
Problem Solutions – Chapter 5

Problem 5.1.1 Solution
The repair of each laptop can be viewed as an independent trial with four possible outcomes
corresponding to the four types of needed repairs.

(a) Since the four types of repairs are mutually exclusive choices and since 4 laptops are returned
for repair, the joint distribution of N1, . . . , N4 is the multinomial PMF

PN1,...,N4 (n1, . . . , n4) =
(

4
n1, n2, n3, n4

)
pn1
1 pn2

2 pn3
3 pn4

4 (1)

=
{

4!
n1!n2!n3!n4!

(
8
15

)n1
(

4
15

)n2
(

2
15

)n3
(

1
15

)n4 n1 + · · · + n4 = 4;ni ≥ 0
0 otherwise

(2)

(b) Let L2 denote the event that exactly two laptops need LCD repairs. Thus P [L2] = PN1(2).
Since each laptop requires an LCD repair with probability p1 = 8/15, the number of LCD
repairs, N1, is a binomial (4, 8/15) random variable with PMF

PN1 (n1) =
(

4
n1

)
(8/15)n1(7/15)4−n1 (3)

The probability that two laptops need LCD repairs is

PN1 (2) =
(

4
2

)
(8/15)2(7/15)2 = 0.3717 (4)

(c) A repair is type (2) with probability p2 = 4/15. A repair is type (3) with probability p3 =
2/15; otherwise a repair is type “other” with probability po = 9/15. Define X as the number
of “other” repairs needed. The joint PMF of X, N2, N3 is the multinomial PMF

PN2,N3,X (n2, n3, x) =
(

4
n2, n3, x

)(
4
15

)n2
(

2
15

)n3
(

9
15

)x

(5)

However, Since X + 4 − N2 − N3, we observe that

PN2,N3 (n2, n3) = PN2,N3,X (n2, n3, 4 − n2 − n3) (6)

=
(

4
n2, n3, 4 − n2 − n3

)(
4
15

)n2
(

2
15

)n3
(

9
15

)4−n2−n3

(7)

=
(

9
15

)4( 4
n2, n3, 4 − n2 − n3

)(
4
9

)n2
(

2
9

)n3

(8)

Similarly, since each repair is a motherboard repair with probability p2 = 4/15, the number
of motherboard repairs has binomial PMF

PN2 (n2) n2 =
(

4
n2

)(
4
15

)n2
(

11
15

)4−n2

(9)
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Finally, the probability that more laptops require motherboard repairs than keyboard repairs
is

P [N2 > N3] = PN2,N3 (1, 0) + PN2,N3 (2, 0) + PN2,N3 (2, 1) + PN2 (3) + PN2 (4) (10)

where we use the fact that if N2 = 3 or N2 = 4, then we must have N2 > N3. Inserting the
various probabilities, we obtain

P [N2 > N3] = PN2,N3 (1, 0) + PN2,N3 (2, 0) + PN2,N3 (2, 1) + PN2 (3) + PN2 (4) (11)

Plugging in the various probabilities yields P [N2 > N3] = 8,656/16,875 ≈ 0.5129.

Problem 5.1.2 Solution
Whether a computer has feature i is a Bernoulli trial with success probability pi = 2−i. Given that
n computers were sold, the number of computers sold with feature i has the binomial PMF

PNi (ni) =
{ ( n

ni

)
pni

i (1 − pi)ni ni = 0, 1, . . . , n

0 otherwise
(1)

Since a computer has feature i with probability pi independent of whether any other feature is
on the computer, the number Ni of computers with feature i is independent of the number of
computers with any other features. That is, N1, . . . , N4 are mutually independent and have joint
PMF

PN1,...,N4 (n1, . . . , n4) = PN1 (n1) PN2 (n2) PN3 (n3) PN4 (n4) (2)

Problem 5.1.3 Solution

(a) In terms of the joint PDF, we can write joint CDF as

FX1,...,Xn (x1, . . . , xn) =
∫ x1

−∞
· · ·
∫ xn

−∞
fX1,...,Xn (y1, . . . , yn) dy1 · · · dyn (1)

However, simplifying the above integral depends on the values of each xi. In particular,
fX1,...,Xn(y1, . . . , yn) = 1 if and only if 0 ≤ yi ≤ 1 for each i. Since FX1,...,Xn(x1, . . . , xn) = 0
if any xi < 0, we limit, for the moment, our attention to the case where xi ≥ 0 for all i. In
this case, some thought will show that we can write the limits in the following way:

FX1,...,Xn (x1, . . . , xn) =
∫ max(1,x1)

0
· · ·
∫ min(1,xn)

0
dy1 · · · dyn (2)

= min(1, x1) min(1, x2) · · ·min(1, xn) (3)

A complete expression for the CDF of X1, . . . , Xn is

FX1,...,Xn (x1, . . . , xn) =
{ ∏n

i=1 min(1, xi) 0 ≤ xi, i = 1, 2, . . . , n
0 otherwise

(4)
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(b) For n = 3,

1 − P

[
min

i
Xi ≤ 3/4

]
= P

[
min

i
Xi > 3/4

]
(5)

= P [X1 > 3/4, X2 > 3/4, X3 > 3/4] (6)

=
∫ 1

3/4

∫ 1

3/4

∫ 1

3/4
dx1 dx2 dx3 (7)

= (1 − 3/4)3 = 1/64 (8)

Thus P [mini Xi ≤ 3/4] = 63/64.

Problem 5.2.1 Solution
This problem is very simple. In terms of the vector X, the PDF is

fX (x) =
{

1 0 ≤ x ≤ 1
0 otherwise

(1)

However, just keep in mind that the inequalities 0 ≤ x and x ≤ 1 are vector inequalities that must
hold for every component xi.

Problem 5.2.2 Solution
In this problem, we find the constant c from the requirement that that the integral of the vector
PDF over all possible values is 1. That is,

∫∞
−∞ · · · ∫∞−∞ fX(x) dx1 · · · dxn = 1. Since fX(x) = ca′x =

c
∑n

i=1 aixi, we have that

∫ ∞

−∞
· · ·
∫ ∞

−∞
fX (x) dx1 · · · dxn = c

∫ 1

0
· · ·
∫ 1

0

(
n∑

i=1

aixi

)
dx1 · · · dxn (1)

= c
n∑

i=1

(∫ 1

0
· · ·
∫ 1

0
aixi dx1 · · · dxn

)
(2)

= c

n∑
i=1

ai

[(∫ 1

0
dx1

)
· · ·
(∫ 1

0
xi dxi

)
· · ·
(∫ 1

0
dxn

)]
(3)

= c

n∑
i=1

ai

(
x2

i

2

∣∣∣∣
1

0

)
= c

n∑
i=1

ai

2
(4)

The requirement that the PDF integrate to unity thus implies

c =
2∑n

i=1 ai
(5)

Problem 5.3.1 Solution
Here we solve the following problem:1

Given fX(x) with c = 2/3 and a1 = a2 = a3 = 1 in Problem 5.2.2, find the marginal
PDF fX3(x3).

1The wrong problem statement appears in the first printing.
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Filling in the parameters in Problem 5.2.2, we obtain the vector PDF

fX (x) =
{

2
3(x1 + x2 + x3) 0 ≤ x1, x2, x3 ≤ 1
0 otherwise

(1)

In this case, for 0 ≤ x3 ≤ 1, the marginal PDF of X3 is

fX3 (x3) =
2
3

∫ 1

0

∫ 1

0
(x1 + x2 + x3) dx1 dx2 (2)

=
2
3

∫ 1

0

(
x2

1

2
+ x2x1 + x3x1

)∣∣∣∣
x1=1

x1=0

dx2 (3)

=
2
3

∫ 1

0

(
1
2

+ x2 + x3

)
dx2 (4)

=
2
3

(
x2

2
+

x2
2

2
+ x3x2

)∣∣∣∣
x2=1

x2=0

=
2
3

(
1
2

+
1
2

+ x3

)
(5)

The complete expresion for the marginal PDF of X3 is

fX3 (x3) =
{

2(1 + x3)/3 0 ≤ x3 ≤ 1,
0 otherwise.

(6)

Problem 5.3.2 Solution
Since J1, J2 and J3 are independent, we can write

PK (k) = PJ1 (k1) PJ2 (k2 − k1) PJ3 (k3 − k2) (1)

Since PJi(j) > 0 only for integers j > 0, we have that PK(k) > 0 only for 0 < k1 < k2 < k3;
otherwise PK(k) = 0. Finally, for 0 < k1 < k2 < k3,

PK (k) = (1 − p)k1−1p(1 − p)k2−k1−1p(1 − p)k3−k2−1p (2)

= (1 − p)k3−3p3 (3)

Problem 5.3.3 Solution
The joint PMF is

PK (k) = PK1,K2,K3 (k1, k2, k3) =
{

p3(1 − p)k3−3 1 ≤ k1 < k2 < k3

0 otherwise
(1)

(a) We start by finding PK1,K2(k1, k2). For 1 ≤ k1 < k2,

PK1,K2 (k1, k2) =
∞∑

k3=−∞
PK1,K2,K3 (k1, k2, k3) (2)

=
∞∑

k3=k2+1

p3(1 − p)k3−3 (3)

= p3(1 − p)k2−2
(
1 + (1 − p) + (1 − p)2 + · · ·) (4)

= p2(1 − p)k2−2 (5)
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The complete expression is

PK1,K2 (k1, k2) =
{

p2(1 − p)k2−2 1 ≤ k1 < k2

0 otherwise
(6)

Next we find PK1,K3(k1, k3). For k1 ≥ 1 and k3 ≥ k1 + 2, we have

PK1,K3 (k1, k3) =
∞∑

k2=−∞
PK1,K2,K3 (k1, k2, k3) =

k3−1∑
k2=k1+1

p3(1 − p)k3−3 (7)

= (k3 − k1 − 1)p3(1 − p)k3−3 (8)

The complete expression of the PMF of K1 and K3 is

PK1,K3 (k1, k3) =
{

(k3 − k1 − 1)p3(1 − p)k3−3 1 ≤ k1, k1 + 2 ≤ k3,
0 otherwise.

(9)

The next marginal PMF is

PK2,K3 (k2, k3) =
∞∑

k1=−∞
PK1,K2,K3 (k1, k2, k3) =

k2−1∑
k1=1

p3(1 − p)k3−3 (10)

= (k2 − 1)p3(1 − p)k3−3 (11)

The complete expression of the PMF of K2 and K3 is

PK2,K3 (k2, k3) =
{

(k2 − 1)p3(1 − p)k3−3 1 ≤ k2 < k3,
0 otherwise.

(12)

(b) Going back to first principles, we note that Kn is the number of trials up to and including
the nth success. Thus K1 is a geometric (p) random variable, K2 is an Pascal (2, p) random
variable, and K3 is an Pascal (3, p) random variable. We could write down the respective
marginal PMFs of K1, K2 and K3 just by looking up the Pascal (n, p) PMF. Nevertheless, it
is instructive to derive these PMFs from the joint PMF PK1,K2,K3(k1, k2, k3).

For k1 ≥ 1, we can find PK1(k1) via

PK1 (k1) =
∞∑

k2=−∞
PK1,K2 (k1, k2) =

∞∑
k2=k1+1

p2(1 − p)k2−2 (13)

= p2(1 − p)k1−1[1 + (1 − p) + (1 − p)2 + · · · ] (14)

= p(1 − p)k1−1 (15)

The complete expression for the PMF of K1 is the usual geometric PMF

PK1 (k1) =
{

p(1 − p)k1−1 k1 = 1, 2, . . . ,
0 otherwise.

(16)

Following the same procedure, the marginal PMF of K2 is

PK2 (k2) =
∞∑

k1=−∞
PK1,K2 (k1, k2) =

k2−1∑
k1=1

p2(1 − p)k2−2 (17)

= (k2 − 1)p2(1 − p)k2−2 (18)
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Since PK2(k2) = 0 for k2 < 2, the complete PMF is the Pascal (2, p) PMF

PK2 (k2) =
(

k2 − 1
1

)
p2(1 − p)k2−2 (19)

Finally, for k3 ≥ 3, the PMF of K3 is

PK3 (k3) =
∞∑

k2=−∞
PK2,K3 (k2, k3) =

k3−1∑
k2=2

(k2 − 1)p3(1 − p)k3−3 (20)

= [1 + 2 + · · · + (k3 − 2)]p3(1 − p)k3−3 (21)

=
(k3 − 2)(k3 − 1)

2
p3(1 − p)k3−3 (22)

Since PK3(k3) = 0 for k3 < 3, the complete expression for PK3(k3) is the Pascal (3, p) PMF

PK3 (k3) =
(

k3 − 1
2

)
p3(1 − p)k3−3. (23)

Problem 5.3.4 Solution
For 0 ≤ y1 ≤ y4 ≤ 1, the marginal PDF of Y1 and Y4 satisfies

fY1,Y4 (y1, y4) =
∫∫

fY (y) dy2 dy3 (1)

=
∫ y4

y1

(∫ y4

y2

24 dy3

)
dy2 (2)

=
∫ y4

y1

24(y4 − y2) dy2 (3)

= −12(y4 − y2)2
∣∣y2=y4

y2=y1
= 12(y4 − y1)2 (4)

The complete expression for the joint PDF of Y1 and Y4 is

fY1,Y4 (y1, y4) =
{

12(y4 − y1)2 0 ≤ y1 ≤ y4 ≤ 1
0 otherwise

(5)

For 0 ≤ y1 ≤ y2 ≤ 1, the marginal PDF of Y1 and Y2 is

fY1,Y2 (y1, y2) =
∫∫

fY (y) dy3 dy4 (6)

=
∫ 1

y2

(∫ 1

y3

24 dy4

)
dy3 (7)

=
∫ 1

y2

24(1 − y3) dy3 = 12(1 − y2)2 (8)

The complete expression for the joint PDF of Y1 and Y2 is

fY1,Y2 (y1, y2) =
{

12(1 − y2)2 0 ≤ y1 ≤ y2 ≤ 1
0 otherwise

(9)
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For 0 ≤ y1 ≤ 1, the marginal PDF of Y1 can be found from

fY1 (y1) =
∫ ∞

−∞
fY1,Y2 (y1, y2) dy2 =

∫ 1

y1

12(1 − y2)2 dy2 = 4(1 − y1)3 (10)

The complete expression of the PDF of Y1 is

fY1 (y1) =
{

4(1 − y1)3 0 ≤ y1 ≤ 1
0 otherwise

(11)

Note that the integral fY1(y1) =
∫∞
−∞ fY1,Y4(y1, y4) dy4 would have yielded the same result. This is

a good way to check our derivations of fY1,Y4(y1, y4) and fY1,Y2(y1, y2).

Problem 5.3.5 Solution
The value of each byte is an independent experiment with 255 possible outcomes. Each byte takes
on the value bi with probability pi = p = 1/255. The joint PMF of N0, . . . , N255 is the multinomial
PMF

PN0,...,N255 (n0, . . . , n255) =
10000!

n0!n1! · · ·n255!
pn0pn1 · · · pn255 n0 + · · · + n255 = 10000 (1)

=
10000!

n0!n1! · · ·n255!
(1/255)10000 n0 + · · · + n255 = 10000 (2)

To evaluate the joint PMF of N0 and N1, we define a new experiment with three categories: b0,
b1 and “other.” Let N̂ denote the number of bytes that are “other.” In this case, a byte is in the
“other” category with probability p̂ = 253/255. The joint PMF of N0, N1, and N̂ is

PN0,N1,N̂ (n0, n1, n̂) =
10000!

n0!n1!n̂!

(
1

255

)n0
(

1
255

)n1
(

253
255

)n̂

n0 + n1 + n̂ = 10000 (3)

Now we note that the following events are one in the same:

{N0 = n0, N1 = n1} =
{

N0 = n0, N1 = n1, N̂ = 10000 − n0 − n1

}
(4)

Hence, for non-negative integers n0 and n1 satisfying n0 + n1 ≤ 10000,

PN0,N1 (n0, n1) = PN0,N1,N̂ (n0, n1, 10000 − n0 − n1) (5)

=
10000!

n0!n1!(10000 − n0 − n1)!

(
1

255

)n0+n1
(

253
255

)10000−n0−n1

(6)

Problem 5.3.6 Solution
In Example 5.1, random variables N1, . . . , Nr have the multinomial distribution

PN1,...,Nr (n1, . . . , nr) =
(

n

n1, . . . , nr

)
pn1
1 · · · pnr

r (1)

where n > r > 2.
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(a) To evaluate the joint PMF of N1 and N2, we define a new experiment with mutually exclusive
events: s1, s2 and “other” Let N̂ denote the number of trial outcomes that are “other”. In
this case, a trial is in the “other” category with probability p̂ = 1 − p1 − p2. The joint PMF
of N1, N2, and N̂ is

PN1,N2,N̂ (n1, n2, n̂) =
n!

n1!n2!n̂!
pn1
1 pn2

2 (1 − p1 − p2)n̂ n1 + n2 + n̂ = n (2)

Now we note that the following events are one in the same:

{N1 = n1, N2 = n2} =
{

N1 = n1, N2 = n2, N̂ = n − n1 − n2

}
(3)

Hence, for non-negative integers n1 and n2 satisfying n1 + n2 ≤ n,

PN1,N2 (n1, n2) = PN1,N2,N̂ (n1, n2, n − n1 − n2) (4)

=
n!

n1!n2!(n − n1 − n2)!
pn1
1 pn2

2 (1 − p1 − p2)n−n1−n2 (5)

(b) We could find the PMF of Ti by summing the joint PMF PN1,...,Nr(n1, . . . , nr). However, it
is easier to start from first principles. Suppose we say a success occurs if the outcome of
the trial is in the set {s1, s2, . . . , si} and otherwise a failure occurs. In this case, the success
probability is qi = p1 + · · ·+ pi and Ti is the number of successes in n trials. Thus, Ti has the
binomial PMF

PTi (t) =
{ (n

t

)
qt
i(1 − qi)n−t t = 0, 1, . . . , n

0 otherwise
(6)

(c) The joint PMF of T1 and T2 satisfies

PT1,T2 (t1, t2) = P [N1 = t1, N1 + N2 = t2] (7)
= P [N1 = t1, N2 = t2 − t1] (8)
= PN1,N2 (t1, t2 − t1) (9)

By the result of part (a),

PT1,T2 (t1, t2) =
n!

t1!(t2 − t1)!(n − t2)!
pt1
1 pt2−t1

2 (1 − p1 − p2)n−t2 0 ≤ t1 ≤ t2 ≤ n (10)

Problem 5.3.7 Solution

(a) Note that Z is the number of three-page faxes. In principle, we can sum the joint PMF
PX,Y,Z(x, y, z) over all x, y to find PZ(z). However, it is better to realize that each fax has 3
pages with probability 1/6, independent of any other fax. Thus, Z has the binomial PMF

PZ (z) =
{ (

5
z

)
(1/6)z(5/6)5−z z = 0, 1, . . . , 5

0 otherwise
(1)

(b) From the properties of the binomial distribution given in Appendix A, we know that E[Z] =
5(1/6).
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(c) We want to find the conditional PMF of the number X of 1-page faxes and number Y of
2-page faxes given Z = 2 3-page faxes. Note that given Z = 2, X + Y = 3. Hence for
non-negative integers x, y satisfying x + y = 3,

PX,Y |Z (x, y|2) =
PX,Y,Z (x, y, 2)

PZ (2)
=

5!
x!y!2!(1/3)x(1/2)y(1/6)2(

5
2

)
(1/6)2(5/6)3

(2)

With some algebra, the complete expression of the conditional PMF is

PX,Y |Z (x, y|2) =
{ 3!

x!y!(2/5)x(3/5)y x + y = 3, x ≥ 0, y ≥ 0; x, y integer
0 otherwise

(3)

In the above expression, we note that if Z = 2, then Y = 3 − X and

PX|Z (x|2) = PX,Y |Z (x, 3 − x|2) =
{ (

3
x

)
(2/5)x(3/5)3−x x = 0, 1, 2, 3

0 otherwise
(4)

That is, given Z = 2, there are 3 faxes left, each of which independently could be a 1-page fax.
The conditonal PMF of the number of 1-page faxes is binomial where 2/5 is the conditional
probability that a fax has 1 page given that it either has 1 page or 2 pages. Moreover given
X = x and Z = 2 we must have Y = 3 − x.

(d) Given Z = 2, the conditional PMF of X is binomial for 3 trials and success probability 2/5.
The conditional expectation of X given Z = 2 is E[X|Z = 2] = 3(2/5) = 6/5.

(e) There are several ways to solve this problem. The most straightforward approach is to
realize that for integers 0 ≤ x ≤ 5 and 0 ≤ y ≤ 5, the event {X = x, Y = y} occurs iff
{X = x, Y = y, Z = 5 − (x + y)}. For the rest of this problem, we assume x and y are non-
negative integers so that

PX,Y (x, y) = PX,Y,Z (x, y, 5 − (x + y)) (5)

=

{
5!

x!y!(5−x−y)!

(
1
3

)x (1
2

)y (1
6

)5−x−y 0 ≤ x + y ≤ 5, x ≥ 0, y ≥ 0
0 otherwise

(6)

The above expression may seem unwieldy and it isn’t even clear that it will sum to 1. To
simplify the expression, we observe that

PX,Y (x, y) = PX,Y,Z (x, y, 5 − x − y) = PX,Y |Z (x, y|5 − x + y) PZ (5 − x − y) (7)

Using PZ(z) found in part (c), we can calculate PX,Y |Z(x, y|5 − x − y) for 0 ≤ x + y ≤ 5,
integer valued.

PX,Y |Z (x, y|5 − x + y) =
PX,Y,Z (x, y, 5 − x − y)

PZ (5 − x − y)
(8)

=
(

x + y

x

)(
1/3

1/2 + 1/3

)x( 1/2
1/2 + 1/3

)y

(9)

=
(

x + y

x

)(
2
5

)x(3
5

)(x+y)−x

(10)

In the above expression, it is wise to think of x + y as some fixed value. In that case, we see
that given x + y is a fixed value, X and Y have a joint PMF given by a binomial distribution
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in x. This should not be surprising since it is just a generalization of the case when Z = 2.
That is, given that there were a fixed number of faxes that had either one or two pages, each
of those faxes is a one page fax with probability (1/3)/(1/2 + 1/3) and so the number of one
page faxes should have a binomial distribution, Moreover, given the number X of one page
faxes, the number Y of two page faxes is completely specified.

Finally, by rewriting PX,Y (x, y) given above, the complete expression for the joint PMF of X
and Y is

PX,Y (x, y) =

{ (
5

5−x−y

) (
1
6

)5−x−y (5
6

)x+y (x+y
x

) (
2
5

)x (3
5

)y
x, y ≥ 0

0 otherwise
(11)

Problem 5.3.8 Solution
In Problem 5.3.2, we found that the joint PMF of K =

[
K1 K2 K3

]′ is

PK (k) =
{

p3(1 − p)k3−3 k1 < k2 < k3

0 otherwise
(1)

In this problem, we generalize the result to n messages.

(a) For k1 < k2 < · · · < kn, the joint event

{K1 = k1, K2 = k2, · · · , Kn = kn} (2)

occurs if and only if all of the following events occur

A1 k1 − 1 failures, followed by a successful transmission
A2 (k2 − 1) − k1 failures followed by a successful transmission
A3 (k3 − 1) − k2 failures followed by a successful transmission
...
An (kn − 1) − kn−1 failures followed by a successful transmission

Note that the events A1, A2, . . . , An are independent and

P [Aj ] = (1 − p)kj−kj−1−1p. (3)

Thus

PK1,...,Kn (k1, . . . , kn) = P [A1] P [A2] · · ·P [An] (4)

= pn(1 − p)(k1−1)+(k2−k1−1)+(k3−k2−1)+···+(kn−kn−1−1) (5)

= pn(1 − p)kn−n (6)

To clarify subsequent results, it is better to rename K as Kn =
[
K1 K2 · · · Kn

]′. We see
that

PKn (kn) =
{

pn(1 − p)kn−n 1 ≤ k1 < k2 < · · · < kn,
0 otherwise.

(7)
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(b) For j < n,
PK1,K2,...,Kj (k1, k2, . . . , kj) = PKj (kj) . (8)

Since Kj is just Kn with n = j, we have

PKj (kj) =
{

pj(1 − p)kj−j 1 ≤ k1 < k2 < · · · < kj ,
0 otherwise.

(9)

(c) Rather than try to deduce PKi(ki) from the joint PMF PKn(kn), it is simpler to return to
first principles. In particular, Ki is the number of trials up to and including the ith success
and has the Pascal (i, p) PMF

PKi (ki) =
(

ki − 1
i − 1

)
pi(1 − p)ki−i. (10)

Problem 5.4.1 Solution
For i �= j, Xi and Xj are independent and E[XiXj ] = E[Xi]E[Xj ] = 0 since E[Xi] = 0. Thus the
i, jth entry in the covariance matrix CX is

CX(i, j) = E [XiXj ] =
{

σ2
i i = j,

0 otherwise.
(1)

Thus for random vector X =
[
X1 X2 · · · Xn

]′, all the off-diagonal entries in the covariance
matrix are zero and the covariance matrix is

CX =

⎡
⎢⎢⎢⎣

σ2
1

σ2
2

. . .
σ2

n

⎤
⎥⎥⎥⎦ . (2)

Problem 5.4.2 Solution
The random variables N1, N2, N3 and N4 are dependent. To see this we observe that PNi(4) = p4

i .
However,

PN1,N2,N3,N4 (4, 4, 4, 4) = 0 �= p4
1p

4
2p

4
3p

4
4 = PN1 (4) PN2 (4) PN3 (4) PN4 (4) . (1)

Problem 5.4.3 Solution
We will use the PDF

fX (x) =
{

1 0 ≤ xi ≤ 1, i = 1, 2, 3, 4
0 otherwise.

(1)

to find the marginal PDFs fXi(xi). In particular, for 0 ≤ x1 ≤ 1,

fX1 (x1) =
∫ 1

0

∫ 1

0

∫ 1

0
fX (x) dx2 dx3 dx4 (2)

=
(∫ 1

0
dx2

)(∫ 1

0
dx3

)(∫ 1

0
dx4

)
= 1. (3)
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Thus,

fX1 (x1) =
{

1 0 ≤ x ≤ 1,
0 otherwise.

(4)

Following similar steps, one can show that

fX1 (x) = fX2 (x) = fX3 (x) = fX4 (x) =
{

1 0 ≤ x ≤ 1,
0 otherwise.

(5)

Thus
fX (x) = fX1 (x) fX2 (x) fX3 (x) fX4 (x) . (6)

We conclude that X1, X2, X3 and X4 are independent.

Problem 5.4.4 Solution
We will use the PDF

fX (x) =
{

6e−(x1+2x2+3x3) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
0 otherwise.

(1)

to find the marginal PDFs fXi(xi). In particular, for x1 ≥ 0,

fX1 (x1) =
∫ ∞

0

∫ ∞

0
fX (x) dx2 dx3 (2)

= 6e−x1

(∫ ∞

0
e−2x2dx2

)(∫ ∞

0

)
e−3x3 dx3 (3)

= 6e−x1

(
−1

2
e−2x2

∣∣∣∣
∞

0

)(
−1

3
e−3x3

∣∣∣∣
∞

0

)
= e−x1 . (4)

Thus,

fX1 (x1) =
{

e−x1 x1 ≥ 0,
0 otherwise.

(5)

Following similar steps, one can show that

fX2 (x2) =
∫ ∞

0

∫ ∞

0
fX (x) dx1 dx3 =

{
2−2x2 x2 ≥ 0,
0 otherwise.

(6)

fX3 (x3) =
∫ ∞

0

∫ ∞

0
fX (x) dx1 dx2 =

{
3−3x3 x3 ≥ 0,
0 otherwise.

(7)

Thus
fX (x) = fX1 (x1) fX2 (x2) fX3 (x3) . (8)

We conclude that X1, X2, and X3 are independent.

Problem 5.4.5 Solution
This problem can be solved without any real math. Some thought should convince you that for any
xi > 0, fXi(xi) > 0. Thus, fX1(10) > 0, fX2(9) > 0, and fX3(8) > 0. Thus fX1(10)fX2(9)fX3(8) >
0. However, from the definition of the joint PDF

fX1,X2,X3 (10, 9, 8) = 0 �= fX1 (10) fX2 (9) fX3 (8) . (1)

It follows that X1, X2 and X3 are dependent. Readers who find this quick answer dissatisfying
are invited to confirm this conclusions by solving Problem 5.4.6 for the exact expressions for the
marginal PDFs fX1(x1), fX2(x2), and fX3(x3).
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Problem 5.4.6 Solution
We find the marginal PDFs using Theorem 5.5. First we note that for x < 0, fXi(x) = 0. For
x1 ≥ 0,

fX1 (x1) =
∫ ∞

x1

(∫ ∞

x2

e−x3 dx3

)
dx2 =

∫ ∞

x1

e−x2 dx2 = e−x1 (1)

Similarly, for x2 ≥ 0, X2 has marginal PDF

fX2 (x2) =
∫ x2

0

(∫ ∞

x2

e−x3 dx3

)
dx1 =

∫ x2

0
e−x2 dx1 = x2e

−x2 (2)

Lastly,

fX3 (x3) =
∫ x3

0

(∫ x3

x1

e−x3 dx2

)
dx1 =

∫ x3

0
(x3 − x1)e−x3 dx1 (3)

= −1
2
(x3 − x1)2e−x3

∣∣∣∣
x1=x3

x1=0

=
1
2
x2

3e
−x3 (4)

The complete expressions for the three marginal PDFs are

fX1 (x1) =
{

e−x1 x1 ≥ 0
0 otherwise

(5)

fX2 (x2) =
{

x2e
−x2 x2 ≥ 0

0 otherwise
(6)

fX3 (x3) =
{

(1/2)x2
3e

−x3 x3 ≥ 0
0 otherwise

(7)

In fact, each Xi is an Erlang (n, λ) = (i, 1) random variable.

Problem 5.4.7 Solution
Since U1, . . . , Un are iid uniform (0, 1) random variables,

fU1,...,Un (u1, . . . , un) =
{

1/Tn 0 ≤ ui ≤ 1; i = 1, 2, . . . , n
0 otherwise

(1)

Since U1, . . . , Un are continuous, P [Ui = Uj ] = 0 for all i �= j. For the same reason, P [Xi = Xj ] = 0
for i �= j. Thus we need only to consider the case when x1 < x2 < · · · < xn.

To understand the claim, it is instructive to start with the n = 2 case. In this case, (X1, X2) =
(x1, x2) (with x1 < x2) if either (U1, U2) = (x1, x2) or (U1, U2) = (x2, x1). For infinitesimal Δ,

fX1,X2 (x1, x2) Δ2 = P [x1 < X1 ≤ x1 + Δ, x2 < X2 ≤ x2 + Δ] (2)
= P [x1 < U1 ≤ x1 + Δ, x2 < U2 ≤ x2 + Δ]

+ P [x2 < U1 ≤ x2 + Δ, x1 < U2 ≤ x1 + Δ] (3)

= fU1,U2 (x1, x2) Δ2 + fU1,U2 (x2, x1) Δ2 (4)

We see that for 0 ≤ x1 < x2 ≤ 1 that

fX1,X2 (x1, x2) = 2/Tn. (5)
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For the general case of n uniform random variables, we define π =
[
π(1) . . . π(n)

]′ as a permu-
tation vector of the integers 1, 2, . . . , n and Π as the set of n! possible permutation vectors. In this
case, the event {X1 = x1, X2 = x2, . . . , Xn = xn} occurs if

U1 = xπ(1), U2 = xπ(2), . . . , Un = xπ(n) (6)

for any permutation π ∈ Π. Thus, for 0 ≤ x1 < x2 < · · · < xn ≤ 1,

fX1,...,Xn (x1, . . . , xn) Δn =
∑
π∈Π

fU1,...,Un

(
xπ(1), . . . , xπ(n)

)
Δn. (7)

Since there are n! permutations and fU1,...,Un(xπ(1), . . . , xπ(n)) = 1/Tn for each permutation π, we
can conclude that

fX1,...,Xn (x1, . . . , xn) = n!/Tn. (8)

Since the order statistics are necessarily ordered, fX1,...,Xn(x1, . . . , xn) = 0 unless x1 < · · · < xn.

Problem 5.5.1 Solution
For discrete random vectors, it is true in general that

PY (y) = P [Y = y] = P [AX + b = y] = P [AX = y − b] . (1)

For an arbitrary matrix A, the system of equations Ax = y − b may have no solutions (if the
columns of A do not span the vector space), multiple solutions (if the columns of A are linearly
dependent), or, when A is invertible, exactly one solution. In the invertible case,

PY (y) = P [AX = y − b] = P
[
X = A−1(y − b)

]
= PX

(
A−1(y − b)

)
. (2)

As an aside, we note that when Ax = y − b has multiple solutions, we would need to do some
bookkeeping to add up the probabilities PX(x) for all vectors x satisfying Ax = y − b. This can
get disagreeably complicated.

Problem 5.5.2 Solution
The random variable Jn is the number of times that message n is transmitted. Since each trans-
mission is a success with probability p, independent of any other transmission, the number of
transmissions of message n is independent of the number of transmissions of message m. That
is, for m �= n, Jm and Jn are independent random variables. Moreover, because each message is
transmitted over and over until it is transmitted succesfully, each Jm is a geometric (p) random
variable with PMF

PJm (j) =
{

(1 − p)j−1p j = 1, 2, . . .
0 otherwise.

(1)

Thus the PMF of J =
[
J1 J2 J3

]′ is

PJ (j) = PJ1 (j1) PJ2 (j2) PJ3 (j3) =

⎧⎪⎪⎨
⎪⎪⎩

p3(1 − p)j1+j2+j3−3 ji = 1, 2, . . . ;
i = 1, 2, 3

0 otherwise.

(2)
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Problem 5.5.3 Solution
The response time Xi of the ith truck has PDF fXi(xi) and CDF FXi(xi) given by

fXi (xi) =
{

1
2e−x/2 x ≥ 0,
0 otherwise,

FXi (xi) = FX (xi) =
{

1 − e−x/2 x ≥ 0
0 otherwise.

(1)

Let R = max(X1, X2, . . . , X6) denote the maximum response time. From Theorem 5.7, R has PDF

FR (r) = (FX (r))6. (2)

(a) The probability that all six responses arrive within five seconds is

P [R ≤ 5] = FR (5) = (FX (5))6 = (1 − e−5/2)6 = 0.5982. (3)

(b) This question is worded in a somewhat confusing way. The “expected response time” refers
to E[Xi], the response time of an individual truck, rather than E[R]. If the expected response
time of a truck is τ , then each Xi has CDF

FXi (x) = FX (x) =
{

1 − e−x/τ x ≥ 0
0 otherwise.

(4)

The goal of this problem is to find the maximum permissible value of τ . When each truck
has expected response time τ , the CDF of R is

FR (r) = (FX (x) r)6 =
{

(1 − e−r/τ )6 r ≥ 0,
0 otherwise.

(5)

We need to find τ such that

P [R ≤ 3] = (1 − e−3/τ )6 = 0.9. (6)

This implies

τ =
−3

ln
(
1 − (0.9)1/6

) = 0.7406 s. (7)

Problem 5.5.4 Solution
Let Xi denote the finishing time of boat i. Since finishing times of all boats are iid Gaussian random
variables with expected value 35 minutes and standard deviation 5 minutes, we know that each Xi

has CDF

FXi (x) = P [Xi ≤ x] = P

[
Xi − 35

5
≤ x − 35

5

]
= Φ
(

x − 35
5

)
(1)

(a) The time of the winning boat is

W = min(X1, X2, . . . , X10) (2)

To find the probability that W ≤ 25, we will find the CDF FW (w) since this will also be
useful for part (c).

FW (w) = P [min(X1, X2, . . . , X10) ≤ w] (3)
= 1 − P [min(X1, X2, . . . , X10) > w] (4)
= 1 − P [X1 > w, X2 > w, . . . , X10 > w] (5)
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Since the Xi are iid,

FW (w) = 1 −
10∏
i=1

P [Xi > w] = 1 − (1 − FXi (w))10 (6)

= 1 −
(

1 − Φ
(

w − 35
5

))10

(7)

Thus,

P [W ≤ 25] = FW (25) = 1 − (1 − Φ(−2))10 (8)

= 1 − [Φ(2)]10 = 0.2056. (9)

(b) The finishing time of the last boat is L = max(X1, . . . , X10). The probability that the last
boat finishes in more than 50 minutes is

P [L > 50] = 1 − P [L ≤ 50] (10)
= 1 − P [X1 ≤ 50, X2 ≤ 50, . . . , X10 ≤ 50] (11)

Once again, since the Xi are iid Gaussian (35, 5) random variables,

P [L > 50] = 1 −
10∏
i=1

P [Xi ≤ 50] = 1 − (FXi (50))10 (12)

= 1 − (Φ([50 − 35]/5))10 (13)

= 1 − (Φ(3))10 = 0.0134 (14)

(c) A boat will finish in negative time if and only iff the winning boat finishes in negative time,
which has probability

FW (0) = 1 − (1 − Φ(−35/5))10 = 1 − (1 − Φ(−7))10 = 1 − (Φ(7))10 . (15)

Unfortunately, the tables in the text have neither Φ(7) nor Q(7). However, those with access
to Matlab, or a programmable calculator, can find out that Q(7) = 1−Φ(7) = 1.28×10−12.
This implies that a boat finishes in negative time with probability

FW (0) = 1 − (1 − 1.28 × 10−12)10 = 1.28 × 10−11. (16)

Problem 5.5.5 Solution
Since 50 cents of each dollar ticket is added to the jackpot,

Ji−1 = Ji +
Ni

2
(1)

Given Ji = j, Ni has a Poisson distribution with mean j. It follows that E[Ni|Ji = j] = j and that
Var[Ni|Ji = j] = j. This implies

E
[
N2

i |Ji = j
]

= Var[Ni|Ji = j] + (E [Ni|Ji = j])2 = j + j2 (2)
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In terms of the conditional expectations given Ji, these facts can be written as

E [Ni|Ji] = Ji E
[
N2

i |Ji

]
= Ji + J2

i (3)

This permits us to evaluate the moments of Ji−1 in terms of the moments of Ji. Specifically,

E [Ji−1|Ji] = E [Ji|Ji] +
1
2
E [Ni|Ji] = Ji +

Ji

2
=

3Ji

2
(4)

This implies

E [Ji−1] =
3
2
E [Ji] (5)

We can use this the calculate E[Ji] for all i. Since the jackpot starts at 1 million dollars, J6 = 106

and E[J6] = 106. This implies
E [Ji] = (3/2)6−i106 (6)

Now we will find the second moment E[J2
i ]. Since J2

i−1 = J2
i + NiJi + N2

i /4, we have

E
[
J2

i−1|Ji

]
= E
[
J2

i |Ji

]
+ E [NiJi|Ji] + E

[
N2

i |Ji

]
/4 (7)

= J2
i + JiE [Ni|Ji] + (Ji + J2

i )/4 (8)

= (3/2)2J2
i + Ji/4 (9)

By taking the expectation over Ji we have

E
[
J2

i−1

]
= (3/2)2E

[
J2

i

]
+ E [Ji] /4 (10)

This recursion allows us to calculate E[J2
i ] for i = 6, 5, . . . , 0. Since J6 = 106, E[J2

6 ] = 1012. From
the recursion, we obtain

E
[
J2

5

]
= (3/2)2E

[
J2

6

]
+ E [J6] /4 = (3/2)21012 +

1
4
106 (11)

E
[
J2

4

]
= (3/2)2E

[
J2

5

]
+ E [J5] /4 = (3/2)41012 +

1
4
[
(3/2)2 + (3/2)

]
106 (12)

E
[
J2

3

]
= (3/2)2E

[
J2

4

]
+ E [J4] /4 = (3/2)61012 +

1
4
[
(3/2)4 + (3/2)3 + (3/2)2

]
106 (13)

The same recursion will also allow us to show that

E
[
J2

2

]
= (3/2)81012 +

1
4
[
(3/2)6 + (3/2)5 + (3/2)4 + (3/2)3

]
106 (14)

E
[
J2

1

]
= (3/2)101012 +

1
4
[
(3/2)8 + (3/2)7 + (3/2)6 + (3/2)5 + (3/2)4

]
106 (15)

E
[
J2

0

]
= (3/2)121012 +

1
4
[
(3/2)10 + (3/2)9 + · · · + (3/2)5

]
106 (16)

Finally, day 0 is the same as any other day in that J = J0 + N0/2 where N0 is a Poisson random
variable with mean J0. By the same argument that we used to develop recursions for E[Ji] and
E[J2

i ], we can show
E [J ] = (3/2)E [J0] = (3/2)7106 ≈ 17 × 106 (17)

and

E
[
J2
]

= (3/2)2E
[
J2

0

]
+ E [J0] /4 (18)

= (3/2)141012 +
1
4
[
(3/2)12 + (3/2)11 + · · · + (3/2)6

]
106 (19)

= (3/2)141012 +
106

2
(3/2)6[(3/2)7 − 1] (20)
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Finally, the variance of J is

Var[J ] = E
[
J2
]− (E [J ])2 =

106

2
(3/2)6[(3/2)7 − 1] (21)

Since the variance is hard to interpret, we note that the standard deviation of J is σJ ≈ 9572.
Although the expected jackpot grows rapidly, the standard deviation of the jackpot is fairly small.

Problem 5.5.6 Solution
Let A denote the event Xn = max(X1, . . . , Xn). We can find P [A] by conditioning on the value of
Xn.

P [A] = P [X1 ≤ Xn, X2 ≤ Xn, · · · , Xn1 ≤ Xn] (1)

=
∫ ∞

−∞
P [X1 < Xn, X2 < Xn, · · · , Xn−1 < Xn|Xn = x] fXn (x) dx (2)

=
∫ ∞

−∞
P [X1 < x, X2 < x, · · · , Xn−1 < x|Xn = x] fX (x) dx (3)

Since X1, . . . , Xn−1 are independent of Xn,

P [A] =
∫ ∞

−∞
P [X1 < x, X2 < x, · · · , Xn−1 < x] fX (x) dx. (4)

Since X1, . . . , Xn−1 are iid,

P [A] =
∫ ∞

−∞
P [X1 ≤ x] P [X2 ≤ x] · · ·P [Xn−1 ≤ x] fX (x) dx (5)

=
∫ ∞

−∞
[FX (x)]n−1 fX (x) dx =

1
n

[FX (x)]n
∣∣∣∣
∞

−∞
=

1
n

(1 − 0) (6)

Not surprisingly, since the Xi are identical, symmetry would suggest that Xn is as likely as any of
the other Xi to be the largest. Hence P [A] = 1/n should not be surprising.

Problem 5.6.1 Solution

(a) The coavariance matrix of X =
[
X1 X2

]′ is

CX =
[

Var[X1] Cov [X1, X2]
Cov [X1, X2] Var[X2]

]
=
[
4 3
3 9

]
. (1)

(b) From the problem statement,

Y =
[
Y1

Y2

]
=
[
1 −2
3 4

]
X = AX. (2)

By Theorem 5.13, Y has covariance matrix

CY = ACXA′ =
[
1 −2
3 4

] [
4 3
3 9

] [
1 3
−2 4

]
=
[

28 −66
−66 252

]
. (3)
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Problem 5.6.2 Solution
The mean value of a sum of random variables is always the sum of their individual means.

E [Y ] =
n∑

i=1

E [Xi] = 0 (1)

The variance of any sum of random variables can be expressed in terms of the individual variances
and co-variances. Since the E[Y ] is zero, Var[Y ] = E[Y 2]. Thus,

Var[Y ] = E

⎡
⎣( n∑

i=1

Xi

)2
⎤
⎦ = E

⎡
⎣ n∑

i=1

n∑
j=1

XiXj

⎤
⎦ =

n∑
i=1

E
[
X2

i

]
+

n∑
i=1

∑
j �=i

E [XiXj ] (2)

Since E[Xi] = 0, E[X2
i ] = Var[Xi] = 1 and for i �= j,

E [XiXj ] = Cov [Xi, Xj ] = ρ (3)

Thus, Var[Y ] = n + n(n − 1)ρ.

Problem 5.6.3 Solution
Since X and Y are independent and E[Yj ] = 0 for all components Yj , we observe that E[XiYj ] =
E[Xi]E[Yj ] = 0. This implies that the cross-covariance matrix is

E
[
XY′] = E [X] E

[
Y′] = 0. (1)

Problem 5.6.4 Solution
Inspection of the vector PDF fX(x) will show that X1, X2, X3, and X4 are iid uniform (0, 1)
random variables. That is,

fX (x) = fX1 (x1) fX2 (x2) fX3 (x3) fX4 (x4) (1)

where each Xi has the uniform (0, 1) PDF

fXi (x) =
{

1 0 ≤ x ≤ 1
0 otherwise

(2)

It follows that for each i, E[Xi] = 1/2, E[X2
i ] = 1/3 and Var[Xi] = 1/12. In addition, Xi and Xj

have correlation
E [XiXj ] = E [Xi] E [Xj ] = 1/4. (3)

and covariance Cov[Xi, Xj ] = 0 for i �= j since independent random variables always have zero
covariance.

(a) The expected value vector is

E [X] =
[
E [X1] E [X2] E [X3] E [X4]

]′ =
[
1/2 1/2 1/2 1/2

]′
. (4)
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(b) The correlation matrix is

RX = E
[
XX′] =

⎡
⎢⎢⎣

E
[
X2

1

]
E [X1X2] E [X1X3] E [X1X4]

E [X2X1] E
[
X2

2

]
E [X2X3] E [X2X4]

E [X3X1] E [X3X2] E
[
X2

3

]
E [X3X4]

E [X4X1] E [X4X2] E [X4X3] E
[
X2

4

]
⎤
⎥⎥⎦ (5)

=

⎡
⎢⎢⎣

1/3 1/4 1/4 1/4
1/4 1/3 1/4 1/4
1/4 1/4 1/3 1/4
1/4 1/4 1/4 1/3

⎤
⎥⎥⎦ (6)

(c) The covariance matrix for X is the diagonal matrix

CX =

⎡
⎢⎢⎣

Var[X1] Cov [X1, X2] Cov [X1, X3] Cov [X1, X4]
Cov [X2, X1] Var[X2] Cov [X2, X3] Cov [X2, X4]
Cov [X3, X1] Cov [X3, X2] Var[X3] Cov [X3, X4]
Cov [X4, X1] Cov [X4, X2] Cov [X4, X3] Var[X4]

⎤
⎥⎥⎦ (7)

=

⎡
⎢⎢⎣

1/12 0 0 0
0 1/12 0 0
0 0 1/12 0
0 0 0 1/12

⎤
⎥⎥⎦ (8)

Note that its easy to verify that CX = RX − μXμ′
X .

Problem 5.6.5 Solution
The random variable Jm is the number of times that message m is transmitted. Since each trans-
mission is a success with probability p, independent of any other transmission, J1, J2 and J3 are
iid geometric (p) random variables with

E [Jm] =
1
p
, Var[Jm] =

1 − p

p2
. (1)

Thus the vector J =
[
J1 J2 J3

]′ has expected value

E [J] =
[
E [J1] E [J2] EJ3

]′ =
[
1/p 1/p 1/p

]′
. (2)

For m �= n, the correlation matrix RJ has m, nth entry

RJ(m, n) = E [JmJn] = E [Jm] Jn = 1/p2 (3)

For m = n,

RJ(m, m) = E
[
J2

m

]
= Var[Jm] + (E

[
J2

m

]
)2 =

1 − p

p2
+

1
p2

=
2 − p

p2
. (4)

Thus

RJ =
1
p2

⎡
⎣2 − p 1 1

1 2 − p 1
1 1 2 − p

⎤
⎦ . (5)

Because Jm and Jn are independent, off-diagonal terms in the covariance matrix are

CJ(m, n) = Cov [Jm, Jn] = 0 (6)
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Since CJ(m, m) = Var[Jm], we have that

CJ =
1 − p

p2
I =

1 − p

p2

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ . (7)

Problem 5.6.6 Solution
This problem is quite difficult unless one uses the observation that the vector K can be expressed
in terms of the vector J =

[
J1 J2 J3

]′ where Ji is the number of transmissions of message i.
Note that we can write

K = AJ =

⎡
⎣1 0 0

1 1 0
1 1 1

⎤
⎦J (1)

We also observe that since each transmission is an independent Bernoulli trial with success prob-
ability p, the components of J are iid geometric (p) random variables. Thus E[Ji] = 1/p and
Var[Ji] = (1 − p)/p2. Thus J has expected value

E [J] = μJ =
[
E [J1] E [J2] E [J3]

]′ =
[
1/p 1/p 1/p

]′
. (2)

Since the components of J are independent, it has the diagonal covariance matrix

CJ =

⎡
⎣Var[J1] 0 0

0 Var[J2] 0
0 0 Var[J3]

⎤
⎦ =

1 − p

p2
I (3)

Given these properties of J, finding the same properties of K = AJ is simple.

(a) The expected value of K is

E [K] = AμJ =

⎡
⎣1 0 0

1 1 0
1 1 1

⎤
⎦
⎡
⎣1/p

1/p
1/p

⎤
⎦ =

⎡
⎣1/p

2/p
3/p

⎤
⎦ (4)

(b) From Theorem 5.13, the covariance matrix of K is

CK = ACJA′ (5)

=
1 − p

p2
AIA′ (6)

=
1 − p

p2

⎡
⎣1 0 0

1 1 0
1 1 1

⎤
⎦
⎡
⎣1 1 1

0 1 1
0 0 1

⎤
⎦ =

1 − p

p2

⎡
⎣1 1 1

1 2 2
1 2 3

⎤
⎦ (7)

(c) Given the expected value vector μK and the covariance matrix CK , we can use Theorem 5.12
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to find the correlation matrix

RK = CK + μKμ′
K (8)

=
1 − p

p2

⎡
⎣1 1 1

1 2 2
1 2 3

⎤
⎦+

⎡
⎣1/p

2/p
3/p

⎤
⎦ [1/p 2/p 3/p

]
(9)

=
1 − p

p2

⎡
⎣1 1 1

1 2 2
1 2 3

⎤
⎦+

1
p2

⎡
⎣1 2 3

2 4 6
3 6 9

⎤
⎦ (10)

=
1
p2

⎡
⎣2 − p 3 − p 4 − p

3 − p 6 − 2p 8 − 2p
4 − p 8 − 2p 12 − 3p

⎤
⎦ (11)

Problem 5.6.7 Solution
The preliminary work for this problem appears in a few different places. In Example 5.5, we found
the marginal PDF of Y3 and in Example 5.6, we found the marginal PDFs of Y1, Y2, and Y4. We
summarize these results here:

fY1 (y) = fY3 (y) =
{

2(1 − y) 0 ≤ y ≤ 1,
0 otherwise,

(1)

fY2 (y) = fY4 (y) =
{

2y 0 ≤ y ≤ 1,
0 otherwise.

(2)

This implies

E [Y1] = E [Y3] =
∫ 1

0
2y(1 − y) dy = 1/3 (3)

E [Y2] = E [Y4] =
∫ 1

0
2y2 dy = 2/3 (4)

Thus Y has expected value E[Y] =
[
1/3 2/3 1/3 2/3

]′. The second part of the problem is to
find the correlation matrix RY. In fact, we need to find RY(i, j) = E[YiYj ] for each i, j pair. We
will see that these are seriously tedious calculations. For i = j, the second moments are

E
[
Y 2

1

]
= E
[
Y 2

3

]
=
∫ 1

0
2y2(1 − y) dy = 1/6, (5)

E
[
Y 2

2

]
= E
[
Y 2

4

]
=
∫ 1

0
2y3 dy = 1/2. (6)

In terms of the correlation matrix,

RY(1, 1) = RY(3, 3) = 1/6, RY(2, 2) = RY(4, 4) = 1/2. (7)

To find the off diagonal terms RY(i, j) = E[YiYj ], we need to find the marginal PDFs fYi,Yj (yi, yj).
Example 5.5 showed that

fY1,Y4 (y1, y4) =
{

4(1 − y1)y4 0 ≤ y1 ≤ 1, 0 ≤ y4 ≤ 1,
0 otherwise.

(8)

fY2,Y3 (y2, y3) =
{

4y2(1 − y3) 0 ≤ y2 ≤ 1, 0 ≤ y3 ≤ 1,
0 otherwise.

(9)
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Inspection will show that Y1 and Y4 are independent since fY1,Y4(y1, y4) = fY1(y1)fY4(y4). Similarly,
Y2 and Y4 are independent since fY2,Y3(y2, y3) = fY2(y2)fY3(y3). This implies

RY(1, 4) = E [Y1Y4] = E [Y1]E [Y4] = 2/9 (10)
RY(2, 3) = E [Y2Y3] = E [Y2]E [Y3] = 2/9 (11)

We also need to calculate fY1,Y2(y1, y2), fY3,Y4(y3, y4), fY1,Y3(y1, y3) and fY2,Y4(y2, y4). To start, for
0 ≤ y1 ≤ y2 ≤ 1,

fY1,Y2 (y1, y2) =
∫ ∞

−∞

∫ ∞

−∞
fY1,Y2,Y3,Y4 (y1, y2, y3, y4) dy3 dy4 (12)

=
∫ 1

0

∫ y4

0
4 dy3 dy4 =

∫ 1

0
4y4 dy4 = 2. (13)

Similarly, for 0 ≤ y3 ≤ y4 ≤ 1,

fY3,Y4 (y3, y4) =
∫ ∞

−∞

∫ ∞

−∞
fY1,Y2,Y3,Y4 (y1, y2, y3, y4) dy1 dy2 (14)

=
∫ 1

0

∫ y2

0
4 dy1 dy2 =

∫ 1

0
4y2 dy2 = 2. (15)

In fact, these PDFs are the same in that

fY1,Y2 (x, y) = fY3,Y4 (x, y) =
{

2 0 ≤ x ≤ y ≤ 1,
0 otherwise.

(16)

This implies RY(1, 2) = RY(3, 4) = E[Y3Y4] and that

E [Y3Y4] =
∫ 1

0

∫ y

0
2xy dx dy =

∫ 1

0

(
yx2
∣∣y
0

)
dy =
∫ 1

0
y3 dy =

1
4
. (17)

Continuing in the same way, we see for 0 ≤ y1 ≤ 1 and 0 ≤ y3 ≤ 1 that

fY1,Y3 (y1, y3) =
∫ ∞

−∞

∫ ∞

−∞
fY1,Y2,Y3,Y4 (y1, y2, y3, y4) dy2 dy4 (18)

= 4
(∫ 1

y1

dy2

)(∫ 1

y3

dy4

)
(19)

= 4(1 − y1)(1 − y3). (20)

We observe that Y1 and Y3 are independent since fY1,Y3(y1, y3) = fY1(y1)fY3(y3). It follows that

RY(1, 3) = E [Y1Y3] = E [Y1] E [Y3] = 1/9. (21)

Finally, we need to calculate

fY2,Y4 (y2, y4) =
∫ ∞

−∞

∫ ∞

−∞
fY1,Y2,Y3,Y4 (y1, y2, y3, y4) dy1 dy3 (22)

= 4
(∫ y2

0
dy1

)(∫ y4

0
dy3

)
(23)

= 4y2y4. (24)
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We observe that Y2 and Y4 are independent since fY2,Y4(y2, y4) = fY2(y2)fY4(y4). It follows that
RY(2, 4) = E[Y2Y4] = E[Y2]E[Y4] = 4/9. The above results give RY(i, j) for i ≤ j. Since RY is a
symmetric matrix,

RY =

⎡
⎢⎢⎣

1/6 1/4 1/9 2/9
1/4 1/2 2/9 4/9
1/9 2/9 1/6 1/4
2/9 4/9 1/4 1/2

⎤
⎥⎥⎦ . (25)

Since μX =
[
1/3 2/3 1/3 2/3

]′, the covariance matrix is

CY = RY − μXμ′
X (26)

=

⎡
⎣1/6 1/4 1/9 2/9

1/4 1/2 2/9 4/9
2/9 4/9 1/4 1/2

⎤
⎦−
⎡
⎢⎢⎣

1/3
2/3
1/3
2/3

⎤
⎥⎥⎦ [1/3 2/3 1/3 2/3

]
(27)

=

⎡
⎢⎢⎣

1/18 1/36 0 0
1/36 1/18 0 0

0 0 1/18 1/36
0 0 1/36 1/18

⎤
⎥⎥⎦ . (28)

The off-diagonal zero blocks are a consequence of
[
Y1 Y2

]′ being independent of
[
Y3 Y4

]′. Along
the diagonal, the two identical sub-blocks occur because fY1,Y2(x, y) = fY3,Y4(x, y). In short, the
matrix structure is the result of

[
Y1 Y2

]′ and
[
Y3 Y4

]′ being iid random vectors.

Problem 5.6.8 Solution
The 2-dimensional random vector Y has PDF

fY (y) =
{

2 y ≥ 0,
[
1 1
]
y ≤ 1,

0 otherwise.
(1)

Rewritten in terms of the variables y1 and y2,

fY1,Y2 (y1, y2) =
{

2 y1 ≥ 0, y2 ≥ 0, y1 + y2 ≤ 1,
0 otherwise.

(2)

In this problem, the PDF is simple enough that we can compute E[Y n
i ] for arbitrary integers n ≥ 0.

E [Y n
1 ] =
∫ ∞

−∞

∫ ∞

−∞
yn
1 fY1,Y2 (y1, y2) dy1 dy2 =

∫ 1

0

∫ 1−y2

0
2yn

1 dy1 dy2. (3)

A little calculus yields

E [Y n
1 ] =
∫ 1

0

(
2

n + 1
yn+1
1

∣∣∣∣
1−y2

0

)
dy2 =

2
n + 1

∫ 1

0
(1 − y2)n+1 dy2 =

2
(n + 1)(n + 2)

. (4)

Symmetry of the joint PDF fY1,2(y1,2) implies that E[Y n
2 ] = E[Y n

1 ]. Thus, E[Y1] = E[Y2] = 1/3
and

E [Y] = μY =
[
1/3 1/3

]′
. (5)

In addition,

RY(1, 1) = E
[
Y 2

1

]
= 1/6, RY(2, 2) = E

[
Y 2

2

]
= 1/6. (6)
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To complete the correlation matrix, we find

RY(1, 2) = E [Y1Y2] =
∫ ∞

−∞

∫ ∞

−∞
y1y2fY1,Y2 (y1, y2) dy1 dy2 =

∫ 1

0

∫ 1−y2

0
2y1y2 dy1 dy2. (7)

Following through on the calculus, we obtain

RY(1, 2) =
∫ 1

0

(
y2
1

∣∣1−y−2

0

)
y2 dy2 =

∫ 1

0
y2(1 − y2)2 dy2 =

1
2
y2
2 − 2

3
y3
2 +

1
4
y4
2

∣∣∣∣
1

0

=
1
12

. (8)

Thus we have found that

RY =
[

E
[
Y 2

1

]
E [Y1Y2]

E [Y2Y1] E
[
Y 2

2

] ] =
[

1/6 1/12
1/12 1/6

]
. (9)

Lastly, Y has covariance matrix

CY = RY − μYμ′
Y =
[

1/6 1/12
1/12 1/6

]
−
[
1/3
1/3

] [
1/3 1/3

]
(10)

=
[

1/9 −1/36
−1/36 1/9

]
. (11)

Problem 5.6.9 Solution
Given an arbitrary random vector X, we can define Y = X − μX so that

CX = E
[
(X − μX)(X − μX)′

]
= E
[
YY′] = RY. (1)

It follows that the covariance matrix CX is positive semi-definite if and only if the correlation
matrix RY is positive semi-definite. Thus, it is sufficient to show that every correlation matrix,
whether it is denoted RY or RX, is positive semi-definite.

To show a correlation matrix RX is positive semi-definite, we write

a′RXa = a′E
[
XX′]a = E

[
a′XX′a

]
= E
[
(a′X)(X′a)

]
= E
[
(a′X)2

]
. (2)

We note that W = a′X is a random variable. Since E[W 2] ≥ 0 for any random variable W ,

a′RXa = E
[
W 2
] ≥ 0. (3)

Problem 5.7.1 Solution

(a) From Theorem 5.12, the correlation matrix of X is

RX = CX + μXμ′
X (1)

=

⎡
⎣ 4 −2 1
−2 4 −2
1 −2 4

⎤
⎦+

⎡
⎣48

6

⎤
⎦ [4 8 6

]
(2)

=

⎡
⎣ 4 −2 1
−2 4 −2
1 −2 4

⎤
⎦+

⎡
⎣16 32 24

32 64 48
24 48 36

⎤
⎦ =

⎡
⎣20 30 25

30 68 46
25 46 40

⎤
⎦ (3)
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(b) Let Y =
[
X1 X2

]′. Since Y is a subset of the components of X, it is a Gaussian random
vector with expected velue vector

μY =
[
E [X1] E [X2]

]′ =
[
4 8
]′

. (4)

and covariance matrix

CY =
[
Var[X1] Cov [X1, X2]
CX1X2 Var[X2]

]
=
[

4 −2
−2 4

]
(5)

We note that det(CY ) = 12 and that

C−1
Y =

1
12

[
4 2
2 4

]
=
[
1/3 1/6
1/6 1/3

]
. (6)

This implies that

(y − μY )′C−1
Y (y − μY ) =

[
y1 − 4 y2 − 8

] [1/3 1/6
1/6 1/3

] [
y1 − 4
y2 − 8

]
(7)

=
[
y1 − 4 y2 − 8

] [ y1/3 + y2/6 − 8/3
y1/6 + y2/3 − 10/3

]
(8)

=
y2
1

3
+

y1y2

3
− 16y1

3
− 20y2

3
+

y2
2

3
+

112
3

(9)

The PDF of Y is

fY (y) =
1

2π
√

12
e−(y−μY )′C−1

Y (y−μY )/2 (10)

=
1√

48π2
e−(y2

1+y1y2−16y1−20y2+y2
2+112)/6 (11)

Since Y =
[
X1, X2

]′, the PDF of X1 and X2 is simply

fX1,X2 (x1, x2) = fY1,Y2 (x1, x2) =
1√

48π2
e−(x2

1+x1x2−16x1−20x2+x2
2+112)/6 (12)

(c) We can observe directly from μX and CX that X1 is a Gaussian (4, 2) random variable. Thus,

P [X1 > 8] = P

[
X1 − 4

2
>

8 − 4
2

]
= Q(2) = 0.0228 (13)

Problem 5.7.2 Solution
We are given that X is a Gaussian random vector with

μX =

⎡
⎣48

6

⎤
⎦ CX =

⎡
⎣ 4 −2 1
−2 4 −2
1 −2 4

⎤
⎦ . (1)

We are also given that Y = AX + b where

A =
[
1 1/2 2/3
1 −1/2 2/3

]
b =
[−4
−4

]
. (2)

Since the two rows of A are linearly independent row vectors, A has rank 2. By Theorem 5.16,
Y is a Gaussian random vector. Given these facts, the various parts of this problem are just
straightforward calculations using Theorem 5.16.
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(a) The expected value of Y is

μY = AμX + b =
[
1 1/2 2/3
1 −1/2 2/3

]⎡⎣48
6

⎤
⎦+
[−4
−4

]
=
[
8
0

]
. (3)

(b) The covariance matrix of Y is

CY = ACXA (4)

=
[
1 1/2 2/3
1 −1/2 2/3

]⎡⎣ 4 −2 1
−2 4 −2
1 −2 4

⎤
⎦
⎡
⎣ 1 1

1/2 −1/2
2/3 2/3

⎤
⎦ =

1
9

[
43 55
55 103

]
. (5)

(c) Y has correlation matrix

RY = CY + μYμ′
Y =

1
9

[
43 55
55 103

]
+
[
8
0

] [
8 0
]

=
1
9

[
619 55
55 103

]
(6)

(d) From μY, we see that E[Y2] = 0. From the covariance matrix CY, we learn that Y2 has
variance σ2

2 = CY(2, 2) = 103/9. Since Y2 is a Gaussian random variable,

P [−1 ≤ Y2 ≤ 1] = P

[
− 1

σ2
≤ Y2

σ2
≤ 1

σ2

]
(7)

= Φ
(

1
σ2

)
− Φ
(−1

σ2

)
(8)

= 2Φ
(

1
σ2

)
− 1 (9)

= 2Φ
(

3√
103

)
− 1 = 0.2325. (10)

Problem 5.7.3 Solution
This problem is just a special case of Theorem 5.16 with the matrix A replaced by the row vector
a′ and a 1 element vector b = b = 0. In this case, the vector Y becomes the scalar Y . The expected
value vector μY = [μY ] and the covariance “matrix” of Y is just the 1 × 1 matrix [σ2

Y ]. Directly
from Theorem 5.16, we can conclude that Y is a length 1 Gaussian random vector, which is just a
Gaussian random variable. In addition, μY = a′μX and

Var[Y ] = CY = a′CXa. (1)

Problem 5.7.4 Solution
From Definition 5.17, the n = 2 dimensional Gaussian vector X has PDF

fX (x) =
1

2π[det (CX)]1/2
exp
(
−1

2
(x − μX)′C−1

X (x − μX)
)

(1)

where CX has determinant

det (CX) = σ2
1σ

2
2 − ρ2σ2

1σ
2
2 = σ2

1σ
2
2(1 − ρ2). (2)
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Thus,
1

2π[det (CX)]1/2
=

1

2πσ1σ2

√
1 − ρ2

. (3)

Using the 2 × 2 matrix inverse formula

[
a b
c d

]−1

=
1

ad − bc

[
d −b
−c a

]
, (4)

we obtain

C−1
X =

1
σ2

1σ
2
2(1 − ρ2)

[
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

]
=

1
1 − ρ2

[
1
σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

]
. (5)

Thus

−1
2
(x − μX)′C−1

X (x − μX) = −

[
x1 − μ1 x2 − μ2

] [ 1
σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

] [
x1 − μ1

x2 − μ2

]

2(1 − ρ2)
(6)

= −

[
x1 − μ1 x2 − μ2

] ⎡⎣ x1−μ1

σ2
1

− ρ(x2−μ2)
σ1σ2

−ρ(x1−μ1)
σ1σ2

+ x2−μ2

σ2
2

⎤
⎦

2(1 − ρ2)
(7)

= −
(x1−μ1)2

σ2
1

− 2ρ(x1−μ1)(x2−μ2)
σ1σ2

+ (x2−μ2)2

σ2
2

2(1 − ρ2)
. (8)

Combining Equations (1), (3), and (8), we see that

fX (x) =
1

2πσ1σ2

√
1 − ρ2

exp

⎡
⎣−

(x1−μ1)2

σ2
1

− 2ρ(x1−μ1)(x2−μ2)
σ1σ2

+ (x2−μ2)2

σ2
2

2(1 − ρ2)

⎤
⎦ , (9)

which is the bivariate Gaussian PDF in Definition 4.17.

Problem 5.7.5 Solution
Since

W =
[
X
Y

]
=
[
I
A

]
X = DX (1)

Suppose that X Gaussian (0, I) random vector. By Theorem 5.13, μW = 0 and CW = DD′. The
matrix D is (m + n) × n and has rank n. That is, the rows of D are dependent and there exists
a vector y such that y′D = 0. This implies y′DD′y = 0. Hence det(CW) = 0 and C−1

W does not
exist. Hence W is not a Gaussian random vector.

The point to keep in mind is that the definition of a Gaussian random vector does not permit
a component random variable to be a deterministic linear combination of other components.

Problem 5.7.6 Solution
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(a) From Theorem 5.13, Y has covariance matrix

CY = QCXQ′ (1)

=
[
cos θ − sin θ
sin θ cos θ

] [
σ2

1 0
0 σ2

2

] [
cos θ sin θ
− sin θ cos θ

]
(2)

=
[
σ2

1 cos2 θ + σ2
2 sin2 θ (σ2

1 − σ2
2) sin θ cos θ

(σ2
1 − σ2

2) sin θ cos θ σ2
1 sin2 θ + σ2

2 cos2 θ

]
. (3)

We conclude that Y1 and Y2 have covariance

Cov [Y1, Y2] = CY(1, 2) = (σ2
1 − σ2

2) sin θ cos θ. (4)

Since Y1 and Y2 are jointly Gaussian, they are independent if and only if Cov[Y1, Y2] =
0. Thus, Y1 and Y2 are independent for all θ if and only if σ2

1 = σ2
2. In this case, when

the joint PDF fX(x) is symmetric in x1 and x2. In terms of polar coordinates, the PDF
fX(x) = fX1,X2(x1, x2) depends on r =

√
x2

1 + x2
2 but for a given r, is constant for all

φ = tan−1(x2/x1). The transformation of X to Y is just a rotation of the coordinate system
by θ preserves this circular symmetry.

(b) If σ2
2 > σ2

1, then Y1 and Y2 are independent if and only if sin θ cos θ = 0. This occurs in the
following cases:

• θ = 0: Y1 = X1 and Y2 = X2

• θ = π/2: Y1 = −X2 and Y2 = −X1

• θ = π: Y1 = −X1 and Y2 = −X2

• θ = −π/2: Y1 = X2 and Y2 = X1

In all four cases, Y1 and Y2 are just relabeled versions, possibly with sign changes, of X1 and
X2. In these cases, Y1 and Y2 are independent because X1 and X2 are independent. For
other values of θ, each Yi is a linear combination of both X1 and X2. This mixing results in
correlation between Y1 and Y2.

Problem 5.7.7 Solution
The difficulty of this problem is overrated since its a pretty simple application of Problem 5.7.6. In
particular,

Q =
[
cos θ − sin θ
sin θ cos θ

]∣∣∣∣
θ=45◦

=
1√
2

[
1 −1
1 1

]
. (1)

Since X = QY, we know from Theorem 5.16 that X is Gaussian with covariance matrix

CX = QCYQ′ (2)

=
1√
2

[
1 −1
1 1

] [
1 + ρ 0

0 1 − ρ

]
1√
2

[
1 1
−1 1

]
(3)

=
1
2

[
1 + ρ −(1 − ρ)
1 + ρ 1 − ρ

] [
1 1
−1 1

]
(4)

=
[
1 ρ
ρ 1

]
. (5)
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Problem 5.7.8 Solution
As given in the problem statement, we define the m-dimensional vector X, the n-dimensional vector

Y and W =
[
X′

Y′

]′
. Note that W has expected value

μW = E [W] = E

[[
X
Y

]]
=
[
E [X]
E [Y]

]
=
[
μX

μY

]
. (1)

The covariance matrix of W is

CW = E
[
(W − μW)(W − μW)′

]
(2)

= E

[[
X − μX

Y − μY

] [
(X − μX)′ (Y − μY)′

]]
(3)

=
[
E [(X − μX)(X − μX)′] E [(X − μX)(Y − μY)′]
E [(Y − μY)(X − μX)′] E [(Y − μY)(Y − μY)′]

]
(4)

=
[

CX CXY

CYX CY

]
. (5)

The assumption that X and Y are independent implies that

CXY = E
[
(X − μX)(Y′ − μ′

Y)
]

= (E [(X − μX)] E
[
(Y′ − μ′

Y)
]

= 0. (6)

This also implies CYX = C′
XY = 0′. Thus

CW =
[
CX 0
0′ CY

]
. (7)

Problem 5.7.9 Solution

(a) If you are familiar with the Gram-Schmidt procedure, the argument is that applying Gram-
Schmidt to the rows of A yields m orthogonal row vectors. It is then possible to augment
those vectors with an additional n−m orothogonal vectors. Those orthogonal vectors would
be the rows of Ã.

An alternate argument is that since A has rank m the nullspace of A, i.e., the set of all
vectors y such that Ay = 0 has dimension n − m. We can choose any n − m linearly
independent vectors y1,y2, . . . ,yn−m in the nullspace A. We then define Ã′ to have columns
y1,y2, . . . ,yn−m. It follows that AÃ′ = 0.

(b) To use Theorem 5.16 for the case m = n to show

Ȳ =
[
Y
Ŷ

]
=
[
A
Â

]
X. (1)

is a Gaussian random vector requires us to show that

Ā =
[
A
Â

]
=
[

A
ÃC−1

X

]
(2)
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is a rank n matrix. To prove this fact, we will suppose there exists w such that Āw = 0,
and then show that w is a zero vector. Since A and Ã together have n linearly independent
rows, we can write the row vector w′ as a linear combination of the rows of A and Ã. That
is, for some v and ṽ,

w′ = vt′A + ṽ′Ã. (3)

The condition Āw = 0 implies[
A

ÃC−1
X

](
A′v + Ã′ṽ′

)
=
[
0
0

]
. (4)

This implies

AA′v + AÃ′ṽ = 0 (5)

ÃC−1
X Av + ÃC−1

X Ã′ṽ = 0 (6)

Since AÃ′ = 0, Equation (5) implies that AA′v = 0. Since A is rank m, AA′ is an m × m
rank m matrix. It follows that v = 0. We can then conclude from Equation (6) that

ÃC−1
X Ã′ṽ = 0. (7)

This would imply that ṽ′ÃC−1
X Ã′ṽ = 0. Since C−1

X is invertible, this would imply that
Ã′ṽ = 0. Since the rows of Ã are linearly independent, it must be that ṽ = 0. Thus Ā is
full rank and Ȳ is a Gaussian random vector.

(c) We note that By Theorem 5.16, the Gaussian vector Ȳ = ĀX has covariance matrix

C̄ = ĀCXĀ′. (8)

Since (C−1
X )′ = C−1

X ,
Ā′ =
[
A′ (ÃC−1

X )′
]

=
[
A′ C−1

X Ã′] . (9)

Applying this result to Equation (8) yields

C̄ =
[

A
ÃC−1

X

]
CX

[
A′ C−1

X Ã′] = [ACX

Ã

] [
A′ C−1

X Ã′] = [ACXA′ AÃ′

ÃA′ ÃC−1
X Ã′

]
. (10)

Since ÃA′ = 0,

C̄ =
[
ACXA′ 0

0 ÃC−1
X Ã′

]
=
[
CY 0
0 CŶ

]
. (11)

We see that C̄ is block diagonal covariance matrix. From the claim of Problem 5.7.8, we can
conclude that Y and Ŷ are independent Gaussian random vectors.

Problem 5.8.1 Solution
We can use Theorem 5.16 since the scalar Y is also a 1-dimensional vector. To do so, we write

Y =
[
1/3 1/3 1/3

]
X = AX. (1)

By Theorem 5.16, Y is a Gaussian vector with expected value

E [Y ] = AμX = (E [X1] + E [X2] + E [X3])/3 = (4 + 8 + 6)/3 = 6 (2)
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and covariance matrix

CY = Var[Y ] = ACXA′ (3)

=
[
1/3 1/3 1/3

] ⎡⎣ 4 −2 1
−2 4 −2
1 −2 4

⎤
⎦
⎡
⎣1/3

1/3
1/3

⎤
⎦ =

2
3

(4)

Thus Y is a Gaussian (6,
√

2/3) random variable, implying

P [Y > 4] = P

[
Y − 6√

2/3
>

4 − 6√
2/3

]
= 1 − Φ(−

√
6) = Φ(

√
6) = 0.9928 (5)

Problem 5.8.2 Solution

(a) The covariance matrix CX has Var[Xi] = 25 for each diagonal entry. For i �= j, the i, jth
entry of CX is

[CX ]ij = ρXiXj

√
Var[Xi] Var[Xj ] = (0.8)(25) = 20 (1)

The covariance matrix of X is a 10 × 10 matrix of the form

CX =

⎡
⎢⎢⎢⎢⎣

25 20 · · · 20

20 25
. . .

...
...

. . . . . . 20
20 · · · 20 25

⎤
⎥⎥⎥⎥⎦ . (2)

(b) We observe that
Y =
[
1/10 1/10 · · · 1/10

]
X = AX (3)

Since Y is the average of 10 iid random variables, E[Y ] = E[Xi] = 5. Since Y is a scalar, the
1 × 1 covariance matrix CY = Var[Y ]. By Theorem 5.13, the variance of Y is

Var[Y ] = CY = ACXA′ = 20.5 (4)

Since Y is Gaussian,

P [Y ≤ 25] = P

[
Y − 5√

20.5
≤ 25 − 20.5√

20.5

]
= Φ(0.9939) = 0.8399. (5)

Problem 5.8.3 Solution
Under the model of Quiz 5.8, the temperature on day i and on day j have covariance

Cov [Ti, Tj ] = CT [i − j] =
36

1 + |i − j| (1)

From this model, the vector T =
[
T1 · · · T31

]′ has covariance matrix

CT =

⎡
⎢⎢⎢⎢⎣

CT [0] CT [1] · · · CT [30]

CT [1] CT [0]
. . .

...
...

. . . . . . CT [1]
CT [30] · · · CT [1] CT [0]

⎤
⎥⎥⎥⎥⎦ . (2)
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If you have read the solution to Quiz 5.8, you know that CT is a symmetric Toeplitz matrix and
that Matlab has a toeplitz function to generate Toeplitz matrices. Using the toeplitz function
to generate the covariance matrix, it is easy to use gaussvector to generate samples of the random
vector T. Here is the code for estimating P [A] using m samples.

function p=julytemp583(m);
c=36./(1+(0:30));
CT=toeplitz(c);
mu=80*ones(31,1);
T=gaussvector(mu,CT,m);
Y=sum(T)/31;
Tmin=min(T);
p=sum((Tmin>=72) & (Y <= 82))/m;

julytemp583(100000)
ans =

0.0684
>> julytemp583(100000)
ans =

0.0706
>> julytemp583(100000)
ans =

0.0714
>> julytemp583(100000)
ans =

0.0701

We see from repeated experiments with m = 100,000 trials that P [A] ≈ 0.07.

Problem 5.8.4 Solution
The covariance matrix CX has Var[Xi] = 25 for each diagonal entry. For i �= j, the i, jth entry of
CX is

[CX ]ij = ρXiXj

√
Var[Xi] Var[Xj ] = (0.8)(25) = 20 (1)

The covariance matrix of X is a 10 × 10 matrix of the form

CX =

⎡
⎢⎢⎢⎢⎣

25 20 · · · 20

20 25
. . .

...
...

. . . . . . 20
20 · · · 20 25

⎤
⎥⎥⎥⎥⎦ . (2)

A program to estimate P [W ≤ 25] uses gaussvector to generate m sample vector of race times X.
In the program sailboats.m, X is an 10×m matrix such that each column of X is a vector of race
times. In addition min(X) is a row vector indicating the fastest time in each race.

function p=sailboats(w,m)
%Usage: p=sailboats(f,m)
%In Problem 5.8.4, W is the
%winning time in a 10 boat race.
%We use m trials to estimate
%P[W<=w]
CX=(5*eye(10))+(20*ones(10,10));
mu=35*ones(10,1);
X=gaussvector(mu,CX,m);
W=min(X);
p=sum(W<=w)/m;

>> sailboats(25,10000)
ans =

0.0827
>> sailboats(25,100000)
ans =

0.0801
>> sailboats(25,100000)
ans =

0.0803
>> sailboats(25,100000)
ans =

0.0798

We see from repeated experiments with m = 100,000 trials that P [W ≤ 25] ≈ 0.08.

Problem 5.8.5 Solution
When we built poissonrv.m, we went to some trouble to be able to generate m iid samples at
once. In this problem, each Poisson random variable that we generate has an expected value that
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is different from that of any other Poisson random variables. Thus, we must generate the daily
jackpots sequentially. Here is a simple program for this purpose.

function jackpot=lottery1(jstart,M,D)
%Usage: function j=lottery1(jstart,M,D)
%Perform M trials of the D day lottery
%of Problem 5.5.5 and initial jackpot jstart
jackpot=zeros(M,1);
for m=1:M,

disp(’trm)
jackpot(m)=jstart;
for d=1:D,

jackpot(m)=jackpot(m)+(0.5*poissonrv(jackpot(m),1));
end
end

The main problem with lottery1 is that it will run very slowly. Each call to poissonrv generates
an entire Poisson PMF PX(x) for x = 0, 1, . . . , xmax where xmax ≥ 2 · 106. This is slow in several
ways. First, we repeating the calculation of

∑xmax
j=1 log j with each call to poissonrv. Second, each

call to poissonrv asks for a Poisson sample value with expected value α > 1 · 106. In these cases,
for small values of x, PX(x) = αxe−αx/x! is so small that it is less than the smallest nonzero number
that Matlab can store!

To speed up the simulation, we have written a program bigpoissonrv which generates Poisson
(α) samples for large α. The program makes an approximation that for a Poisson (α) random vari-
able X, PX(x) ≈ 0 for |x−α| > 6

√
α. Since X has standard deviation

√
α, we are assuming that X

cannot be more than six standard deviations away from its mean value. The error in this approxi-
mation is very small. In fact, for a Poisson (a) random variable, the program poissonsigma(a,k)
calculates the error P [|X − a| > k

√
a]. Here is poissonsigma.m and some simple calculations:

function err=poissonsigma(a,k);
xmin=max(0,floor(a-k*sqrt(a)));
xmax=a+ceil(k*sqrt(a));
sx=xmin:xmax;
logfacts =cumsum([0,log(1:xmax)]);
%logfacts includes 0 in case xmin=0
%Now we extract needed values:

logfacts=logfacts(sx+1);
%pmf(i,:) is a Poisson a(i) PMF
% from xmin to xmax

pmf=exp(-a+ (log(a)*sx)-(logfacts));
err=1-sum(pmf);

>> poissonsigma(1,6)
ans =
1.0249e-005

>> poissonsigma(10,6)
ans =
2.5100e-007

>> poissonsigma(100,6)
ans =
1.2620e-008

>> poissonsigma(1000,6)
ans =
2.6777e-009

>> poissonsigma(10000,6)
ans =
1.8081e-009

>> poissonsigma(100000,6)
ans =
-1.6383e-010

The error reported by poissonsigma(a,k) should always be positive. In fact, we observe
negative errors for very large a. For large α and x, numerical calculation of PX(x) = αxe−α/x!
is tricky because we are taking ratios of very large numbers. In fact, for α = x = 1,000,000,
Matlab calculation of αx and x! will report infinity while e−α will evaluate as zero. Our method
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of calculating the Poisson (α) PMF is to use the fact that lnx! =
∑x

j=1 ln j to calculate

exp (lnPX (x)) = exp

⎛
⎝x lnα − α −

x∑
j=1

ln j

⎞
⎠ . (1)

This method works reasonably well except that the calculation of the logarithm has finite precision.
The consequence is that the calculated sum over the PMF can vary from 1 by a very small amount,
on the order of 10−7 in our experiments. In our problem, the error is inconsequential, however, one
should keep in mind that this may not be the case in other other experiments using large Poisson
random variables. In any case, we can conclude that within the accuracy of Matlab’s simulated
experiments, the approximations to be used by bigpoissonrv are not significant.

The other feature of bigpoissonrv is that for a vector alpha corresponding to expected values[
α1 · · · αm

]′, bigpoissonrv returns a vector X such that X(i) is a Poisson alpha(i) sample.
The work of calculating the sum of logarithms is done only once for all calculated samples. The
result is a significant savings in cpu time as long as the values of alpha are reasonably close to each
other.

function x=bigpoissonrv(alpha)
%for vector alpha, returns a vector x such that
% x(i) is a Poisson (alpha(i)) rv
%set up Poisson CDF from xmin to xmax for each alpha(i)
alpha=alpha(:);
amin=min(alpha(:));
amax=max(alpha(:));
%Assume Poisson PMF is negligible +-6 sigma from the average
xmin=max(0,floor(amin-6*sqrt(amax)));
xmax=amax+ceil(6*sqrt(amax));%set max range
sx=xmin:xmax;
%Now we include the basic code of poissonpmf (but starting at xmin)
logfacts =cumsum([0,log(1:xmax)]); %include 0 in case xmin=0
logfacts=logfacts(sx+1); %extract needed values
%pmf(i,:) is a Poisson alpha(i) PMF from xmin to xmax
pmf=exp(-alpha*ones(size(sx))+ ...

(log(alpha)*sx)-(ones(size(alpha))*logfacts));
cdf=cumsum(pmf,2); %each row is a cdf
x=(xmin-1)+sum((rand(size(alpha))*ones(size(sx)))<=cdf,2);

Finally, given bigpoissonrv, we can write a short program lottery that simulates trials of the
jackpot experiment. Ideally, we would like to use lottery to perform m = 1,000 trials in a single
pass. In general, Matlab is more efficient when calculations are executed in parallel using vectors.
However, in bigpoissonrv, the matrix pmf will have m rows and at least 12

√
α = 12,000 columns.

For m more than several hundred, Matlab running on my laptop reported an “Out of Memory”
error. Thus, we wrote the program lottery to perform M trials at once and to repeat that N times.
The output is an M × N matrix where each i, j entry is a sample jackpot after seven days.
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function jackpot=lottery(jstart,M,N,D)
%Usage: function j=lottery(jstart,M,N,D)
%Perform M trials of the D day lottery
%of Problem 5.5.5 and initial jackpot jstart
jackpot=zeros(M,N);
for n=1:N,
jackpot(:,n)=jstart*ones(M,1);
for d=1:D,

disp(d);
jackpot(:,n)=jackpot(:,n)+(0.5*bigpoissonrv(jackpot(:,n)));

end
end

Executing J=lottery(1e6,200,10,7) generates a matrix J of 2,000 sample jackpots. The com-
mand hist(J(:),50) generates a histogram of the values with 50 bins. An example is shown
here:

1.7076 1.7078 1.708 1.7082 1.7084 1.7086 1.7088 1.709 1.7092 1.7094 1.7096

x 10
7
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50

100

150
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If you go back and solve Problem 5.5.5, you will see that the jackpot J has expected value
E[J ] = (3/2)7 × 106 = 1.70859 × 107 dollars. Thus it is not surprising that the histogram is
centered around a jackpot of 1.708 × 107 dollars. If we did more trials, and used more histogram
bins, the histogram would appear to converge to the shape of a Gaussian PDF. This fact is explored
in Chapter 6.
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