
Problem Solutions – Chapter 6

Problem 6.1.1 Solution
The random variable X33 is a Bernoulli random variable that indicates the result of flip 33. The
PMF of X33 is

PX33 (x) =

⎧⎨
⎩

1 − p x = 0
p x = 1
0 otherwise

(1)

Note that each Xi has expected value E[X] = p and variance Var[X] = p(1 − p). The random
variable Y = X1 + · · · + X100 is the number of heads in 100 coin flips. Hence, Y has the binomial
PMF

PY (y) =
{ (100

y

)
py(1 − p)100−y y = 0, 1, . . . , 100

0 otherwise
(2)

Since the Xi are independent, by Theorems 6.1 and 6.3, the mean and variance of Y are

E [Y ] = 100E [X] = 100p Var[Y ] = 100 Var[X] = 100p(1 − p) (3)

Problem 6.1.2 Solution
Let Y = X1 − X2.

(a) Since Y = X1 + (−X2), Theorem 6.1 says that the expected value of the difference is

E [Y ] = E [X1] + E [−X2] = E [X] − E [X] = 0 (1)

(b) By Theorem 6.2, the variance of the difference is

Var[Y ] = Var[X1] + Var[−X2] = 2 Var[X] (2)

Problem 6.1.3 Solution

(a) The PMF of N1, the number of phone calls needed to obtain the correct answer, can be
determined by observing that if the correct answer is given on the nth call, then the previous
n − 1 calls must have given wrong answers so that

PN1 (n) =
{

(3/4)n−1(1/4) n = 1, 2, . . .
0 otherwise

(1)

(b) N1 is a geometric random variable with parameter p = 1/4. In Theorem 2.5, the mean of a
geometric random variable is found to be 1/p. For our case, E[N1] = 4.

(c) Using the same logic as in part (a) we recognize that in order for n to be the fourth correct
answer, that the previous n− 1 calls must have contained exactly 3 correct answers and that
the fourth correct answer arrived on the n-th call. This is described by a Pascal random
variable.

PN4 (n4) =
{ (

n−1
3

)
(3/4)n−4(1/4)4 n = 4, 5, . . .

0 otherwise
(2)

(d) Using the hint given in the problem statement we can find the mean of N4 by summing up
the means of the 4 identically distributed geometric random variables each with mean 4. This
gives E[N4] = 4E[N1] = 16.
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Problem 6.1.4 Solution
We can solve this problem using Theorem 6.2 which says that

Var[W ] = Var[X] + Var[Y ] + 2 Cov [X, Y ] (1)

The first two moments of X are

E [X] =
∫ 1

0

∫ 1−x

0
2x dy dx =

∫ 1

0
2x(1 − x) dx = 1/3 (2)

E
[
X2
]

=
∫ 1

0

∫ 1−x

0
2x2 dy dx =

∫ 1

0
2x2(1 − x) dx = 1/6 (3)

(4)

Thus the variance of X is Var[X] = E[X2]− (E[X])2 = 1/18. By symmetry, it should be apparent
that E[Y ] = E[X] = 1/3 and Var[Y ] = Var[X] = 1/18. To find the covariance, we first find the
correlation

E [XY ] =
∫ 1

0

∫ 1−x

0
2xy dy dx =

∫ 1

0
x(1 − x)2 dx = 1/12 (5)

The covariance is

Cov [X, Y ] = E [XY ] − E [X] E [Y ] = 1/12 − (1/3)2 = −1/36 (6)

Finally, the variance of the sum W = X + Y is

Var[W ] = Var[X] + Var[Y ] − 2 Cov [X, Y ] = 2/18 − 2/36 = 1/18 (7)

For this specific problem, it’s arguable whether it would easier to find Var[W ] by first deriving the
CDF and PDF of W . In particular, for 0 ≤ w ≤ 1,

FW (w) = P [X + Y ≤ w] =
∫ w

0

∫ w−x

0
2 dy dx =

∫ w

0
2(w − x) dx = w2 (8)

Hence, by taking the derivative of the CDF, the PDF of W is

fW (w) =
{

2w 0 ≤ w ≤ 1
0 otherwise

(9)

From the PDF, the first and second moments of W are

E [W ] =
∫ 1

0
2w2 dw = 2/3 E

[
W 2
]

=
∫ 1

0
2w3 dw = 1/2 (10)

The variance of W is Var[W ] = E[W 2]−(E[W ])2 = 1/18. Not surprisingly, we get the same answer
both ways.

Problem 6.1.5 Solution
This problem should be in either Chapter 10 or Chapter 11.

Since each Xi has zero mean, the mean of Yn is

E [Yn] = E [Xn + Xn−1 + Xn−2] /3 = 0 (1)
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Since Yn has zero mean, the variance of Yn is

Var[Yn] = E
[
Y 2

n

]
(2)

=
1
9
E
[
(Xn + Xn−1 + Xn−2)2

]
(3)

=
1
9
E
[
X2

n + X2
n−1 + X2

n−2 + 2XnXn−1 + 2XnXn−2 + 2Xn−1Xn−2

]
(4)

=
1
9
(1 + 1 + 1 + 2/4 + 0 + 2/4) =

4
9

(5)

Problem 6.2.1 Solution
The joint PDF of X and Y is

fX,Y (x, y) =
{

2 0 ≤ x ≤ y ≤ 1
0 otherwise

(1)

We wish to find the PDF of W where W = X + Y . First we find the CDF of W , FW (w), but we
must realize that the CDF will require different integrations for different values of w.

Y

X

Y=X

X+Y=w

w

w

Area of
Integration

For values of 0 ≤ w ≤ 1 we look to integrate the shaded area in the figure
to the right.

FW (w) =
∫ w

2

0

∫ w−x

x
2 dy dx =

w2

2
(2)

Y

X

Y=X

X+Y=w

w

w

Area of
Integration

For values of w in the region 1 ≤ w ≤ 2 we look to integrate over the
shaded region in the graph to the right. From the graph we see that
we can integrate with respect to x first, ranging y from 0 to w/2,
thereby covering the lower right triangle of the shaded region and
leaving the upper trapezoid, which is accounted for in the second
term of the following expression:

FW (w) =
∫ w

2

0

∫ y

0
2 dx dy +

∫ 1

w
2

∫ w−y

0
2 dx dy (3)

= 2w − 1 − w2

2
(4)

Putting all the parts together gives the CDF FW (w) and (by taking the derivative) the PDF
fW (w).

FW (w) =

⎧⎪⎪⎨
⎪⎪⎩

0 w < 0
w2

2 0 ≤ w ≤ 1
2w − 1 − w2

2 1 ≤ w ≤ 2
1 w > 2

fW (w) =

⎧⎨
⎩

w 0 ≤ w ≤ 1
2 − w 1 ≤ w ≤ 2
0 otherwise

(5)

Problem 6.2.2 Solution
The joint PDF of X and Y is

fX,Y (x, y) =
{

1 0 ≤ x, y ≤ 1
0 otherwise

(1)
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Proceeding as in Problem 6.2.1, we must first find FW (w) by integrating over the square defined
by 0 ≤ x, y ≤ 1. Again we are forced to find FW (w) in parts as we did in Problem 6.2.1 resulting
in the following integrals for their appropriate regions. For 0 ≤ w ≤ 1,

FW (w) =
∫ w

0

∫ w−x

0
dx dy = w2/2 (2)

For 1 ≤ w ≤ 2,

FW (w) =
∫ w−1

0

∫ 1

0
dx dy +

∫ 1

w−1

∫ w−y

0
dx dy = 2w − 1 − w2/2 (3)

The complete CDF FW (w) is shown below along with the corresponding PDF fW (w) = dFW (w)/dw.

FW (w) =

⎧⎪⎪⎨
⎪⎪⎩

0 w < 0
w2/2 0 ≤ w ≤ 1
2w − 1 − w2/2 1 ≤ w ≤ 2
1 otherwise

fW (w) =

⎧⎨
⎩

w 0 ≤ w ≤ 1
2 − w 1 ≤ w ≤ 2
0 otherwise

(4)

Problem 6.2.3 Solution
By using Theorem 6.5, we can find the PDF of W = X + Y by convolving the two exponential
distributions. For μ �= λ,

fW (w) =
∫ ∞

−∞
fX (x) fY (w − x) dx (1)

=
∫ w

0
λe−λxμe−μ(w−x) dx (2)

= λμe−μw

∫ w

0
e−(λ−μ)x dx (3)

=

{
λμ

λ−μ

(
e−μw − e−λw

)
w ≥ 0

0 otherwise
(4)

When μ = λ, the previous derivation is invalid because of the denominator term λ− μ. For μ = λ,
we have

fW (w) =
∫ ∞

−∞
fX (x) fY (w − x) dx (5)

=
∫ w

0
λe−λxλe−λ(w−x) dx (6)

= λ2e−λw

∫ w

0
dx (7)

=
{

λ2we−λw w ≥ 0
0 otherwise

(8)

Note that when μ = λ, W is the sum of two iid exponential random variables and has a second
order Erlang PDF.
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Problem 6.2.4 Solution
In this problem, X and Y have joint PDF

fX,Y (x, y) =
{

8xy 0 ≤ y ≤ x ≤ 1
0 otherwise

(1)

We can find the PDF of W using Theorem 6.4: fW (w) =
∫∞
−∞ fX,Y (x, w − x) dx. The only tricky

part remaining is to determine the limits of the integration. First, for w < 0, fW (w) = 0. The
two remaining cases are shown in the accompanying figure. The shaded area shows where the joint
PDF fX,Y (x, y) is nonzero. The diagonal lines depict y = w−x as a function of x. The intersection
of the diagonal line and the shaded area define our limits of integration.

x

y

2

2

1

1

0<w<1

1<w<2

w w

w

w

For 0 ≤ w ≤ 1,

fW (w) =
∫ w

w/2
8x(w − x) dx (2)

= 4wx2 − 8x3/3
∣∣w
w/2

= 2w3/3 (3)

For 1 ≤ w ≤ 2,

fW (w) =
∫ 1

w/2
8x(w − x) dx (4)

= 4wx2 − 8x3/3
∣∣1
w/2

(5)

= 4w − 8/3 − 2w3/3 (6)
Since X + Y ≤ 2, fW (w) = 0 for w > 2. Hence the complete expression for the PDF of W is

fW (w) =

⎧⎨
⎩

2w3/3 0 ≤ w ≤ 1
4w − 8/3 − 2w3/3 1 ≤ w ≤ 2
0 otherwise

(7)

Problem 6.2.5 Solution
We first find the CDF of W following the same procedure as in the proof of Theorem 6.4.

FW (w) = P [X ≤ Y + w] =
∫ ∞

−∞

∫ y+w

−∞
fX,Y (x, y) dx dy (1)

By taking the derivative with respect to w, we obtain

fW (w) =
dFW (w)

dw
=
∫ ∞

−∞
d

dw

(∫ y+w

−∞
fX,Y (x, y) dx

)
dy (2)

=
∫ ∞

−∞
fX,Y (w + y, y) dy (3)

With the variable substitution y = x − w, we have dy = dx and

fW (w) =
∫ ∞

−∞
fX,Y (x, x − w) dx (4)
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Problem 6.2.6 Solution
The random variables K and J have PMFs

PJ (j) =

{
αje−α

j! j = 0, 1, 2, . . .

0 otherwise
PK (k) =

{
βke−β

k! k = 0, 1, 2, . . .
0 otherwise

(1)

For n ≥ 0, we can find the PMF of N = J + K via

P [N = n] =
∞∑

k=−∞
P [J = n − k, K = k] (2)

Since J and K are independent, non-negative random variables,

P [N = n] =
n∑

k=0

PJ (n − k) PK (k) (3)

=
n∑

k=0

αn−ke−α

(n − k)!
βke−β

k!
(4)

=
(α + β)ne−(α+β)

n!

n∑
k=0

n!
k!(n − k)!

(
α

α + β

)n−k ( β

α + β

)k

︸ ︷︷ ︸
1

(5)

The marked sum above equals 1 because it is the sum of a binomial PMF over all possible values.
The PMF of N is the Poisson PMF

PN (n) =

{
(α+β)ne−(α+β)

n! n = 0, 1, 2, . . .
0 otherwise

(6)

Problem 6.3.1 Solution
For a constant a > 0, a zero mean Laplace random variable X has PDF

fX (x) =
a

2
e−a|x| −∞ < x < ∞ (1)

The moment generating function of X is

φX(s) = E
[
esX
]

=
a

2

∫ 0

−∞
esxeax dx +

a

2

∫ ∞

0
esxe−ax dx (2)

=
a

2
e(s+a)x

s + a

∣∣∣∣∣
0

−∞
+

a

2
e(s−a)x

s − a

∣∣∣∣∣
∞

0

(3)

=
a

2

(
1

s + a
− 1

s − a

)
(4)

=
a2

a2 − s2
(5)
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Problem 6.3.2 Solution

(a) By summing across the rows of the table, we see that J has PMF

PJ (j) =
{

0.6 j = −2
0.4 j = −1

(1)

The MGF of J is φJ(s) = E[esJ ] = 0.6e−2s + 0.4e−s.

(b) Summing down the columns of the table, we see that K has PMF

PK (k) =

⎧⎨
⎩

0.7 k = −1
0.2 k = 0
0.1 k = 1

(2)

The MGF of K is φK(s) = 0.7e−s + 0.2 + 0.1es.

(c) To find the PMF of M = J + K, it is easist to annotate each entry in the table with the
coresponding value of M :

PJ,K (j, k) k = −1 k = 0 k = 1
j = −2 0.42(M = −3) 0.12(M = −2) 0.06(M = −1)
j = −1 0.28(M = −2) 0.08(M = −1) 0.04(M = 0)

(3)

We obtain PM (m) by summing over all j, k such that j + k = m, yielding

PM (m) =

⎧⎪⎪⎨
⎪⎪⎩

0.42 m = −3
0.40 m = −2
0.14 m = −1
0.04 m = 0

(4)

(d) One way to solve this problem, is to find the MGF φM (s) and then take four derivatives.
Sometimes its better to just work with definition of E[M4]:

E
[
M4
]

=
∑
m

PM (m) m4 (5)

= 0.42(−3)4 + 0.40(−2)4 + 0.14(−1)4 + 0.04(0)4 = 40.434 (6)

As best I can tell, the prupose of this problem is to check that you know when not to use the
methods in this chapter.

Problem 6.3.3 Solution
We find the MGF by calculating E[esX ] from the PDF fX(x).

φX(s) = E
[
esX
]

=
∫ b

a
esX 1

b − a
dx =

ebs − eas

s(b − a)
(1)

Now to find the first moment, we evaluate the derivative of φX(s) at s = 0.

E [X] =
dφX(s)

ds

∣∣∣∣
s=0

=
s
[
bebs − aeas

]− [ebs − eas
]

(b − a)s2

∣∣∣∣∣
s=0

(2)
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Direct evaluation of the above expression at s = 0 yields 0/0 so we must apply l’Hôpital’s rule and
differentiate the numerator and denominator.

E [X] = lim
s→0

bebs − aeas + s
[
b2ebs − a2eas

]− [bebs − aeas
]

2(b − a)s
(3)

= lim
s→0

b2ebs − a2eas

2(b − a)
=

b + a

2
(4)

To find the second moment of X, we first find that the second derivative of φX(s) is

d2φX(s)
ds2

=
s2
[
b2ebs − a2eas

]− 2s
[
bebs − aeas

]
+ 2
[
bebs − aeas

]
(b − a)s3

(5)

Substituting s = 0 will yield 0/0 so once again we apply l’Hôpital’s rule and differentiate the
numerator and denominator.

E
[
X2
]

= lim
s→0

d2φX(s)
ds2

= lim
s→0

s2
[
b3ebs − a3eas

]
3(b − a)s2

(6)

=
b3 − a3

3(b − a)
= (b2 + ab + a2)/3 (7)

In this case, it is probably simpler to find these moments without using the MGF.

Problem 6.3.4 Solution
Using the moment generating function of X, φX(s) = eσ2s2/2. We can find the nth moment of X,
E[Xn] by taking the nth derivative of φX(s) and setting s = 0.

E [X] = σ2seσ2s2/2
∣∣∣
s=0

= 0 (1)

E
[
X2
]

= σ2eσ2s2/2 + σ4s2eσ2s2/2
∣∣∣
s=0

= σ2. (2)

Continuing in this manner we find that

E
[
X3
]

=
(
3σ4s + σ6s3

)
eσ2s2/2

∣∣∣
s=0

= 0 (3)

E
[
X4
]

=
(
3σ4 + 6σ6s2 + σ8s4

)
eσ2s2/2

∣∣∣
s=0

= 3σ4. (4)

To calculate the moments of Y , we define Y = X + μ so that Y is Gaussian (μ, σ). In this case
the second moment of Y is

E
[
Y 2
]

= E
[
(X + μ)2

]
= E

[
X2 + 2μX + μ2

]
= σ2 + μ2. (5)

Similarly, the third moment of Y is

E
[
Y 3
]

= E
[
(X + μ)3

]
(6)

= E
[
X3 + 3μX2 + 3μ2X + μ3

]
= 3μσ2 + μ3. (7)

Finally, the fourth moment of Y is

E
[
Y 4
]

= E
[
(X + μ)4

]
(8)

= E
[
X4 + 4μX3 + 6μ2X2 + 4μ3X + μ4

]
(9)

= 3σ4 + 6μ2σ2 + μ4. (10)
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Problem 6.3.5 Solution
The PMF of K is

PK (k) =
{

1/n k = 1, 2, . . . , n
0 otherwise

(1)

The corresponding MGF of K is

φK(s) = E
[
esK
]

=
1
n

(
es + e2s + · · · + ens

)
(2)

=
es

n

(
1 + es + e2s + · · · + e(n−1)s

)
(3)

=
es(ens − 1)
n(es − 1)

(4)

We can evaluate the moments of K by taking derivatives of the MGF. Some algebra will show that

dφK(s)
ds

=
ne(n+2)s − (n + 1)e(n+1)s + es

n(es − 1)2
(5)

Evaluating dφK(s)/ds at s = 0 yields 0/0. Hence, we apply l’Hôpital’s rule twice (by twice
differentiating the numerator and twice differentiating the denominator) when we write

dφK(s)
ds

∣∣∣∣
s=0

= lim
s→0

n(n + 2)e(n+2)s − (n + 1)2e(n+1)s + es

2n(es − 1)
(6)

= lim
s→0

n(n + 2)2e(n+2)s − (n + 1)3e(n+1)s + es

2nes
= (n + 1)/2 (7)

A significant amount of algebra will show that the second derivative of the MGF is

d2φK(s)
ds2

=
n2e(n+3)s − (2n2 + 2n − 1)e(n+2)s + (n + 1)2e(n+1)s − e2s − es

n(es − 1)3
(8)

Evaluating d2φK(s)/ds2 at s = 0 yields 0/0. Because (es − 1)3 appears in the denominator, we
need to use l’Hôpital’s rule three times to obtain our answer.

d2φK(s)
ds2

∣∣∣∣
s=0

= lim
s→0

n2(n + 3)3e(n+3)s − (2n2 + 2n − 1)(n + 2)3e(n+2)s + (n + 1)5 − 8e2s − es

6nes
(9)

=
n2(n + 3)3 − (2n2 + 2n − 1)(n + 2)3 + (n + 1)5 − 9

6n
(10)

= (2n + 1)(n + 1)/6 (11)

We can use these results to derive two well known results. We observe that we can directly use the
PMF PK(k) to calculate the moments

E [K] =
1
n

n∑
k=1

k E
[
K2
]

=
1
n

n∑
k=1

k2 (12)

Using the answers we found for E[K] and E[K2], we have the formulas

n∑
k=1

k =
n(n + 1)

2

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6
(13)
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Problem 6.4.1 Solution
N is a binomial (n = 100, p = 0.4) random variable. M is a binomial (n = 50, p = 0.4) random
variable. Thus N is the sum of 100 independent Bernoulli (p = 0.4) and M is the sum of 50
independent Bernoulli (p = 0.4) random variables. Since M and N are independent, L = M + N
is the sum of 150 independent Bernoulli (p = 0.4) random variables. Hence L is a binomial
n = 150, p = 0.4) and has PMF

PL (l) =
(

150
l

)
(0.4)l(0.6)150−l. (1)

Problem 6.4.2 Solution
Random variable Y has the moment generating function φY (s) = 1/(1 − s). Random variable V
has the moment generating function φV (s) = 1/(1 − s)4. Y and V are independent. W = Y + V .

(a) From Table 6.1, Y is an exponential (λ = 1) random variable. For an exponential (λ) random
variable, Example 6.5 derives the moments of the exponential random variable. For λ = 1,
the moments of Y are

E [Y ] = 1, E
[
Y 2
]

= 2, E
[
Y 3
]

= 3! = 6. (1)

(b) Since Y and V are independent, W = Y + V has MGF

φW (s) = φY (s)φV (s) =
(

1
1 − s

)(
1

1 − s

)4

=
(

1
1 − s

)5

. (2)

W is the sum of five independent exponential (λ = 1) random variables X1, . . . , X5. (That
is, W is an Erlang (n = 5, λ = 1) random variable.) Each Xi has expected value E[X] = 1
and variance Var[X] = 1. From Theorem 6.1 and Theorem 6.3,

E [W ] = 5E [X] = 5, Var[W ] = 5 Var[X] = 5. (3)

It follows that
E
[
W 2
]

= Var[W ] + (E [W ])2 = 5 + 25 = 30. (4)

Problem 6.4.3 Solution
In the iid random sequence K1, K2, . . ., each Ki has PMF

PK (k) =

⎧⎨
⎩

1 − p k = 0,
p k = 1,
0 otherwise.

(1)

(a) The MGF of K is φK(s) = E[esK ] = 1 − p + pes.

(b) By Theorem 6.8, M = K1 + K2 + . . . + Kn has MGF

φM (s) = [φK(s)]n = [1 − p + pes]n (2)
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(c) Although we could just use the fact that the expectation of the sum equals the sum of the
expectations, the problem asks us to find the moments using φM (s). In this case,

E [M ] =
dφM (s)

ds

∣∣∣∣
s=0

= n(1 − p + pes)n−1pes
∣∣
s=0

= np (3)

The second moment of M can be found via

E
[
M2
]

=
dφM (s)

ds

∣∣∣∣
s=0

(4)

= np
(
(n − 1)(1 − p + pes)pe2s + (1 − p + pes)n−1es

)∣∣
s=0

(5)

= np[(n − 1)p + 1] (6)

The variance of M is

Var[M ] = E
[
M2
]− (E [M ])2 = np(1 − p) = n Var[K] (7)

Problem 6.4.4 Solution
Based on the problem statement, the number of points Xi that you earn for game i has PMF

PXi (x) =
{

1/3 x = 0, 1, 2
0 otherwise

(1)

(a) The MGF of Xi is
φXi(s) = E

[
esXi
]

= 1/3 + es/3 + e2s/3 (2)

Since Y = X1 + · · · + Xn, Theorem 6.8 implies

φY (s) = [φXi(s)]
n = [1 + es + e2s]n/3n (3)

(b) First we observe that first and second moments of Xi are

E [Xi] =
∑

x

xPXi (x) = 1/3 + 2/3 = 1 (4)

E
[
X2

i

]
=
∑

x

x2PXi (x) = 12/3 + 22/3 = 5/3 (5)

Hence,
Var[Xi] = E

[
X2

i

]− (E [Xi])2 = 2/3. (6)

By Theorems 6.1 and 6.3, the mean and variance of Y are

E [Y ] = nE [X] = n (7)
Var[Y ] = n Var[X] = 2n/3 (8)

Another more complicated way to find the mean and variance is to evaluate derivatives of
φY (s) as s = 0.
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Problem 6.4.5 Solution

PKi (k) =
{

2ke−2/k! k = 0, 1, 2, . . .
0 otherwise

(1)

And let Ri = K1 + K2 + . . . + Ki

(a) From Table 6.1, we find that the Poisson (α = 2) random variable K has MGF φK(s) =
e2(es−1).

(b) The MGF of Ri is the product of the MGFs of the Ki’s.

φRi(s) =
i∏

n=1

φK(s) = e2i(es−1) (2)

(c) Since the MGF of Ri is of the same form as that of the Poisson with parameter, α = 2i.
Therefore we can conclude that Ri is in fact a Poisson random variable with parameter
α = 2i. That is,

PRi (r) =
{

(2i)re−2i/r! r = 0, 1, 2, . . .
0 otherwise

(3)

(d) Because Ri is a Poisson random variable with parameter α = 2i, the mean and variance of
Ri are then both 2i.

Problem 6.4.6 Solution
The total energy stored over the 31 days is

Y = X1 + X2 + · · · + X31 (1)

The random variables X1, . . . , X31 are Gaussian and independent but not identically distributed.
However, since the sum of independent Gaussian random variables is Gaussian, we know that Y is
Gaussian. Hence, all we need to do is find the mean and variance of Y in order to specify the PDF
of Y . The mean of Y is

E [Y ] =
31∑
i=1

E [Xi] =
31∑
i=1

(32 − i/4) = 32(31) − 31(32)
8

= 868 kW-hr (2)

Since each Xi has variance of 100(kW-hr)2, the variance of Y is

Var[Y ] = Var[X1] + · · · + Var[X31] = 31 Var[Xi] = 3100 (3)

Since E[Y ] = 868 and Var[Y ] = 3100, the Gaussian PDF of Y is

fY (y) =
1√

6200π
e−(y−868)2/6200 (4)
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Problem 6.4.7 Solution
By Theorem 6.8, we know that φM (s) = [φK(s)]n.

(a) The first derivative of φM (s) is

dφM (s)
ds

= n [φK(s)]n−1 dφK(s)
ds

(1)

We can evaluate dφM (s)/ds at s = 0 to find E[M ].

E [M ] =
dφM (s)

ds

∣∣∣∣
s=0

= n [φK(s)]n−1 dφK(s)
ds

∣∣∣∣
s=0

= nE [K] (2)

(b) The second derivative of φM (s) is

d2φM (s)
ds2

= n(n − 1) [φK(s)]n−2

(
dφK(s)

ds

)2

+ n [φK(s)]n−1 d2φK(s)
ds2

(3)

Evaluating the second derivative at s = 0 yields

E
[
M2
]

=
d2φM (s)

ds2

∣∣∣∣
s=0

= n(n − 1) (E [K])2 + nE
[
K2
]

(4)

Problem 6.5.1 Solution

(a) From Table 6.1, we see that the exponential random variable X has MGF

φX(s) =
λ

λ − s
(1)

(b) Note that K is a geometric random variable identical to the geometric random variable X in
Table 6.1 with parameter p = 1 − q. From Table 6.1, we know that random variable K has
MGF

φK(s) =
(1 − q)es

1 − qes
(2)

Since K is independent of each Xi, V = X1 + · · ·+XK is a random sum of random variables.
From Theorem 6.12,

φV (s) = φK(ln φX(s)) =
(1 − q) λ

λ−s

1 − q λ
λ−s

=
(1 − q)λ

(1 − q)λ − s
(3)

We see that the MGF of V is that of an exponential random variable with parameter (1−q)λ.
The PDF of V is

fV (v) =
{

(1 − q)λe−(1−q)λv v ≥ 0
0 otherwise

(4)
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Problem 6.5.2 Solution
The number N of passes thrown has the Poisson PMF and MGF

PN (n) =
{

(30)ne−30/n! n = 0, 1, . . .
0 otherwise

φN (s) = e30(es−1) (1)

Let Xi = 1 if pass i is thrown and completed and otherwise Xi = 0. The PMF and MGF of each
Xi is

PXi (x) =

⎧⎨
⎩

1/3 x = 0
2/3 x = 1
0 otherwise

φXi(s) = 1/3 + (2/3)es (2)

The number of completed passes can be written as the random sum of random variables

K = X1 + · · · + XN (3)

Since each Xi is independent of N , we can use Theorem 6.12 to write

φK(s) = φN (ln φX(s)) = e30(φX(s)−1) = e30(2/3)(es−1) (4)

We see that K has the MGF of a Poisson random variable with mean E[K] = 30(2/3) = 20,
variance Var[K] = 20, and PMF

PK (k) =
{

(20)ke−20/k! k = 0, 1, . . .
0 otherwise

(5)

Problem 6.5.3 Solution
In this problem, Y = X1 + · · · + XN is not a straightforward random sum of random variables
because N and the Xi’s are dependent. In particular, given N = n, then we know that there were
exactly 100 heads in N flips. Hence, given N , X1 + · · · + XN = 100 no matter what is the actual
value of N . Hence Y = 100 every time and the PMF of Y is

PY (y) =
{

1 y = 100
0 otherwise

(1)

Problem 6.5.4 Solution
Donovan McNabb’s passing yardage is the random sum of random variables

V + Y1 + · · · + YK (1)

where Yi has the exponential PDF

fYi (y) =
{

1
15e−y/15 y ≥ 0
0 otherwise

(2)

From Table 6.1, the MGFs of Y and K are

φY (s) =
1/15

1/15 − s
=

1
1 − 15s

φK(s) = e20(es−1) (3)

From Theorem 6.12, V has MGF

φV (s) = φK(lnφY (s)) = e20(φY (s)−s) = e300s/(1−15s) (4)
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The PDF of V cannot be found in a simple form. However, we can use the MGF to calculate the
mean and variance. In particular,

E [V ] =
dφV (s)

ds

∣∣∣∣
s=0

= e300s/(1−15s) 300
(1 − 15s)2

∣∣∣∣
s=0

= 300 (5)

E
[
V 2
]

=
d2φV (s)

ds2

∣∣∣∣
s=0

(6)

= e300s/(1−15s)

(
300

(1 − 15s)2

)2

+ e300s/(1−15s) 9000
(1 − 15s)3

∣∣∣∣∣
s=0

= 99, 000 (7)

Thus, V has variance Var[V ] = E[V 2] − (E[V ])2 = 9, 000 and standard deviation σV ≈ 94.9.
A second way to calculate the mean and variance of V is to use Theorem 6.13 which says

E [V ] = E [K] E [Y ] = 20(15) = 200 (8)

Var[V ] = E [K] Var[Y ] + Var[K](E [Y ])2 = (20)152 + (20)152 = 9000 (9)

Problem 6.5.5 Solution
Since each ticket is equally likely to have one of

(
46
6

)
combinations, the probability a ticket is a

winner is
q =

1(
46
6

) (1)

Let Xi = 1 if the ith ticket sold is a winner; otherwise Xi = 0. Since the number K of tickets sold
has a Poisson PMF with E[K] = r, the number of winning tickets is the random sum

V = X1 + · · · + XK (2)

From Appendix A,
φX(s) = (1 − q) + qes φK(s) = er[es−1] (3)

By Theorem 6.12,

φV (s) = φK(lnφX(s)) = er[φX(s)−1] = erq(es−1) (4)

Hence, we see that V has the MGF of a Poisson random variable with mean E[V ] = rq. The PMF
of V is

PV (v) =
{

(rq)ve−rq/v! v = 0, 1, 2, . . .
0 otherwise

(5)

Problem 6.5.6 Solution

(a) We can view K as a shifted geometric random variable. To find the MGF, we start from first
principles with Definition 6.1:

φK(s) =
∞∑

k=0

eskp(1 − p)k = p

∞∑
n=0

[(1 − p)es]k =
p

1 − (1 − p)es
(1)
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(b) First, we need to recall that each Xi has MGF φX(s) = es+s2/2. From Theorem 6.12, the
MGF of R is

φR(s) = φK(lnφX(s)) = φK(s + s2/2) =
p

1 − (1 − p)es+s2/2
(2)

(c) To use Theorem 6.13, we first need to calculate the mean and variance of K:

E [K] =
dφK(s)

ds

∣∣∣∣
s=0

=
p(1 − p)es

1 − (1 − p)es

2
∣∣∣∣∣
s=0

=
1 − p

p
(3)

E
[
K2
]

=
d2φK(s)

ds2

∣∣∣∣
s=0

= p(1 − p)
[1 − (1 − p)es]es + 2(1 − p)e2s

[1 − (1 − p)es]3

∣∣∣∣
s=0

(4)

=
(1 − p)(2 − p)

p2
(5)

Hence, Var[K] = E[K2] − (E[K])2 = (1 − p)/p2. Finally. we can use Theorem 6.13 to write

Var[R] = E [K] Var[X] + (E [X])2 Var[K] =
1 − p

p
+

1 − p

p2
=

1 − p2

p2
(6)

Problem 6.5.7 Solution
The way to solve for the mean and variance of U is to use conditional expectations. Given K = k,
U = X1 + · · · + Xk and

E [U |K = k] = E [X1 + · · · + Xk|X1 + · · · + Xn = k] (1)

=
k∑

i=1

E [Xi|X1 + · · · + Xn = k] (2)

Since Xi is a Bernoulli random variable,

E [Xi|X1 + · · · + Xn = k] = P

⎡
⎣Xi = 1|

n∑
j=1

Xj = k

⎤
⎦ (3)

=
P
[
Xi = 1,

∑
j �=i Xj = k − 1

]
P
[∑n

j=1 Xj = k
] (4)

Note that
∑n

j=1 Xj is just a binomial random variable for n trials while
∑

j �=i Xj is a binomial
random variable for n − 1 trials. In addition, Xi and

∑
j �=i Xj are independent random variables.

This implies

E [Xi|X1 + · · · + Xn = k] =
P [Xi = 1] P

[∑
j �=i Xj = k − 1

]
P
[∑n

j=1 Xj = k
] (5)

=
p
(
n−1
k−1

)
pk−1(1 − p)n−1−(k−1)(
n
k

)
pk(1 − p)n−k

=
k

n
(6)
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A second way is to argue that symmetry implies E[Xi|X1 + · · · + Xn = k] = γ, the same for each
i. In this case,

nγ =
n∑

i=1

E [Xi|X1 + · · · + Xn = k] = E [X1 + · · · + Xn|X1 + · · · + Xn = k] = k (7)

Thus γ = k/n. At any rate, the conditional mean of U is

E [U |K = k] =
k∑

i=1

E [Xi|X1 + · · · + Xn = k] =
k∑

i=1

k

n
=

k2

n
(8)

This says that the random variable E[U |K] = K2/n. Using iterated expectations, we have

E [U ] = E [E [U |K]] = E
[
K2/n

]
(9)

Since K is a binomial random variable, we know that E[K] = np and Var[K] = np(1 − p). Thus,

E [U ] =
1
n

E
[
K2
]

=
1
n

(
Var[K] + (E [K])2

)
= p(1 − p) + np2 (10)

On the other hand, V is just and ordinary random sum of independent random variables and the
mean of E[V ] = E[X]E[M ] = np2.

Problem 6.5.8 Solution
Using N to denote the number of games played, we can write the total number of points earned as
the random sum

Y = X1 + X2 + · · · + XN (1)

(a) It is tempting to use Theorem 6.12 to find φY (s); however, this would be wrong since each Xi

is not independent of N . In this problem, we must start from first principles using iterated
expectations.

φY (s) = E
[
E
[
es(X1+···+XN )|N

]]
=

∞∑
n=1

PN (n) E
[
es(X1+···+Xn)|N = n

]
(2)

Given N = n, X1, . . . , Xn are independent so that

E
[
es(X1+···+Xn)|N = n

]
= E

[
esX1 |N = n

]
E
[
esX2 |N = n

] · · ·E [esXn |N = n
]

(3)

Given N = n, we know that games 1 through n− 1 were either wins or ties and that game n
was a loss. That is, given N = n, Xn = 0 and for i < n, Xi �= 0. Moreover, for i < n, Xi has
the conditional PMF

PXi|N=n (x) = PXi|Xi �=0 (x) =
{

1/2 x = 1, 2
0 otherwise

(4)

These facts imply
E
[
esXn |N = n

]
= e0 = 1 (5)

and that for i < n,

E
[
esXi |N = n

]
= (1/2)es + (1/2)e2s = es/2 + e2s/2 (6)
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Now we can find the MGF of Y .

φY (s) =
∞∑

n=1

PN (n) E
[
esX1 |N = n

]
E
[
esX2 |N = n

] · · ·E [esXn |N = n
]

(7)

=
∞∑

n=1

PN (n)
[
es/2 + e2s/2

]n−1 =
1

es/2 + e2s/2

∞∑
n=1

PN (n)
[
es/2 + e2s/2

]n (8)

It follows that

φY (s) =
1

es/2 + e2s/2

∞∑
n=1

PN (n) en ln[(es+e2s)/2] =
φN (ln[es/2 + e2s/2])

es/2 + e2s/2
(9)

The tournament ends as soon as you lose a game. Since each game is a loss with probability
1/3 independent of any previous game, the number of games played has the geometric PMF
and corresponding MGF

PN (n) =
{

(2/3)n−1(1/3) n = 1, 2, . . .
0 otherwise

φN (s) =
(1/3)es

1 − (2/3)es
(10)

Thus, the MGF of Y is

φY (s) =
1/3

1 − (es + e2s)/3
(11)

(b) To find the moments of Y , we evaluate the derivatives of the MGF φY (s). Since

dφY (s)
ds

=
es + 2e2s

9 [1 − es/3 − e2s/3]2
(12)

we see that

E [Y ] =
dφY (s)

ds

∣∣∣∣
s=0

=
3

9(1/3)2
= 3 (13)

If you’re curious, you may notice that E[Y ] = 3 precisely equals E[N ]E[Xi], the answer you
would get if you mistakenly assumed that N and each Xi were independent. Although this
may seem like a coincidence, its actually the result of theorem known as Wald’s equality.

The second derivative of the MGF is

d2φY (s)
ds2

=
(1 − es/3 − e2s/3)(es + 4e2s) + 2(es + 2e2s)2/3

9(1 − es/3 − e2s/3)3
(14)

The second moment of Y is

E
[
Y 2
]

=
d2φY (s)

ds2

∣∣∣∣
s=0

=
5/3 + 6

1/3
= 23 (15)

The variance of Y is Var[Y ] = E[Y 2] − (E[Y ])2 = 23 − 9 = 14.
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Problem 6.6.1 Solution
We know that the waiting time, W is uniformly distributed on [0,10] and therefore has the following
PDF.

fW (w) =
{

1/10 0 ≤ w ≤ 10
0 otherwise

(1)

We also know that the total time is 3 milliseconds plus the waiting time, that is X = W + 3.

(a) The expected value of X is E[X] = E[W + 3] = E[W ] + 3 = 5 + 3 = 8.

(b) The variance of X is Var[X] = Var[W + 3] = Var[W ] = 25/3.

(c) The expected value of A is E[A] = 12E[X] = 96.

(d) The standard deviation of A is σA =
√

Var[A] =
√

12(25/3) = 10.

(e) P [A > 116] = 1 − Φ(116−96
10 ) = 1 − Φ(2) = 0.02275.

(f) P [A < 86] = Φ(86−96
10 ) = Φ(−1) = 1 − Φ(1) = 0.1587

Problem 6.6.2 Solution
Knowing that the probability that voice call occurs is 0.8 and the probability that a data call occurs
is 0.2 we can define the random variable Di as the number of data calls in a single telephone call.
It is obvious that for any i there are only two possible values for Di, namely 0 and 1. Furthermore
for all i the Di’s are independent and identically distributed withe the following PMF.

PD (d) =

⎧⎨
⎩

0.8 d = 0
0.2 d = 1
0 otherwise

(1)

From the above we can determine that

E [D] = 0.2 Var [D] = 0.2 − 0.04 = 0.16 (2)

With these facts, we can answer the questions posed by the problem.

(a) E[K100] = 100E[D] = 20

(b) Var[K100] =
√

100 Var[D] =
√

16 = 4

(c) P [K100 ≥ 18] = 1 − Φ
(

18−20
4

)
= 1 − Φ(−1/2) = Φ(1/2) = 0.6915

(d) P [16 ≤ K100 ≤ 24] = Φ(24−20
4 ) − Φ(16−20

4 ) = Φ(1) − Φ(−1) = 2Φ(1) − 1 = 0.6826

Problem 6.6.3 Solution

(a) Let X1, . . . , X120 denote the set of call durations (measured in minutes) during the month.
From the problem statement, each X − I is an exponential (λ) random variable with E[Xi] =
1/λ = 2.5 min and Var[Xi] = 1/λ2 = 6.25 min2. The total number of minutes used during
the month is Y = X1 + · · · + X120. By Theorem 6.1 and Theorem 6.3,

E [Y ] = 120E [Xi] = 300 Var[Y ] = 120 Var[Xi] = 750. (1)

251



The subscriber’s bill is 30 + 0.4(y − 300)+ where x+ = x if x ≥ 0 or x+ = 0 if x < 0. the
subscribers bill is exactly $36 if Y = 315. The probability the subscribers bill exceeds $36
equals

P [Y > 315] = P

[
Y − 300

σY
>

315 − 300
σY

]
= Q

(
15√
750

)
= 0.2919. (2)

(b) If the actual call duration is Xi, the subscriber is billed for Mi = �Xi	 minutes. Because
each Xi is an exponential (λ) random variable, Theorem 3.9 says that Mi is a geometric (p)
random variable with p = 1 − e−λ = 0.3297. Since Mi is geometric,

E [Mi] =
1
p

= 3.033, Var[Mi] =
1 − p

p2
= 6.167. (3)

The number of billed minutes in the month is B = M1 + · · · + M120. Since M1, . . . , M120 are
iid random variables,

E [B] = 120E [Mi] = 364.0, Var[B] = 120 Var[Mi] = 740.08. (4)

Similar to part (a), the subscriber is billed $36 if B = 315 minutes. The probability the
subscriber is billed more than $36 is

P [B > 315] = P

[
B − 364√

740.08
>

315 − 365√
740.08

]
= Q(−1.8) = Φ(1.8) = 0.964. (5)

Problem 6.7.1 Solution
In Problem 6.2.6, we learned that a sum of iid Poisson random variables is a Poisson random
variable. Hence Wn is a Poisson random variable with mean E[Wn] = nE[K] = n. Thus Wn has
variance Var[Wn] = n and PMF

PWn (w) =
{

nwe−n/w! w = 0, 1, 2, . . .
0 otherwise

(1)

All of this implies that we can exactly calculate

P [Wn = n] = PWn (n) = nne−n/n! (2)

Since we can perform the exact calculation, using a central limit theorem may seem silly; however
for large n, calculating nn or n! is difficult for large n. Moreover, it’s interesting to see how good
the approximation is. In this case, the approximation is

P [Wn = n] = P [n ≤ Wn ≤ n] ≈ Φ
(

n + 0.5 − n√
n

)
− Φ
(

n − 0.5 − n√
n

)
= 2Φ

(
1

2
√

n

)
− 1 (3)

The comparison of the exact calculation and the approximation are given in the following table.

P [Wn = n] n = 1 n = 4 n = 16 n = 64
exact 0.3679 0.1954 0.0992 0.0498
approximate 0.3829 0.1974 0.0995 0.0498

(4)
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Problem 6.7.2 Solution

(a) Since the number of requests N has expected value E[N ] = 300 and variance Var[N ] = 300,
we need C to satisfy

P [N > C] = P

[
N − 300√

300
>

C − 300√
300

]
(1)

= 1 − Φ
(

C − 300√
300

)
= 0.05. (2)

From Table 3.1, we note that Φ(1.65) = 0.9505. Thus,

C = 300 + 1.65
√

300 = 328.6. (3)

(b) For C = 328.6, the exact probability of overload is

P [N > C] = 1 − P [N ≤ 328] = 1 − poissoncdf(300,328) = 0.0516, (4)

which shows the central limit theorem approximation is reasonable.

(c) This part of the problem could be stated more carefully. Re-examining Definition 2.10 for
the Poisson random variable and the accompanying discussion in Chapter 2, we observe that
the webserver has an arrival rate of λ = 300 hits/min, or equivalently λ = 5 hits/sec. Thus
in a one second interval, the number of requests N ′ is a Poisson (α = 5) random variable.

However, since the server “capacity” in a one second interval is not precisely defined, we will
make the somewhat arbitrary definition that the server capacity is C ′ = 328.6/60 = 5.477
packets/sec. With this somewhat arbitrary definition, the probability of overload in a one
second interval is

P
[
N ′ > C ′] = 1 − P

[
N ′ ≤ 5.477

]
= 1 − P

[
N ′ ≤ 5

]
. (5)

Because the number of arrivals in the interval is small, it would be a mistake to use the
Central Limit Theorem to estimate this overload probability. However, the direct calculation
of the overload probability is not hard. For E[N ′] = α = 5,

1 − P
[
N ′ ≤ 5

]
= 1 −

5∑
n=0

PN (n) = 1 − e−α
5∑

n=0

αn

n!
= 0.3840. (6)

(d) Here we find the smallest C such that P [N ′ ≤ C] ≥ 0.95. From the previous step, we know
that C > 5. Since N ′ is a Poisson (α = 5) random variable, we need to find the smallest C
such that

P [N ≤ C] =
C∑

n=0

αne−α/n! ≥ 0.95. (7)

Some experiments with poissoncdf(alpha,c) will show that P [N ≤ 8] = 0.9319 while
P [N ≤ 9] = 0.9682. Hence C = 9.
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(e) If we use the Central Limit theorem to estimate the overload probability in a one second
interval, we would use the facts that E[N ′] = 5 and Var[N ′] = 5 to estimate the the overload
probability as

1 − P
[
N ′ ≤ 5

]
= 1 − Φ

(
5 − 5√

5

)
= 0.5 (8)

which overestimates the overload probability by roughly 30 percent. We recall from Chapter 2
that a Poisson random is the limiting case of the (n, p) binomial random variable when n is
large and np = α.In general, for fixed p, the Poisson and binomial PMFs become closer as n
increases. Since large n is also the case for which the central limit theorem applies, it is not
surprising that the the CLT approximation for the Poisson (α) CDF is better when α = np
is large.

Comment: Perhaps a more interesting question is why the overload probability in a one-second
interval is so much higher than that in a one-minute interval? To answer this, consider a T -second
interval in which the number of requests NT is a Poisson (λT ) random variable while the server
capacity is cT hits. In the earlier problem parts, c = 5.477 hits/sec. We make the assumption that
the server system is reasonably well-engineered in that c > λ. (We will learn in Chapter 12 that to
assume otherwise means that the backlog of requests will grow without bound.) Further, assuming
T is fairly large, we use the CLT to estimate the probability of overload in a T -second interval as

P [NT ≥ cT ] = P

[
NT − λT√

λT
≥ cT − λT√

λT

]
= Q

(
k
√

T
)

, (9)

where k = (c − λ)/
√

λ. As long as c > λ, the overload probability decreases with increasing T .
In fact, the overload probability goes rapidly to zero as T becomes large. The reason is that the
gap cT − λT between server capacity cT and the expected number of requests λT grows linearly
in T while the standard deviation of the number of requests grows proportional to

√
T . However,

one should add that the definition of a T -second overload is somewhat arbitrary. In fact, one can
argue that as T becomes large, the requirement for no overloads simply becomes less stringent. In
Chapter 12, we will learn techniques to analyze a system such as this webserver in terms of the
average backlog of requests and the average delay in serving in serving a request. These statistics
won’t depend on a particular time period T and perhaps better describe the system performance.

Problem 6.7.3 Solution

(a) The number of tests L needed to identify 500 acceptable circuits is a Pascal (k = 500, p = 0.8)
random variable, which has expected value E[L] = k/p = 625 tests.

(b) Let K denote the number of acceptable circuits in n = 600 tests. Since K is binomial
(n = 600, p = 0.8), E[K] = np = 480 and Var[K] = np(1 − p) = 96. Using the CLT, we
estimate the probability of finding at least 500 acceptable circuits as

P [K ≥ 500] = P

[
K − 480√

96
≥ 20√

96

]
≈ Q

(
20√
96

)
= 0.0206. (1)

(c) Using Matlab, we observe that

1.0-binomialcdf(600,0.8,499)
ans =

0.0215

254



(d) We need to find the smallest value of n such that the binomial (n, p) random variable K
satisfies P [K ≥ 500] ≥ 0.9. Since E[K] = np and Var[K] = np(1−p), the CLT approximation
yields

P [K ≥ 500] = P

[
K − np√
np(1 − p)

≥ 500 − np√
np(1 − p)

]
≈ 1 − Φ(z) = 0.90. (2)

where z = (500 − np)/
√

np(1 − p). It follows that 1 − Φ(z) = Φ(−z) ≥ 0.9, implying
z = −1.29. Since p = 0.8, we have that

np − 500 = 1.29
√

np(1 − p). (3)

Equivalently, for p = 0.8, solving the quadratic equation(
n − 500

p

)2

= (1.29)2
1 − p

p
n (4)

we obtain n = 641.3. Thus we should test n = 642 circuits.

Problem 6.8.1 Solution
The N [0, 1] random variable Z has MGF φZ(s) = es2/2. Hence the Chernoff bound for Z is

P [Z ≥ c] ≤ min
s≥0

e−sces2/2 = min
s≥0

es2/2−sc (1)

We can minimize es2/2−sc by minimizing the exponent s2/2 − sc. By setting

d

ds

(
s2/2 − sc

)
= 2s − c = 0 (2)

we obtain s = c. At s = c, the upper bound is P [Z ≥ c] ≤ e−c2/2. The table below compares this
upper bound to the true probability. Note that for c = 1, 2 we use Table 3.1 and the fact that
Q(c) = 1 − Φ(c).

c = 1 c = 2 c = 3 c = 4 c = 5
Chernoff bound 0.606 0.135 0.011 3.35 × 10−4 3.73 × 10−6

Q(c) 0.1587 0.0228 0.0013 3.17 × 10−5 2.87 × 10−7
(3)

We see that in this case, the Chernoff bound typically overestimates the true probability by roughly
a factor of 10.

Problem 6.8.2 Solution
For an N [μ, σ2] random variable X, we can write

P [X ≥ c] = P [(X − μ)/σ ≥ (c − μ)/σ] = P [Z ≥ (c − μ)/σ] (1)

Since Z is N [0, 1], we can apply the result of Problem 6.8.1 with c replaced by (c − μ)/σ. This
yields

P [X ≥ c] = P [Z ≥ (c − μ)/σ] ≤ e−(c−μ)2/2σ2
(2)
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Problem 6.8.3 Solution
From Appendix A, we know that the MGF of K is

φK(s) = eα(es−1) (1)

The Chernoff bound becomes

P [K ≥ c] ≤ min
s≥0

e−sceα(es−1) = min
s≥0

eα(es−1)−sc (2)

Since ey is an increasing function, it is sufficient to choose s to minimize h(s) = α(es − 1) − sc.
Setting dh(s)/ds = αes− c = 0 yields es = c/α or s = ln(c/α). Note that for c < α, the minimizing
s is negative. In this case, we choose s = 0 and the Chernoff bound is P [K ≥ c] ≤ 1. For c ≥ α,
applying s = ln(c/α) yields P [K ≥ c] ≤ e−α(αe/c)c. A complete expression for the Chernoff bound
is

P [K ≥ c] ≤
{

1 c < α
αcece−α/cc c ≥ α

(3)

Problem 6.8.4 Solution
This problem is solved completely in the solution to Quiz 6.8! We repeat that solution here. Since
W = X1 + X2 + X3 is an Erlang (n = 3, λ = 1/2) random variable, Theorem 3.11 says that for any
w > 0, the CDF of W satisfies

FW (w) = 1 −
2∑

k=0

(λw)ke−λw

k!
(1)

Equivalently, for λ = 1/2 and w = 20,

P [W > 20] = 1 − FW (20) (2)

= e−10

(
1 +

10
1!

+
102

2!

)
= 61e−10 = 0.0028 (3)

Problem 6.8.5 Solution
Let Wn = X1 + · · · + Xn. Since Mn(X) = Wn/n, we can write

P [Mn(X) ≥ c] = P [Wn ≥ nc] (1)

Since φWn(s) = (φX(s))n, applying the Chernoff bound to Wn yields

P [Wn ≥ nc] ≤ min
s≥0

e−sncφWn(s) = min
s≥0

(
e−scφX(s)

)n (2)

For y ≥ 0, yn is a nondecreasing function of y. This implies that the value of s that minimizes
e−scφX(s) also minimizes (e−scφX(s))n. Hence

P [Mn(X) ≥ c] = P [Wn ≥ nc] ≤
(

min
s≥0

e−scφX(s)
)n

(3)
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Problem 6.9.1 Solution
Note that Wn is a binomial (10n, 0.5) random variable. We need to calculate

P [Bn] = P [0.499 × 10n ≤ Wn ≤ 0.501 × 10n] (1)
= P [Wn ≤ 0.501 × 10n] − P [Wn < 0.499 × 10n] . (2)

A complication is that the event Wn < w is not the same as Wn ≤ w when w is an integer. In this
case, we observe that

P [Wn < w] = P [Wn ≤ �w	 − 1] = FWn (�w	 − 1) (3)

Thus

P [Bn] = FWn (0.501 × 10n) − FWn

(⌈
0.499 × 109

⌉− 1
)

(4)

For n = 1, . . . , N , we can calculate P [Bn] in this Matlab program:

function pb=binomialcdftest(N);
pb=zeros(1,N);
for n=1:N,

w=[0.499 0.501]*10^n;
w(1)=ceil(w(1))-1;
pb(n)=diff(binomialcdf(10^n,0.5,w));

end

Unfortunately, on this user’s machine (a Windows XP laptop), the program fails for N = 4. The
problem, as noted earlier is that binomialcdf.m uses binomialpmf.m, which fails for a binomial
(10000, p) random variable. Of course, your mileage may vary. A slightly better solution is to use
the bignomialcdf.m function, which is identical to binomialcdf.m except it calls bignomialpmf.m
rather than binomialpmf.m. This enables calculations for larger values of n, although at some cost
in numerical accuracy. Here is the code:

function pb=bignomialcdftest(N);
pb=zeros(1,N);
for n=1:N,

w=[0.499 0.501]*10^n;
w(1)=ceil(w(1))-1;
pb(n)=diff(bignomialcdf(10^n,0.5,w));

end

For comparison, here are the outputs of the two programs:

>> binomialcdftest(4)
ans =
0.2461 0.0796 0.0756 NaN

>> bignomialcdftest(6)
ans =
0.2461 0.0796 0.0756 0.1663 0.4750 0.9546

The result 0.9546 for n = 6 corresponds to the exact probability in Example 6.15 which used the
CLT to estimate the probability as 0.9544. Unfortunately for this user, for n = 7, bignomialcdftest(7)
failed.
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Problem 6.9.2 Solution
The Erlang (n, λ = 1) random variable X has expected value E[X] = n/λ = n and variance
Var[X] = n/λ2 = n. The PDF of X as well as the PDF of a Gaussian random variable Y with the
same expected value and variance are

fX (x) =

⎧⎨
⎩

xn−1e−x

(n − 1)!
x ≥ 0

0 otherwise
fY (x) =

1√
2πn

e−x2/2n (1)

function df=erlangclt(n);
r=3*sqrt(n);
x=(n-r):(2*r)/100:n+r;
fx=erlangpdf(n,1,x);
fy=gausspdf(n,sqrt(n),x);
plot(x,fx,x,fy);
df=fx-fy;

From the forms of the functions, it not likely to be apparent that
fX(x) and fY (x) are similar. The following program plots fX(x)
and fY (x) for values of x within three standard deviations of the
expected value n. Below are sample outputs of erlangclt(n) for
n = 4, 20, 100.

In the graphs we will see that as n increases, the Erlang PDF becomes increasingly similar to
the Gaussian PDF of the same expected value and variance. This is not surprising since the Erlang
(n, λ) random variable is the sum of n of exponential random variables and the CLT says that the
Erlang CDF should converge to a Gaussian CDF as n gets large.
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On the other hand, the convergence should be viewed with some caution. For example, the
mode (the peak value) of the Erlang PDF occurs at x = n−1 while the mode of the Gaussian PDF
is at x = n. This difference only appears to go away for n = 100 because the graph x-axis range
is expanding. More important, the two PDFs are quite different far away from the center of the
distribution. The Erlang PDF is always zero for x < 0 while the Gaussian PDF is always positive.
For large postive x, the two distributions do not have the same exponential decay. Thus it’s not a
good idea to use the CLT to estimate probabilities of rare events such as {X > x} for extremely
large values of x.

Problem 6.9.3 Solution
In this problem, we re-create the plots of Figure 6.3 except we use the binomial PMF and corre-
sponding Gaussian PDF. Here is a Matlab program that compares the binomial (n, p) PMF and
the Gaussian PDF with the same expected value and variance.
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function y=binomcltpmf(n,p)
x=-1:17;
xx=-1:0.05:17;
y=binomialpmf(n,p,x);
std=sqrt(n*p*(1-p));
clt=gausspdf(n*p,std,xx);
hold off;
pmfplot(x,y,’\it x’,’\it p_X(x) f_X(x)’);
hold on; plot(xx,clt); hold off;

Here are the output plots for p = 1/2 and n = 2, 4, 8, 16.
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To see why the values of the PDF and PMF are roughly the same, consider the Gaussian random
variable Y . For small Δ,

fY (x) Δ ≈ FY (x + Δ/2) − FY (x − Δ/2)
Δ

. (1)

For Δ = 1, we obtain
fY (x) ≈ FY (x + 1/2) − FY (x − 1/2) . (2)

Since the Gaussian CDF is approximately the same as the CDF of the binomial (n, p) random
variable X, we observe for an integer x that

fY (x) ≈ FX (x + 1/2) − FX (x − 1/2) = PX (x) . (3)

Although the equivalence in heights of the PMF and PDF is only an approximation, it can be
useful for checking the correctness of a result.

Problem 6.9.4 Solution
Since the conv function is for convolving signals in time, we treat PX1(x) and PX2(x2)x, or as
though they were signals in time starting at time x = 0. That is,

px1 =
[
PX1 (0) PX1 (1) · · · PX1 (25)

]
(1)

px2 =
[
PX2 (0) PX2 (1) · · · PX2 (100)

]
(2)
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%convx1x2.m
sw=(0:125);
px1=[0,0.04*ones(1,25)];
px2=zeros(1,101);
px2(10*(1:10))=10*(1:10)/550;
pw=conv(px1,px2);
h=pmfplot(sw,pw,...

’\itw’,’\itP_W(w)’);
set(h,’LineWidth’,0.25);

In particular, between its minimum and maximum values,
the vector px2 must enumerate all integer values, including
those which have zero probability. In addition, we write down
sw=0:125 directly based on knowledge that the range enu-
merated by px1 and px2 corresponds to X1 + X2 having a
minimum value of 0 and a maximum value of 125.

The resulting plot will be essentially identical to Figure 6.4. One final note, the command
set(h,’LineWidth’,0.25) is used to make the bars of the PMF thin enough to be resolved indi-
vidually.

Problem 6.9.5 Solution

sx1=(1:10);px1=0.1*ones(1,10);
sx2=(1:20);px2=0.05*ones(1,20);
sx3=(1:30);px3=ones(1,30)/30;
[SX1,SX2,SX3]=ndgrid(sx1,sx2,sx3);
[PX1,PX2,PX3]=ndgrid(px1,px2,px3);
SW=SX1+SX2+SX3;
PW=PX1.*PX2.*PX3;
sw=unique(SW);
pw=finitepmf(SW,PW,sw);
h=pmfplot(sw,pw,’\itw’,’\itP_W(w)’);
set(h,’LineWidth’,0.25);

Since the mdgrid function extends naturally to higher
dimensions, this solution follows the logic of sumx1x2
in Example 6.19.

The output of sumx1x2x3 is the plot of the PMF of W shown below. We use the command
set(h,’LineWidth’,0.25) to ensure that the bars of the PMF are thin enough to be resolved
individually.
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Problem 6.9.6 Solution

function [pw,sw]=sumfinitepmf(px,sx,py,sy);
[SX,SY]=ndgrid(sx,sy);
[PX,PY]=ndgrid(px,py);
SW=SX+SY;PW=PX.*PY;
sw=unique(SW);
pw=finitepmf(SW,PW,sw);

sumfinitepmf generalizes the method of Ex-
ample 6.19. The only difference is that the
PMFs px and py and ranges sx and sy are
not hard coded, but instead are function in-
puts.

260



As an example, suppose X is a discrete uniform (0, 20) random variable and Y is an independent
discrete uniform (0, 80) random variable. The following program sum2unif will generate and plot
the PMF of W = X + Y .

%sum2unif.m
sx=0:20;px=ones(1,21)/21;
sy=0:80;py=ones(1,81)/81;
[pw,sw]=sumfinitepmf(px,sx,py,sy);
h=pmfplot(sw,pw,’\it w’,’\it P_W(w)’);
set(h,’LineWidth’,0.25);

Here is the graph generated by sum2unif.
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