G2(e

j (�1+π), ej�2)|2 + |G2(e
j�1 , ej (�2+π))|2 = 4,

(10.159)

where G2(e
j�1 , ej�2) is the DSFT of the 2-D scaling function

g2[m, n] = g[m] g[n]. Since the 2-D scaling function g2[m, n]
is separable, its DSFT is also separable:

G2(e
j�1 , ej�2) = G(ej�1) G(ej�2), (10.160)

where G(ej�1) is the DTFT of g[n]. The 2-D Smith-Barnwell
condition is satisfied if the 1-D Smith-Barnwell condition given
by Eq. (10.113) is satisfied (see Exercise 10-12).

10-13.3 2-D Haar Wavelet Transform of
Shepp-Logan Phantom

The Shepp-Logan phantom is a piecewise-constant image
that has been a test image for tomography algorithms since
the 1970s. A 256 × 256 image of the Shepp-Logan phantom
is displayed in Fig. 10-28(a). To illustrate what the coarse
and detail images generated by the application of the 2-D
wavelet transform look like, we applied a 4-stage 2-D Haar
wavelet transform to the image in Fig. 10-28(a). The results are
displayed per the pattern in Fig. 10-28(b), with:

(1) Stage-4 images: 16 × 16

The coarsest average image, x(4)LL [m, n], is used as a thumbnail
image, and placed at the upper left-hand corner in Fig. 10-28(c).
The three stage-4 detail images are arranged clockwise around
image x(4)LL [m, n].

(2) Stage-3 images: 32 × 32

The three stage-3 detail images are four times as large, and are
arranged clockwise around the stage-4 images.

(3) Stage-2 images: 64 × 64

(4) Stage-1 images: 128 × 128

The largest images in Fig. 10-28(c) are the three stage-1
images. The number of pixels in the 2-D Haar transform can

50 100 150 200 250

50

100

150

200

250

(a) 256 × 256 Shepp-Logan phantom image

(c) 4-stage 2-D Haar wavelet transform images

(b)
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Figure 10-28: (a) 256 × 256 test image, (b) arrangement of
images generated by a 3-stage Haar wavelet transform, and (c)
the images represented in (b). A logarithmic scale is used to
display the values.
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be computed similarly to the 1-D Haar transform durations in
Eq. (10.66) and Eq. (10.69):

Stage 4 images: The 4 (16×16) images (1 average and 3 detail)
contain a total of 4(16)2 = 1024 pixels.

Stage 3 images: The 3 (32×32) detail images contain a total of
3(32)2 = 3072 pixels. The fourth 32 × 32 image is the average
image, which is decomposed into the stage 4 images.

Stage 2 images: The 3 (64×64) detail images contain a total of
3(64)2 = 12288 pixels. The fourth 64×64 image is the average
image, which is decomposed into the stage 3 images.

Stage 1 images: The 3 (128×128) detail images contain a total
of 3(128)2 = 49152 pixels. The fourth 128 × 128 image is the
average image, which is decomposed into the stage 2 images.

The total number of pixels in the wavelet transform of the
Shepp-Logan phantom is then:

1024 + 3072 + 12288 + 49152 = 65536.

This equals the number of pixels in the Shepp-Logan phantom,
which is 2562 = 65536.

Even though the coarsest average image is only 16 × 16,
it contains almost all of the large numbers in the 2-D wavelet
transform of the original image, and captures most of its primary
features. That is why it is used as a thumbnail image. The pixel
values of the stage-4 detail images are almost entirely zeros. The
3-stage composition process preserves the information content
of the original image—composed of 2562 = 65536 pixels—
while compressing it down to 4 images containing only 3619
nonzero pixels. This is a 94.5% reduction in the number of
nonzero pixels (see S2 for more details).

10-13.4 2-D D3 Daubechies Wavelet Transform
of Clown Image

For a second example, we repeated the steps outlined in
the preceding subsection, but this time we used a 2-D D3
Daubechies wavelet transform on the 200 × 200 clown image
shown in Fig. 10-29(a). The images generated by the 3-stage
decomposition process are displayed in part (b) of the figure,
using the same arrangement as shown earlier in Fig. 10-29(b)
(see S2 for more details).

Module 10.4a Wavelet Transform of Shepp-
Logan Phantom Using Haar Wavelets This module 
computes the Haar wavelet transform of the Shepp-Logan 
phantom. The number of levels of decomposition is a 
selectable parameter.  This module is an interactive 
version of Fig. 10-28.

10-13.5 Image Compression by Thresholding Its
Wavelet Transform

Image compression is an important feature of the wavelet
transform. Not only is the original image represented by fewer
pixels, but also many of the pixels of the wavelet-transform
images are zero-valued. The compression ratio can be improved
further by thresholding the output images of the final stage of
the wavelet-transform decomposition process. Thresholding a
pixel means replacing it with zero if its absolute value is below
a given threshold level λ. As noted earlier in connection with
1-D signals and 2-D images, most of the wavelet-transform
detail signals and images have very small values, so little
information is lost by setting their values to zero, which means
that they no longer need to be stored, thereby reducing the
storage capacity needed to store the wavelet transform of the
image. Furthermore, since the wavelet transform is composed
of orthogonal basis functions, a small change in the wavelet
transform of an image will produce only a small change in the
image reconstructed from these values.
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(b) 2-D D3 Daubechies wavelet transform
of the clown image

Figure 10-29: (a) Clown image and (b) its 3-stage wavelet-
transform images. A logarithmic scale is used to display the
values.

To illustrate with an example, we compare in Fig. 10-30 two
images:

(a) In part (a), we show the original 200 × 200 clown image,
and

(b) in part (b) we show a reconstructed clown image, generated
from the D3 Daubechies wavelet-transform images after
thresholding the images with λ = 0.11.

The reconstructed image looks almost identical to the original
image, even though only 6% of the pixels in the wavelet-
transform images are nonzero.

Module 10.4b WaveletTransform of Clown Image
Using Daubechies Wavelets This module computes
theD3 Daubechies wavelet transform of the clown image.
The number of levels of decomposition is a selectable
parameter. This module is an interactive version of
Fig. 10-29.

Concept Question 10-15: Why is the 2-D wavelet 
transform depicted as a thumbnail image and other near-
zero images? (See        )

Exercise 10-12: Show that for separable 2-D scaling
and wavelet functions, the 2-D Smith-Barnwell condition
Eq. (10.159) is satisfied if the 1-D Smith-Barnwell
condition given by Eq. (10.113) is satisfied.

Answer: See S2
.

Exercise 10-13: Use LabVIEW Module 10.5 to compress
and then decompress the clown image. Use a threshold of
0.5. What compression ratio does this produce?

Answer: 52.1512.
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(b) Reconstructed clown image

Figure 10-30: (a) Original clown image, and (b) image
reconstructed from thresholded D3 Daubechies wavelet
transform images, requiring only 6% as much storage capacity
as the original image.

10-14 Denoising by Thresholding and
Shrinking

A noisy image is given by

y[m, n] = x[m, n] + v[m, n], (10.161)

where x[m, n] is the desired image and v[m, n] is the noise
that had been added to it. The goal of denoising is to recover

Module 10.5 Compression of Clown Image
Using Daubechies Wavelets This module computes
theD3 Daubechies wavelet transform of the clown image,
sets to zero values below a threshold, and reconstructs the
clown image from its thresholded wavelet transform. The
threshold is set by a slider, and the resulting compression
ratio (number of pixels divided by number of nonzero
wavelet coefficients) is computed. This module is an
interactive version of Fig. 10-30.

the original image x[m, n], or a close approximation thereof,
from the noisy image y[m, n]. We now show that the obvious
approach of simply thresholding the wavelet transform of the
image does not work well. Then we show that the combination
of thresholding and shrinking the wavelet transform of the
image does work well.

10-14.1 Denoising by Thresholding Alone

One approach to denoising is to threshold the wavelet transform
of y[m, n]. The idea is that for small wavelet transform values,
the signal-to-noise ratio is low, so little of value is lost by
thresholding these small values to zero. For large wavelet
transform values, the signal-to-noise ratio is large, so these
large values should be kept. This approach worked quite well
in Example 8-18, but it works poorly on wavelet transforms of
noisy images, as the following example shows.
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Figure 10-31: (a) Noise-free clown image, (b) noisy image with SNR = 11.5, and (c) image reconstructed from thresholded wavelet
transform.

Zero-mean 2-D white Gaussian noise with standard deviation
σ = 0.1 was added to the clown image of Fig. 10-31(a). The
noisy image, shown in Fig. 10-31(b), has a signal-to-noise ratio
(SNR) of 11.5, which means that the noise level is, on average,
only about 8.7% of that of the signal.

TheD3 Daubechies wavelet transform was computed for the
noisy image, then thresholded with λ = 0.11, which appeared
to provide the best results. Finally, the image was reconstructed
from the thresholded wavelet transform, and it now appears in
Fig. 10-31(c). Upon comparing the images in parts (b) and (c)
of the figure, we conclude that the thresholding operation failed
to reduce the noise by any appreciable amount.

10-14.2 Denoising by Thresholding and
Shrinkage

We now show that a combination of thresholding small wavelet-
transform values to zero and shrinking other wavelet transform
values by a small number λ performs much better in denoising
images. First we show that shrinkage comes from minimizing
a cost functional, just as Wiener filtering given by Eq. (10.46)
came from minimizing the Tikhonov cost functional given by
Eq. (10.45).

In the material that follows, we limit our treatment to 1-D
signals. The results are readily extendable to 2-D images.
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Module 10.6 Wavelet Denoising of Clown Image
Using DaubechiesWavelets This module adds noise
to the clown image, computes theD3 Daubechies wavelet
transform of the noisy clown image, sets to zero values
below a threshold, and reconstructs the clown image from
its thresholded wavelet transform. The noise level and
threshold are selectable parameters. This module is an
interactive version of Fig. 10-31.

Suppose we are given noisy observations y[n] of a signal
x[n] that is known to be sparse (mostly zero),

y[n] = x[n] + v[n]. (10.162)

All three signals have durations N and the noise v[n] is known
to have zero-mean. The goal is to estimate x[n] from the noisy
observations y[n]; i.e., to denoise y[n] with the additional
information that x[n] is mostly zero-valued.

The prior knowledge that x[n] is sparse can be incorporated
by estimating x[n] from y[n], not by simply using y[n] as an
estimator for x[n], but by minimizing over x[n] the LASSO

cost functional

 = 1

2

N−1∑
n=0

(y[n] − x[n])2
︸ ︷︷ ︸

fidelity to data y[n]

+ λ

N−1∑
n=0

|x[n]|
︸ ︷︷ ︸

sparsity

. (10.163)

Readers familiar with basic estimation theory will note that
 is the negative log-likelihood function for zero-mean white
Gaussian noise v[n] with independent Laplacian a priori
distributions for each x[n]. The coefficient λ is a trade-off
parameter between fidelity to the data y[n] and imposition
of sparsity. If λ = 0, then the estimator x̂[n] of x[n] is just
x̂[n] = y[n]. Nonzero λ emphasizes sparsity, while allowing
some difference between x̂[n] and y[n], which takes into
account the noise v[n].

LASSO is an acronym for least absolute shrinkage and
selection operator.

10-14.3 Minimization of LASSO Cost Functional

The minimization of  decouples in time n, so each term can
be minimized separately. The goal then is to find an estimate of
x[n], which we denote x̂[n], that minimizes over x[n] the nth
term n of Eq. (10.163), namely

n = 1

2
(y[n] − x[n])2 + λ|x[n]|. (10.164)

The expression given by Eq. (10.164) is the sum of two terms.
The value of λ is selected to suit the specific application; if
fidelity to the measured observations y[n] is highly prized, then
λ is assigned a small value, but if data storage is an important
attribute, then λ may be assigned a large value.

Keeping in mind that λ ≥ 0, the minimization problem
consists of four possible scenarios:

(1) y[n] ≥ 0 and y[n] ≤ λ

(2) y[n] ≥ 0 and y[n] ≥ λ

(3) y[n] ≤ 0 and |y[n]| ≤ λ

(4) y[n] ≤ 0 and |y[n]| ≥ λ

Case 1: y[n] ≥ 0 and y[n] ≤ λ

Let us consider the following example for a particular value
of n:

Measurement y[n] = 1
Trade-off parameter λ = 2
Signal x[n]: unknown
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Figure 10-32: Plots of the first and second terms ofn, and their
sum for: (a) y[n] = 1 and λ = 2, and (b) y[n] = 1 and λ = 1/3.

The estimated value x̂[n] of x[n] is found by minimizing n.
Figure 10-32(a) displays three plots, corresponding to the first
and second terms in Eq. (10.164), and their sum. It is evident
from the plot of n that n is minimized at x[n] = 0. Hence,

x̂[n] = 0 for y[n] ≥ 0 and y[n] ≤ λ.

(10.165a)

Case 2: y[n] ≥ 0 and y[n] ≥ λ

Repetition of the scenario described by case 1, but with λ

changed from 2 to 1/3, leads to the plots shown in Fig. 10-32(b).
In this case, n is parabolic-like in shape, and its minimum
occurs at a positive value of x[n] at which the slope of n is
zero. That is,

dn

dx[n] = d

dx[n]
(

1

2
(y[n] − x[n])2 + λ x[n]

)
= 0,

which leads to

x̂[n] = y[n] − λ, for y[n] ≥ 0 and y[n] ≥ λ.

(10.165b)

Case 3: y[n] ≤ 0 and |y[n]| ≤ λ

This case, which is identical to case 1 except that now y[n] is
negative, leads to the same result, namely

x̂[n] = 0, for y[n] ≤ 0 and |y[n]| ≤ λ. (10.165c)

Case 4: y[n] ≤ 0 and |y[n]| ≥ λ

Repetition of the analysis of case 2, but with y[n] negative,
leads to

x̂[n] = y[n] + λ, for y[n] ≤ 0 and |y[n]| ≥ λ.

(10.165d)
The four cases can be combined into

x̂[n] =

⎧⎪⎨
⎪⎩
y[n] − λ for y[n] > +λ,
y[n] + λ for y[n] < −λ,
0 for |y[n]| < λ.

(10.166)

Values of y[n] smaller in absolute value than the threshold λ
are thresholded (set) to zero. Values of y[n] larger in absolute
value than the threshold λ are shrunk by λ, making their
absolute values smaller. So x̂[n] is computed by thresholding
and shrinking y[n]. This is usually called (ungrammatically)
“thresholding and shrinkage.”

The next example shows that denoising images works much
better with thresholding and shrinkage than with thresholding
alone.

When we applied thresholding alone to the noisy image of
Fig. 10-31(b), we obtained the image shown in Fig. 10-31(c),
which we repeat here in Fig. 10-33(a). Application of
thresholding and shrinkage in combination, with λ = 0.11,
leads to the image in Fig. 10-33(b), which provides superior
rendition of the clown image by filtering much more of the
noise, while preserving the real features of the image (see S2

for more details).
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(b) Thresholding and shrinkage

Figure 10-33: Denoising the clown image: (a) denoising by
thresholding alone, (b) denoising by thresholding and shrinkage
in combination.

Concept Question 10-16: Why is shrinkage, in addition
to thresholding, needed for noise reduction? (See        )

Concept Question 10-17: Why does wavelet-based
denoising work so much better than lowpass filtering?
(See        )

Exercise 10-14: Use LabVIEW Module 10.6 to denoise
the clown image. Use a noise level of 0.2 and threshold
of 1. Discuss the result.

Answer:

10-15 Compressed Sensing

The solution of an inverse problem in signal and image
processing is the reconstruction of an unknown signal or image
from measurements (known linear combinations) of the values
of the signal or image. Such inverse problems arise in medical
imaging, radar imaging, optics, and many other fields. For
example, in tomography and magnetic resonance imaging
(MRI), the inverse problem is to reconstruct an image from
measurements of some (but not all) of its 2-D Fourier transform
values.

If the number of measurements equals or exceeds the size
(duration in 1-D, number of pixels in 2-D) of the unknown
signal or image, solution of the inverse problem in the absence
of noise becomes a solution of a linear system of equations.
In practice, there is always noise in the measurements, so
some sort of regularization is required. In Section 10-7.3,
the deconvolution problem required Tikhonov regularization
to produce a recognizable solution when noise was added to
the data. Furthermore, often the number of observations is less
than the size of the unknown signal or image. For example,
in tomography, the 2-D Fourier transform values of the image



“book” — 2016/3/15 — 6:32 — page 600 — #56

600 CHAPTER 10 IMAGE PROCESSING, WAVELETS, AND COMPRESSED SENSING

at very high wavenumbers are usually unknown. In this case,
the inverse problem is underdetermined; consequently, even in
the absence of noise there is an infinite number of possible
solutions. Hence, regularization is needed, not only to deal
with the underdetermined formulation, but also to manage the
presence of noise in the measurements.

We have seen that many real-world signals and images can
be compressed, using the wavelet transform, into a sparse
representation in which most of the values are zero. This
suggests that the number of measurements needed to reconstruct
the signal or image can be less than the size of the signal
or image, because in the wavelet-transform domain, most of
the values to be reconstructed are known to be zero. Had
the locations of the nonzero values been known, the problem
would have been reduced to a solution of a linear system of
equations smaller in size than that of the original linear system
of equations. In practice, however, neither the locations of the
nonzero values nor their values are known.

Compressed sensing refers to a set of signal processing
techniques used for reconstructing wavelet-compressible
signals and images from measurements that are much fewer
in number than the size of the signal or image, but much larger
than the number of nonzero values in the wavelet transform of
the signal or image. The general formulation of the problem is
introduced in the next subsection. There are many advantages
to reducing the number of measurements needed to reconstruct
the signal or image. In tomography, for example, the acquisition
of a fewer number of measurements reduces patient exposure to
radiation. In MRI, this reduces acquisition time inside the MRI
machine, and in smartphone cameras, it reduces the exposure
time and energy required to acquire an image.

This section presents the basic concepts behind compressed
sensing and applies these concepts to a few signal and image
inverse problems. Compressed sensing is an active area of
research and development, and will experience significant
growth in applications in the future.

10-15.1 Problem Formulation

To cast the compressed sensing problem into an appropriate
form, we define the following quantities:

(a) {x[n], n = 0 . . . N − 1} is an unknown signal of length N

(b) The corresponding (unknown) wavelet transform of x[n]
is

{ x̃1[n], x̃2[n], . . . , x̃L[n], X̃L[n] },
and the wavelet transform of x[n] is sparse: onlyK values
of all of the {̃xk[n]} are nonzero, with K � N .

(c) { y[n], n = 0, 1, . . . ,M−1 } areM known measurements

y[0] = a0,0 x[0] + a0,1 x[1] + · · · + a0,N−1 x[N − 1],
y[1] = a1,0 x[0] + a1,1 x[1] + · · · + a1,N−1 x[N − 1],

...

y[M − 1] = aM−1,0 x[0] + aM−1,1 x[1] + · · ·
+ aM−1,N−1 x[N − 1],

where {an,i , n=0, 1, . . . ,M−1, and i=0, 1, . . . , N−1 }
are known

(d) K is unknown, but we know that K � M < N .

The goal of compressed sensing is to compute signal
{x[n], n = 0, 1, . . . , N−1 } from theM known measurements
{ y[n], n = 0, 1, . . . ,M − 1 }.

The compressed sensing problem can be divided into two
components, a direct problem and an inverse problem. In the
direct problem, the independent variable (input) is x[n] and the
dependent variable (output) is the measurement y[n]. The roles
are reversed in the inverse problem: the measurements become
the independent variables (input) and the unknown signal x[n]
becomes the output. The relationships between x[n] and y[n]
involve vectors and matrices:

Signal vector

x = [x[0], x[1], . . . , x[N − 1]]T , (10.167)

where T denotes the transpose operator, which converts a row
vector into a column vector.

y = [y[0], y[1], . . . , y[M − 1]]T . (10.168)

Wavelet transform vector

z =

⎡
⎢⎢⎢⎢⎢⎢⎣

z1
z2
...
...

zN

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x̃1[n]
x̃2[n]
...

x̃L[n]
X̃L[n]

⎤
⎥⎥⎥⎥⎥⎥⎦
, (10.169)
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Wavelet transform matrix

z = W x, (10.170)

where W is a known N ×N wavelet transform matrix that
implements the wavelet transform of x[n] to obtain z . For
example, for the Haar wavelet transform of a signal x[n] of
duration 8, W is given by HHH of Eq. (10.89).

Direct-problem formulation

y = A x, (10.171)

where A is an M ×N matrix. Usually, A is a known matrix
based on a physical model or direct measurement of y for a
known x. Combining Eqs. (10.170) and (10.171) gives

y = A W−1 z = Aw z, (10.172a)

where
Aw = A W−1. (10.172b)

Since A and W are both known matrices, Aw also is known.

Inverse-problem formulation

If, somehow, z can be determined from the measurement
vector y, then x can be computed by inverting Eq. (10.170):

x = W−1 z . (10.173)

For the orthogonal wavelet transforms, such as the Haar
and Daubechies transforms covered in Sections 10-9 and
10-12, W−1 = WT , so the inverse wavelet transform can be
computed as easily as the wavelet transform. In practice, both
are computed using analysis and synthesis filter banks, as
discussed in earlier sections.

The crux of the compressed sensing problem reduces to
finding z , given y. An additional factor to keep in mind is that
only K values of the elements of z are nonzero, with K � M .
Algorithms for computing z from y rely on iterative approaches,
as discussed in future sections.

Because z is of length N , y of length M , and M < N

(fewer measurements than unknowns), Eq. (10.172) represents
an underdetermined system of linear equations, whose solution
is commonly called an ill-posed problem.

10-15.2 Inducing Sparsity into Solutions

In seismic signal processing, explosions are set off on the
Earth’s surface, and echoes of the seismic waves created by
this explosion are measured by seismometers. In the 1960s,
sedimentary media (such as the bottom of the Gulf of Mexico)
were modeled as a stack of layers, so the seismometers would

record occasional sharp pulses reflected off of the interfaces
between the layers. The amplitudes and times of the pulses
would allow the layered medium to be reconstructed. However,
the occasional pulses had to be deconvolved from the source
pulse created by the explosions. The deconvolution problem
was modeled as an underdetermined linear system of equations.

A common approach to finding a sparse solution to a system
of equations is to choose the solution that minimizes the sum of
absolute values of the solution. This is known as the minimum
�1 norm solution. The �1 norm is denoted by the symbol ||z||1
and defined as

||z||1 =
N∑
i=1

|zi |. (10.174a)

The goal is to find the solution to the system of equations that
minimizes ||z||1.

A second approach,which does not provide a sparse solution,
called the squared �2 norm finds the solution that minimizes the
sum of squares of the solution. The squared �2 norm is denoted
by the symbol ||z||22 and is defined as

||z||22 =
N∑
i=1

|zi |2. (10.174b)

10-16 Computing Solutions to
Underdetermined Equations

10-16.1 Basis Pursuit
As noted earlier, the unknown signal vector x can be determined
from Eq. (10.173), provided we have a viable solution for z
(because W is a known matrix). One possible approach to
finding z is to implement the minimum �1 norm given by
Eq. (10.174a), subject to the constraint given by Eq. (10.172a).
That is, the goal is to find vector z from measurement vector y
such that

N∑
i=1

|zi | is minimum,

and
y = Aw z .

The solution method is known as basis pursuit, and it can be
formulated as a linear programming problem by defining the
positive z+ and negative z− parts of z as:

z+
i =

{
+zi if zi ≥ 0,

0 if zi < 0,
(10.175a)

z−
i =

{
−zi if zi ≤ 0,

0 if zi > 0.
(10.175b)

Vector z is then given by

z = z+ − z−, (10.176)
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and its �1 norm is

||z||1 =
N∑
i=1

(z+
i + z−

i ). (10.177)

In terms of z+ and z−, the basis pursuit problem becomes

Minimize
N∑
i=1

(z+
i + z−

i )

subject to y = Aw z+ − Aw z−,

(10.178)

which is a straightforward linear programming problem that can
be solved using linprog in MATLAB’s Optimization Toolbox.
The basis pursuit method is limited to noise-free signal and
image problems, so in the general case, more sophisticated
approaches are called for.

10-16.2 LASSO Cost Functional

A serious shortcoming of the basis pursuit solution method
is that it does not account for the presence of noise in the
observations y. As noted earlier in Section 10-14.2, the least
absolute shrinkage and selection operator (LASSO) provides
an effective approach for estimating the true signal from noisy
measurements. In the present context, the LASSO functional is
defined as

 = 1
2 ||y − Aw z||22︸ ︷︷ ︸

fidelity

+ λ||z||1︸ ︷︷ ︸
sparsity

, (10.179)

where λ is a trade-off parameter between sparsity of z and
fidelity to the measurement y. Choosing the solution z that
minimizes Eq. (10.179), for a specified value of λ, is called
basis pursuit denoising. The solution requires the use of an
iterative algorithm. Two such algorithms are presented in later
subsections, preceded by a short review of pseudo inverses.

10-16.3 Review of Pseudo-Inverses

(a) Overdetermined system

Consider the linear system of equations given by

y = Aw z, (10.180)

with z of length N , y of length M , and Aw of size M ×N

with full rank. If M > N , then the system is overdetermined
(more measurements than unknowns) and, in general, it has no

solution. The vector ẑ that minimizes ||y−Aw z||22 is called the
pseudo-inverse solution, and is given by the estimate

ẑ = (ATw Aw)
−1 ATw y. (10.181a)

Note that ATw Aw is an N ×N matrix with full rank.
To avoid matrix-inversion problems, ẑ should be computed

not by inverting ATw Aw, but by solving the linear system of
equations

(ATwAw) ẑ = ATw y (10.181b)

using the LU decomposition method or similar techniques.
Here, LU stands for lower upper, in reference to the lower
triangular submatrix and the upper triangular submatrix
multiplying the unknown vector ẑ .

(b) Underdetermined system

Now consider the underdetermined system characterized by
M < N (fewer measurements than unknowns). In this case,
there is an infinite number of possible solutions. The vector ẑ
that minimizes ||z||22 among this infinite number of solutions
also is called the pseudo-inverse solution, and is given by the
estimate

ẑ = ATw (Aw A
T
w)

−1 y. (10.182)

In the present case, Aw A
T
w is an M ×M matrix with full

rank. Solution ẑ should be computed not by inverting Aw A
T
w,

but by initially solving the linear system

(Aw A
T
w) r̂ = y, (10.183a)

to compute an intermediate estimate r̂ , and then computing ẑ
by applying

ẑ = ATw r̂ . (10.183b)

10-16.4 Iterative Reweighted Least Squares
(IRLS) Algorithm

According to Eq. (10.172a), measurement vector y and wavelet
transform vector z are related by

y = Aw z . (10.184)

The iterative reweighted least squares (IRLS) algorithm uses
the Tikhonov regularization functional given by Eq. (10.45),
together with a diagonal weighting matrix D to minimize the
cost function

T = 1
2 ||y − Aw z||22︸ ︷︷ ︸

fidelity

+ λ||D z||22︸ ︷︷ ︸
size

, (10.185)
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where λ is the trade-off parameter between the size of z and the
fidelity to the data y. The goal is to trade off small differences
between y and Aw z so as to keep z small. To compute z , we
first rewrite Eq. (10.185) in the expanded form

T =

1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎣

y[0]
y[1]
...

y[M − 1]

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣
a0,0 a0,1 . . . a0,N−1
a1,0 a1,1 . . . a1,N−1
...

aM−1,0 aM−1,1 . . . aM−1, N−1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
z2
...
...
...

zN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

2

M × 1 M ×N N × 1

+ λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11
. . .

. . . 0
0 . . .

. . .

DNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
z2
...
...
...

zN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

2

,

N ×N N × 1 (10.186)

Both the unknown vector x and its wavelet vector z are of size
N × 1. This is in contrast with the much shorter measurement
vector y, which is of size M × 1, with M < N .

We now introduce vector y and matrix Aw as

[
y
] =

[
y

0

] }M × 1

}N × 1
, (10.187a)

(M+N)×1

[
Aw

] =
⎡
⎣ Aw

√
2λ D

⎤
⎦ }M ×N

}N ×N
. (10.187b)

(M+N)×N

Vector y is vectory of lengthM stacked on top of vector 0, which
is a column vector of zeros of length N . Similarly, matrix Aw

is matrix Aw (of size M ×N ) stacked on top of matrix D (of
size N ×N ), multiplied by the scalar factor

√
2λ.

Next, we introduce the new cost function T1 as

T1 = 1

2

∣∣∣∣y − Aw z
∣∣∣∣2

2

= 1

2

∣∣∣∣∣∣
∣∣∣∣∣∣
[
y

0

]
−
⎡
⎣ Aw

√
2λ D

⎤
⎦ z

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

= 1

2

∣∣∣∣∣∣y − Aw z
∣∣∣∣∣∣2

2
+ λ

∣∣∣∣0 −D z
∣∣∣∣2

2

= 1

2

∣∣∣∣∣∣y − Aw z
∣∣∣∣∣∣2

2
+ λ

∣∣∣∣D z
∣∣∣∣2

2 = T . (10.188)

Hence, Eq. (10.185) can be rewritten in the form

T = 1
2

∣∣∣∣y − Aw z
∣∣∣∣2

2 . (10.189)

The vector z minimizing T is the pseudo-inverse given by

ẑ = (ATwAw)
−1ATw y

=
⎛
⎝[ATw √

2λ DT
]⎡⎣ Aw

√
2λ D

⎤
⎦
⎞
⎠

−1 [
ATw

√
2λ DT

] [y
0

]

= (ATw Aw + 2λ DT D)−1 ATw y. (10.190)

As always, instead of performing matrix inversion (which is
susceptible to noise amplification), vector ẑ should be computed
by solving

(ATw Aw + 2λ DT D) ẑ = ATw y. (10.191)

Once ẑ has been determined, the unknown vector x can be
computed by solving Eq. (10.170).

To solve Eq. (10.191) for ẑ , however, we need to know Aw,
λ, D, and y. From Eq. (10.172b), Aw = A W−1, where A is
a known matrix based on a physical model or calibration data,
and W is a known wavelet transform matrix. The parameter λ
is specified by the user to adjust the intended balance between
data fidelity and storage size (as noted in connection with
Eq. (10.185)), and y is the measurement vector. The only
remaining quantity is the diagonal matrixD, whose function is
to assign weights to z1 through zN so as to minimize storage size
by having many elements of z → 0. Initially, D is unknown,
but it is possible to propose an initial function for D and then
iterate to obtain a solution for z that minimizes the number of
nonzero elements, while still satisfying Eq. (10.191).

The Tikhonov function given by Eq. (10.185) reduces to the
LASSO functional given by Eq. (10.179) if

D = diag

[
1√|zn|

]
. (10.192)

where ai, j is the (i, j)th element of Aw.
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This is because the second terms in the two equations become
identical:

||D z||22 =
N∑
n=1

z2
n

|zn| =
N∑
n=1

|zn| = ||z||1. (10.193)

Given this correspondence between the two cost functionals,
the IRLS algorithm uses the following iterative procedure to
find z :

(a) Initial solution: Set D = I and then compute z (1), the
initial iteration of z , by solving Eq. (10.191).

(b) Initial D: Use z(1) to compute D(1), the initial iteration
of D:

(10.194)

(c) Second iteration: Use D(1) to compute z (2) by solving
Eq. (10.191) again.

(d) Recursion: Continue to iterate by computing D(k) from
z(k) using

D(k) = diag

⎡
⎣ 1√

|z(k)n | + ε

⎤
⎦ (10.195)

for a small deviation ε inserted in the expression to keep D(k) 

finite when elements of z(k) → 0.

The iterative process ends when no significant change 
occurs between successive iterations. The algorithm, also 
called focal underdetermined system solver (FOCUSS), is 
guaranteed to converge under mild assumptions. However, 
because the method requires a solution of a large system of 
equations at each iteration, the algorithm is considered 
unsuitable for most signal and image processing applications. 
Superior-performance algorithms are introduced in succeeding 
sections.

10-17 Landweber Algorithm

The Landweber algorithm is a recursive algorithm for solving 
linear systems of equations y = Ax. The iterative shrinkage 
and thresholding algorithm (ISTA) consists of the Landweber 
algorithm,with thresholding and shrinkage applied at each 
recursion. Thresholding and shrinkage were used in Section 
10-14 to minimize the LASSO functional.

10-17.1 Underdetermined System

For an underdetermined system y = Ax with M < N , the
solution x̂ that minimizes the sum of squares of the elements of
x is, by analogy with Eq. (10.182), given by

x̂ = AT (A AT )−1 y. (10.196)

A useful relationship in matrix algebra states that if all of the
eigenvalues λi of (A AT ) lie in the interval 0 < λi < 2, then
the coefficient of y in Eq. (10.196) can be written as

AT (AAT )−1 =
∞∑
k=0

(I − ATA)k AT . (10.197)

The symbol λi for eigenvalue is unrelated to the trade-off
parameter λ in Eq. (10.185).

Using Eq. (10.197) in Eq. (10.196) leads to

x̂ =
∞∑
k=0

(I − ATA)k AT y. (10.198)

A recursive implementation of Eq. (10.198) assumes the form

x(K+1) =
K∑
k=0

(I − ATA)k AT y, (10.199)

where the upper limit in the summation is nowK (instead of ∞).
For K = 0 and K = 1, we obtain the expressions

x(1) = AT y, (10.200a)

x(2) = AT y + (I − ATA)AT y = (I − ATA) x(1) + AT y.

(10.200b)

Extending the process to K = 2 gives

x(3) = AT y︸︷︷︸
k=0

+ (I − ATA)AT y︸ ︷︷ ︸
k=1

+ (I − ATA)2 AT y︸ ︷︷ ︸
k=2

= x(2) + AT (y − A x(2)). (10.200c)

Continuing the pattern leads to

x(k+1) = x(k) + AT (y − A x(k)). (10.201)

The process can be initialized by x(0) = 0, which makes
x(1) = AT y, as it should.

The recursion process is called the Landweber iteration,
which in optics is known as the van Cittert iteration. It
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is guaranteed to converge to the solution of y = Ax that
minimizes the sum of squares of the elements of x, provided
that the eigenvalues λi ofAAT are within the range 0 < λi < 2.
If this condition is not satisfied, the formulation may be scaled
to

y

c
= A

c
x

or, equivalently,
u = Bx, (10.202)

where u = y/c and B = A/c. The constant c is chosen so that
the eigenvalue condition is satisfied. For example, if c is chosen
to be equal to the sum of the squares of the magnitudes of all
of the elements ofA, then the eigenvalues λ′

i of BBT will be in
the range 0 < λ′

i < 1.

10-17.2 Overdetermined System

In analogy with Eq. (10.181a), the solution for an overdeter-
mined system y = Ax is given by

x̂ = (AT A)−1AT y. (10.203)

Using the equality

(AT A)−1 =
∞∑
k=0

(I − ATA)k (10.204)

we can rewrite Eq. (10.203) in the same form as Eq. (10.198),
namely

x̂ =
∞∑
k=0

(I − ATA)k AT y. (10.205)

Hence, the Landweber algorithm is equally applicable to
solving overdetermined systems of linear equations.

10-17.3 Iterative Shrinkage and Thresholding
Algorithm (ISTA)

For a linear system given by

y = A x, (10.206)

where x is the unknown signal of lengthN and y is the (possibly
noisy) observation of length M , the LASSO cost functional is

 = 1

2

N−1∑
n=0

(y[n] − (Ax)[n])2 + λ

N−1∑
n=0

|x[n]|, (10.207)

where matrixA isM×N and (A x)[n] is thenth element ofA x.

� In the system described by Eq. (10.206), x and y

are generic input and output vectors. The Landweber
algorithm provides a good estimate of x, given y. The
estimation algorithm is equally applicable to any other
linear system, including the system y = Awz , where Aw

is the matrix given by Eq. (10.172b) and z is the wavelet
transform vector. �

The ISTA algorithm combines the Landweber algorithm with
the thresholding and shrinkage operation outlined earlier in
Section 10-14.3, and summarized by Eq. (10.166). After each
iteration, elementsx(k)[n], of vectorx(k), whose absolute values
are smaller than the trade-off parameter λ are thresholded to
zero, and those whose absolute values are larger than λ are
shrunk by λ. Hence, the ISTA algorithm combines Eq. (10.201)
with Eq. (10.166):

x(0) = 0, (10.208a)

x(k+1) = x(k) + AT (y − A x(k)), (10.208b)

with

x
(k+1)
i =

⎧⎪⎨
⎪⎩
x
(k+1)
i − λ if x(k+1)

i > λ,

x
(k+1)
i + λ if x(k+1)

i < −λ,
0 if |x(k+1)

i | < λ,

(10.208c)

where x(k+1)
i is the ith component of x(k+1).

The ISTA algorithm converges to the value of x that
minimizes the LASSO functional given by Eq. (10.207),
provided all of the eigenvalues λi of AAT obey |λi | < 1.

The combination of thresholding and shrinking is often
called soft thresholding, while thresholding small values to
zero without shrinking is called hard thresholding. There are
many variations on ISTA, with names like SPARSA (sparse
reconstruction by separable approximation), FISTA (fast
iterative shrinkage and thresholding algorithm, and TWISTA
(two-step iterative shrinkage and thresholding algorithm).

Concept Question 10-18:What is the difference between
Landweber and ISTA? (See        )

Concept Question 10-19: What condition guarantees
that the Landweber iteration converges to the solution? 
(See        )
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10-18 Compressed Sensing Examples

To illustrate the utility of the ISTA described in the preceding
section, we present four examples of compressed sensing:

• Reconstruction of an image from some, but not all, of its
2-D DFT values.

• Image inpainting, which entails filling in holes (missing
pixel values) in an image.

• Valid deconvolution of an image from only part of its
convolution with a known point spread function (PSF).

• Tomography, which involves reconstruction of a 3-D
image from slices of its 2-D DFT.

These are only a few of many more possible types of
applications of compressed sensing.

The ISTA was used in all four cases, and the maximum
number of possible iterations was set at 1000, or fewer if the
algorithm converges to where no apparent change is observed
in the reconstructed images. The LASSO functional parameter
was set at λ = 0.01, as this value seemed to provide the best
results (see S2 for more details on all four applications).

10-18.1 Image Reconstruction from Subset of
DFT Values

Suppose that after computing the 2-D DFT of an image x[m, n],
some of the DFT values X[k1, k2] were lost or no longer
available. The goal is to reconstruct image x[m, n] from the
partial subset of its DFTs. Since the available DFT values
are fewer than those of the unknown signal, the system is
underdetermined and the application is a good illustration of
compressed sensing.

For a 1-D signal { x[n], n = 0, 1, . . . , N − 1 }, its DFT can
be implemented by the matrix-vector product

y = A x, (10.209)

where the (k, n)th element of A is Ak,n = e−j2πnk/N , the nth
element of vector x is x[n], and the kth element of vector y is

X[k]. Multiplication of both sides byAH implements an inverse
1-D DFT within a factor 1/N .

The 2-D DFT of an N ×N image can be implemented
by multiplication by an N2 ×N2 block matrix B whose
(k2, n2)th block is the N ×N matrix A multiplied by the
scalar e−j2πn2k2/N . So the element Bk1+Nk2,n1+Nn2 of B is
e−j2πn1k1/Ne−j2πn2k2/N , where 0 ≤ n1, n2, k1, k2 ≤ N − 1.

The absence of some of the DFT values is equivalent to
deleting some of the rows of B and y, thereby establishing

an underdetermined linear system of equations. To illustrate
the reconstruction process for this underdetermined system, we
consider two different scenarios applied to the same set of data.

� For convenience, we call the values X[k1, k2] of the
2-D DFT the pixels of the DFT image. �

(a) Least-squares reconstruction

Starting with the 256 × 256 image shown in Fig. 10-34(a), we
compute its 2-D DFT and then we randomly select a subset
of the pixels in the DFT image and label them as unknown.
The complete 2-D DFT image consists of 2562 = 65536 pixel
values of X[k1, k2]. Of those, 35755 are unaltered (and therefore
have known values), and the other 29781 pixels have unknown
values. Figure 10-34(b) displays the locations of pixels with
known DFT values as white dots and those with unknown values
as black dots.

In the least-squares reconstruction method, all of the pixels
with unknown values are set to zero, and then the inverse 2-D
DFT is computed. The resulting image, shown in Fig. 10-34(c),
is a poor rendition of the original image in part (a) of the figure.

(b) ISTA reconstruction

The ISTA reconstruction process consists of two steps:

(1) Measurement vector y, representing the 35755 DFT
pixels with known values, is used to estimate the (entire 65536)
wavelet transform vector z by applying the recipe outlined
in Section 10-17.3 with λ = 0.01 and 1000 iterations. The
relationship between y and z is given by y = Awz , with
Aw = BW and some rows of B deleted.

(2) Vector z is then used to reconstruct x by applying the
relation x = W−1z .  The Haar transform was used in this step.

The reconstructed image, displayed in Fig. 10-34(d), is an 
excellent rendition of the original image.

It  is  important  to  note  that  while  B  and  W−1  are  each  
N2 × N2, with N  =  65536, neither matrix is ever computed or 
stored during the implementation of the reconstruction process. 
Multiplication by W−1 is implemented by a 2-D filter bank, 
and multiplication by B is implemented by a 2-D FFT. 
Consequently, ISTA is a very fast algorithm.

10-18.2 Image Inpainting

In an image inpainting problem, some of the pixel values of an 
image are unknown, either because those pixel values have been 
corrupted, or because they represent some unwanted feature 
of the image that we wish to remove. The goal is to restore 
the image to its original version, in which the unknown pixel
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(c) Reconstructed image without ISTA (d) Reconstructed image with ISTA

(a) Original Shepp-Logan phantom image (b) Locations of known values of X[k1,k2]

Figure 10-34: (a) Original Shepp-Logan phantom image, (b) 2-D DFT image with locations of pixels of known values displayed in white
and those of unknown values displayed in black, (c) reconstructed image using available DFT pixels and (d) reconstructed image after filling
in missing DFT pixel values with estimates provided by ISTA.

values are replaced with the, hitherto, unknown pixel values of
the original image. This can be viewed as a kind of interpolation
problem.

It is not at all evident that this can be done at all—how can
we restore unknown pixel values? But under the assumption
that the Daubechies wavelet transform of the image is sparse
(mostly zero-valued), image inpainting can be formulated as a
compressed sensing problem. Let y be the vector of the known
pixel values and x be the vector of the wavelet transform of the
image. Note that all elements of x are unknown, even though

some of the pixel values are actually known. Then the problem
can be formulated as an underdetermined linear systemy = Ax.

For example, if x is a column vector of length five, and only
the first, third, and fourth elements of x are known, the problem
can be formulated as

⎡
⎣y1
y2
y3

⎤
⎦ =

⎡
⎣x1
x3
x4

⎤
⎦ =

⎡
⎣1 0 0 0 0

0 0 1 0 0
0 0 0 1 0

⎤
⎦
⎡
⎢⎢⎢⎢⎣
x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎥⎦ .
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Figure 10-35: (a) Locations of known values of clown image in
white and those of unknown values in black; (b) restored image.

One application of image inpainting is to restore a painting
in which the paint in some regions of the painting has been
chipped off, scraped off, damaged by water or simply faded,
but most of the painting is unaffected. Another application is
to remove unwanted letters or numbers from an image. Still
another application is “wire removal” in movies, the elimination
of wires used to suspend actors or objects used for an action
stunt in a movie scene.

In all of these cases, damage to the painting, or presence of
unwanted objects in the image, has made some small regions
of the painting or image unknown. The goal is to fill in the
unknown values to restore the (digitized) painting or image to
its original version.

Using a 200×200 = 40000-pixel clown image, 19723 pixels
were randomly selected and their true values were deleted.

In the image shown in Fig. 10-35(a), the locations of pixels 
with unknown values are painted black, while the remaining 
half (approximately) have their correct values. The goal is to 
reconstruct the clown image from the remaining half. The db3 
wavelet transform was used.

In terms of the formulation y = AW T z , M = 20277 and 
N = 40000, so that just over half of the clown image pixel 
values are known. The ISTA is a good algorithm to solve 
this compressed sensing problem, since the matrix vector 
multiplication y = AW T z can be implemented quickly by 
taking the inverse wavelet transform of the current iteration 
(multiplication by W T ), and then selecting a subset of the pixel 
values (multiplication by A). The result, after 1000 iterations, 
is shown in Fig. 10-35(b). The image has been reconstructed 
quite well, but not perfectly.

Module 10.7 Inpainting of Clown Image Using 
Daubechies Wavelets and IST Algorithm This 
module deletes pixels of the clown image at randomly 
selected locations, and uses the IST algorithm to 
reconstruct the db3 Daubechies wavelet transform of the 
clown image from the known clown pixel values. The 
“missing pixel threshold” slider controls what fraction of 
pixels is deleted. This module is an interactive version of 
Fig. 10-35. Note: The module must be rerun every time 
any slider is changed.
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10-18.3 Valid 2-D Deconvolution

(a) Definition of valid convolution

Given an M ×M image x[m, n] and an L× L point spread
function (PSF) h[m, n], their 2-D convolution generates an
(M+L−1)×(M+L−1) blurred image y[m, n]. The process is
reversible: the blurred image can be deconvolved to reconstruct
x[m, n] by subjecting y[m, n] to a Wiener filter, as described
earlier in Section 10-7. To do so, however, requires that all of
y[m, n] be known.

Often, we encounter deconvolution applications where only
a fraction of y[m, n] is known, specifically, the part of y[m, n]
called the valid convolution. This is the part whose convolution
computation does not require the image x[m, n] to be zero-
valued outside the square 0 ≤ m, n ≤ M − 1.

For L < M (image larger than PSF), the valid 2-D
convolution of h[m, n] and x[m, n] is defined as

yV[m, n] =
M−1∑
i=0

M−1∑
j=0

x[i, j ] h[m− i, n− j ]

= h[m, n] ∗ x[m, n], restricted to

{L− 1 ≤ m, n ≤ M − 1 }. (10.210)

A valid convolution omits all end effects in 1-D convolution
and all edge effects in 2-D convolution. Consequently, the
size of yV[m, n] is (M − L+ 1)× (M − L+ 1), instead of
(M+L−1)×(M+L−1) for the complete convolution y[m, n].

To further illustrate the difference between y[m, n] and
yV[m, n], let us consider the following example:

x[m, n] =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦

and

h[m, n] =
[

11 12
13 14

]
.

Since M = 3 and L = 2, the 2-D convolution is
(M + L− 1)× (M + L− 1) = 4 × 4, and y[m, n] is
given by

y[m, n] =

⎡
⎢⎢⎣

11 34 57 36
57 143 193 114
129 293 343 192
91 202 229 126

⎤
⎥⎥⎦ .

In contrast, the size of the valid 2-D convolution is
(M−L+ 1)× (M−L+ 1) = 2 × 2, and yV[m, n] is given by

yV[m, n] =
[

143 193
293 343

]
.

The valid convolution yv[m, n] is the central part of y[m, n],
obtained by deleting the edge rows and columns from y[m, n].
In MATLAB, the valid 2-D convolution of X and H can be
computed using the command

Y=conv2(X,H,’valid’).

(b) Reconstruction from yV[m, n]
The valid 2-D deconvolution problem is to reconstruct an
unknown image from its valid 2-D convolution with a known
PSF. The 2-D DFT and Wiener filter cannot be used here, since
not all of the blurred image y[m, n] is known. It may seem that
we may simply ignore, or set to zero, the unknown parts of
y[m, n] and still obtain a decent reconstructed image using a
Wiener filter, but as we will demonstrate with an example, such
an approach does not yield fruitful results.

The valid 2-D deconvolution problem is clearly underdeter-
mined, since the (M−L+1)×(M−L+1) portion of the blurred
image is smaller than theM×M unknown image. But if x[m, n]
is sparsifiable, then valid 2-D deconvolution can be formulated
as a compressed sensing problem and solved using the ISTA.
The matrix A turns out to be a block Toeplitz with Toeplitz
blocks matrix, but multiplication by A is implemented as a
valid 2-D convolution. Multiplication byAT is implemented as
a valid 2-D convolution.

The valid 2-D convolution can be implemented as y
V

= Ax

where

x = [1 2 3 4 5 6 7 8 9]T ,
y

V
= [143 193 293 343]T ,

and the matrix A is composed of the elements of h[m, n] as
follows:

A =

⎡
⎢⎢⎣

14 13 0 12 11 0 0 0 0
0 14 13 0 12 11 0 0 0
0 0 0 14 13 0 12 11 0
0 0 0 0 14 13 0 12 11

⎤
⎥⎥⎦ .

Note thatA is a 2×3 block matrix of 2×3 blocks. Each block is
constant along its diagonals, and the blocks are constant along
block diagonals. This is the block Toeplitz with Toeplitz blocks
structure. Also note that images x[m, n] and yV[m, n] have
been unwrapped row by row, starting with the top row, and
the transposes of the rows are stacked into a column vector.
Finally, note that multiplication by AT can be implemented as
a valid 2-D convolution with the doubly reversed version of
h[m, n]. For example, if

z[m, n] =

⎡
⎢⎢⎣

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

⎤
⎥⎥⎦
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Figure 10-36: (a) Valid 2-D convolution yV[m, n] of clown image, (b) deconvolution using Wiener filter, and (c) deconvolution using ISTA.

and

g[m, n] =
[

14 13
12 11

]
= h[1 −m, 1 − n], with m, n = 0, 1,

then the valid 2-D convolution of z[m, n] and g[m, n] is

wv[m, n] =
⎡
⎣184 234 284

384 434 484
584 634 684

⎤
⎦ .

This valid 2-D convolution can also be implemented as
w = AT z where

z = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]T
and

w = [184 234 284 384 434 484 584 634 684]T .

Parts (b) and (c) of Fig. 10-36 show reconstructed versions 
of the clown image, using a Wiener filter and ISTA, 
respectively. Both images involve deconvolution using the 
restricted valid convolution data yV[m, n]. In the Wiener-
image approach, the unknown parts of the blurred image 
(beyond the edges of yV[m, n]) were ignored, and the resultant 
image bears no real resemblance to the original clown image. 
In contrast,
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the ISTA approach provides excellent reconstruction of the
original image. This is because ISTA is perfectly suited for
solving underdetermined systems of linear equations with
sparse solutions.

10-18.4 Computed Axial Tomography (CAT)

Computed axial tomography, also known as CAT scan, is
a technique capable of generating 3-D images of the X-ray
attenuation (absorption) properties of an object, such as the
human body. The X-ray absorption coefficient of a material is
strongly dependent on the density of that material. CAT has the
sensitivity necessary to image body parts across a wide range
of densities, from soft tissue to blood vessels and bones.

As depicted in Fig. 10-37(a), a CAT scanner uses an X-ray
source, with a narrow slit to generate a fan-beam, wide enough
to encompass the extent of the body, but only a few millimeters
in thickness. The attenuated X-ray beam is captured by an array
of ∼ 700 detectors. The X-ray source and the detector array are
mounted on a circular frame that rotates in steps of a fraction
of a degree over a full 360◦ circle around the object or patient,
each time recording an X-ray attenuation profile from a different
angular direction. Typically, on the order of 1000 such profiles
are recorded, each composed of measurements by 700 detectors.
For each horizontal slice of the body, the process is completed in
less than 1 second. CAT performs a deconvolution to generate
a 2-D image of the absorption coefficient of that horizontal
slice. To image an entire part of the body, such as the chest or
head, the process is repeated over multiple slices (layers). Our
current interest is in the deconvolution process, so we limit our
treatment to the 2-D case.

For each anatomical slice, the CAT scanner generates on
the order of 7 × 105 measurements (1000 angular orientations
×700 detectors). In terms of the coordinate system shown in
Fig. 10-37(b), we define α(ξ, η) as the absorption coefficient
of the object under test at location (ξ, η). The X-ray beam is
directed along the ξ direction at η = η0. The X-ray intensity
received by the detector located at ξ = ξ0 and η = η0 is given
by

I (ξ0, η0) = I0 exp

⎡
⎣−

ξ0∫
0

α(ξ, η0) dξ

⎤
⎦ , (10.211)

where I0 is the X-ray intensity radiated by the source. Outside
the body, α(ξ, η) = 0. The corresponding logarithmic path
attenuation p(ξ0, η0) is defined as

p(ξ0, η0) = − log
I (ξ0, η0)

I0
=

ξ0∫
0

α(ξ, η0) dξ. (10.212)

(a) CAT scanner

(b) Horizontal path

(c) Path at radius r and orientation θ

X-ray
source Fan beam

of X-rays

Detector 
array

Computer 
and monitor

Absorption
coefficient

Object

0
0

X-ray detector

X-ray
sourceI0

ξ0
ξ

η0

η

α(ξ,η)
I(ξ0,η0) = 

I0 exp(− ∫ α(ξ,η0) dξ)
ξ0

0

I(ξ0,η0)

η

ξ
Detector

X-ray source
I0

r
α(ξ,η) I(r,θ)

θ

Figure 10-37: (a) CAT scanner, (b) X-ray path along ξ , and (c)
X-ray path along arbitrary direction.

The path attenuation p(ξ0, η0) is the integrated absorption
coefficient across the X-ray path.

In the general case, the path traversed by the X-ray source is
at a range r and angle θ in a polar coordinate system, as depicted
in Fig. 10-37(c). The direction of the path is orthogonal to the
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direction of r . For a path corresponding to a specific set (r, θ),
Eq. (10.212) becomes

p(r, θ) =
∞∫

−∞

∞∫
−∞

α(ξ, η) δ(r − ξ cos θ − η sin θ) dξ dη,

(10.213)
where the impulse function δ(r−ξ cos θ−η sin θ) dictates that
only those points in the (ξ, η) plane that fall along the path
specified by fixed values of (r, θ) are included in the integration.

The relation between p(r, θ) and α(ξ, η) is known as
the 2-D Radon transform of α(ξ, η). The goal of CAT is
to reconstruct α(ξ, η) from the measured path attenuations
p(r, θ), by inverting the Radon transform given by Eq. (10.213).
We do so with the help of the Fourier transform.

Recall from entry #1 in Table 5-6 that for variable r ,
F{δ(r)} = 1, and from entry #4 in Table 5-7 that the shift
property is

F{x(r − r0)} = X(ω) e−jωr0 .

The combination of the two properties leads to

F{δ(r − ξ cos θ − η sin θ)}

=
∞∫

0

δ(r − ξ cos θ − η sin θ) e−jωr dr

= e−jω(ξ cos θ+η sin θ) = e−j (ω1ξ+ω2η), (10.214)

where we define angular frequencies ω1 and ω2 as

ω1 = ω cos θ, (10.215a)

ω2 = ω sin θ. (10.215b)

Next, let us define A as the 2-D Fourier transform of the
absorption coefficient α(ξ, η) using the relationship given by
Eq. (5.143a):

A(ω1, ω2) =
∞∫

−∞

∞∫
−∞

α(ξ, η) e−jω1ξ e−jω2η dξ dη. (10.216)

If we know A(ω1, ω2), we can perform an inverse 2-D Fourier
transform to retrieve α(ξ, η). To do so, we need to relate
A(ω1, ω2) to the measured path attenuation profiles p(r, θ).
To that end, we use Eq. (10.213) to compute P(ω, θ), the 1-D

Fourier transform of p(r, θ):

P(ω, θ) =
∞∫

0

p(r, θ) e−jωr dr

=
∞∫

0

[ ∞∫
−∞

∞∫
−∞

α(ξ, η)

· δ(r − ξ cos θ − η sin θ) dξ dη

]
e−jωr dr.

(10.217)

By reversing the order of integration, we have

P(ω, θ) =
∞∫

−∞

∞∫
−∞

α(ξ, η)

·
⎡
⎣ ∞∫

0

δ(r − ξ cos θ − η sin θ) e−jωr dr

⎤
⎦ dξ dη.

(10.218)

We recognize the integral inside the square bracket as the
Fourier transform of the shifted impulse function, as given by
Eq. (10.214). Hence, Eq. (10.218) simplifies to

P(ω, θ) =
∞∫

−∞

∞∫
−∞

α(ξ, η) e−j (ω1ξ+ω2η) dξ dη, (10.219)

which is identical to Eq. (10.216). Hence,

A(ω1, ω2) = P(ω, θ), (10.220)

where A(ω1, ω2) is the 2-D Fourier transform of α(ξ, η), and P
is the 1-D Fourier transform (with respect to r) of p(r, θ). The
variables (ω1, ω2) and (ω, θ) and related by Eq. (10.215).

If p(r, θ) is measured for all r across the body of interest
and for all directions θ , then its 1-D Fourier transform P(ω, θ)
can be computed, and then converted to A(ω1, ω2) using
Eq. (10.215). The conversion is called the projection-slice
theorem. In practice, however, p(r, θ) is measured for only
a finite number of angles θ , so A(ω1, ω2) is known only
along radial slices in the 2-D wavenumber domain (ω1, ω2).
Reconstruction to find α(ξ, η) from a subset of its 2-D Fourier
transform values is a perfect example of compressed sensing.
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Image reconstruction from partial radial slices

To demonstrate the reconstruction process, we computed the
2-D DFT X[k1, k2]of a 256×256 Shepp-Logan phantom image,
and then retained the data values corresponding to only 12 radial
slices, as shown in Fig. 10-38(a). These radial slices simulate
P(ω, θ), corresponding to 12 radial measurements p(r, θ). In
terms of y = Ax, the number of pixels in the frequency domain
image isN = 65536, and the number of values contained in the
12 radial slices is M = 11177.

(a) Least-squares reconstruction: Unknown values of
X[k1, k2] were set to zero, and then the inverse 2-D DFT was
computed. The resulting image is displayed in Fig. 10-38(b).

(b) ISTA reconstruction: Application of ISTA with λ = 0.01
for 1000 iterations led to the image in Fig. 10-38(c), which
bears very good resemblance to the original image.

Concept Question 10-20: Why is it possible to
reconstruct a real-world image almost perfectly from only
a subset of its 2-D DFT values, or a subset of its pixel 
values? (See        )

Exercise 10-15: Use LabVIEW Module 10.7 to inpaint
the clown image. Use lambda = 0.01, missing pixel
threshold = 140, and max iterations = 500.

Answer:

50 100 150 200 250
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(a) Locations of known values of X[k1,k2]

(b) Least-squares reconstruction

(c) ISTA reconstruction

Figure 10-38: Shepp-Logan phantom image reconstruction from
partial radial slices of its 2-D DFT: (a) radial slices of X[k1, k2],
(b) least-squares reconstruction, and (c) ISTA reconstruction.
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Summary

Concepts

• LTI, convolution, impulse response (now PSF), DTFT
(now DSFT), frequency (now wavenumber) response,
DFT, FFT all generalize directly from 1-D (signal) to
2-D (image) processing.

• Deconvolution from noisy data requires Tikhonov
regularization, which is performed by a Wiener filter.

• The discrete-time wavelet transform splits signals into
average signals and detail signals, whose total length
matches that of the original signal. But the detail signals
are sparse (mostly zero). This also applies to images. It
is very fast.

• The Daubechies DL wavelet transform models signals

as piecewise-(L−1)th polynomials. The Haar transform
is a D1 wavelet transform.

• Wavelet transforms are useful for compressing,
denoising, deconvolving, reconstructing, and inpainting
images.

• Compressed sensing allows reconstruction of spar-
sifiable signals or images using many fewer linear
combinations of the signal or image values than the
number of values.

• IRLS and IST are iterative algorithms for compressed
sensing problems.

Mathematical and Physical Models

Wiener Filter G[k1, k2] = H[k1, k2]∗/[|H[k1, k2]|2 + λ2]
�1 Norm ||x[n]||1 = ∑ |x[n]|
LASSO functional  = 1

2 ||y−A W−1z||22 + λ||z||1

Landweber x(k+1) = x(k) + AT (y − Ax(k))

Shrinkage y[n] = x[n] − λ · sign(x[n])
Threshold y[n] = x[n] if |x[n]| > λ; y[n] = 0 if |x[n]| < λ

IST algorithm Landweber with thresholding and
shrinkage

Important Terms Provide definitions or explain the meaning of the following terms:

analysis filter bank
average signal
compressed sensing
Daubechies wavelets
detail signal
DSFT (2-D DTFT)
Haar wavelets

image deconvolution
image denoising
IST algorithm
�1 norm
perfect reconstruction
piecewise polynomial
point-spread function

QMF filter pair
scaling function
Shepp-Logan phantom
Smith-Barnwell condition
sparse signal or image
synthesis filter bank
threshold and shrink

Tikhonov regularization
wavelet function
wavelet transform
wavenumber response
Wiener filter

PROBLEMS

Sections 10-1 to 10-7: Image Processing

∗10.1 Compute an analytic expression for the 2-D wavenumber
response of the 2-D LSI system

y[m, n] = 1

4
x[m, n] + 1

4
x[m− 1, n− 1]

+ 1

4
x[m− 1, n] + 1

4
x[m, n− 1].

∗
Answer(s) in Appendix F.

This system averages the pixels in a 2 × 2 block of the image,
so it is a 2-D version of the two-point averager.

10.2 Show that the 2-D wavenumber response of the PSF

h[m, n] =
⎡
⎣1 2 1

2 4 2
1 2 1

⎤
⎦

is very close to circularly symmetric, making it a good lowpass
filter. Demonstrate this property by:

(a) Displaying the wavenumber response as an image with dc
at the center.
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(b) Using the expansion

cos(�) = 1 − �2

2! + �4

4! − · · ·

and neglecting all terms of degree four or higher.

10.3 The 2-D discrete Laplacian operator has PSF

h[m, n] =

⎡
⎢⎢⎣

0 1 0

1 −4 1

0 1 0

⎤
⎥⎥⎦ .

(a) Show that for small (�1, �2), the 2-D wavenumber
response of the 2-D Laplacian

∇2x = ∂2x

∂ξ2 + ∂2x

∂η2

has a continuous-space 2-D Fourier transform given by
X(ω1, ω2) = −ω2

1 − ω2
2. Use

cos(ω) = 1 − ω2

2! + ω4

4! − · · ·

and neglect all terms of degree four or higher.

(b) A common edge detection technique is to threshold
the 2-D Laplacian. Apply this to the image in the file
letters.mat using
load letters.mat;
Y=conv2(X,[0 1 0;1 -4 1;0 1 0]);
Y(abs(Y)<1)=0;
subplot(221),imagesc(X),colormap(gray)
subplot(222),imagesc(abs(Y)),
colormap(gray)
(The thresholding actually has no effect in this case.)

10.4 This problem can be solved entirely using only
techniques from Chapter 2! Motion blur occurs when a photo
is taken of an object in constant linear motion, relative to the
camera. The object moves a horizontal distance T while the
camera lens shutter is open. (If the motion is not in the horizontal
direction, we can rotate the coordinate system.) If u(ξ, η) is the
image of the scene under static conditions, the blurred image is
then

v(ξ, η) =
T∫

0

u(ξ − τ, η) dτ.

(a) Show that v(ξ, η) = u(ξ, η) ∗ h(ξ) (convolution in ξ for
each η). What is h(ξ)?

(b) Show that w(ξ, η) = ∂v/∂ξ = u(ξ, η) − u(ξ − 2T ,  η). 
Hint: Use Table 2-1. This looks like a double exposure of 
the static image.

(c) Show that w(ξ, η) + w(ξ − T ,  y)  = u(ξ − 2T ,  η). The 
two images are farther apart. Repeating step (c) a few 
more times will separate the images completely.

(d) Apply the procedure to deblur the blurred image V in the 
file P104.mat.  T = 50 pixels.  Approximate derivatives 
by differences:
W=[V zeros(225,1)]-[zeros(225,1) V]; 
Display the original and deblurred images, and compare 
them. 

10.5 Derive the Wiener filter by showing that the x[m, n]
minimizing the Tikhonov functional

e =
N−1∑
m=0

N−1∑
n=0

[(y[m, n] − h[m, n] ∗ ∗x̂[m, n])2 + (λ x̂[m, n])2]

has the 2-D DFT

X[k1, k2] = Y[k1, k2] H[k1, k2]
|H[k1, k2]|2 + λ2 .

Hints: Use Parseval’s theorem and

|a + b|2 = aa∗ + ab∗ + ba∗ + bb∗.

Add and subtract |YH∗|2, divide by (HH∗ +λ2), and complete
the square.

10.6 Deblurring due to an out-of-focus camera can be
modeled crudely as a 2-D convolution with a disk-shaped point-
spread function

h[m, n] =
{

1 for m2 + n2 < R2,

0 for m2 + n2 > R2,

where R is the radius of a circle within which pixels are
unblurred, and outside of which pixels are totally blurred.
This problem deblurs an out-of-focus image in the (unrealistic)
absence of noise.

(a) Blur the letter image with an (approximate) disk PSF using
H(25,25)=0;for I=1:25;for J=1:25;
if((I-13)*(I-13)+(J-13)*(J-13)<145);
H(I,J)=1;end;end;end;
load letters;Y=conv2(X,H);
subplot(221),imagesc(Y),colormap(gray)
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(b) Deblur this out-of-focus image using the command
Z=real(ifft2(fft2(Y)./fft2(H,280,280)));
subplot(222),imagesc(Z),colormap(gray)
Note that the size of the blurred image is

256 + 25 − 1 = 280.

(c) Explain why this approach will not work in the real world
(i.e., in the presence of noise).

10.7 Repeat Problem 10.6, but now add noise to the blurred
image:

(a) Add noise to the blurred image using
Y=Y+100*randn(280,280).

(b) Deblur the image using the command
Z=real(ifft2(fft2(Y)./fft2(H,280,280)));
subplot(222),imagesc(Z),colormap(gray)

(c) Deblur the image using a Wiener filter, using
FH=fft2(H,280,280);
W=real(ifft2(fft(Y).*conj(FH)./
(abs(FH).*abs(FH)+10)));
subplot(221),imagesc(Z),colormap(gray)
subplot(222),imagesc(W),colormap(gray)

10.8 This problem shows how thumbnail images are created
from larger images.

(a) Downsample the “letters” image (4 × 4) and display it:
load letters;subplot(221),
imagesc(X(1:4:end,1:4:end)),
colormap(gray)
How many of the letters can you read?

(b) Now lowpass-filter the image with a quarter-band
2-D lowpass filter that passes only X(ej�1 , ej�1) for
0 ≤ |�1, �2| < π/4:
FX=fft2(x);
FY=FX;FY(32:258-32,32:258-32)=0;
Y=real(ifft2(FY));
subplot(222),imagesc(Y(1:4:end,1:4:end)),
colormap(gray)
Now how many of the letters can you read?

10.9 This problem investigates how to denoise images by
2-D brickwall lowpass filtering. The program adds noise to the
clown image, then 2-D brickwall lowpass filters it:

load clown.mat;
Y=X+0.2*randn(200,200);FY=fft2(Y);
FZ=FY;L=??;FZ(L:202-L,L:202-L)=0;
Z=real(ifft2(FZ));imagesc(Z),colormap(gray)

(a) Run the program for L = 101, 20, and 10. Display the
filtered images.

(b) Discuss the trade-offs involved in varying the cutoff
frequency.

10.10 This problem denoises images by 2-D lowpass filtering
with a separable 2-D lowpass filterh[m, n] = h[m] h[n], where
h[n] and h[m] are each an FIR lowpass filter designed by
windowing the impulse response of a brickwall lowpass filter,
which suppresses “ringing.”

(a) Design a 1-D lowpass filter h[n] of duration 31 by using a
Hamming window on the impulse response of a brickwall
lowpass filter with cutoff frequency � = π/3. Design a
similar filter h[m].

(b) Filter the “letters” image by 2-D convolution with
h[m] h[n]. Display the result.

(c) Try varying the filter duration and cutoff frequency to see
if you can improve the image quality.

Sections 10-8 to 10-14: Wavelets

10.11 Show that the z-transform of Eq. (10.77) is

G(k)(z) = G(z) G(z2) G(z4)  . . .  G(z2k−1 
),

H(k)(z) = G(z) G(z2) G(z4)  . . .  H(z2k−1 
).

Use these relationships to generate the rows of Eq. (10.89).

10.12 Why are the time-reversals necessary in the synthesis 
filters? Show that using −g[n] and h[n] instead of g[−n] and 
h[−n] leads to versions of Eq. (10.100) and Eq. (10.101) to 
which there is no solution.

10.13   Compute the db3 Daubechies scaling function. Con-
firm that your answer matches the coefficients listed in Table 
10-1.

10.14 Take the inverse DTFT of the Smith-Barnwell condition 
to show that g[n] must be orthonormal to its even-valued 
translations.

10.15 Use the result of Problem 10.14 to derive the db2 scaling 
function.

10.16 This problem investigates denoising images by 
thresholding and shrinking the 2-D Haar wavelet transform of 
the noisy image.

(a) Run the program P1016.m on the book website.  This 
adds noise to the “letters” image, computes its 2-D Haar 
transform, thresholds and shrinks the wavelet transform, 
computes the inverse 2-D Haar wavelet transform of the 
result, and displays images.

(b) Why does this provide better results than the 2-D DFT or 
convolution with a lowpass filter? 



“book” — 2016/3/15 — 6:32 — page 617 — #73

PROBLEMS 617

Section 10-15: Compressed Sensing

10.17 Even if a compressed sensing problem is only slightly
underdetermined, and it has a mostly sparse solution, there is
no guarantee that the sparse solution is unique. The worst case
for compressed sensing is as follows:

Let am,n = e−j2πmn/N for n = 0, 1, . . . , N − 1 and for
m = 0, 1, . . . , N−1, but skipping every multiple ofN/L inm.
For example, ifN = 12 andL = 4, m = 1, 2, 4, 5, 7, 8, 10, 11
and A is an 8 × 12 matrix. Let

zn =
{

1 for n a multiple of L,

0 for n not a multiple of L.

Continuing the example, zn = 1 for n = 0, 4, 8 and 0 for other 
values of n, so zn is sparse.

Now consider the compressed sensing problem of recon-
structing an unknown and (N/L)-sparse x from observations 
y = Ax. The unknown x is zero unless n is a multiple of L, so 
it is indeed (N/L)-sparse.

Show that x +cz , where c is any constant, is another (N/L)-
sparse solution to the compressed sensing problem. This shows 
that the (N/L)-sparse solution is not unique, so compressed 
sensing will not work for this problem.

10.18 Free the clown from his cage. Run the program 
P1018.m. This sets horizontal and vertical bands of the clown 
image to zero, making it appear that the clown is confined to a 
cage. Free the clown: The program then uses inpainting to 
replace the bands of zeros with pixels by regarding the bands 
of zeros as unknown pixel values of the clown. Change the 
widths of the bands of zeros and see how this affects the 
reconstruction.

10.19 De-square the clown image. Run the program 
P1019.m. This sets 81 small squares of the clown image to 
zero, decimating it. The program then uses inpainting to replace 
the small squares with pixels by regarding the 81 small squares 
as unknown pixel values of the clown. Change the sizes of the 
squares and see how this affects the reconstruction.

10.20 In Section 10-2 we saw that the 2-D spectrum of the 
letters image was dominated by four lines. Explain this using 
the Radon transform. Hint: Rotating an image rotates its 2-D 
Fourier transform by the same angle.

LabVIEW Module 10.1

10.21 Set both slides to 10. What effects did this produce in 
the blurred image?

10.22 Set both slides to 25. What features of the filtered image 
are still noticeably blurred? Why are they still blurred?

10.23 Set both slides to 50. How does the filtered image
compare to the original image? What does this say about the
image sampling rate?

LabVIEW Module 10.2

10.24 Set noise level to 100,L to 30, andK to 1. What effects
did this produce in the filtered image?

10.25 Repeat Problem 10.24 with K set to 0.1.

10.26 For noise level at 100 and L = 30, what value of K
seems to give the best performance in readability of the letters?

10.27 Repeat Problem 10.26, but reduce L to 5. Does the
change help?

LabVIEW Module 10.3

10.28 Describe the reconstructed image for each of the
following scenarios:

(a) Noise level = 0 and L = 1.

(b) Noise level = 1000 and L = 1.

(c) Noise level = 1000 and L = 10.

10.29 If noise level = 1000 andL = 0 (out of the slide range),
what would happen to the reconstructed image?

LabVIEW Module 10.5

Roughly how high can the threshold for setting the wavelet
transform values to zero be set without the specified visual effect
on the reconstructed image?What is the associated compression
ratio?

10.30 A noticeable effect.

10.31 A significant effect.

LabVIEW Module 10.6

10.32 Using a threshold of 0.25, what is the maximum noise
level for which much of the noise can be eliminated without
significantly affecting the denoised image?

10.33 Using a noise level of 0.2, do the best you can to denoise
the image. What could you do that is not in the module to do a
better job?

LabVIEW Module 10.7

For the following problems, set max iterations to 500, use the
specified missing pixel threshold (MPT) and λ (L) values,
inpaint the deteriorated image, and display the results.

10.34 MPT of 200 and L of 0.003.

10.35 MPT of 140 and L of 0.003.

10.36 MPT of 180 and L of 0.011.
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A Symbols, Quantities,
and Units

Symbol Quantity SI Unit Unit Abbreviation
an Fourier coefficient same as function
b damping coefficient newton·seconds/meter N·s/m
B bandwidth hertz Hz
bn Fourier coefficient same as function
C capacitance farad F
C heat capacity joules/◦C J/◦C
cn Fourier coefficient same as function
E energy signal-specific
f circular frequency hertz Hz
F force newton N
F { } Fourier transform
G gain output/input
G(s) feedback transfer function system-specific
G(z) inverse transfer function input/output
H(s) transfer function output/input
H(z) discrete-time transfer function output/input
h[n] discrete-time impulse response output/input
h(t) impulse response output/input
H(ej�) discrete-time frequency response output/input
H(ω) frequency response output/input
i current amp A
i index dimensionless —
I(s) s-domain current amp A
k index dimensionless —
k spring constant newtons/meter N/m
L inductance henry H
L length meters m
LLL { } Laplace transform
m mass kilogram kg
m modulation index dimensionless —
m index dimensionless —

619
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Symbol Quantity SI Unit Unit Abbreviation
M magnitude of transfer function output/input
n index dimensionless —
N0 discrete-time period number of samples samples
p complex pole 1/second s−1

P time-average power signal-specific
q rate of heat flow joules/s J/s
Q enthalpy joules J
Q quality factor dimensionless —
Q(s) transfer function with feedback system-specific
r(t) unit ramp function second s
rxy correlation signals specific
R resistance ohm �

R thermal resistance ◦C/watt ◦/W
rect(t) rectangle function dimensionless —
s complex frequency 1/second s−1

S spectrogram joules J
SNR signal-to-noise ratio dimensionless —
T0 period second s
T temperature degrees Celsius ◦C
T relative temperature degrees centigrade ◦C
u(t) unit step function dimensionless —
v velocity meters/second m/s
υ voltage volt V
V(s) s-domain voltage volt V
w[n] discrete-time window
xn complex Fourier coefficient same as function
X(ω1, ω2) 2-D Fourier transform meter2 m2

z complex zero 1/second s−1

z complex variable
ZZZ { } z-transform
Z(s) s-domain impedance ohm �

α attenuation coefficient nepers/s Np/s
α real part of pole or zero 1/second s−1

� sidelobe attenuation
δ[n] discrete-time impulse 1/second s−1

δ(t) impulse (delta) function 1/second s−1

θ rotation or phase angle degrees or radians ◦ or rad
θθθ(s) s-domain rotation angle degrees or radians ◦ or rad
ξ damping coefficient dimensionless —
τ time constant second s
φ phase angle degrees or radians ◦ or rad

ω angular frequency radians/second rad/s
� discrete-time angular frequency radians/sample rad/sample
�M mainlobe width radians rad
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B Review of Complex
Numbers

A complex number z may be written in the rectangular form

z = x + jy, (B.1)

where x and y are the real (Re) and imaginary (Im) parts of z,
respectively, and j = √−1. That is,

x = Re(z), y = Im(z). (B.2)

Note that Im(3 + j4) = 4, not j4.
Alternatively, z may be written in polar form as

z = |z|ejθ = |z| θ (B.3)

where |z| is the magnitude of z, θ is its phase angle, and the
form θ is a useful shorthand representation commonly used in
numerical calculations. By applying Euler’s identity,

ejθ = cos θ + j sin θ, (B.4)

we can convert z from polar form, as in Eq. (B.3), into
rectangular form, as in Eq. (B.1),

z = |z|ejθ = |z| cos θ + j |z| sin θ, (B.5)

which leads to the relations

x = |z| cos θ, y = |z| sin θ,

|z| =
√
x2 + y2 , θ = tan−1(y/x).

(B.6)

(B.7)

The two forms of z are illustrated graphically in Fig. B-1.
Because in the complex plane, a complex number assumes the
form of a vector, it is represented by a bold letter.

θ

y z

x

|z|

(z)

(z)

x = |z| cos θ
y = |z| sin θ

θ = tan−1 (y/x)
|z| = x2 + y2

Figure B-1: Relation between rectangular and polar represen-
tations of a complex number z = x + jy = |z|ejθ .

When using Eq. (B.7), care should be taken to ensure that
θ is in the proper quadrant by noting the signs of x and y
individually, as illustrated in Fig. B-2. Specifically,

θ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tan−1(y/x) if x > 0,

tan−1(y/x)± π if x < 0,

π/2 if x = 0 and y > 0,

−π/2 if x = 0 and y < 0.

Complex numbers z2 and z4 point in opposite directions and
their phase angles θ2 and θ4 differ by 180◦, despite the fact that
(y/x) has the same value in both cases.

The complex conjugate of z, denoted with a star superscript
(or asterisk), is obtained by replacing j (wherever it appears)
with −j , so that

z∗ = (x + jy)∗ = x − jy = |z|e−jθ = |z| −θ . (B.8)

The magnitude |z| is equal to the positive square root of the
product of z and its complex conjugate:

|z| = √
z z∗ . (B.9)

621
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θ1 = tan−1      = 56.3o

z1 = 2 + j3

z4 = 2 − j3

θ4 = −θ1

θ2 = 180o − θ1

θ3 = −θ2

z3 = −2 − j3

z2 = −2 + j3

−1−2

−2

−3

−3

1 3

3

2 3
2

2

1 θ1
θ2

θ4θ3

(z)

(z)

−1

Figure B-2: Complex numbers z1 to z4 have the same

magnitude |z| =
√

22 + 32 = 3.61, but their polar angles
depend on the polarities of their real and imaginary components.

We now highlight some of the salient properties of complex
algebra.

Equality: If two complex numbers z1 and z2 are given by

z1 = x1 + jy1 = |z1|ejθ1 , (B.10a)

z2 = x2 + jy2 = |z2|ejθ2 , (B.10b)

then z1 = z2 if and only if (iff ) x1 = x2 and y1 = y2 or,
equivalently, |z1| = |z2| and θ1 = θ2.

Addition:

z1 + z2 = (x1 + x2)+ j (y1 + y2). (B.11)

Multiplication:

z1z2 = (x1 + jy1)(x2 + jy2)

= (x1x2 − y1y2)+ j (x1y2 + x2y1), (B.12a)

or

z1z2 = |z1|ejθ1 · |z2|ejθ2

= |z1||z2|ej (θ1+θ2)

= |z1||z2|[cos(θ1 + θ2)+ j sin(θ1 + θ2)]. (B.12b)

Division: For z2 �= 0,

z1

z2
= x1 + jy1

x2 + jy2

= (x1 + jy1)

(x2 + jy2)
· (x2 − jy2)

(x2 − jy2)

= (x1x2 + y1y2)+ j (x2y1 − x1y2)

x2
2 + y2

2

, (B.13a)

or

z1

z2
= |z1|ejθ1

|z2|ejθ2

= |z1|
|z2|e

j (θ1−θ2)

= |z1|
|z2| [cos(θ1 − θ2)+ j sin(θ1 − θ2)]. (B.13b)

Powers: For any positive integer n,

zn = (|z|ejθ )n
= |z|nejnθ = |z|n(cos nθ + j sin nθ), (B.14)

z1/2 = ±|z|1/2ejθ/2
= ±|z|1/2[cos(θ/2)+ j sin(θ/2)]. (B.15)

Useful relations:

−1 = ejπ = e−jπ = 1 180◦ , (B.16a)

j = ejπ/2 = 1 90◦ , (B.16b)

−j = −ejπ/2 = e−jπ/2 = 1 −90◦ , (B.16c)√
j = (ejπ/2)1/2 = ±ejπ/4 = ±(1 + j)√

2
, (B.16d)

√−j = ±e−jπ/4 = ±(1 − j)√
2

. (B.16e)

For quick reference, the preceding properties of complex
numbers are summarized in Table B-1. Note that if a complex
number is given by (a+ jb) and b = 1, it can be written either
as (a + j1) or simply as (a + j). Thus, j is synonymous with
j1.

Example B-1: Working with Complex Numbers

Given two complex numbers

V = 3 − j4,

I = −(2 + j3),

(a) express V and I in polar form, and find (b) VI, (c) VI∗, (d)
V/I, and (e)

√
I .



“book” — 2016/3/15 — 6:38 — page 623 — #3

APPENDIX B REVIEW OF COMPLEX NUMBERS 623

Table B-1: Properties of complex numbers.

Euler’s Identity: ejθ = cos θ + j sin θ

sin θ = ejθ − e−jθ

2j
cos θ = ejθ + e−jθ

2

z = x + jy = |z|ejθ z∗ = x − jy = |z|e−jθ

x = Re(z) = |z| cos θ |z| = √
zz∗ = √

x2 + y2

y = Im(z) = |z| sin θ θ = tan−1(y/x)

zn = |z|nejnθ z1/2 = ±|z|1/2ejθ/2
z1 = x1 + jy1 z2 = x2 + jy2

z1 = z2 iff x1 = x2 and y1 = y2 z1 + z2 = (x1 + x2)+ j (y1 + y2)

z1z2 = |z1||z2|ej (θ1+θ2)
z1

z2
= |z1|

|z2| e
j (θ1−θ2)

−1 = ejπ = e−jπ = 1 ±180◦

j = ejπ/2 = 1 90◦ −j = e−jπ/2 = 1 −90◦
√
j = ±ejπ/4 = ± (1 + j)√

2

√−j = ±e−jπ/4 = ± (1 − j)√
2

Solution:
(a)

|V| = √
VV∗

= √
(3 − j4)(3 + j4) = √

9 + 16 = 5,

θV = tan−1(−4/3) = −53.1◦,

V = |V|ejθV = 5e−j53.1◦ = 5 −53.1◦ ,

|I| =
√

22 + 32 = √
13 = 3.61.

Since I = (−2 − j3) is in the third quadrant in the complex
plane (Fig. B-3),

θI = −180◦ + tan−1 ( 3
2

) = −123.7◦,
I = 3.61 −123.7◦ .

Alternatively, whenever the real part of a complex number is
negative, we can factor out a (−1) multiplier and then use
Eq. (B.16a) to replace it with a phase angle of either +180◦

θV
θI

|V|

V

|I|

I

−2

−3

−4

3

Figure B-3: Complex numbers V and I in the complex plane
(Example B-1).

or −180◦, as needed. In the case of I, the process is as follows:

I = −2 − j3 = −(2 + j3)

= e±j180◦ ·
√

22 + 32 ej tan−1(3/2)

= 3.61ej57.3◦
e±j180◦

.
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Since our preference is to end up with a phase angle within
the range between −180◦ and +180◦, we will choose −180◦.
Hence,

I = 3.61e−j123.7◦
.

(b)

VI = (5 −53.1◦)(3.61 −123.7◦)
= (5 × 3.61) (−53.1◦ − 123.7◦) = 18.05 −176.8◦ .

(c)

VI∗ = 5e−j53.1◦ × 3.61ej123.7◦ = 18.05ej70.6◦
.

(d)
V
I

= 5e−j53.1◦

3.61e−j123.7◦ = 1.39ej70.6◦
.

(e)

√
I =

√
3.61e−j123.7◦

= ±√
3.61 e−j123.7◦/2 = ±1.90e−j61.85◦

.

Exercise B-1: Express the following complex functions
in polar form:

z1 = (4 − j3)2,

z2 = (4 − j3)1/2.

Answer: z1 = 25 −73.7◦ , z2 = ±√
5 −18.4◦ .

(See S2 )

Exercise B-2: Show that
√

2j = ±(1 + j). (See S2 )
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C Mathematical Formulas

C-1 Trigonometric Relations

sin x = ± cos(x ∓ 90◦)
cos x = ± sin(x ± 90◦)
sin x = − sin(x ± 180◦)
cos x = − cos(x ± 180◦)
sin(−x) = − sin x

cos(−x) = cos x

sin2 x = 1

2
(1 − cos 2x)

cos2 x = 1

2
(1 + cos 2x)

sin(x ± y) = sin x cos y ± cos x sin y

cos(x ± y) = cos x cos y ∓ sin x sin y

2 sin x sin y = cos(x − y)− cos(x + y)

2 sin x cos y = sin(x + y)+ sin(x − y)

2 cos x cos y = cos(x + y)+ cos(x − y)

sin 2x = 2 sin x cos x

cos 2x = 1 − 2 sin2 x

sin x + sin y = 2 sin

(
x + y

2

)
cos

(
x − y

2

)

sin x − sin y = 2 cos

(
x + y

2

)
sin

(
x − y

2

)

cos x + cos y = 2 cos

(
x + y

2

)
cos

(
x − y

2

)

cos x − cos y = −2 sin

(
x + y

2

)
sin

(
x − y

2

)
ejx = cos x + j sin x (Euler’s identity)

sin x = ejx − e−jx

2j

cos x = ejx + e−jx

2

cos2 x + sin2 x = 1

2π rad = 360◦

1 rad = 57.30◦

C-2 Indefinite Integrals

(a and b are constants)

∫
sin ax dx = −1

a
cos ax

∫
cos ax dx = 1

a
sin ax

∫
eax dx = 1

a
eax

∫
ln x dx = x ln x − x

∫
xeax dx = eax

a2 (ax − 1)

∫
x2eax dx = eax

a3 (a2x2 − 2ax + 2)

∫
x sin ax dx = 1

a2 sin ax − x

a
cos ax

∫
x cos ax dx = 1

a2 cos ax + x

a
sin ax

∫
x2 sin ax dx = 2x

a2 sin ax − a2x2 − 2

a3 cos ax

∫
x2 cos ax dx = 2x

a2 cos ax + a2x2 − 2

a3 sin ax
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∫
eax sin bx dx = eax

a2 + b2 (a sin bx − b cos bx)

∫
eax cos bx dx = eax

a2 + b2 (a cos bx + b sin bx)

∫
eax sin2 bx dx =

eax

a2 + 4b2

[
(a sin bx − 2b cos bx) sin bx + 2b2

a

]
∫
eax cos2 bx dx =

eax

a2 + 4b2

[
(a cos bx + 2b sin bx) cos bx + 2b2

a

]
∫

sin ax sin bx dx =
sin(a − b)x

2(a − b)
− sin(a + b)x

2(a + b)
, a2 �= b2

∫
cos ax cos bx dx =
sin(a − b)x

2(a − b)
+ sin(a + b)x

2(a + b)
, a2 �= b2

∫
sin ax cos bx dx =

− cos(a − b)x

2(a − b)
− cos(a + b)x

2(a + b)
, a2 �= b2

∫
sin2 ax dx = x

2
− sin 2ax

4a∫
cos2 ax dx = x

2
+ sin 2ax

4a∫
dx

x2 + a2 = 1

a
tan−1 x

a∫
dx

(x2 + a2)2
= 1

2a2

(
x

x2 + a2 + 1

a
tan−1 x

a

)
∫

x2 dx

a2 + x2 = x − a tan−1 x

a

C-3 Definite Integrals

(m and n are integers)

2π∫
0

sin nx dx =
2π∫

0

cos nx dx = 0

π∫
0

sin2 nx dx =
π∫

0

cos2 nx dx = π

2

π∫
0

sin nx sinmx dx = 0, n �= m

π∫
0

cos nx cosmx dx = 0, n �= m

π∫
0

sin nx cos nx dx = 0

π∫
0

sin nx cosmx dx = 0

2π∫
0

sin nx cosmx dx = 0

∞∫
0

sin ax

ax
dx = π

2a
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C-4 Approximations for Small
Quantities

For |x| � 1,

(1 ± x)n ≈ 1 ± nx

(1 ± x)2 ≈ 1 ± 2x
√

1 ± x ≈ 1 ± x

2
1√

1 ± x
≈ 1 ∓ x

2

ex = 1 + x + x2

2! + · · · ≈ 1 + x

ln(1 + x) ≈ x

sin x = x − x3

3! + x5

5! + · · · ≈ x

cos x = 1 − x2

2! + x4

4! + · · · ≈ 1 − x2

2

lim
x→0

sin x

x
= 1

N∑
n=0

rn = 1 − rN+1

1 − r
, for r �= 1

∞∑
n=0

rn = 1

1 − r
, for |r| < 1

C-5 Polar-Rectangular Forms

ej0 = 1, ejπ/2 = j

ejπ = −1, ej3π/2 = −j

ejπ/4 = 1√
2
(1 + j), e−jπ/4 = 1√

2
(1 − j)

aejθ = a cos θ + ja sin θ

The N solutions to zN = 1:

z = ej2πk/N ; { k = 0, 1, . . . , N − 1 }



“book” — 2016/3/15 — 6:38 — page 628 — #1

D MATLAB® and
MathScript

A Short Introduction for Use in Signals
and Systems

D-1 Background
“A computer will always do exactly what you tell it to do. But
that may not be what you had in mind”—a quote from the 1950s.

This Appendix is a short introduction to MATLAB and
MathScript for this book. It is not comprehensive; only
commands directly applicable to signals and systems are
covered. No commands in any of MATLAB’s Toolboxes
are included, since these commands are not included in
basic MATLAB or MathScript. Programming concepts and
techniques are not included, since they are not used anywhere
in this book.

MATLAB

MATLAB is a computer program developed and sold by The
Mathworks, Inc. It is the most commonly used program in signal
processing, but it is also used in all fields of engineering.

MATLAB (matrix laboratory) was originally based on a set
of numerical linear algebra programs, written in FORTRAN,
called LINPACK. So MATLAB tends to formulate problems
in terms of vectors and arrays of numbers, and often solves
problems by formulating them as linear algebra problems.

MathScript

MathScript is a computer program developed and sold by
National Instruments, as a module in LabVIEW. The basic
commands used by MATLAB also work in MathScript, but
higher-level MATLAB commands, and those in Toolboxes,
usually do not work in MathScript. Unless otherwise noted,
all MATLAB commands used in this book and website also
work in MathScript.

A student version of MathScript is included on the website
accompanying the book. Access to MATLAB is not required
to use this book. In this sequel, we use “M/M” to designate
“MATLAB or MathScript.”

Getting started

To install the student version of MathScript included on this
website, follow the instructions.

When you run M/M, a prompt >> will appear when it
is ready. Then you can type commands. Your first command
should be>>cd mydirectory, to change directory to your
working directory, which we call “mydirectory” here.

We will use this font to represent typed commands and
generated output. You can get help for any command, such as
plot, by typing at the prompt help plot.

Some basic things to know about M/M:

• Inserting a semicolon “;” at the end of a command
suppresses the output; without it M/M will type the results
of the computation. This is harmless, but it is irritating to
have numbers flying by on your screen.

• Inserting ellipses “. . . ” at the end of a command means
it is continued on the next line. This is useful for long
commands.

• Inserting “%” at the beginning of a line makes the line a
comment; it will not be executed. Comments are used to
explain what the program is doing at that point.

• clear eliminates all present variables. Programs should
start with a clear.

• whos shows all variables and their sizes.

• M/M variables are case-sensitive: t and T are different
variables.

• save myfile X,Y saves the variables X and Y in the
file myfile.mat for use in another session of M/M at another
time.

• load myfile loads all variables saved in myfile.mat,
so they can now be used in the present session of M/M.

• quit ends the present session of M/M.
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.m Files

An M/M program is a list of commands executed in succession.
Programs are called “m-files” since their extension is “.m,” or
“scripts.”

To write an .m file, at the upper left, click:
File → New → m-file
This opens a window with a text editor.
Type in your commands and then type:
File → Save as → myname.m
Make sure you save it with an .m extension. Then you can run

the file by typing its name at the prompt: >> myname. Make
sure the file name is not the same as a MATLAB command!
Using your own name is a good idea.

You can access previously-typed commands using uparrow
and downarrow on your keyboard.

To download a file from a website, right-click on it, select
save target as, and use the menu to select the proper file type
(specified by its file extension).

D-2 Basic Computation

D-2.1 Basic Arithmetic

• Addition: 3+2 gives ans=5

• Subtraction: 3-2 gives ans=1

• Multiplication: 2*3 gives ans=6

• Division: 6/2 gives ans=3

• Powers: 2̂ 3 gives ans=8

• Others: sin,cos,tan,exp,log,log10

• Square root: sqrt(49) gives ans=7

• Conjugate: conj(3+2j) gives ans=3-2i

Both i or j represent
√−1; answers use i. pi represents π .

e does not represent 2.71828.

D-2.2 Entering Vectors and Arrays

To enter row vector [1 2 3] and store it in A type at the prompt
A=[1 2 3]; or A=[1,2,3];

To enter the same numbers as a column vector and store
it in A, type at the prompt either A=[1;2;3]; or A=[1
2 3];A=A’; Note A=A’ replaces A with its transpose.
“Transpose” means “convert rows to columns, and vice-versa.”

To enter a vector of consecutive or equally-spaced numbers,
follow these examples:

• [2:6] gives ans=2 3 4 5 6

• [3:2:9] gives ans=3 5 7 9

• [4:-1:1] gives ans=4 3 2 1

To enter an array or matrix of numbers, type, for example,
B=[3 1 4;1 5 9;2 6 5]; This gives the array B and its
transpose B’

B =
⎡
⎣3 1 4

1 5 9
2 6 5

⎤
⎦ B ′ =

⎡
⎣3 1 2

1 5 6
4 9 5

⎤
⎦

Other basics of arrays:

• ones(M,N) is an M ×N array of “1”

• zeros(M,N) is an M ×N array of “0”

• length(X) gives the length of vector X

• size(X) gives the size of array X

For B above, size(B) gives ans=3 3

• A(I,J) gives the (I,J)th element of A. For B above,
B(2,3) gives ans=9

D-2.3 Array Operations

Arrays add and subtract point-by-point:
X=[3 1 4];Y=[2 7 3];X+Y gives ans=5 8 7

But X*Y generates an error message.
To compute various types of vector products:

• To multiply element-by-element, use X.*Y This gives
ans=6 7 12. To divide element-by-element, typeX./Y

• To find the inner product of X and Y
(3)(2)+(1)(7)+(4)(3)=25, use X*Y’ This gives ans=25

• To find the outer product of X and Y

⎡
⎣(3)(2) (3)(7) (3)(3)(1)(2) (1)(7) (1)(3)
(4)(2) (4)(7) (4)(3)

⎤
⎦ use X’*Y

This gives the above matrix.

A common problem is when you think you have a row
vector when in fact you have a column vector. Check by
using size(X); in the present example, the command gives
ans=1,3 which tells you that X is a 1 × 3 (row) vector.
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• The following functions operate on each element
of an array separately, giving another array:
sin,cos,tan,exp,log,log10,sqrt
cos([0:3]*pi) gives ans=1 -1 1 -1

• To compute n2 for n = 0, 1 . . . 5, use
[0:5].̂ 2 which gives ans=0 1 4 9 16 25

• To compute 2n for n = 0, 1 . . . 5, use
2.̂ [0:5] which gives ans=1 2 4 8 16 32

Other array operations include:

• A=[1 2 3;4 5 6];(A(:))’
Stacks A by columns into a column vector and transposes
the result to a row vector. In the present example, the
command gives ans=1 4 2 5 3 6

• reshape(A(:),2,3)
Unstacks the column vector to a 2×3 array which, in this
case, is the original array A.

• X=[1 4 1 5 9 2 6 5];C=X(2:8)-X(1:7)
Takes differences of successive values of X. In the present
example, the command gives C=3 -3 4 4 -7 4 -1

• D=[1 2 3]; E=[4 5 6]; F=[D E]
This concatenates the vectors D and E (i.e., it appends
E after D to get vector F) In the present example, the
command gives F=1 2 3 4 5 6

• I=find(A>2) stores in I locations (indices) elements
of vector A that exceed 2.
find([3 1 4 1 5]<2) gives ans=2 4

• A(A>2)=0 sets to 0 all values of elements of vector
A exceeding 2. A=[3 1 4 1 5]; A(A<2)=0 gives
A=3 0 4 0 5

M/M indexing of arrays starts with 1, while signals and
systems indexing starts with 0. For example, the DFT is
defined using index n = 0, 1 . . . N − 1, for k = 0, 1 . . . N − 1.
fft(X), which computes the DFT of X, performs

fft(X)=X*exp(-j*2*pi*[0:N-1]’*[0:N-1]/N);

D-2.4 Solving Systems of Equations
To solve the linear system of equations[

1 2
3 4

] [
x

y

]
=
[

17
39

]
using

A=[1 2;3 4];Y=[17;39];X=A\Y;X’
gives ans=5.000 6.000, which is the solution [x y]′.

To solve the complex system of equations

[
1 + 2j 3 + 4j
5 + 6j 7 + 8j

] [
x

y

]
=
[

16 + 32j
48 + 64j

]

[1+2j 3+4j;5+6j 7+8j]\[16+32j;48+64j] gives

ans=
2 − 2i
6 + 2i

,

which is the solution.
These systems can also be solved using inv(A)*Y, but we

do not recommend it because computing the matrix inverse of
A takes much more computation than just solving the system of
equations. Computing a matrix inverse can lead to numerical
difficulties for large matrices.

D-3 Plotting

D-3.1 Plotting Basics

To plot a function x(t) for a ≤ t ≤ b:

• Generate, say, 100 values of t in a ≤ t ≤ b using
T=linspace(a,b,100);

• Generate and store 100 values of x(t) in X

• Plot each computed value of X against its corresponding
value of T using plot(T,X)

• If you are making several different plots,
put them all on one page using subplot.
subplot(324),plot(T,X) divides a figure
into a 3-by-2 array of plots, and puts the X vs. T plot into
the 4th place in the array (the middle of the right-most
column).

Print out the current figure (the one in the foreground; click
on a figure to bring it to the foreground) by typing print

Print the current figure to a encapsulated postscript
file myname.eps by typing print -deps2 myname.eps.
Type help print for a list of printing options for your
computer. For example, use -depsc2 to save a figure in color.

To make separate plots of cos(4t) and sin(4t) for 0 ≤ t ≤ 5
in a single figure, use the following:

T=linspace(0,5,100);X=cos(4*T);Y=sin(4*T);
subplot(211),plot(T,X)
subplot(212),plot(T,Y)
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These commands produce the following figure:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

The default is thatplot(X,Y) plots each of the 100 ordered
pairs(X(I),Y(I)) forI= 1 . . . 100, and connects the points
with straight lines. If there are only a few data points to be
plotted, they should be plotted as individual ordered pairs, not
connected by lines. This can be done using plot(X,Y,’o’)
(see Fig. 6-78 below).

D-3.2 Plotting Problems

Common problems encountered using plot:
T and X must have the same lengths; and
Neither T nor X should be complex; use
plot(T,real(X)) if necessary.
The above linspace command generates 100 equally-

spaced numbers between a and b, including a and b. This
is not the same as sampling x(t) with a sampling interval of
(b − a)/100. To see why:

• linspace(0,1,10) gives 10 numbers between 0 and
1 inclusive, spaced by 0.111

• [0:.1:1] gives 11 numbers spaced by 0.1

Try the following yourself on M/M:

• T=[0:10];X=3*cos(T);plot(T,X)
This should be a very jagged-looking plot, since it is only
sampled at 11 integers, and the samples are connected by
lines.

• T=[0:0.1:10];X=3*cos(T);plot(T,X)
This should be a much smoother plot, since there are now
101 (not 100) samples.

• T=[1:4000];X=cos(2*pi*440*T/8192);
sound(X,8192) This is musical note “A.”
sound(X,Fs) plays X as sound, at a sampling
rate of Fs samples/second.

• plot(X). This should be a blue smear! It’s about 200
cycles squished together.

• plot(X(1:100)) This “zooms in” on the first 100
samples of X to see the sinusoid.

D-3.3 More Advanced Plotting

Plots should be labelled and annotated:

• title(’Myplot’) adds the title “Myplot”

• xlabel(’t’) labels the x-axis with “t”

• ylabel(’x’) labels the y-axis with “x”

• \omega produces ω in title,xlabel and ylabel.
Similarly for other Greek letters. Note ’ (not ‘) should be
used everywhere.

• axis tight contracts the plot borders to the limits of
the plot itself

• axis([a b c d]) changes the horizontal axis limits
to a ≤ x ≤ b and the vertical axis limits to c ≤ y ≤ d.

• grid on adds grid lines to the plot

• plot(T,X,’g’,T,Y,’r’) plots on the same plot
(T,X,Y must all have the same lengths) X vs. T in green
and Y vs. T in red.

D-3.4 Plotting Examples

A good way to learn how to plot is to study specific examples.
The figures in this book were redrawn from figures generated
using MATLAB. Four specific illustrative examples follow.
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(a) Figure 4-32(b):

This example shows how to plot two different functions in
a single plot, using different colors, and insert a title. The
following .m file

clear;T=linspace(0,600,1000);
A=0.01;K=0.04;B=A+K;
SA=3*(1-exp(-A*T));
SB=3*(1-exp(-B*T));
plot(T,SA,’b’,T,SB,’r’)
title(’STEP RESPONSE WITH
AND WITHOUT FEEDBACK’)
grid on,print -depsc2 m1.eps

generates the following figure:
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STEP RESPONSE WITH AND WITHOUT FEEDBACK

(b) Figure 6-25(b):

This example demonstrates ./ and .*
The following .m file

clear;W=linspace(-8,8,1000);V=j*W;
N=(V+2j).*(V-2j).*(V-.1+4j).*(V-.1-4j);
D1=(V+.5+1j).*(V+.5-1j).*(V+.5+3j);
D2=(V+.5-3j).*(V+.5+5j).*(V+.5-5j);
plot(W,abs(N./D1./D2),’r’),grid on

generates the following figure:
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0.15
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(c) Figure 6-39(b):

This example shows how to use a loop: H=H./(V-P(I)); is
executed for I=1,2,3,4,5 in succession. The following .m
file

clear;W=linspace(-2,2,1000);V=j*W;
P=exp(j*2*pi*[3:7]/10);
H=ones(1,1000);
for I=1:5;H=H./(V-P(I));end
subplot(211),plot(W,abs(H)),grid on

generates the following figure:
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(d) Figure 6-78:

This example shows how to use hold to superpose two plots,
how to plot individual points, use subplot to change the
aspect ratio of a figure, and axis tight to tighten it. It
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also uses [a:0.001:b], not linspace(a,b,1000), to
sample every 0.001. The following .m file

T1=[0:1/45000:1/45];
X1=cos(2*pi*500*T1);
T2=[0:1/450:1/45];
X2=cos(2*pi*500*T2);
subplot(211),plot(T2,X2,’or’),hold,
subplot(211),plot(T1,X1),axis tight

generates the following figure:

0 0.005 0.01 0.015 0.02
−1

−0.5

0

0.5

1

These do not include the computer examples, whose
programs are listed elsewhere on this website.

D-4 Partial Fractions

D-4.1 Rectangular-to-Polar Complex
Conversion

If an M/M result is a complex number, then it is presented in its
rectangular form a+bj. M/M recognizes both i and j as

√−1,
so that complex numbers can be entered as 3+2j or 3+2i.

To convert a complex number X to polar form, use
abs(X),angle(X) to get its magnitude and phase (in
radians), respectively. To get its phase in degrees, use
angle(X)*180/pi

Note atan(imag(X)/real(X)) will not give the
correct phase, since this formula is only valid if the real part is
positive. angle corrects this.

The real and imaginary parts of X are found using real(X)
and imag(X), respectively.

D-4.2 Polynomial Zeros

To compute the zeros of a polynomial, enter its coefficients as
a row vector P and use R=roots(P). For example, to find
the zeros of 3x3 −21x+18 (the roots of 3x3 − 21x + 18 = 0)
use P=[3 0 -21 18];R=roots(P);R’, giving
ans= -3.0000 2.0000 1.0000, which are the roots.

To find the monic (leading coefficient is one) polynomial
from the values of its zeros, enter the numbers as a column vector
R and use P=poly(R). For example, to find the polynomial
having {1, 3, 5} as its zeros, use R=[1;3;5];P=poly(R),
giving P=1 -9 23 -15. The polynomial is therefore
x3 − 9x2 + 23x − 15.

Note that polynomial are stored as row vectors, and roots are
stored as column vectors.

Pole-zero diagrams are made using zplane. To produce the
pole-zero diagram of

H(z) = z2 + 3z + 2

z2 + 5z + 6
,

type zplane([1 3 2],[1 5 6]). The unit circle |z|=1
is also plotted, as a dotted line.

D-4.3 Partial Fraction Expansions

Partial fraction expansions are a vital part of signals and
systems, and their computation is onerous (see Chapter 3).
M/M computes partial fraction expansions using residue.
Specifically,

H(s) = b0sM + b1sM−1 + · · · + bM

a0sN + a1sN−1 + · · · + aN

has the partial fraction expansion (if M ≤ N )

H(s) = K + R1

s − p1
+ · · · + RN

s − pN

The poles {pi} and residues {Ri} can be computed from
coefficients {ai} and {bi} using

B=[b0 b1 . . . bM ];A=[a0 a1 . . . aN ]
[R P]=residue(B,A);[R P]

The residues {Ri} are given in column vector R, and poles {pi}
are given in column vector P.

To compute the partial fraction expansion of

H(s) = 3s + 6

s2 + 5s + 4
,

use the command

[R P]=residue([3 6],[1 5 4]);[R P]
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This gives

[
2 −4
1 −1

]
, so R=

[
2
1

]
and P=

[−4
−1

]
, from which we

read off

H(s) = 2

s + 4
+ 1

s + 1
.

In practice, the poles and residues both often occur in
complex conjugate pairs. Then use

Rept + R∗ep∗t = 2|R|eat cos(ωt + θ),

R = |R|ejθ and p = a + jω, to simplify the result.
To compute the partial fraction expansion of

H(s) = s + 7

s2 + 8s + 25
,

use the command

[R P]=residue([1 7],[1 8 25]);[R P]

This gives [
0.5000 − 0.5000i −4.000 + 3.000i
0.5000 + 0.5000i −4.000 − 3.000i

]

from which we have

H(s) = 0.5 − j0.5

s + 4 − j3
+ 0.5 + j0.5

s + 4 + j3
,

which has the inverse Laplace transform

h(t) = (0.5 − j0.5)e(−4+j3)t + (0.5 + j0.5)e(−4−j3)t

From abs(0.5-0.5j),angle(0.5-0.5j),

h(t) = 2

√
2

2
e−4t cos

(
3t − π

4

)
= √

2e−4t cos
(

3t − π

4

)
.

Both h(t) expressions are valid for t > 0.
If H(s) is proper but not strictly proper, the constant K is

nonzero. It is computed using

[R P K]=residue(B,A);[R P],K

since K has size different from R and P.
To find the partial fraction expansion of

H(s) = s2 + 8s + 9

s2 + 3s + 2
,

use the command

[R P K]=residue([1 8 9],[1 3 2]);[R P] K

gives

[
3 −2
2 −1

]
, K=1 so R=

[
3
2

]
, P=

[−2
−1

]
, from which we read

off

H(s) = 1 + 3

s + 2
+ 2

s + 1
.

Double poles are handled as follows:
To find the partial fraction expansion of

H(s) = 8s2 + 33s + 30

s3 + 5s2 + 8s + 4
,

use the command

[R P]=residue([8 33 30],[1 5 8 4]);

[R P] gives

⎡
⎣3 −2

4 −2
5 −1

⎤
⎦, so R=

⎡
⎣3

4
5

⎤
⎦, P=

⎡
⎣−2

−2
−1

⎤
⎦. We then

read off

H(s) = 3

s + 2
+ 4

(s + 2)2
+ 5

s + 1
.

In practice, we are interested not in an analytic expression for
h(t), but in computing h(t) sampled every Ts seconds. These
samples can be computed directly from R and P, for 0 ≤ t ≤ T :

t=[0:Ts:T];H=real(R.’*exp(P*t));

Since R and P are column vectors, and t is a row vector,
H is the inner products of R with each column of the array
exp(P*t). R.’ transposes R without also taking complex
conjugates of its elements. real is necessary since roundoff
error creates a tiny (incorrect) imaginary part in H.

D-4.4 Frequency Response

polyval(P,W) evaluates the polynomial whose coefficents
are stored in row vector P at the elements of vector W. For
example, to evaluate the polynomial x2 − 3x+2 at x = 4,
polyval([1 -3 2],4) gives ans=6

The continuous-time frequency response of

H(s) = b0sM + b1sM−1 + · · · + bM

a0sN + a1sN−1 + · · · + aN

can be plotted for 0 ≤ ω ≤ W using

B=[b0 b1 . . . bM ];A=[a0 a1 . . . aN ]
w=linspace(0,W,1000);
H=polyval(B,j*w)./polyval(A,j*w);
subplot(211),plot(w,abs(H))
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D-4.5 Discrete-Time Commands

• stem(X) produces a stem plot of X

• conv(X,Y) convolves X and Y

• fft(X,N) computes the N-point DFT of X

• ifft(F) computes the inverse DFT ofF. Due to roundoff
error, use real(ifft(F)).

• sinc(X) compute sin(πx)
πx

for each element.

D-4.6 Figure 6-31 Example

We combine many of the above commands to show how
Fig. 6-31 in the book was produced.

Example 6-8 plots the impulse and magnitude frequency
responses of a comb filter that eliminates 1-kHz and 2-kHz
sinusoids, using poles with a real part of −100. Both plots are
given in Fig. 6-31, which was redrafted from plots generated
by: (% denotes a comment statement)

F=linspace(0,3000,100000);
W=j*2*pi*F;A=100;
%Compute frequency response:
Z=j*2*pi*1000*[-2 -1 1 2];
N=poly(Z);D=poly(Z-A);
FH=polyval(N,W)./polyval(D,W);
subplot(211),plot(F,abs(FH))
%Compute impulse response:
T=linspace(0,0.05,10000);
[R P K]=residue(N,D);
H=real(R.’*exp(P*T));
subplot(212),plot(T,H)
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E A Guide to Using
LabVIEW Modules

On the S2 website:

1. Open the LabVIEW program.

2. Click on Open Existing in the right panel, and select
a LabVIEW module (which has extension .vi) from
the list. Selecting Module LV 2.1 (file LV2.1.vi), for
example, opens Fig. E-1.

3. On the top row, click on Operate and select Run. Use the
sliders to select parameter values. Move a slider and watch
the response change in real time!

Figure E-1: Module LV 2.1.

4. To print the window: On the top row, click on File, select
Print, and choose a printer. LabVIEW can print to an .rtf
or .html file, but not to a .pdf or .eps file.

5. To see the block diagram of the .vi file: On the top row,
click on Window and select Show Block Diagram.

6. To run a different LabVIEW module, click on File, select
Open, and click on a different .vi file.

LabVIEW, like MATLAB and other computer programs, can
give erroneous results. See, for example, Problems 2.55 and
6.34.
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F Answers to Selected
Problems

Chapter 1

1.3(b) Analog and continuous in space and discrete in time

1.6(a) See plot on S2 .

1.11(b) See plot on S2 .

1.16(b) Odd symmetry

1.20(b) See plot on S2 .

1.22(c) See plot on S2 .

1.26(d) 0.5

1.29(b) 1/6

1.34(b) Neither

1.39(c) 1

Chapter 2

2.1(b) Linear, but not time invariant

2.5(b) y(t) = yramp(t)− 2yramp(t − 1)+ yramp(t − 2)

2.10(c) See plot on S2 .

2.15(a) u(t)− 3u(t − 1)+ 2u(t − 2)

2.17(a) e−t u(t)− e−2t u(t)

2.22(d) Causal but not BIBO stable

2.23(d) BIBO stable but not causal

2.29(c) cos(4t − 53◦)
2.38 4 cos(3t − 81.9◦)+ 3 cos(4t − 98.1◦)
2.43(c) B ≤ 0

Chapter 3

3.1(a) X1(s) = 1
s (4 − 2e−s − 2e−2s)

3.4(c) X3(s) = 60/(s + 2)4

3.7(a) X1(s) = 21.65

3.11 x(0+) = 0, x(∞) = 2

3.15(c) x3(t) = 2e−3t cos(2t + 45◦) u(t)

3.18(b) x2(t) = [e−2(t−6) − 2 sin(4(t − 6))] u(t − 6)

3.24(a) y1(t) = [2 + 2e−t − 4e−5t ] u(t)
3.32 H(s) = 1010/(s + 105)2; h(t) = 1010te−105t u(t)

3.37 g(t) = δ(t)+ 2e−t u(t)

3.41(b) p = {−1,−2}, z = {−3,−4}
3.43(d) y(t) = e−3t u(t)− e−4t u(t)

3.46(c) h(t) = 30e−5t u(t)− 15e−3t u(t)

3.49(f) yFORCED(t) = 20 cos(3t − 36.9◦) u(t)

3.50 y(0) = 16 V

Chapter 4

4.1 υ(t) = [1.5 − 1.572e−4t + 0.072e−12t ] u(t)
4.7 υC2(t) = 50e−6t u(t)

4.13 υC(t) = 10(1 + e−t ) u(t)

4.19 υout(t) = [ 1
3 + 8

75 e
−3t + 1

10 cos(4t − 53◦)
]
u(t)V

4.23(b) H(s) = 10/(s + 10)

4.24(c) h(t) = 3 sin(3t) u(t)

4.28(b) H(s) = 2/(s2 + 7s + 6)

4.32 h(t) = te−104t u(t)

4.35 See diagram on S2 .

4.42(a) K = 10

4.52 T∞ = 1785.3◦C

4.57 K1 = 300; K2 = 19

637
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638 APPENDIX F ANSWERS TO SELECTED PROBLEMS

Chapter 5

5.1(a) y(t) = 2 cos(400t − 83.13◦)

5.5
y(t) = cos(1000t − 53.13◦)− 1.17 cos(2000t − 69.44◦)

5.9 (See S2 ).

5.18 (See S2 ).

5.25 (See S2 ).

5.31 (See S2 ).

5.37 Pav = 147 μW

5.47 F(ω) = [20π cos(ω/2)/(π2 − ω2)

5.50(a)
F(ω) = 3/[(0.5 + jω)2 + 36] + 1/[(0.5 + jω)2 + 4]
5.57 y(t) = 3 sin(t)+ 0.2 sin(3t)

Chapter 6

6.1 ω0 = 104 rad/s

6.5(b) −23 dB

(e) 20.81 dB

6.6(d) −78.4 dB

6.7(d) 5 × 10−4

6.11 R = 20 �, L = 0.1 H, C = 10 μF

6.17 (See S2 ).

6.24 (See S2 ).

6.30(b) h(t) ≈ 0 for small t

6.41 (See S2 ).

6.44(a) N = 3, ωc = 26π rad/s

6.51 H(s) = 1/(s3 + 2s2 + 2s + 1)

6.62 14,112 samples/s

6.66 spectrum of output signal = 0

Chapter 7

7.1(c) {0, 1, 1, 1, 1}
7.2(a) {1, 1, 1, 1, 0}

7.4(b) N0 = 25 samples

7.9(c) {6, 15, 28, 29, 20}
7.17(e) (

√
2)n cos

(
πn
4

)
u[n]

7.23(a) H(z) = 3(z + 1)/(z + 2)

(b) p = {−2}, z = {−1}
(c) h[n] = 3(−2)n u[n] + 3(−2)n−1 u[n− 1]
(d) y[n] + 2y[n− 1] = 3x[n] + 3x[n− 1]

7.29(a) H(ej�) = 1 + 0.5e−j� + e−j2�

7.36 a = 0 and b = 1

7.44 h[n] = {2, 0, 2}
7.50(a) Xk = {32, 8, 0, 8}

Chapter 8

8.1 y[n] − 0.98y[n− 2] = x[n] + x[n− 2]
8.6
y[n]−0.98y[n−2]+0.96y[n−4] = x[n]−x[n−2]+x[n−4]
8.14 x[n] = y[n] − 0.8y[n− 3]
8.19 {3, 1, 4, 1, 5, 9}
8.26(a) 0.25 s

(b) 440 Hz

(c) Note A

Chapter 9

9.2(a) 20

(b) 13

9.4(a) L = 10, N = 256, rectangular

9.16(a) {0,− 2
π
, 0, 2

π
, 0}

(b) {0,− 1√
3
, 0, 1√

3
, 0}

9.25(a) h[n] = e−n u[n]
(b) H(z) = z + 1

3z − 1
9.28
y[n] + 2y[n− 1] + y[n− 2] = x[n] − 2x[n− 1] + x[n− 2]
9.41 None

Chapter 10

10.1 H(ej�1 , ej�2) = cos(�1/2) cos(�2/2) e−j (�1+�2)/2



“book” — 2016/3/15 — 6:39 — page 639 — #1

Index

A
Absolutely integrable systems, 59–60
Acoustic pressure waveform, 3–4
Active filters, 263, 272–275
Additive zero-mean white Gaussian noise, 298–299
Additivity property, 32, 41
Affine system, 35
Aliasing, 325–328
AM (amplitude modulation), 312–313, 316–317
Amplifier gain-bandwidth product, 171–174
Amplitude modulation (AM), 312–313, 316–317
Amplitude/phase representation, Fourier series, 197,

201–204
Amplitude spectrum, 202–203, 206–207
Amplitude transformation, discrete-time signals, 351
Analog signals, 4–6
Angular frequency, 195, 197, 355, 384–387, 389–390

discrete-time Fourier series (DTFS), 389–390
discrete-time signals, 338, 384–387
fundamental, 195, 197, 355, 390

Antialiasing filter, 328–330
Anticausal systems, 4
Anticipatory systems, 58
Aperiodic waveforms, 10. See also Nonperiodic waveforms
Approximation formulas for small quantities, 627
Area property, LTI convolution, 54–55
ARMA, 358, 440–441
Associative property, LTI convolution, 50–51

Attenuation coefficient, 67
Audio signal processing, 525–526
Autocorrelation, 527–528, 534–536
Autoregression and moving average (ARMA), 358, 440–441

B

Bandlimited signals, 458, 462–463
Bandpass filters, 256–258, 261–267, 270–271, 277, 298,

305–306, 425
brick-wall, 277
Butterworth, 298
discrete-time, 425
frequency responses, 256–258
order of, 270–271
passive filter configuration, 263–267, 270–271
RL circuit, 261–263
transfer functions of, 263–267

Bandpass signals, 265, 305–306, 330–333
sampling, 330–333
bandwidth, 265, 305–306

Bandreject filters, 256–258, 269–270, 277–278, 425–426
brick-wall filter, 277–278
discrete-time, 425–426
frequency responses, 256–258
passive filter configuration, 269–270
transfer functions of, 269–270

639
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Bandwidth, 171–174, 258, 265, 304–306
amplifier gain-bandwidth product, 171–174
bandlimited spectra, 304–307
filter signals, 258, 265, 305–306
modulation, 304–306
open-loop mode, 171–172
rejection, 258

Bartlett triangular window, 479–480
Basis functions, wavelet transforms, 569, 579, 583–584
Basis pursuit solution method, 601–602
Batch filtering, 437
Batch signal processing, 420–421, 451
BIBO, 58–61, 67, 111–112, 165, 175–176, 361–362,

381–384, 440, 449–450, 507
Bilateral Laplace transforms, 86, 113–114
Bilateral z-transforms, 445–450

deconvolution of non-minimum-phase systems,
449–450

geometric signals, 445–446
inverse, 447–450
region of convergence (ROC), 445–446, 449

Bilinear transformation, IIR filters, 504, 506–507
Biomechanical models, 146–149
Biomedical imaging, 534–537
Blackman window, 480–481
Bode plots, 261–263
Bounded signals, 58
Bounded-input/bounded-output (BIBO) stability, 58–61, 67,

111–112, 165, 175–176, 361–362, 381–384, 440,
449–450, 507

Brick-wall (ideal) filters, 258, 275–278
bandpass filters, 277
bandreject filters, 277–278
conjugate symmetry, 276
cutoff frequency, 258, 276
frequency responses of, 275–278
highpass filters, 277
lowpass filters, 258, 276–277
modulation property, 277

Butterworth filters, 289–298
bandpass, 298
design of, 294–298
frequency response, 293–294
highpass, 297–298
lowpass, 289–296
normalized transfer functions, 295–296
pole placement, 292–294

third-order, 296, 298

C
Canny edge detector, 563–564
Capacitors in s-domain, 132–133
Car suspension system, 72–77
Carrier signal, 308
Cascade connections, 50, 66, 154–155, 273–274, 434–435

active filters, 273–274
comb filters, 434–435
LTI systems, 50, 66
transfer functions, 154–155

CAT, 611–613
Causal systems, 4, 42, 52, 58, 60, 235, 361–362, 381–382,

440
Central nervous system (CNS), 2–3
Characteristic equations, 65
Chirp signals, 489–492
Circle of fifths, 513, 526
Circuit analysis, 36–40, 42–46, 56–57, 62, 98–99, 119–120,

131–191, 213–216, 236–237, 258–271
Circuit element models in s-domain, 132–134
Closed-loop systems, 163–166, 172–174, 176–177
Comb filters, 254, 285–287, 291, 301–303, 434–439
Combined signal transformations, 7–8
Commutative property, LTI convolution, 42, 50
Completeness property, 204
Complex frequency domain, s, 86. See also s-domain
Complex numbers, 621–624
Complex poles, 104–106
Compressed sensing, 546, 570, 599–604, 606–614
Compression, wavelet transforms, 570
Computed axial tomography (CAT), 611–613
Conjugate symmetry, 62–63, 204, 233, 276, 549
Continuous-time Fourier series (CTFS), 389
Continuous-time Fourier transforms (CTFT), 394–395
Continuous-time spectrograms, 486
Control systems, 160, 162–172, 178–182. See also Feedback
Convergence, 87, 234, 222–223
Convolution, 31, 40–58, 363–366, 372–374, 400, 404–406,

548–549, 554, 571–572
Cooley–Tukey FFTs, 411–414
Corner frequency, 256–258, 269
Correlation, 526–533
Cosine waveform, Fourier transforms, 233
Coupled first-order equations, 65–66
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Course and Vernier indices, 411
Critically damped LTI system response, 67, 69–70
Cross-correlation, 528–530
Current, electrical systems, 142
Current constraints, op amps, 150
Cutoff frequency, 258, 276
Cyclic convolution, 404–405, 554, 571–572

D
Damped natural frequency, 68–69
Damper force, 72–73, 142
Damping coefficient, 67
Data windows, 475–485

Bartlett triangular window, 479–480
Blackman window, 480–481
Hamming window, 480–481
Hanning window, 480
rectangular window, 478–479

Daubechies scaling and wavelet functions, 584–590,
593–594

Decaying exponentials, BIBO stability with, 60–61
Decimation, 351, 512–516, 518–519
Deconvolution, 439–443, 449–452, 565–569, 609–611

discrete-time systems, 439–443, 449–452
image processing, 565–569, 609–611

Demodulation, 310
Denoising, 298–301, 555, 557–560, 595–599

additive zero-mean white Gaussian, 298–299
images, 555, 557–560, 595–599
instrument (trumpet) signals, 298–301
lowpass filtering, 300–301, 597–560
shrinking, 596–597
signal-to-noise ratio (SNR), 299–300, 557–559
thresholding, 595–597

Dereverberation, 443–444
Derivative property, z-transforms, 372
DFT, 403–404
Difference equations, discrete-time LTI systems, 357–359,

378–381
Differentiation, 55–58, 193–194
Differentiator, op amps, 151
Digital signal processing (DSP), 5–6, 347–348
Digital signals, analog signals compared with, 4–6
Dirac (delta) function, δ(t), 16–19. See also Impulse

functions
Direct form I (DFI) and II (DFII) realization, 157–161

Dirichlet conditions, 197, 234
Discrete Fourier transforms (DFT), 400–410, 450–468,

553–554, 570
Discrete-space Fourier transform (DSFT), 549–553

conjugate symmetry of, 549
two-dimensional spectrum, 550–553
wavenumber response, 550

Discrete-space signals, 4
Discrete-time filters, 421–439

bandpass, 425
bandreject, 425–426
cascaded, 434–435
comb, 434–439
highpass, 424–425
lowpass, 422–424
notch, 427–433
poles and zeros, 421–422
transfer functions, 421–422

Discrete-time Fourier series (DTFS), 389–394, 458–460
fundamental period, 390
orthogonality property, 390
Parseval’s theorem, 392–393
periodic signals, 389–390, 458–460
spectral symmetry, 391–392
spectrum computations, 458–460

Discrete-time Fourier transforms (DTFT), 394–400, 403–404
DFT numerical computation, 403–404
discrete-time convolution, 400
pairs, 394–398

Discrete-time LTI systems, 356–362, 378–384
Discrete-time signals, 3–4, 5–6, 346–419, 420–473
Discrete-time spectrograms, 486
Distinct complex poles, 104–105
Distinct poles, 101–102
Distributive property, LTI convolution, 51–52
Domain transformation, 86, 117–122
Double-sideband (DSB) modulation, 303, 308–313, 316–317
Downsampling (decimation), 351, 512–516, 518–519,

554–555
DSFT, see Discrete-space Fourier transform
DTFS, see Discrete-time Fourier series
DTFT, see Discrete-time Fourier transform
Duality of frequency and time domains, 225–226
Dynamic (physical) systems, 35–36
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E
Edge detection, images, 559–564
Electrocardiograms (EKG), 534
Electromechanical analogues, 132, 140–149
Energy, signal power, 21–23
Energy spectral density, Fourier transforms, 231–232
Enthalpy, 167
Envelope detection, 313
Equal temperament system, 525–526
Error signal, 163
Everlasting signals, 86, 113, 235
Expansion coefficients (residues), 101, 104, 390
Exponential waveforms, 19–21

F
Fast Fourier transform (FFT), 400–401, 407–413, 451
FDM, 230, 304, 315–316
Feedback, 154–155, 160, 162–171, 177–182

BIBO stability, 165
closed-loop transfer function, 163–166
inverse system construction, 164
inverted pendulum control, 178–182
multiple system configurations, 154–155
negative, 154–155, 160, 162–171
positive, 160
proportional, 164–166, 179–180
proportional-plus-derivative (PD), 166, 177, 180–181
proportional-plus-integral (PI), 178, 181
system stabilization, 164–166, 179–182
temperature control using, 162–163, 167–171

Filter banks, wavelet transforms, 570, 574–576, 590–592
Filter design, 278–281, 285–286, 294–298, 427–430,

492–511
Butterworth filters, 294–298
comb filters, 285–286
finite impulse response (FIR) filters, 492–502
infinite impulse response (IIR) filters, 492, 503–511
notch filters, 427–430
poles and zeros, 278–281
single-pole/single-zero transfer functions, 278–280

Filters, 254–287, 289–298, 300–303, 421–439, 567–568
active, 263, 272–275
bandpass, 256–258, 261–267, 270–271, 277, 298, 425
bandreject, 256–258, 269–270, 277–278, 425–426
Bode plots, 261–263
brick-wall (ideal), 258, 275–278

Butterworth, 289–298
cascaded, 273–274, 434–435
comb, 254, 285–286, 434–439
discrete-time, 421–439
frequency rejection, 281–287
highpass, 255–256, 256–258, 260–263, 267–268, 273,

277, 297–298, 424–425
image deconvolution, 567–568
line enhancement, 302
lowpass, 254–255, 256–258, 259–260, 269–277,

289–297, 300–301, 305–306, 328–329, 422–424
median filtering, 567–568
notch, 254, 281–285, 290, 427–433
resonator, 254, 300–303
stopband, 258
Wiener, 567–568

Final-value theorem, 94–95, 374
Finite duration signals, 368
Finite impulse response (FIR) filters, 492–502, 503
FIR filters, 492–502
Folding frequency, 328
Forced response, 119
Forces systems, 72–73, 140–149
Fourier analysis, 192–252, 253–345
Fourier integrals, 198–199, 209, 216–217, 222–223
Fourier series, 195–218, 235–236. See also Discrete-time

Fourier series (DTFS)
Fourier transforms, 218–238, 253–345. See also Discrete

Fourier transforms (DFT); Discrete-time Fourier
transforms (DTFT)

Frequency differentiation property, 95
Frequency division multiplexing (FDM), 230, 304, 315–316
Frequency filters, 254. See also Filters
Frequency integration property, 95
Frequency rejection filters, 281–287
Frequency response, 62–64, 116, 235–236, 256–260, 263,

275–281, 293–294, 384–389, 493–494
brick-wall filters, 275–278
Butterworth filters, 293–294
conjugate symmetry of, 62–63
filter design, 278–281

Frequency sampling, 493, 496–497
Frequency-shift property, 92
Frequency warping, 507–508
Fundamental period, 10, 353–356, 390

discrete-time Fourier series (DTFS), 390
discrete-time signals, 353–356
waveforms, 10
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G
Gain-bandwidth product (GBP), 172–174
Gaussian model for impulse functions, 18
Gaussian probability distribution, 299
Geometric signals, 352–353, 362
Gibbs phenomenon, 212, 234–235
Graphical convolution technique, 46–50, 365–366

H
Haar wavelet transform, 569, 572–577, 579–581, 592–593
Hamming window, 480–481
Hanning window, 480
Heart rate measurement, 534–536
Heat capacity, 167–168
Heat transfer model, 167–168, 170
Highpass filters, 255–256, 256–258, 260–263, 267–268,

273–274, 277, 297–298, 424–425
Hilbert transform, 318–319

I
IIR filters, 492, 503–511
Image inpainting, 606–608
Image processing, 238–243, 254–256, 545–617

compressed sensing, 546, 570, 599–601, 606–603
convolution, 548–549
deconvolution, 565–569, 609–611
denoising, 555, 557–559, 595–599
discrete Fourier transform (DFT), 553–554
discrete-space Fourier transform (DSFT), 549–553
downsampling and upsampling, 554–557
edge detection, 559–564
filtering, 254–256, 567–568, 570–571
Fourier transforms, 238–243, 254–256, 569–570
highpass filtering, 255–256
LandWeber algorithm, 604–605
lowpass filtering, 254–255
MATLAB software, 241–243
point-spread function (PSF), 546, 548, 562
sampling, 547
spatial Fourier transforms, 238–239
thumbnails, 555–556
wavelet transforms, 546, 569–595

Image reconstruction, 241–243, 547, 573–576, 581–584,
579, 581–584, 606–607, 613

DTF value subsets, 606

ISTA, 604–607, 613
least-squares, 613
MATLAB software, 241–243
multistage, 574–576
perfect, 581–584
single-stage, 573–574
wavelet transforms, 579, 581–584

Impedances in s-domain, 133
Improper rational function, 100, 110–111
Impulse functions, 16–19, 54, 107–108, 224–226, 352
Impulse invariance, IIR filters, 504–506
Impulse response, 31, 35–40, 54, 65–72, 107, 114, 286–287,

360–362
cascaded LTI systems, 66
comb filters, 286–287
convolution with, 54
critically damped, 67, 69–70
discrete-time LTI systems, 360–362
linear, constant-coefficient differential equations (LC-

CDE), 65–72
linear time-invariant (LTI) systems, 31, 35–40, 54,

65–72, 114
overdamped, 67–68
static (memoryless) systems, 35–36
underdamped, 67, 68–69

In-parallel LTI connections, 51–52
In-series LTI connections, 50–51, 66
Inductors in s-domain, 132
Infinite impulse response (IIR) filters, 492, 503–511

BIBO stability of, 507
bilinear transformation, 504, 506–507
FIR filters compared with, 503, 510–511
frequency warping, 507–508
impulse invariance, 504–506
lowpass, 509–511
notch filter, 503–504

Infinite input resistance, op amps, 150
Initial-value theorem, 94–95, 374
Input derivatives, LCCDE with and without, 65–66
Input signals (excitations), 2
Instantaneous power, 21–22
Integrator circuit, op amps, 151–152
Interference, 254, 281–287, 290, 454–456, 477
Interpolation, 517–519, 523–525
Interrupted voltage source analysis, 134–136
Inverse systems, 86–88, 112–113, 164, 374–377, 440–443,

447–450
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Inverted pendulum control, 178–182
Invertible systems, 111–113
Inverting amplifier, 150, 272–273
IRLS, 602–604
ISTA, 604–607, 613
Iterative reweighted least squares (IRLS) algorithm, 602–604
Iterative shrinking and thresholding algorithm (ISTA),

604–605, 606–607, 613

K
Kirchhoff’s voltage law (KVL), 98

L
LabVIEW modules, 636
LandWeber algorithm, 604–605
Laplace transform pairs, 86, 88, 97, 106, 114
Laplace transform, 85–130, 131–191, 235–236
LASSO, 597–599, 602
Least absolute shrinkage and selection operator (LASSO),

597–599, 602
Line enhancement filter, 302
Line spectrum, 202–203, 206–207, 219–222, 238–241,

287–289, 309, 315–316, 323, 334, 391–392,
457–468, 500–553

Linear, constant coefficient, differential equations (LCCDE),
32–33, 63, 65–72, 86, 115, 117–122

Linear differential equations (LDE), 32
Linear-shift invariant (LSI) systems, 548
Linear time-invariant (LTI) systems, 30–84, 114–122,

356–362
Linearity property, 32–33, 91, 223, 359–360, 370
Linearization of systems, 178–179
Logarithmic spectrum, 550–551
Lowpass filters, 139–140, 254–255, 256–258, 259–260,

267–277, 289–297, 300–301, 305–306, 328–329,
422–424, 509–511, 597–560

M
M-periodic waveform, 209–212
Magnetic resonance imaging (MRI), 599
Magnitude (gain) frequency response, M(ω), 256–258,

278–281, 287–289
Mainlobe width, 477
Marginal stability, LTI systems, 60–61
Mathematical formulas, 625–627
Mathematical symbols, 619–620

MathScript installation, 628–629
MATLAB, 241–243, 628–635

basic computations, 629–630
discrete-time commands, 635
frequency response, 634
image reconstruction, 241–243
partial fractions, 633–634
plotting, 630–633

Mean-square convergence, 234
Mechanical systems, 141–143. See also Spring-mass-damper

(SMD) systems
Median filtering, 567–568
Memory, LTI systems, 360
Minimax criterion, 493, 499–500
Minimum phase system, 112
Modulation, 254, 277, 303–319

amplitude (AM), 312–313, 316–317
bandwidth, 304–306
Brick wall filter property, 277
double-sideband (DSB), 303, 308–313, 316–317
frequency division multiplexing (FDM), 304, 315–316
frequency translation (mixing), 313–315
index, 312
multiplication of signals, 306–307
signal fading, 311
single-sideband (SSB), 318–319
switching, 307–308
tone, 313–314

Moment of inertia, motor shafts, 175
Motor systems, 174–177
Multiple system configuration, 154–156
Multirate signal processing, 512–526
Music applications, 287–291, 298–300, 430–432, 436–439,

454–456, 525–526. See also Noise
audio signal processing, 525–526
denoising signals, 298–300
Fourier transform applications, 287–289, 298–300
instrument (trumpet) filtering, 290–291, 302–303,

430–432, 436–439, 454–456
separating simultaneously played notes, 288–289
spectra of notes, 287–289

N
Natural response, 119
Natural/forced partition, 119
Negative feedback, see Feedback
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Noise, 5, 110–111, 254, 290–291, 298–319, 430–432,
434–439, 443–444, 452–458, 526–533, 555,
557–560, 595–599

additive zero-mean white Gaussian, 298–299
autocorrelation, 527–528, 534–536
bandwidth, 304–306
comb filters, 291, 302–303, 434–439
correlation, 526–533
cross-correlation, 528–530
denoising, 298–301, 555, 557–560, 595–599
dereverberation, 443–444
discrete Fourier transforms (DFT), 452–458
discrete-time signals, 5, 430–432, 434–439, 443–444
Fourier transforms, 254, 298–319
images, 555, 557–560, 595–599
least absolute shrinkage and selection operator

(LASSO), 597–599
lowpass filtering, 300–301, 597–560
modulation, 254, 303–319
notch filters, 290, 430–432
periodic interference removal, 454–456
resonator filters, 254, 300–303
reverberation, 443
shrinking, 596–597
signal classification, 531–533
signal filtering, 290–291, 298–303, 430–432, 434–439
signal-to-noise ratio (SNR), 110–111, 299–300,

557–559
spectrum computations, 457–458
thresholding, 452–454, 456, 595–597
trumpet signals, 298–301

Noncausal systems, 4, 58, 235
Non-minimum-phase systems, 449–452
Nonperiodic (signal) waveforms, 10–21, 219–221, 401,

462–468
Notch filters, 157, 254, 281–285, 290, 427–433, 503–504
Nyquist sampling criterion, 321, 323, 512

O
Octave, 525
OLHP, 202, 206–207
One-pole transfer functions, 152–154, 158–160
One-sided spectrum, 202, 206–207
Open left-hand plane (OLHP), 109
Open-loop systems, 163–165, 171–172, 175
Operational amplifiers (op amps), 132, 149–154, 158–160,

171–174, 296–297

Orthogonality property, 204, 390
Output-voltage saturation constraints, op amps, 150
Overdamped LTI system response, 67–68
Oversampling, 328–329, 512, 520–525
Overtones, 197, 288

P

Parallel realization, 160, 162
Parks-McClellan algorithm, 499–502
Parseval’s theorem, 216–218, 230–232, 392–393
Partial fraction expansion, 99–106, 376–377
Partitions, see System response partitions
Passband filters, 258
Passive filters, 263–271
Pavement models, 73–77
Pendulums, see Inverted pendulum control
Periodic (signal) waveforms, 10–11, 15–16, 22, 199–212,

216–218, 232–233, 254, 285–287, 389–390, 401,
435–436, 457–462

Periodic interference, comb filters, 254, 285–287
Periodicity property, 10, 193
Phase/amplitude representation, 197, 201–204
Phase spectrum, 202–203, 206–207, 238–241
Phasor domain technique, 193–195
Physically realizable systems, 4
Pixels, 546
Point-spread function (PSF), 546, 548, 562
Pointwise convergence, 234
Pole factor, 101
Poles, 89–90, 100–106, 108–111, 114, 278–281, 282–283,

290–294, 421–426
Butterworth filters, 290–294
complex, 104–106
discrete-time filters, 421–426
distinct, 101–102, 104–105
filter design using, 278–281
notch filters, 282–283
parallel zeros, 282–283
placement of, 292–294
repeated, 102–106
s-plane positions, 89–90
single-pole transfer function, 279–280
strictly proper rational function, 100, 108–109
system stability, 108–111
zeros, 89–90, 100, 282–283, 421–426
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Positive feedback, 160
Power, signals, 21–23
Proportional feedback, 164–166, 179–181

plus-derivative (PD), 166, 177, 180–181
plus-integral (PI), 178, 181

Pseudo-inverse solutions, 602
PSF, 546–548, 562
Pulse trains, 219–221, 321–323

Q
Quadrature-mirror filters (QMF), 570, 583
Quality factor, 265

R
Radix-2 Cooley–Tukey FFTs, 412–413
Ramp-function waveforms, 12–13
Ramp response, 39–40
Rational functions, 63, 89–90, 100–101, 108–111
RC circuits, 36–40, 42–46, 56–57, 62, 119–120, 213–216,

236–237, 259–261
Reaction time, 37–38
Rectangular function, 14–15
Rectangular pulses, 44–46, 53–54, 397–399
Rectangular window, 478–479
Recursive equations, 357
Region of convergence (ROC), 87, 367, 445–446, 449
Rejection bandwidth, 258
Repeated poles, 102–106
Residue method, 101
Resistors in s-domain, 132
Resonant frequency, 258–259, 264
Resonator filters, 254, 300–303
Reverberation, 443
Right-shifting property, z-transforms, 370–371
RL circuits, signal filtering, 261–263
RLC circuits, 98–99, 139–147

biomechanical model, 146–147
electromechanical analog of, 141–145
Laplace transforms, 98–99, 139–147
lowpass filter response, 139–140
SMD-RLC analysis procedure, 144
spring-mass-damper (SMD) systems compared with,

142–144, 146–147
ROC, 87, 367, 445–446, 449
Roll-off rate, 259

S

s-domain, 86, 89–90, 106–108, 132–140
s-plane, 89. See also s-domain
Sallen-Key op-amp filter, 296–297
Sampling (sifting) property, 18, 41–42
Sampling interval, 320, 512
Sampling rate, 320, 512
Sampling signals, 319–334, 458–460, 463–465, 547

aliasing, 325–328
antialiasing filter, 328–330
discrete Fourier transforms (DFT), 458–459, 463–465
discrete-time Fourier series (DTFS), 458–460
discretization length, 547
images, 547
Nyquist sampling rate, 321, 323
oversampling, 328–329
reconstruction, 325
sampling theorem, 319–320
Shannon’s sampling theorem, 323–324
sinc interpolation formula, 324–325
undersampling, 325–327

Sawtooth waveforms, 15–16, 200–201
Scaling (homogeneity) property, 6–7, 18–19, 31–32, 41,

223–224, 372
Schmitt trigger, 160
Second-derivative property, 92–93
Semitone, 525
Shannon’s sampling theorem, 323–324
Shep-Logan phantom, 592–593
Shrinking, image denoising by, 596–597
Sidelobe attenuation, 477–478
Signal flow (butterfly) graph, 408
Signal-to-noise ratio (SNR), 110–111, 299–300, 557–559
Signal transformations, 6–9, 192–193. See also Scaling

property
Signum function, 226–227, 318–319
Sinc function, 219–221, 475
Sinc interpolation formula, 324–325
Sine/cosine representation, Fourier series, 197, 198–201
Single-pole, single-throw (SPST) switch, 98
Single sideband (SSB) modulation, 318–319
Singularity functions, 11–19, 87–88
Sinusoidal interference, notch filters, 282–283
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Sinusoidal response, 61–65, 113–114, 193–195, 216–217,
327, 353–356, 369, 385–387

aliasing, 327
angular frequency, 385–387
bilateral Laplace transform, 113–114
differentiation of, 193–194
discrete-time signals, 353–356, 385–387
Fourier analysis, 193–195, 216–217
Fourier integrals, 216–217
frequency response function, 62–64
linear time-invariant (LTI) systems, 61–65
linear, constant-coefficient differential equations (LC-

CDE), 63
phasor domain technique, 193–195
time-varying function, 193–195
z-transforms, 369

SMD (springs, masses, dampers) system, 141–143
Smith-Barnwell condition, 570, 582
SNR, 110–111, 299–300, 557–559
Sobel edge detector, 562–563
Sparsity, image processing, 574, 584, 597, 601
Spatial Fourier transforms, 238–239
Spectral leakage, 460–462, 475. See also Data windows
Spectrograms, 485–492

chirp signals, 489–492
continuous-time, 486
discrete-time, 486
MATLAB/MathScript recipe, 486–487
signal varying-type spectra, 485–486
time and frequency resolution trade-off, 487–489

Spring constant (stiffness), 72
Spring force, 72–73, 142
Spring-mass-damper (SMD) systems, 72–73, 140–149
Square waveforms, Fourier series analysis, 199–200, 205
SSB, 318–319
Static (memoryless) systems, 35–36
Stator, 174
Steady-state response, 119
Stem plots, discrete-time signals, 349
Step functions, 11–12, 55, 226–227, 352
Step response, 35–40, 169–171, 174–177
Stiffness (spring constant), 72
Stopband filters, 258
Strictly proper rational function, 100, 108–109
Subband coding, wavelet transforms, 570–571
Summing amplifier, op amps, 152
Superposition, principle of, 32, 33–34, 196–197, 359

discrete-time LTI systems, 359
Fourier series analysis, 196–197
LCCDE application of, 33
LTI systems, 32, 33–34

Switching function, 514
Switching modulation, 307–308
System realization, see System synthesis
System response partitions, 86, 117–122, 379
System synthesis, 157–162

direct form I (DFI) realization, 157–160
direct form II (DFII) realization, 158–161
parallel realization, 160, 162
system realization, 157–161
transfer function, H(s), 157–161

T
Temperature control, 162–163, 167–172
Thresholding, 452–454, 456, 595–597, 593–594

images, 595–597, 593–594
noise, 452–454, 456

Thumbnails, 555–556
Tikhonov regularization, 566–567
Time constant, 19–20, 36–37
Time derivative property, 229
Time modulation property, 229–230
Time-differentiation property, 92–93
Time-integration property, 93–94
Time-invariance property, 41, 360
Time-invariant systems, 34–35. See also Linear time-

invariant (LTI) systems
Time-reversal transformation, 7, 351
Time-reversed step function, 12
Time-scaling transformation, 6–7, 18–19, 91, 351
Time-shift property, 6, 8, 52–54, 91–92, 350–351
Timelimited-bandlimited signals, 462–463
Tone modulation, 313–314
Total energy, 21–22
Transfer functions, 106–108, 114–116, 152–162, 163–166,

175–176, 235, 263–271, 278–281, 295–296,
380–384, 421–426

Transient response, 119
Transient signal component, 235
Transient/steady-state partition, 119–121
Trapezoidal pulse, 14–15
Triangle inequality, BIBO stability, 59–60
Triangle model for impulse functions, 17–18
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Triangular pulses, LTI convolution of, 42–44, 56–57
Trigonometric relations, 625
Twiddle factors, 410
Two-dimensional spatial Fourier transforms, 238–239. See

also Images
Two-sided spectrum, 202, 206–207

U
Ultrasound time delay, 536–537
Undamped natural frequency, 67
Underdamped LTI system response, 67, 68–69
Undersampling, 325–327
Unilateral Laplace transform, 86–89, 113. See also Laplace

transform
Uniqueness property, 86
Unit impulse functions, 16–19, 107–108
Unit ramp functions, 12–13
Unit step functions, 11–12, 226–227
Unit time-shifted ramp function, 12–13
Unit time-shifted step function, 12
Units, abbreviations, 619–620
Universal property, 90–91
Upsampling (zero-padding), 351, 512, 516–519, 554–557

V
Valid deconvolution, 606, 609–611
Vertical velocity, electromechanical analogues, 140–141
Voltage restraints, op amps, 150

W
Wavelet transforms, 569–595

basis functions, 569, 579, 583–584
cyclic convolution, 571–572
Daubechies scaling and wavelet functions, 584–590,

593–594
DFT compared with, 570
filter banks, 570, 574–576, 590–592
frequency domain, 576
Haar transform, 569, 572–577, 579–581, 592–593
normalized functions, 576–577
perfect reconstruction, 581–584
recursion steps, 578
subband coding, 570–571
thresholding, 593–594
two-dimensional transforms, 590–594

Wavenumber response, DSFT, 550
Weighted error, 499
Weighting coefficients, 407
White light, 555, 557
White noise, 298–299, 555
Width property, LTI convolution, 54
Wiener filter, 567–568
Windowing, 401–402, 493, 494–496
Windows, see Data windows

Z
z-domain transfer functions, 380–384
z-transforms, 366–379, 445–450

bilateral, 445–450
convolution property, 372–374
discrete-time signals, 366–379
finite duration signals, 368
initial/final value theorems, 374
inverse, 374–377, 447–450
region of convergence (ROC), 367, 445–446
right-shifting property, 370–371
time delays, 370–372
z-derivative property, 372
z-scaling property, 372

Zero initial conditions, 42, 380
Zero input-current/input-voltage constraints, op amps, 150
Zero-input response (ZIR), 117–119, 379
Zero-mean noise, 298–299
Zero output resistance, op amps, 150
Zero-state response (ZSR), 117–119, 379
Zero-stuffing, 351, 512, 516–517
Zeros, 89–90, 100, 114, 278–281, 282–283, 421–426
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