
Problem Solutions – Chapter 4

Problem 4.1.1 Solution

(a) The probability P [X ≤ 2, Y ≤ 3] can be found be evaluating the joint CDF FX,Y (x, y) at
x = 2 and y = 3. This yields

P [X ≤ 2, Y ≤ 3] = FX,Y (2, 3) = (1 − e−2)(1 − e−3) (1)

(b) To find the marginal CDF of X, FX(x), we simply evaluate the joint CDF at y = ∞.

FX (x) = FX,Y (x,∞) =
{

1 − e−x x ≥ 0
0 otherwise

(2)

(c) Likewise for the marginal CDF of Y , we evaluate the joint CDF at X = ∞.

FY (y) = FX,Y (∞, y) =
{

1 − e−y y ≥ 0
0 otherwise

(3)

Problem 4.1.2 Solution

(a) Because the probability that any random variable is less than −∞ is zero, we have

FX,Y (x,−∞) = P [X ≤ x, Y ≤ −∞] ≤ P [Y ≤ −∞] = 0 (1)

(b) The probability that any random variable is less than infinity is always one.

FX,Y (x,∞) = P [X ≤ x, Y ≤ ∞] = P [X ≤ x] = FX (x) (2)

(c) Although P [Y ≤ ∞] = 1, P [X ≤ −∞] = 0. Therefore the following is true.

FX,Y (−∞,∞) = P [X ≤ −∞, Y ≤ ∞] ≤ P [X ≤ −∞] = 0 (3)

(d) Part (d) follows the same logic as that of part (a).

FX,Y (−∞, y) = P [X ≤ −∞, Y ≤ y] ≤ P [X ≤ −∞] = 0 (4)

(e) Analogous to Part (b), we find that

FX,Y (∞, y) = P [X ≤ ∞, Y ≤ y] = P [Y ≤ y] = FY (y) (5)
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Problem 4.1.3 Solution
We wish to find P [x1 ≤ X ≤ x2] or P [y1 ≤ Y ≤ y2]. We define events A = {y1 ≤ Y ≤ y2} and
B = {y1 ≤ Y ≤ y2} so that

P [A ∪ B] = P [A] + P [B] − P [AB] (1)

Keep in mind that the intersection of events A and B are all the outcomes such that both A and
B occur, specifically, AB = {x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2}. It follows that

P [A ∪ B] = P [x1 ≤ X ≤ x2] + P [y1 ≤ Y ≤ y2]
− P [x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2] . (2)

By Theorem 4.5,

P [x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2]
= FX,Y (x2, y2) − FX,Y (x2, y1) − FX,Y (x1, y2) + FX,Y (x1, y1) . (3)

Expressed in terms of the marginal and joint CDFs,

P [A ∪ B] = FX (x2) − FX (x1) + FY (y2) − FY (y1) (4)
− FX,Y (x2, y2) + FX,Y (x2, y1) + FX,Y (x1, y2) − FX,Y (x1, y1) (5)

Problem 4.1.4 Solution
Its easy to show that the properties of Theorem 4.1 are satisfied. However, those properties are
necessary but not sufficient to show F (x, y) is a CDF. To convince ourselves that F (x, y) is a valid
CDF, we show that for all x1 ≤ x2 and y1 ≤ y2,

P [x1 < X1 ≤ x2, y1 < Y ≤ y2] ≥ 0 (1)

In this case, for x1 ≤ x2 and y1 ≤ y2, Theorem 4.5 yields

P [x1 < X ≤ x2, y1 < Y ≤ y2] = F (x2, y2) − F (x1, y2) − F (x2, y1) + F (x1, y1) (2)
= FX (x2) FY (y2) − FX (x1) FY (y2) (3)

− FX (x2) FY (y1) + FX (x1) FY (y1) (4)
= [FX (x2) − FX (x1)][FY (y2) − FY (y1)] (5)
≥ 0 (6)

Hence, FX(x)FY (y) is a valid joint CDF.

Problem 4.1.5 Solution
In this problem, we prove Theorem 4.5 which states

P [x1 < X ≤ x2, y1 < Y ≤ y2] = FX,Y (x2, y2) − FX,Y (x2, y1) (1)
− FX,Y (x1, y2) + FX,Y (x1, y1) (2)

(a) The events A, B, and C are

Y

X
x1

y1

y2

Y

X
x1 x2
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y2

Y

X
x1 x2

y1

y2

A B C

(3)
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(b) In terms of the joint CDF FX,Y (x, y), we can write

P [A] = FX,Y (x1, y2) − FX,Y (x1, y1) (4)
P [B] = FX,Y (x2, y1) − FX,Y (x1, y1) (5)

P [A ∪ B ∪ C] = FX,Y (x2, y2) − FX,Y (x1, y1) (6)

(c) Since A, B, and C are mutually exclusive,

P [A ∪ B ∪ C] = P [A] + P [B] + P [C] (7)

However, since we want to express

P [C] = P [x1 < X ≤ x2, y1 < Y ≤ y2] (8)

in terms of the joint CDF FX,Y (x, y), we write

P [C] = P [A ∪ B ∪ C] − P [A] − P [B] (9)
= FX,Y (x2, y2) − FX,Y (x1, y2) − FX,Y (x2, y1) + FX,Y (x1, y1) (10)

which completes the proof of the theorem.

Problem 4.1.6 Solution
The given function is

FX,Y (x, y) =
{

1 − e−(x+y) x, y ≥ 0
0 otherwise

(1)

First, we find the CDF FX(x) and FY (y).

FX (x) = FX,Y (x,∞) =
{

1 x ≥ 0
0 otherwise

(2)

FY (y) = FX,Y (∞, y) =
{

1 y ≥ 0
0 otherwise

(3)

Hence, for any x ≥ 0 or y ≥ 0,

P [X > x] = 0 P [Y > y] = 0 (4)

For x ≥ 0 and y ≥ 0, this implies

P [{X > x} ∪ {Y > y}] ≤ P [X > x] + P [Y > y] = 0 (5)

However,

P [{X > x} ∪ {Y > y}] = 1 − P [X ≤ x, Y ≤ y] = 1 − (1 − e−(x+y)) = e−(x+y) (6)

Thus, we have the contradiction that e−(x+y) ≤ 0 for all x, y ≥ 0. We can conclude that the given
function is not a valid CDF.
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Problem 4.2.1 Solution
In this problem, it is helpful to label points with nonzero probability on the X, Y plane:

�

�

y

x

PX,Y (x, y)

•c

•3c

•2c

•6c

•4c

•12c

0 1 2 3 4
0

1

2

3

4

(a) We must choose c so the PMF sums to one:∑
x=1,2,4

∑
y=1,3

PX,Y (x, y) = c
∑

x=1,2,4

x
∑

y=1,3

y (1)

= c [1(1 + 3) + 2(1 + 3) + 4(1 + 3)] = 28c (2)

Thus c = 1/28.

(b) The event {Y < X} has probability

P [Y < X] =
∑

x=1,2,4

∑
y<x

PX,Y (x, y) =
1(0) + 2(1) + 4(1 + 3)

28
=

18
28

(3)

(c) The event {Y > X} has probability

P [Y > X] =
∑

x=1,2,4

∑
y>x

PX,Y (x, y) =
1(3) + 2(3) + 4(0)

28
=

9
28

(4)

(d) There are two ways to solve this part. The direct way is to calculate

P [Y = X] =
∑

x=1,2,4

∑
y=x

PX,Y (x, y) =
1(1) + 2(0)

28
=

1
28

(5)

The indirect way is to use the previous results and the observation that

P [Y = X] = 1 − P [Y < X] − P [Y > X] = (1 − 18/28 − 9/28) = 1/28 (6)

(e)

P [Y = 3] =
∑

x=1,2,4

PX,Y (x, 3) =
(1)(3) + (2)(3) + (4)(3)

28
=

21
28

=
3
4

(7)

Problem 4.2.2 Solution
On the X, Y plane, the joint PMF is
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PX,Y (x, y)

•3c

•2c

•c

•c

•c

•c
•2c

•3c

1 2

1

(a) To find c, we sum the PMF over all possible values of X and Y . We choose c so the sum
equals one. ∑

x

∑
y

PX,Y (x, y) =
∑

x=−2,0,2

∑
y=−1,0,1

c |x + y| = 6c + 2c + 6c = 14c (1)

Thus c = 1/14.

(b)

P [Y < X] = PX,Y (0,−1) + PX,Y (2,−1) + PX,Y (2, 0) + PX,Y (2, 1) (2)
= c + c + 2c + 3c = 7c = 1/2 (3)

(c)

P [Y > X] = PX,Y (−2,−1) + PX,Y (−2, 0) + PX,Y (−2, 1) + PX,Y (0, 1) (4)
= 3c + 2c + c + c = 7c = 1/2 (5)

(d) From the sketch of PX,Y (x, y) given above, P [X = Y ] = 0.

(e)

P [X < 1] = PX,Y (−2,−1) + PX,Y (−2, 0) + PX,Y (−2, 1)
+ PX,Y (0,−1) + PX,Y (0, 1) (6)
= 8c = 8/14. (7)

Problem 4.2.3 Solution
Let r (reject) and a (accept) denote the result of each test. There are four possible outcomes:
rr, ra, ar, aa. The sample tree is

������ rp

������ a1−p

������ rp

						 a1−p

������ rp

						 a1−p

•rr p2

•ra p(1−p)

•ar p(1−p)

•aa (1−p)2
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Now we construct a table that maps the sample outcomes to values of X and Y .

outcome P [·] X Y

rr p2 1 1
ra p(1 − p) 1 0
ar p(1 − p) 0 1
aa (1 − p)2 0 0

(1)

This table is esentially the joint PMF PX,Y (x, y).

PX,Y (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p2 x = 1, y = 1
p(1 − p) x = 0, y = 1
p(1 − p) x = 1, y = 0
(1 − p)2 x = 0, y = 0
0 otherwise

(2)

Problem 4.2.4 Solution
The sample space is the set S = {hh, ht, th, tt} and each sample point has probability 1/4. Each
sample outcome specifies the values of X and Y as given in the following table

outcome X Y

hh 0 1
ht 1 0
th 1 1
tt 2 0

(1)

The joint PMF can represented by the table

PX,Y (x, y) y = 0 y = 1
x = 0 0 1/4
x = 1 1/4 1/4
x = 2 1/4 0

(2)

Problem 4.2.5 Solution
As the problem statement says, reasonable arguments can be made for the labels being X and Y or
x and y. As we see in the arguments below, the lowercase choice of the text is somewhat arbitrary.

• Lowercase axis labels: For the lowercase labels, we observe that we are depicting the masses
associated with the joint PMF PX,Y (x, y) whose arguments are x and y. Since the PMF
function is defined in terms of x and y, the axis labels should be x and y.

• Uppercase axis labels: On the other hand, we are depicting the possible outcomes (labeled with
their respective probabilities) of the pair of random variables X and Y . The corresponding
axis labels should be X and Y just as in Figure 4.2. The fact that we have labeled the
possible outcomes by their probabilities is irrelevant. Further, since the expression for the
PMF PX,Y (x, y) given in the figure could just as well have been written PX,Y (·, ·), it is clear
that the lowercase x and y are not what matter.
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Problem 4.2.6 Solution
As the problem statement indicates, Y = y < n if and only if

A: the first y tests are acceptable, and

B: test y + 1 is a rejection.

Thus P [Y = y] = P [AB]. Note that Y ≤ X since the number of acceptable tests before the first
failure cannot exceed the number of acceptable circuits. Moreover, given the occurrence of AB, the
event X = x < n occurs if and only if there are x− y acceptable circuits in the remaining n− y− 1
tests. Since events A, B and C depend on disjoint sets of tests, they are independent events. Thus,
for 0 ≤ y ≤ x < n,

PX,Y (x, y) = P [X = x, Y = y] = P [ABC] (1)
= P [A] P [B] P [C] (2)

= py︸︷︷︸
P [A]

(1 − p)︸ ︷︷ ︸
P [B]

(
n − y − 1

x − y

)
px−y(1 − p)n−y−1−(x−y)

︸ ︷︷ ︸
P [C]

(3)

=
(

n − y − 1
x − y

)
px(1 − p)n−x (4)

The case y = x = n occurs when all n tests are acceptable and thus PX,Y (n, n) = pn.

Problem 4.2.7 Solution
The joint PMF of X and K is PK,X(k, x) = P [K = k, X = x], which is the probability that K = k
and X = x. This means that both events must be satisfied. The approach we use is similar to that
used in finding the Pascal PMF in Example 2.15. Since X can take on only the two values 0 and
1, let’s consider each in turn. When X = 0 that means that a rejection occurred on the last test
and that the other k − 1 rejections must have occurred in the previous n − 1 tests. Thus,

PK,X (k, 0) =
(

n − 1
k − 1

)
(1 − p)k−1pn−1−(k−1)(1 − p) k = 1, . . . , n (1)

When X = 1 the last test was acceptable and therefore we know that the K = k ≤ n−1 tails must
have occurred in the previous n − 1 tests. In this case,

PK,X (k, 1) =
(

n − 1
k

)
(1 − p)kpn−1−kp k = 0, . . . , n − 1 (2)

We can combine these cases into a single complete expression for the joint PMF.

PK,X (k, x) =

⎧⎨
⎩

(
n−1
k−1

)
(1 − p)kpn−k x = 0, k = 1, 2, . . . , n(

n−1
k

)
(1 − p)kpn−k x = 1, k = 0, 1, . . . , n − 1

0 otherwise
(3)

Problem 4.2.8 Solution
Each circuit test produces an acceptable circuit with probability p. Let K denote the number of
rejected circuits that occur in n tests and X is the number of acceptable circuits before the first re-
ject. The joint PMF, PK,X(k, x) = P [K = k, X = x] can be found by realizing that {K = k, X = x}
occurs if and only if the following events occur:
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A The first x tests must be acceptable.

B Test x+1 must be a rejection since otherwise we would have x+1 acceptable at the beginnning.

C The remaining n − x − 1 tests must contain k − 1 rejections.

Since the events A, B and C are independent, the joint PMF for x + k ≤ r, x ≥ 0 and k ≥ 0 is

PK,X (k, x) = px︸︷︷︸
P [A]

(1 − p)︸ ︷︷ ︸
P [B]

(
n − x − 1

k − 1

)
(1 − p)k−1pn−x−1−(k−1)

︸ ︷︷ ︸
P [C]

(1)

After simplifying, a complete expression for the joint PMF is

PK,X (k, x) =
{ (

n−x−1
k−1

)
pn−k(1 − p)k x + k ≤ n, x ≥ 0, k ≥ 0

0 otherwise
(2)

Problem 4.3.1 Solution
On the X, Y plane, the joint PMF PX,Y (x, y) is

�

�

y

x

PX,Y (x, y)

•c

•3c

•2c

•6c

•4c

•12c

0 1 2 3 4
0

1

2

3

4

By choosing c = 1/28, the PMF sums to one.

(a) The marginal PMFs of X and Y are

PX (x) =
∑

y=1,3

PX,Y (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

4/28 x = 1
8/28 x = 2
16/28 x = 4
0 otherwise

(1)

PY (y) =
∑

x=1,2,4

PX,Y (x, y) =

⎧⎨
⎩

7/28 y = 1
21/28 y = 3
0 otherwise

(2)

(b) The expected values of X and Y are

E [X] =
∑

x=1,2,4

xPX (x) = (4/28) + 2(8/28) + 4(16/28) = 3 (3)

E [Y ] =
∑

y=1,3

yPY (y) = 7/28 + 3(21/28) = 5/2 (4)

131



(c) The second moments are

E
[
X2

]
=

∑
x=1,2,4

xPX (x) = 12(4/28) + 22(8/28) + 42(16/28) = 73/7 (5)

E
[
Y 2
]

=
∑

y=1,3

yPY (y) = 12(7/28) + 32(21/28) = 7 (6)

The variances are

Var[X] = E
[
X2

]− (E [X])2 = 10/7 Var[Y ] = E
[
Y 2
]− (E [Y ])2 = 3/4 (7)

The standard deviations are σX =
√

10/7 and σY =
√

3/4.

Problem 4.3.2 Solution
On the X, Y plane, the joint PMF is

� �

�

�

y

x

PX,Y (x, y)

•3c

•2c

•c

•c

•c

•c
•2c

•3c

1 2

1

The PMF sums to one when c = 1/14.

(a) The marginal PMFs of X and Y are

PX (x) =
∑

y=−1,0,1

PX,Y (x, y) =

⎧⎨
⎩

6/14 x = −2, 2
2/14 x = 0
0 otherwise

(1)

PY (y) =
∑

x=−2,0,2

PX,Y (x, y) =

⎧⎨
⎩

5/14 y = −1, 1
4/14 y = 0
0 otherwise

(2)

(b) The expected values of X and Y are

E [X] =
∑

x=−2,0,2

xPX (x) = −2(6/14) + 2(6/14) = 0 (3)

E [Y ] =
∑

y=−1,0,1

yPY (y) = −1(5/14) + 1(5/14) = 0 (4)

(c) Since X and Y both have zero mean, the variances are

Var[X] = E
[
X2

]
=

∑
x=−2,0,2

x2PX (x) = (−2)2(6/14) + 22(6/14) = 24/7 (5)

Var[Y ] = E
[
Y 2
]

=
∑

y=−1,0,1

y2PY (y) = (−1)2(5/14) + 12(5/14) = 5/7 (6)

The standard deviations are σX =
√

24/7 and σY =
√

5/7.
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Problem 4.3.3 Solution
We recognize that the given joint PMF is written as the product of two marginal PMFs PN (n) and
PK(k) where

PN (n) =
100∑
k=0

PN,K (n, k) =
{

100ne−100

n! n = 0, 1, . . .
0 otherwise

(1)

PK (k) =
∞∑

n=0

PN,K (n, k) =
{ (

100
k

)
pk(1 − p)100−k k = 0, 1, . . . , 100

0 otherwise
(2)

Problem 4.3.4 Solution
The joint PMF of N, K is

PN,K (n, k) =

⎧⎨
⎩

(1 − p)n−1p/n k = 1, 2, . . . , n
n = 1, 2 . . .

o otherwise
(1)

For n ≥ 1, the marginal PMF of N is

PN (n) =
n∑

k=1

PN,K (n, k) =
n∑

k=1

(1 − p)n−1p/n = (1 − p)n−1p (2)

The marginal PMF of K is found by summing PN,K(n, k) over all possible N . Note that if K = k,
then N ≥ k. Thus,

PK (k) =
∞∑

n=k

1
n

(1 − p)n−1p (3)

Unfortunately, this sum cannot be simplified.

Problem 4.3.5 Solution
For n = 0, 1, . . ., the marginal PMF of N is

PN (n) =
∑

k

PN,K (n, k) =
n∑

k=0

100ne−100

(n + 1)!
=

100ne−100

n!
(1)

For k = 0, 1, . . ., the marginal PMF of K is

PK (k) =
∞∑

n=k

100ne−100

(n + 1)!
=

1
100

∞∑
n=k

100n+1e−100

(n + 1)!
(2)

=
1

100

∞∑
n=k

PN (n + 1) (3)

= P [N > k] /100 (4)

Problem 4.4.1 Solution
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(a) The joint PDF of X and Y is
Y

X

Y + X = 1
1

1

fX,Y (x, y) =
{

c x + y ≤ 1, x, y ≥ 0
0 otherwise

(1)

To find the constant c we integrate over the region shown. This gives∫ 1

0

∫ 1−x

0
c dy dx = cx − cx

2

∣∣∣1
0

=
c

2
= 1 (2)

Therefore c = 2.

(b) To find the P [X ≤ Y ] we look to integrate over the area indicated by the graph
Y

X

X=Y

1

1

X Y�

P [X ≤ Y ] =
∫ 1/2

0

∫ 1−x

x
dy dx (3)

=
∫ 1/2

0
(2 − 4x) dx (4)

= 1/2 (5)

(c) The probability P [X + Y ≤ 1/2] can be seen in the figure. Here we can set up the following
integrals

Y

X

Y + X = 1

Y + X = ½

1

1

P [X + Y ≤ 1/2] =
∫ 1/2

0

∫ 1/2−x

0
2 dy dx (6)

=
∫ 1/2

0
(1 − 2x) dx (7)

= 1/2 − 1/4 = 1/4 (8)

Problem 4.4.2 Solution
Given the joint PDF

fX,Y (x, y) =
{

cxy2 0 ≤ x, y ≤ 1
0 otherwise

(1)

(a) To find the constant c integrate fX,Y (x, y) over the all possible values of X and Y to get

1 =
∫ 1

0

∫ 1

0
cxy2 dx dy = c/6 (2)

Therefore c = 6.
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(b) The probability P [X ≥ Y ] is the integral of the joint PDF fX,Y (x, y) over the indicated shaded
region.

X

1

1

Y

P [X ≥ Y ] =
∫ 1

0

∫ x

0
6xy2 dy dx (3)

=
∫ 1

0
2x4 dx (4)

= 2/5 (5)

X

1

1

Y

Y=X
2

Similarly, to find P [Y ≤ X2] we can integrate over the region
shown in the figure.

P
[
Y ≤ X2

]
=
∫ 1

0

∫ x2

0
6xy2 dy dx (6)

= 1/4 (7)

(c) Here we can choose to either integrate fX,Y (x, y) over the lighter shaded region, which would
require the evaluation of two integrals, or we can perform one integral over the darker region
by recognizing

X

1

1

Y
min(X,Y) < ½

min(X,Y) > ½

P [min(X, Y ) ≤ 1/2] = 1 − P [min(X, Y ) > 1/2] (8)

= 1 −
∫ 1

1/2

∫ 1

1/2
6xy2 dx dy (9)

= 1 −
∫ 1

1/2

9y2

4
dy =

11
32

(10)

(d) The probability P [max(X, Y ) ≤ 3/4] can be found be integrating over the shaded region
shown below.

X

1

1

Y

max(X,Y) < ¾
P [max(X, Y ) ≤ 3/4] = P [X ≤ 3/4, Y ≤ 3/4] (11)

=
∫ 3

4

0

∫ 3
4

0
6xy2 dx dy (12)

=
(

x2
∣∣3/4

0

)(
y3
∣∣3/4

0

)
(13)

= (3/4)5 = 0.237 (14)

Problem 4.4.3 Solution
The joint PDF of X and Y is

fX,Y (x, y) =
{

6e−(2x+3y) x ≥ 0, y ≥ 0,
0 otherwise.

(1)
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(a) The probability that X ≥ Y is:
Y

X

X Y� P [X ≥ Y ] =
∫ ∞

0

∫ x

0
6e−(2x+3y) dy dx (2)

=
∫ ∞

0
2e−2x

(
−e−3y

∣∣y=x

y=0

)
dx (3)

=
∫ ∞

0
[2e−2x − 2e−5x] dx = 3/5 (4)

The P [X + Y ≤ 1] is found by integrating over the region where X + Y ≤ 1

Y

X

X+Y 1≤
1

1

P [X + Y ≤ 1] =
∫ 1

0

∫ 1−x

0
6e−(2x+3y) dy dx (5)

=
∫ 1

0
2e−2x

[
−e−3y

∣∣y=1−x

y=0

]
dx (6)

=
∫ 1

0
2e−2x

[
1 − e−3(1−x)

]
dx (7)

= −e−2x − 2ex−3
∣∣1
0

(8)

= 1 + 2e−3 − 3e−2 (9)

(b) The event min(X, Y ) ≥ 1 is the same as the event {X ≥ 1, Y ≥ 1}. Thus,

P [min(X, Y ) ≥ 1] =
∫ ∞

1

∫ ∞

1
6e−(2x+3y) dy dx = e−(2+3) (10)

(c) The event max(X, Y ) ≤ 1 is the same as the event {X ≤ 1, Y ≤ 1} so that

P [max(X, Y ) ≤ 1] =
∫ 1

0

∫ 1

0
6e−(2x+3y) dy dx = (1 − e−2)(1 − e−3) (11)

Problem 4.4.4 Solution
The only difference between this problem and Example 4.5 is that in this problem we must integrate
the joint PDF over the regions to find the probabilities. Just as in Example 4.5, there are five cases.
We will use variable u and v as dummy variables for x and y.

• x < 0 or y < 0

x
X

y

Y

1

1

In this case, the region of integration doesn’t overlap the
region of nonzero probability and

FX,Y (x, y) =
∫ y

−∞

∫ x

−∞
fX,Y (u, v) du dv = 0 (1)
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• 0 < y ≤ x ≤ 1

In this case, the region where the integral has a nonzero contribution is

x
X

y

Y

1

1

FX,Y (x, y) =
∫ y

−∞

∫ x

−∞
fX,Y (u, v) dy dx (2)

=
∫ y

0

∫ x

v
8uv du dv (3)

=
∫ y

0
4(x2 − v2)v dv (4)

= 2x2v2 − v4
∣∣v=y

v=0
= 2x2y2 − y4 (5)

• 0 < x ≤ y and 0 ≤ x ≤ 1

x
X

y

Y

1

1

FX,Y (x, y) =
∫ y

−∞

∫ x

−∞
fX,Y (u, v) dv du (6)

=
∫ x

0

∫ u

0
8uv dv du (7)

=
∫ x

0
4u3 du = x4 (8)

• 0 < y ≤ 1 and x ≥ 1

X

Y

1

1

y

x

FX,Y (x, y) =
∫ y

−∞

∫ x

−∞
fX,Y (u, v) dv du (9)

=
∫ y

0

∫ 1

v
8uv du dv (10)

=
∫ y

0
4v(1 − v2) dv (11)

= 2y2 − y4 (12)

• x ≥ 1 and y ≥ 1
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X

Y

1

1

y

x

In this case, the region of integration completely covers the
region of nonzero probability and

FX,Y (x, y) =
∫ y

−∞

∫ x

−∞
fX,Y (u, v) du dv (13)

= 1 (14)

The complete answer for the joint CDF is

FX,Y (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 x < 0 or y < 0
2x2y2 − y4 0 < y ≤ x ≤ 1
x4 0 ≤ x ≤ y, 0 ≤ x ≤ 1
2y2 − y4 0 ≤ y ≤ 1, x ≥ 1
1 x ≥ 1, y ≥ 1

(15)

Problem 4.5.1 Solution

(a) The joint PDF (and the corresponding region of nonzero probability) are
Y

X

1

-1

fX,Y (x, y) =
{

1/2 −1 ≤ x ≤ y ≤ 1
0 otherwise

(1)

(b)

P [X > 0] =
∫ 1

0

∫ 1

x

1
2

dy dx =
∫ 1

0

1 − x

2
dx = 1/4 (2)

This result can be deduced by geometry. The shaded triangle of the X, Y plane corresponding
to the event X > 0 is 1/4 of the total shaded area.

(c) For x > 1 or x < −1, fX(x) = 0. For −1 ≤ x ≤ 1,

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ 1

x

1
2

dy = (1 − x)/2. (3)

The complete expression for the marginal PDF is

fX (x) =
{

(1 − x)/2 −1 ≤ x ≤ 1,
0 otherwise.

(4)
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(d) From the marginal PDF fX(x), the expected value of X is

E [X] =
∫ ∞

−∞
xfX (x) dx =

1
2

∫ 1

−1
x(1 − x) dx (5)

=
x2

4
− x3

6

∣∣∣∣1
−1

= −1
3
. (6)

Problem 4.5.2 Solution

fX,Y (x, y) =
{

2 x + y ≤ 1, x, y ≥ 0
0 otherwise

(1)

Y

X

Y + X = 1
1

1

Using the figure to the left we can find the marginal PDFs by integrating
over the appropriate regions.

fX (x) =
∫ 1−x

0
2 dy =

{
2(1 − x) 0 ≤ x ≤ 1
0 otherwise

(2)

Likewise for fY (y):

fY (y) =
∫ 1−y

0
2 dx =

{
2(1 − y) 0 ≤ y ≤ 1
0 otherwise

(3)

Problem 4.5.3 Solution
Random variables X and Y have joint PDF

fX,Y (x, y) =
{

1/(πr2) 0 ≤ x2 + y2 ≤ r2

0 otherwise
(1)

(a) The marginal PDF of X is

fX (x) = 2
∫ √

r2−x2

−√
r2−x2

1
πr2

dy =

{
2
√

r2−x2

πr2 −r ≤ x ≤ r,
0 otherwise.

(2)

(b) Similarly, for random variable Y ,

fY (y) = 2
∫ √

r2−y2

−
√

r2−y2

1
πr2

dx =

{
2
√

r2−y2

πr2 −r ≤ y ≤ r,
0 otherwise.

(3)

Problem 4.5.4 Solution
The joint PDF of X and Y and the region of nonzero probability are

Y

X
1

1

-1

fX,Y (x, y) =
{

5x2/2 −1 ≤ x ≤ 1, 0 ≤ y ≤ x2

0 otherwise
(1)

We can find the appropriate marginal PDFs by integrating the joint PDF.
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(a) The marginal PDF of X is

fX (x) =
∫ x2

0

5x2

2
dy =

{
5x4/2 −1 ≤ x ≤ 1
0 otherwise

(2)

(b) Note that fY (y) = 0 for y > 1 or y < 0. For 0 ≤ y ≤ 1,
Y

X

1

1

-1

y

- y� �y

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx (3)

=
∫ −√

y

−1

5x2

2
dx +

∫ 1

√
y

5x2

2
dx (4)

= 5(1 − y3/2)/3 (5)

The complete expression for the marginal CDF of Y is

fY (y) =
{

5(1 − y3/2)/3 0 ≤ y ≤ 1
0 otherwise

(6)

Problem 4.5.5 Solution
In this problem, the joint PDF is

fX,Y (x, y) =
{

2 |xy| /r4 0 ≤ x2 + y2 ≤ r2

0 otherwise
(1)

(a) Since |xy| = |x||y|, for −r ≤ x ≤ r, we can write

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy =

2 |x|
r4

∫ √
r2−x2

−√
r2−x2

|y| dy (2)

Since |y| is symmetric about the origin, we can simplify the integral to

fX (x) =
4 |x|
r4

∫ √
r2−x2

0
y dy =

2 |x|
r4

y2

∣∣∣∣
√

r2−x2

0

=
2 |x| (r2 − x2)

r4
(3)

Note that for |x| > r, fX(x) = 0. Hence the complete expression for the PDF of X is

fX (x) =

{
2|x|(r2−x2)

r4 −r ≤ x ≤ r
0 otherwise

(4)

(b) Note that the joint PDF is symmetric in x and y so that fY (y) = fX(y).

Problem 4.5.6 Solution
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(a) The joint PDF of X and Y and the region of nonzero probability are
Y

X

1

1

fX,Y (x, y) =
{

cy 0 ≤ y ≤ x ≤ 1
0 otherwise

(1)

(b) To find the value of the constant, c, we integrate the joint PDF over all x and y.

∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy =

∫ 1

0

∫ x

0
cy dy dx =

∫ 1

0

cx2

2
dx =

cx3

6

∣∣∣∣1
0

=
c

6
. (2)

Thus c = 6.

(c) We can find the CDF FX(x) = P [X ≤ x] by integrating the joint PDF over the event X ≤ x.
For x < 0, FX(x) = 0. For x > 1, FX(x) = 1. For 0 ≤ x ≤ 1,

Y

X

1x

1 FX (x) =
∫∫

x′≤x
fX,Y

(
x′, y′

)
dy′ dx′ (3)

=
∫ x

0

∫ x′

0
6y′ dy′ dx′ (4)

=
∫ x

0
3(x′)2 dx′ = x3. (5)

The complete expression for the joint CDF is

FX (x) =

⎧⎨
⎩

0 x < 0
x3 0 ≤ x ≤ 1
1 x ≥ 1

(6)

(d) Similarly, we find the CDF of Y by integrating fX,Y (x, y) over the event Y ≤ y. For y < 0,
FY (y) = 0 and for y > 1, FY (y) = 1. For 0 ≤ y ≤ 1,

Y

X

1

y

1
FY (y) =

∫∫
y′≤y

fX,Y

(
x′, y′

)
dy′ dx′ (7)

=
∫ y

0

∫ 1

y′
6y′ dx′ dy′ (8)

=
∫ y

0
6y′(1 − y′) dy′ (9)

= 3(y′)2 − 2(y′)3
∣∣y
0

= 3y2 − 2y3. (10)
The complete expression for the CDF of Y is

FY (y) =

⎧⎨
⎩

0 y < 0
3y2 − 2y3 0 ≤ y ≤ 1
1 y > 1

(11)
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(e) To find P [Y ≤ X/2], we integrate the joint PDF fX,Y (x, y) over the region y ≤ x/2.
Y

X

1

½

1 P [Y ≤ X/2] =
∫ 1

0

∫ x/2

0
6y dy dx (12)

=
∫ 1

0
3y2

∣∣x/2

0
dx (13)

=
∫ 1

0

3x2

4
dx = 1/4 (14)

Problem 4.6.1 Solution
In this problem, it is helpful to label possible points X, Y along with the corresponding values of
W = X − Y . From the statement of Problem 4.6.1,

�

�

y

x

PX,Y (x, y)

•
W=0
1/28

•
W=−2
3/28

•
W=1
2/28

•
W=−1
6/28

•
W=3
4/28

•
W=1
12/28

0 1 2 3 4
0

1

2

3

4

(a) To find the PMF of W , we simply add the probabilities associated with each possible value
of W :

PW (−2) = PX,Y (1, 3) = 3/28 PW (−1) = PX,Y (2, 3) = 6/28 (1)
PW (0) = PX,Y (1, 1) = 1/28 PW (1) = PX,Y (2, 1) + PX,Y (4, 3) (2)
PW (3) = PX,Y (4, 1) = 4/28 = 14/28 (3)

For all other values of w, PW (w) = 0.

(b) The expected value of W is

E [W ] =
∑
w

wPW (w) (4)

= −2(3/28) + −1(6/28) + 0(1/28) + 1(14/28) + 3(4/28) = 1/2 (5)

(c) P [W > 0] = PW (1) + PW (3) = 18/28.
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Problem 4.6.2 Solution

� �

�

�

y

x

PX,Y (x, y)

•
3c

W=−4

•
2c

W=−2

•
c

W=0

• c
W=−2

•
c

W=2

• c
W=0

•
2c

W=2

•
3c

W=4

1 2

1

In Problem 4.2.2, the joint PMF
PX,Y (x, y) is given in terms of the
parameter c. For this problem, we first
need to find c. Before doing so, it is
convenient to label each possible X, Y
point with the corresponding value of
W = X + 2Y .

To find c, we sum the PMF over all possible values of X and Y . We choose c so the sum equals
one. ∑

x

∑
y

PX,Y (x, y) =
∑

x=−2,0,2

∑
y=−1,0,1

c |x + y| (1)

= 6c + 2c + 6c = 14c (2)

Thus c = 1/14. Now we can solve the actual problem.

(a) From the above graph, we can calculate the probability of each possible value of w.

PW (−4) = PX,Y (−2,−1) = 3c (3)
PW (−2) = PX,Y (−2, 0) + PX,Y (0,−1) = 3c (4)

PW (0) = PX,Y (−2, 1) + PX,Y (2,−1) = 2c (5)
PW (2) = PX,Y (0, 1) + PX,Y (2, 0) = 3c (6)
PW (4) = PX,Y (2, 1) = 3c (7)

With c = 1/14, we can summarize the PMF as

PW (w) =

⎧⎨
⎩

3/14 w = −4,−2, 2, 4
2/14 w = 0
0 otherwise

(8)

(b) The expected value is now straightforward:

E [W ] =
3
14

(−4 + −2 + 2 + 4) +
2
14

0 = 0. (9)

(c) Lastly, P [W > 0] = PW (2) + PW (4) = 3/7.

Problem 4.6.3 Solution
We observe that when X = x, we must have Y = w − x in order for W = w. That is,

PW (w) =
∞∑

x=−∞
P [X = x, Y = w − x] =

∞∑
x=−∞

PX,Y (x, w − x) (1)
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Problem 4.6.4 Solution

X

Y

w

w

W>w The x, y pairs with nonzero probability are shown in the figure.
For w = 0, 1, . . . , 10, we observe that

P [W > w] = P [min(X, Y ) > w] (1)
= P [X > w, Y > w] (2)

= 0.01(10 − w)2 (3)

To find the PMF of W , we observe that for w = 1, . . . , 10,

PW (w) = P [W > w − 1] − P [W > w] (4)

= 0.01[(10 − w − 1)2 − (10 − w)2] = 0.01(21 − 2w) (5)

The complete expression for the PMF of W is

PW (w) =
{

0.01(21 − 2w) w = 1, 2, . . . , 10
0 otherwise

(6)

Problem 4.6.5 Solution

X

Y

v

v V<v

The x, y pairs with nonzero probability are shown in the figure.
For v = 1, . . . , 11, we observe that

P [V < v] = P [max(X, Y ) < v] (1)
= P [X < v, Y < v] (2)

= 0.01(v − 1)2 (3)

To find the PMF of V , we observe that for v = 1, . . . , 10,

PV (v) = P [V < v + 1] − P [V < v] (4)

= 0.01[v2 − (v − 1)2] (5)
= 0.01(2v − 1) (6)

The complete expression for the PMF of V is

PV (v) =
{

0.01(2v − 1) v = 1, 2, . . . , 10
0 otherwise

(7)
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Problem 4.6.6 Solution

(a) The minimum value of W is W = 0, which occurs when X = 0 and Y = 0. The maximum
value of W is W = 1, which occurs when X = 1 or Y = 1. The range of W is SW =
{w|0 ≤ w ≤ 1}.

(b) For 0 ≤ w ≤ 1, the CDF of W is
Y

X

1w

1

w W<w
FW (w) = P [max(X, Y ) ≤ w] (1)

= P [X ≤ w, Y ≤ w] (2)

=
∫ w

0

∫ w

0
fX,Y (x, y) dy dx (3)

Substituting fX,Y (x, y) = x + y yields

FW (w) =
∫ w

0

∫ w

0
(x + y) dy dx (4)

=
∫ w

0

(
xy +

y2

2

∣∣∣∣y=w

y=0

)
dx =

∫ w

0
(wx + w2/2) dx = w3 (5)

The complete expression for the CDF is

FW (w) =

⎧⎨
⎩

0 w < 0
w3 0 ≤ w ≤ 1
1 otherwise

(6)

The PDF of W is found by differentiating the CDF.

fW (w) =
dFW (w)

dw
=
{

3w2 0 ≤ w ≤ 1
0 otherwise

(7)

Problem 4.6.7 Solution

(a) Since the joint PDF fX,Y (x, y) is nonzero only for 0 ≤ y ≤ x ≤ 1, we observe that W =
Y − X ≤ 0 since Y ≤ X. In addition, the most negative value of W occurs when Y = 0 and
X = 1 and W = −1. Hence the range of W is SW = {w| − 1 ≤ w ≤ 0}.

(b) For w < −1, FW (w) = 0. For w > 0, FW (w) = 1. For −1 ≤ w ≤ 0, the CDF of W is

Y

X
1-w

½

1

Y=X+w

FW (w) = P [Y − X ≤ w] (1)

=
∫ 1

−w

∫ x+w

0
6y dy dx (2)

=
∫ 1

−w
3(x + w)2 dx (3)

= (x + w)3
∣∣1
−w

= (1 + w)3 (4)
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Therefore, the complete CDF of W is

FW (w) =

⎧⎨
⎩

0 w < −1
(1 + w)3 −1 ≤ w ≤ 0
1 w > 0

(5)

By taking the derivative of fW (w) with respect to w, we obtain the PDF

fW (w) =
{

3(w + 1)2 −1 ≤ w ≤ 0
0 otherwise

(6)

Problem 4.6.8 Solution
Random variables X and Y have joint PDF

Y

X

1

1

fX,Y (x, y) =
{

2 0 ≤ y ≤ x ≤ 1
0 otherwise

(1)

(a) Since X and Y are both nonnegative, W = Y/X ≥ 0. Since Y ≤ X, W = Y/X ≤ 1. Note
that W = 0 can occur if Y = 0. Thus the range of W is SW = {w|0 ≤ w ≤ 1}.

(b) For 0 ≤ w ≤ 1, the CDF of W is

Y

X

1

1

w
P[Y<wX]

FW (w) = P [Y/X ≤ w] = P [Y ≤ wX] = w (2)

The complete expression for the CDF is

FW (w) =

⎧⎨
⎩

0 w < 0
w 0 ≤ w < 1
1 w ≥ 1

(3)

By taking the derivative of the CDF, we find that the PDF of W is

fW (w) =
{

1 0 ≤ w < 1
0 otherwise

(4)

We see that W has a uniform PDF over [0, 1]. Thus E[W ] = 1/2.

Problem 4.6.9 Solution
Random variables X and Y have joint PDF

Y

X

1

1

fX,Y (x, y) =
{

2 0 ≤ y ≤ x ≤ 1
0 otherwise

(1)
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(a) Since fX,Y (x, y) = 0 for y > x, we can conclude that Y ≤ X and that W = X/Y ≥ 1. Since
Y can be arbitrarily small but positive, W can be arbitrarily large. Hence the range of W is
SW = {w|w ≥ 1}.

(b) For w ≥ 1, the CDF of W is
Y

X

1

1

1/w

P[Y<X/w]

FW (w) = P [X/Y ≤ w] (2)
= 1 − P [X/Y > w] (3)
= 1 − P [Y < X/w] (4)
= 1 − 1/w (5)

Note that we have used the fact that P [Y < X/w] equals 1/2 times the area of the corre-
sponding triangle. The complete CDF is

FW (w) =
{

0 w < 1
1 − 1/w w ≥ 1

(6)

The PDF of W is found by differentiating the CDF.

fW (w) =
dFW (w)

dw
=
{

1/w2 w ≥ 1
0 otherwise

(7)

To find the expected value E[W ], we write

E [W ] =
∫ ∞

−∞
wfW (w) dw =

∫ ∞

1

dw

w
. (8)

However, the integral diverges and E[W ] is undefined.

Problem 4.6.10 Solution
The position of the mobile phone is equally likely to be anywhere in the area of a circle with radius
16 km. Let X and Y denote the position of the mobile. Since we are given that the cell has a
radius of 4 km, we will measure X and Y in kilometers. Assuming the base station is at the origin
of the X, Y plane, the joint PDF of X and Y is

fX,Y (x, y) =
{

1
16π x2 + y2 ≤ 16
0 otherwise

(1)

Since the mobile’s radial distance from the base station is R =
√

X2 + Y 2, the CDF of R is

FR (r) = P [R ≤ r] = P
[
X2 + Y 2 ≤ r2

]
(2)

By changing to polar coordinates, we see that for 0 ≤ r ≤ 4 km,

FR (r) =
∫ 2π

0

∫ r

0

r′

16π
dr′ dθ′ = r2/16 (3)

So

FR (r) =

⎧⎨
⎩

0 r < 0
r2/16 0 ≤ r < 4
1 r ≥ 4

(4)

Then by taking the derivative with respect to r we arrive at the PDF

fR (r) =
{

r/8 0 ≤ r ≤ 4
0 otherwise

(5)
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Problem 4.6.11 Solution
Following the hint, we observe that either Y ≥ X or X ≥ Y , or, equivalently, (Y/X) ≥ 1 or
(X/Y ) ≥ 1. Hence, W ≥ 1. To find the CDF FW (w), we know that FW (w) = 0 for w < 1. For
w ≥ 1, we solve

FW (w) = P [max[(X/Y ), (Y/X)] ≤ w]
= P [(X/Y ) ≤ w, (Y/X) ≤ w]
= P [Y ≥ X/w, Y ≤ wX]
= P [X/w ≤ Y ≤ wX]

Y

X

Y=wX

Y=X/w

a/w

a/w
a

a

We note that in the middle of the above steps, nonnegativity of X and Y
was essential. We can depict the given set {X/w ≤ Y ≤ wX} as the dark
region on the X, Y plane. Because the PDF is uniform over the square, it
is easier to use geometry to calculate the probability. In particular, each
of the lighter triangles that are not part of the region of interest has area
a2/2w.

This implies

P [X/w ≤ Y ≤ wX] = 1 − a2/2w + a2/2w

a2
= 1 − 1

w
(1)

The final expression for the CDF of W is

FW (w) =
{

0 w < 1
1 − 1/w w ≥ 1

(2)

By taking the derivative, we obtain the PDF

fW (w) =
{

0 w < 1
1/w2 w ≥ 1

(3)

Problem 4.7.1 Solution

�

�

y

x

PX,Y (x, y)

•1/28

•3/28

•2/28

•6/28

•4/28

•12/28

0 1 2 3 4
0

1

2

3

4
In Problem 4.2.1, we found the joint PMF PX,Y (x, y) as
shown. Also the expected values and variances were

E [X] = 3 Var[X] = 10/7 (1)
E [Y ] = 5/2 Var[Y ] = 3/4 (2)

We use these results now to solve this problem.

(a) Random variable W = Y/X has expected value

E [Y/X] =
∑

x=1,2,4

∑
y=1,3

y

x
PX,Y (x, y) (3)

=
1
1

1
28

+
3
1

3
28

+
1
2

2
28

+
3
2

6
28

+
1
4

4
28

+
3
4

12
28

= 15/14 (4)
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(b) The correlation of X and Y is

rX,Y =
∑

x=1,2,4

∑
y=1,3

xyPX,Y (x, y) (5)

=
1 · 1 · 1

28
+

1 · 3 · 3
28

+
2 · 1 · 2

28
+

2 · 3 · 6
28

+
4 · 1 · 4

28
+

4 · 3 · 12
28

(6)

= 210/28 = 15/2 (7)

Recognizing that PX,Y (x, y) = xy/28 yields the faster calculation

rX,Y = E [XY ] =
∑

x=1,2,4

∑
y=1,3

(xy)2

28
(8)

=
1
28

∑
x=1,2,4

x2
∑

y=1,3

y2 (9)

=
1
28

(1 + 22 + 42)(12 + 32) =
210
28

=
15
2

(10)

(c) The covariance of X and Y is

Cov [X, Y ] = E [XY ] − E [X] E [Y ] =
15
2

− 3
5
2

= 0 (11)

(d) Since X and Y have zero covariance, the correlation coefficient is

ρX,Y =
Cov [X, Y ]√
Var[X] Var[Y ]

= 0. (12)

(e) Since X and Y are uncorrelated, the variance of X + Y is

Var[X + Y ] = Var[X] + Var[Y ] =
61
28

. (13)

Problem 4.7.2 Solution

� �

�

�

y

x

PX,Y (x, y)

•3/14

•2/14

•1/14

•1/14

•1/14

•1/14

•2/14

•3/14

1 2

1

In Problem 4.2.1, we found the joint PMF PX,Y (x, y)
shown here. The expected values and variances were
found to be

E [X] = 0 Var[X] = 24/7 (1)
E [Y ] = 0 Var[Y ] = 5/7 (2)

We need these results to solve this problem.
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(a) Random variable W = 2XY has expected value

E
[
2XY

]
=

∑
x=−2,0,2

∑
y=−1,0,1

2xyPX,Y (x, y) (3)

= 2−2(−1) 3
14

+ 2−2(0) 2
14

+ 2−2(1) 1
14

+ 20(−1) 1
14

+ 20(1) 1
14

(4)

+ 22(−1) 1
14

+ 22(0) 2
14

+ 22(1) 3
14

(5)

= 61/28 (6)

(b) The correlation of X and Y is

rX,Y =
∑

x=−2,0,2

∑
y=−1,0,1

xyPX,Y (x, y) (7)

=
−2(−1)(3)

14
+

−2(0)(2)
14

+
−2(1)(1)

14
+

2(−1)(1)
14

+
2(0)(2)

14
+

2(1)(3)
14

(8)

= 4/7 (9)

(c) The covariance of X and Y is

Cov [X, Y ] = E [XY ] − E [X]E [Y ] = 4/7 (10)

(d) The correlation coefficient is

ρX,Y =
Cov [X, Y ]√
Var[X] Var[Y ]

=
2√
30

(11)

(e) By Theorem 4.16,

Var [X + Y ] = Var [X] + Var[Y ] + 2 Cov [X, Y ] (12)

=
24
7

+
5
7

+ 2
4
7

=
37
7

. (13)

Problem 4.7.3 Solution
In the solution to Quiz 4.3, the joint PMF and the marginal PMFs are

PH,B (h, b) b = 0 b = 2 b = 4 PH (h)
h = −1 0 0.4 0.2 0.6
h = 0 0.1 0 0.1 0.2
h = 1 0.1 0.1 0 0.2
PB (b) 0.2 0.5 0.3

(1)

From the joint PMF, the correlation coefficient is

rH,B = E [HB] =
1∑

h=−1

∑
b=0,2,4

hbPH,B (h, b) (2)

= −1(2)(0.4) + 1(2)(0.1) + −1(4)(0.2) + 1(4)(0) (3)
= −1.4 (4)
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since only terms in which both h and b are nonzero make a contribution. Using the marginal
PMFs, the expected values of X and Y are

E [H] =
1∑

h=−1

hPH (h) = −1(0.6) + 0(0.2) + 1(0.2) = −0.2 (5)

E [B] =
∑

b=0,2,4

bPB (b) = 0(0.2) + 2(0.5) + 4(0.3) = 2.2 (6)

The covariance is

Cov [H, B] = E [HB] − E [H]E [B] = −1.4 − (−0.2)(2.2) = −0.96 (7)

Problem 4.7.4 Solution
From the joint PMF, PX(x)Y , found in Example 4.13, we can find the marginal PMF for X or Y
by summing over the columns or rows of the joint PMF.

PY (y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

25/48 y = 1
13/48 y = 2
7/48 y = 3
3/48 y = 4
0 otherwise

PX (x) =
{

1/4 x = 1, 2, 3, 4
0 otherwise

(1)

(a) The expected values are

E [Y ] =
4∑

y=1

yPY (y) = 1
25
48

+ 2
13
48

+ 3
7
48

+ 4
3
48

= 7/4 (2)

E [X] =
4∑

x=1

xPX (x) =
1
4

(1 + 2 + 3 + 4) = 5/2 (3)

(b) To find the variances, we first find the second moments.

E
[
Y 2
]

=
4∑

y=1

y2PY (y) = 12 25
48

+ 22 13
48

+ 32 7
48

+ 42 3
48

= 47/12 (4)

E
[
X2

]
=

4∑
x=1

x2PX (x) =
1
4
(
12 + 22 + 32 + 42

)
= 15/2 (5)

Now the variances are

Var[Y ] = E
[
Y 2
]− (E [Y ])2 = 47/12 − (7/4)2 = 41/48 (6)

Var[X] = E
[
X2

]− (E [X])2 = 15/2 − (5/2)2 = 5/4 (7)
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(c) To find the correlation, we evaluate the product XY over all values of X and Y . Specifically,

rX,Y = E [XY ] =
4∑

x=1

x∑
y=1

xyPX,Y (x, y) (8)

=
1
4

+
2
8

+
3
12

+
4
16

+
4
8

+
6
12

+
8
16

+
9
12

+
12
16

+
16
16

(9)

= 5 (10)

(d) The covariance of X and Y is

Cov [X, Y ] = E [XY ] − E [X]E [Y ] = 5 − (7/4)(10/4) = 10/16 (11)

(e) The correlation coefficient is

ρX,Y =
Cov [W, V ]√
Var[W ] Var[V ]

=
10/16√

(41/48)(5/4)
≈ 0.605 (12)

Problem 4.7.5 Solution
For integers 0 ≤ x ≤ 5, the marginal PMF of X is

PX (x) =
∑

y

PX,Y (x, y) =
x∑

y=0

(1/21) =
x + 1
21

(1)

Similarly, for integers 0 ≤ y ≤ 5, the marginal PMF of Y is

PY (y) =
∑

x

PX,Y (x, y) =
5∑

x=y

(1/21) =
6 − y

21
(2)

The complete expressions for the marginal PMFs are

PX (x) =
{

(x + 1)/21 x = 0, . . . , 5
0 otherwise

(3)

PY (y) =
{

(6 − y)/21 y = 0, . . . , 5
0 otherwise

(4)

The expected values are

E [X] =
5∑

x=0

x
x + 1
21

=
70
21

=
10
3

E [Y ] =
5∑

y=0

y
6 − y

21
=

35
21

=
5
3

(5)

To find the covariance, we first find the correlation

E [XY ] =
5∑

x=0

x∑
y=0

xy

21
=

1
21

5∑
x=1

x
x∑

y=1

y =
1
42

5∑
x=1

x2(x + 1) =
280
42

=
20
3

(6)

The covariance of X and Y is

Cov [X, Y ] = E [XY ] − E [X] E [Y ] =
20
3

− 50
9

=
10
9

(7)
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Problem 4.7.6 Solution

�

�

y

x

•1/4 •1/8

•1/8

•1/12

•1/12

•1/12

•1/16

•1/16

•1/16

•1/16

•
W=1
V =1

•
W=1
V =2

•
W=2
V =2

•
W=1
V =3

•
W=2
V =3

•
W=3
V =3

•
W=1
V =4

•
W=2
V =4

•
W=3
V =4

•
W=4
V =4

PX,Y (x, y)

0 1 2 3 4

0

1

2

3

4

To solve this problem, we identify the
values of W = min(X, Y ) and V =
max(X, Y ) for each possible pair x, y.
Here we observe that W = Y and
V = X. This is a result of the under-
lying experiment in that given X =
x, each Y ∈ {1, 2, . . . , x} is equally
likely. Hence Y ≤ X. This implies
min(X, Y ) = Y and max(X, Y ) = X.

Using the results from Problem 4.7.4, we have the following answers.

(a) The expected values are

E [W ] = E [Y ] = 7/4 E [V ] = E [X] = 5/2 (1)

(b) The variances are

Var[W ] = Var[Y ] = 41/48 Var[V ] = Var[X] = 5/4 (2)

(c) The correlation is
rW,V = E [WV ] = E [XY ] = rX,Y = 5 (3)

(d) The covariance of W and V is

Cov [W, V ] = Cov [X, Y ] = 10/16 (4)

(e) The correlation coefficient is

ρW,V = ρX,Y =
10/16√

(41/48)(5/4)
≈ 0.605 (5)

Problem 4.7.7 Solution
First, we observe that Y has mean μY = aμX + b and variance Var[Y ] = a2 Var[X]. The covariance
of X and Y is

Cov [X, Y ] = E [(X − μX)(aX + b − aμX − b)] (1)

= aE
[
(X − μX)2

]
(2)

= a Var[X] (3)

The correlation coefficient is

ρX,Y =
Cov [X, Y ]√

Var[X]
√

Var[Y ]
=

a Var[X]√
Var[X]

√
a2 Var[X]

=
a

|a| (4)

When a > 0, ρX,Y = 1. When a < 0, ρX,Y = 1.
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Problem 4.7.8 Solution
The joint PDF of X and Y is

fX,Y (x, y) =
{

(x + y)/3 0 ≤ x ≤ 1, 0 ≤ y ≤ 2
0 otherwise

(1)

Before calculating moments, we first find the marginal PDFs of X and Y . For 0 ≤ x ≤ 1,

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ 2

0

x + y

3
dy =

xy

3
+

y2

6

∣∣∣∣y=2

y=0

=
2x + 2

3
(2)

For 0 ≤ y ≤ 2,

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx =

∫ 1

0

(x

3
+

y

3

)
dx =

x2

6
+

xy

3

∣∣∣∣x=1

x=0

=
2y + 1

6
(3)

Complete expressions for the marginal PDFs are

fX (x) =
{

2x+2
3 0 ≤ x ≤ 1

0 otherwise
fY (y) =

{ 2y+1
6 0 ≤ y ≤ 2

0 otherwise
(4)

(a) The expected value of X is

E [X] =
∫ ∞

−∞
xfX (x) dx =

∫ 1

0
x

2x + 2
3

dx =
2x3

9
+

x2

3

∣∣∣∣1
0

=
5
9

(5)

The second moment of X is

E
[
X2

]
=
∫ ∞

−∞
x2fX (x) dx =

∫ 1

0
x2 2x + 2

3
dx =

x4

6
+

2x3

9

∣∣∣∣1
0

=
7
18

(6)

The variance of X is Var[X] = E[X2] − (E[X])2 = 7/18 − (5/9)2 = 13/162.

(b) The expected value of Y is

E [Y ] =
∫ ∞

−∞
yfY (y) dy =

∫ 2

0
y
2y + 1

6
dy =

y2

12
+

y3

9

∣∣∣∣2
0

=
11
9

(7)

The second moment of Y is

E
[
Y 2
]

=
∫ ∞

−∞
y2fY (y) dy =

∫ 2

0
y2 2y + 1

6
dy =

y3

18
+

y4

12

∣∣∣∣2
0

=
16
9

(8)

The variance of Y is Var[Y ] = E[Y 2] − (E[Y ])2 = 23/81.

(c) The correlation of X and Y is

E [XY ] =
∫∫

xyfX,Y (x, y) dx dy (9)

=
∫ 1

0

∫ 2

0
xy

(
x + y

3

)
dy dx (10)

=
∫ 1

0

(
x2y2

6
+

xy3

9

∣∣∣∣y=2

y=0

)
dx (11)

=
∫ 1

0

(
2x2

3
+

8x

9

)
dx =

2x3

9
+

4x2

9

∣∣∣∣1
0

=
2
3

(12)

The covariance is Cov[X, Y ] = E[XY ] − E[X]E[Y ] = −1/81.
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(d) The expected value of X and Y is

E [X + Y ] = E [X] + E [Y ] = 5/9 + 11/9 = 16/9 (13)

(e) By Theorem 4.15,

Var[X + Y ] = Var[X] + Var[Y ] + 2 Cov [X, Y ] =
13
162

+
23
81

− 2
81

=
55
162

(14)

Problem 4.7.9 Solution

(a) The first moment of X is

E [X] =
∫ 1

0

∫ 1

0
4x2y dy dx =

∫ 1

0
2x2 dx =

2
3

(1)

The second moment of X is

E
[
X2

]
=
∫ 1

0

∫ 1

0
4x3y dy dx =

∫ 1

0
2x3 dx =

1
2

(2)

The variance of X is Var[X] = E[X2] − (E[X])2 = 1/2 − (2/3)2 = 1/18.

(b) The mean of Y is

E [Y ] =
∫ 1

0

∫ 1

0
4xy2 dy dx =

∫ 1

0

4x

3
dx =

2
3

(3)

The second moment of Y is

E
[
Y 2
]

=
∫ 1

0

∫ 1

0
4xy3 dy dx =

∫ 1

0
x dx =

1
2

(4)

The variance of Y is Var[Y ] = E[Y 2] − (E[Y ])2 = 1/2 − (2/3)2 = 1/18.

(c) To find the covariance, we first find the correlation

E [XY ] =
∫ 1

0

∫ 1

0
4x2y2 dy dx =

∫ 1

0

4x2

3
dx =

4
9

(5)

The covariance is thus

Cov [X, Y ] = E [XY ] − E [X]E [Y ] =
4
9
−
(

2
3

)2

= 0 (6)

(d) E[X + Y ] = E[X] + E[Y ] = 2/3 + 2/3 = 4/3.

(e) By Theorem 4.15, the variance of X + Y is

Var[X] + Var[Y ] + 2 Cov [X, Y ] = 1/18 + 1/18 + 0 = 1/9 (7)
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Problem 4.7.10 Solution
The joint PDF of X and Y and the region of nonzero probability are

Y

X
1

1

-1

fX,Y (x, y) =
{

5x2/2 −1 ≤ x ≤ 1, 0 ≤ y ≤ x2

0 otherwise
(1)

(a) The first moment of X is

E [X] =
∫ 1

−1

∫ x2

0
x

5x2

2
dy dx =

∫ 1

−1

5x5

2
dx =

5x6

12

∣∣∣∣1
−1

= 0 (2)

Since E[X] = 0, the variance of X and the second moment are both

Var[X] = E
[
X2

]
=
∫ 1

−1

∫ x2

0
x2 5x2

2
dy dx =

5x7

14

∣∣∣∣1
−1

=
10
14

(3)

(b) The first and second moments of Y are

E [Y ] =
∫ 1

−1

∫ x2

0
y
5x2

2
dy dx =

5
14

(4)

E
[
Y 2
]

=
∫ 1

−1

∫
0
x2y2 5x2

2
dy dx =

5
26

(5)

Therefore, Var[Y ] = 5/26 − (5/14)2 = .0576.

(c) Since E[X] = 0, Cov[X, Y ] = E[XY ] − E[X]E[Y ] = E[XY ]. Thus,

Cov [X, Y ] = E [XY ] =
∫ 1

1

∫ x2

0
xy

5x2

2
dy dx =

∫ 1

−1

5x7

4
dx = 0 (6)

(d) The expected value of the sum X + Y is

E [X + Y ] = E [X] + E [Y ] =
5
14

(7)

(e) By Theorem 4.15, the variance of X + Y is

Var[X + Y ] = Var[X] + Var[Y ] + 2 Cov [X, Y ] = 5/7 + 0.0576 = 0.7719 (8)

Problem 4.7.11 Solution
Random variables X and Y have joint PDF

Y

X

1

1

fX,Y (x, y) =
{

2 0 ≤ y ≤ x ≤ 1
0 otherwise

(1)
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Before finding moments, it is helpful to first find the marginal PDFs. For 0 ≤ x ≤ 1,

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ x

0
2 dy = 2x (2)

Note that fX(x) = 0 for x < 0 or x > 1. For 0 ≤ y ≤ 1,

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx =

∫ 1

y
2 dx = 2(1 − y) (3)

Also, for y < 0 or y > 1, fY (y) = 0. Complete expressions for the marginal PDFs are

fX (x) =
{

2x 0 ≤ x ≤ 1
0 otherwise

fY (y) =
{

2(1 − y) 0 ≤ y ≤ 1
0 otherwise

(4)

(a) The first two moments of X are

E [X] =
∫ ∞

−∞
xfX (x) dx =

∫ 1

0
2x2 dx = 2/3 (5)

E
[
X2

]
=
∫ ∞

−∞
x2fX (x) dx =

∫ 1

0
2x3 dx = 1/2 (6)

The variance of X is Var[X] = E[X2] − (E[X])2 = 1/2 − 4/9 = 1/18.

(b) The expected value and second moment of Y are

E [Y ] =
∫ ∞

−∞
yfY (y) dy =

∫ 1

0
2y(1 − y) dy = y2 − 2y3

3

∣∣∣∣1
0

= 1/3 (7)

E
[
Y 2
]

=
∫ ∞

−∞
y2fY (y) dy =

∫ 1

0
2y2(1 − y) dy =

2y3

3
− y4

2

∣∣∣∣1
0

= 1/6 (8)

The variance of Y is Var[Y ] = E[Y 2] − (E[Y ])2 = 1/6 − 1/9 = 1/18.

(c) Before finding the covariance, we find the correlation

E [XY ] =
∫ 1

0

∫ x

0
2xy dy dx =

∫ 1

0
x3 dx = 1/4 (9)

The covariance is
Cov [X, Y ] = E [XY ] − E [X]E [Y ] = 1/36. (10)

(d) E[X + Y ] = E[X] + E[Y ] = 2/3 + 1/3 = 1

(e) By Theorem 4.15,

Var[X + Y ] = Var[X] + Var[Y ] + 2 Cov [X, Y ] = 1/6. (11)
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Problem 4.7.12 Solution

Y

X

1

-1

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

1/2 −1 ≤ x ≤ y ≤ 1
0 otherwise

(1)

The region of possible pairs (x, y) is shown with the joint PDF. The rest of
this problem is just calculus.

E [XY ] =
∫ 1

−1

∫ 1

x

xy

2
dy dx =

1
4

∫ 1

−1
x(1 − x2) dx =

x2

8
− x4

16

∣∣∣∣1
−1

= 0 (2)

E
[
eX+Y

]
=
∫ 1

−1

∫ 1

x

1
2
exey dy dx (3)

=
1
2

∫ 1

−1
ex(e1 − ex) dx (4)

=
1
2
e1+x − 1

4
e2x

∣∣∣∣1
−1

=
e2

4
+

e−2

4
− 1

2
(5)

Problem 4.7.13 Solution
For this problem, calculating the marginal PMF of K is not easy. However, the marginal PMF of
N is easy to find. For n = 1, 2, . . .,

PN (n) =
n∑

k=1

(1 − p)n−1p

n
= (1 − p)n−1p (1)

That is, N has a geometric PMF. From Appendix A, we note that

E [N ] =
1
p

Var[N ] =
1 − p

p2
(2)

We can use these facts to find the second moment of N .

E
[
N2

]
= Var[N ] + (E [N ])2 =

2 − p

p2
(3)

Now we can calculate the moments of K.

E [K] =
∞∑

n=1

n∑
k=1

k
(1 − p)n−1p

n
=

∞∑
n=1

(1 − p)n−1p

n

n∑
k=1

k (4)

Since
∑n

k=1 k = n(n + 1)/2,

E [K] =
∞∑

n=1

n + 1
2

(1 − p)n−1p = E

[
N + 1

2

]
=

1
2p

+
1
2

(5)

We now can calculate the sum of the moments.

E [N + K] = E [N ] + E [K] =
3
2p

+
1
2

(6)
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The second moment of K is

E
[
K2

]
=

∞∑
n=1

n∑
k=1

k2 (1 − p)n−1p

n
=

∞∑
n=1

(1 − p)n−1p

n

n∑
k=1

k2 (7)

Using the identity
∑n

k=1 k2 = n(n + 1)(2n + 1)/6, we obtain

E
[
K2

]
=

∞∑
n=1

(n + 1)(2n + 1)
6

(1 − p)n−1p = E

[
(N + 1)(2N + 1)

6

]
(8)

Applying the values of E[N ] and E[N2] found above, we find that

E
[
K2

]
=

E
[
N2

]
3

+
E [N ]

2
+

1
6

=
2

3p2
+

1
6p

+
1
6

(9)

Thus, we can calculate the variance of K.

Var[K] = E
[
K2

]− (E [K])2 =
5

12p2
− 1

3p
+

5
12

(10)

To find the correlation of N and K,

E [NK] =
∞∑

n=1

n∑
k=1

nk
(1 − p)n−1p

n
=

∞∑
n=1

(1 − p)n−1p
n∑

k=1

k (11)

Since
∑n

k=1 k = n(n + 1)/2,

E [NK] =
∞∑

n=1

n(n + 1)
2

(1 − p)n−1p = E

[
N(N + 1)

2

]
=

1
p2

(12)

Finally, the covariance is

Cov [N, K] = E [NK] − E [N ]E [K] =
1

2p2
− 1

2p
(13)

Problem 4.8.1 Solution
The event A occurs iff X > 5 and Y > 5 and has probability

P [A] = P [X > 5, Y > 5] =
10∑

x=6

10∑
y=6

0.01 = 0.25 (1)

From Theorem 4.19,

PX,Y |A (x, y) =

{
PX,Y (x,y)

P [A] (x, y) ∈ A

0 otherwise
(2)

=
{

0.04 x = 6, . . . , 10; y = 6, . . . , 20
0 otherwise

(3)
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Problem 4.8.2 Solution
The event B occurs iff X ≤ 5 and Y ≤ 5 and has probability

P [B] = P [X ≤ 5, Y ≤ 5] =
5∑

x=1

5∑
y=1

0.01 = 0.25 (1)

From Theorem 4.19,

PX,Y |B (x, y) =

{
PX,Y (x,y)

P [B] (x, y) ∈ A

0 otherwise
(2)

=
{

0.04 x = 1, . . . , 5; y = 1, . . . , 5
0 otherwise

(3)

Problem 4.8.3 Solution
Given the event A = {X + Y ≤ 1}, we wish to find fX,Y |A(x, y). First we find

P [A] =
∫ 1

0

∫ 1−x

0
6e−(2x+3y) dy dx = 1 − 3e−2 + 2e−3 (1)

So then

fX,Y |A (x, y) =

{
6e−(2x+3y)

1−3e−2+2e−3 x + y ≤ 1, x ≥ 0, y ≥ 0
0 otherwise

(2)

Problem 4.8.4 Solution
First we observe that for n = 1, 2, . . ., the marginal PMF of N satisfies

PN (n) =
n∑

k=1

PN,K (n, k) = (1 − p)n−1p
n∑

k=1

1
n

= (1 − p)n−1p (1)

Thus, the event B has probability

P [B] =
∞∑

n=10

PN (n) = (1 − p)9p[1 + (1 − p) + (1 − p)2 + · · · ] = (1 − p)9 (2)

From Theorem 4.19,

PN,K|B (n, k) =

{
PN,K(n,k)

P [B] n, k ∈ B

0 otherwise
(3)

=
{

(1 − p)n−10p/n n = 10, 11, . . . ; k = 1, . . . , n
0 otherwise

(4)

The conditional PMF PN |B(n|b) could be found directly from PN (n) using Theorem 2.17. However,
we can also find it just by summing the conditional joint PMF.

PN |B (n) =
n∑

k=1

PN,K|B (n, k) =
{

(1 − p)n−10p n = 10, 11, . . .
0 otherwise

(5)
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From the conditional PMF PN |B(n), we can calculate directly the conditional moments of N given
B. Instead, however, we observe that given B, N ′ = N − 9 has a geometric PMF with mean 1/p.
That is, for n = 1, 2, . . .,

PN ′|B (n) = P [N = n + 9|B] = PN |B (n + 9) = (1 − p)n−1p (6)

Hence, given B, N = N ′ + 9 and we can calculate the conditional expectations

E [N |B] = E
[
N ′ + 9|B] = E

[
N ′|B]+ 9 = 1/p + 9 (7)

Var[N |B] = Var[N ′ + 9|B] = Var[N ′|B] = (1 − p)/p2 (8)

Note that further along in the problem we will need E[N2|B] which we now calculate.

E
[
N2|B] = Var[N |B] + (E [N |B])2 (9)

=
2
p2

+
17
p

+ 81 (10)

For the conditional moments of K, we work directly with the conditional PMF PN,K|B(n, k).

E [K|B] =
∞∑

n=10

n∑
k=1

k
(1 − p)n−10p

n
=

∞∑
n=10

(1 − p)n−10p

n

n∑
k=1

k (11)

Since
∑n

k=1 k = n(n + 1)/2,

E [K|B] =
∞∑

n=1

n + 1
2

(1 − p)n−1p =
1
2
E [N + 1|B] =

1
2p

+ 5 (12)

We now can calculate the conditional expectation of the sum.

E [N + K|B] = E [N |B] + E [K|B] = 1/p + 9 + 1/(2p) + 5 =
3
2p

+ 14 (13)

The conditional second moment of K is

E
[
K2|B] =

∞∑
n=10

n∑
k=1

k2 (1 − p)n−10p

n
=

∞∑
n=10

(1 − p)n−10p

n

n∑
k=1

k2 (14)

Using the identity
∑n

k=1 k2 = n(n + 1)(2n + 1)/6, we obtain

E
[
K2|B] =

∞∑
n=10

(n + 1)(2n + 1)
6

(1 − p)n−10p =
1
6
E [(N + 1)(2N + 1)|B] (15)

Applying the values of E[N |B] and E[N2|B] found above, we find that

E
[
K2|B] =

E
[
N2|B]
3

+
E [N |B]

2
+

1
6

=
2

3p2
+

37
6p

+ 31
2
3

(16)

Thus, we can calculate the conditional variance of K.

Var[K|B] = E
[
K2|B]− (E [K|B])2 =

5
12p2

− 7
6p

+ 6
2
3

(17)
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To find the conditional correlation of N and K,

E [NK|B] =
∞∑

n=10

n∑
k=1

nk
(1 − p)n−10p

n
=

∞∑
n=10

(1 − p)n−1p

n∑
k=1

k (18)

Since
∑n

k=1 k = n(n + 1)/2,

E [NK|B] =
∞∑

n=10

n(n + 1)
2

(1 − p)n−10p =
1
2
E [N(N + 1)|B] =

1
p2

+
9
p

+ 45 (19)

Problem 4.8.5 Solution
The joint PDF of X and Y is

fX,Y (x, y) =
{

(x + y)/3 0 ≤ x ≤ 1, 0 ≤ y ≤ 2
0 otherwise

(1)

(a) The probability that Y ≤ 1 is

Y

X

1

1

2

Y 1

P [A] = P [Y ≤ 1] =
∫∫

y≤1
fX,Y (x, y) dx dy (2)

=
∫ 1

0

∫ 1

0

x + y

3
dy dx (3)

=
∫ 1

0

(
xy

3
+

y2

6

∣∣∣∣y=1

y=0

)
dx (4)

=
∫ 1

0

2x + 1
6

dx =
x2

6
+

x

6

∣∣∣∣1
0

=
1
3

(5)

(b) By Definition 4.10, the conditional joint PDF of X and Y given A is

fX,Y |A (x, y) =

{
fX,Y (x,y)

P [A] (x, y) ∈ A

0 otherwise
=
{

x + y 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise

(6)

From fX,Y |A(x, y), we find the conditional marginal PDF fX|A(x). For 0 ≤ x ≤ 1,

fX|A (x) =
∫ ∞

−∞
fX,Y |A (x, y) dy =

∫ 1

0
(x + y) dy = xy +

y2

2

∣∣∣∣y=1

y=0

= x +
1
2

(7)

The complete expression is

fX|A (x) =
{

x + 1/2 0 ≤ x ≤ 1
0 otherwise

(8)

For 0 ≤ y ≤ 1, the conditional marginal PDF of Y is

fY |A (y) =
∫ ∞

−∞
fX,Y |A (x, y) dx =

∫ 1

0
(x + y) dx =

x2

2
+ xy

∣∣∣∣x=1

x=0

= y + 1/2 (9)

The complete expression is

fY |A (y) =
{

y + 1/2 0 ≤ y ≤ 1
0 otherwise

(10)
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Problem 4.8.6 Solution
Random variables X and Y have joint PDF

fX,Y (x, y) =
{

(4x + 2y)/3 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise

(1)

(a) The probability of event A = {Y ≤ 1/2} is

P [A] =
∫∫

y≤1/2
fX,Y (x, y) dy dx =

∫ 1

0

∫ 1/2

0

4x + 2y
3

dy dx. (2)

With some calculus,

P [A] =
∫ 1

0

4xy + y2

3

∣∣∣∣y=1/2

y=0

dx =
∫ 1

0

2x + 1/4
3

dx =
x2

3
+

x

12

∣∣∣∣1
0

=
5
12

. (3)

(b) The conditional joint PDF of X and Y given A is

fX,Y |A (x, y) =

{
fX,Y (x,y)

P [A] (x, y) ∈ A

0 otherwise
(4)

=
{

8(2x + y)/5 0 ≤ x ≤ 1, 0 ≤ y ≤ 1/2
0 otherwise

(5)

For 0 ≤ x ≤ 1, the PDF of X given A is

fX|A (x) =
∫ ∞

−∞
fX,Y |A (x, y) dy =

8
5

∫ 1/2

0
(2x + y) dy (6)

=
8
5

(
2xy +

y2

2

)∣∣∣∣y=1/2

y=0

=
8x + 1

5
(7)

The complete expression is

fX|A (x) =
{

(8x + 1)/5 0 ≤ x ≤ 1
0 otherwise

(8)

For 0 ≤ y ≤ 1/2, the conditional marginal PDF of Y given A is

fY |A (y) =
∫ ∞

−∞
fX,Y |A (x, y) dx =

8
5

∫ 1

0
(2x + y) dx (9)

=
8x2 + 8xy

5

∣∣∣∣x=1

x=0

=
8y + 8

5
(10)

The complete expression is

fY |A (y) =
{

(8y + 8)/5 0 ≤ y ≤ 1/2
0 otherwise

(11)
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Problem 4.8.7 Solution

(a) The event A = {Y ≤ 1/4} has probability

Y

X

1

1

-1

Y<1/4

½- ½

¼

P [A] = 2
∫ 1/2

0

∫ x2

0

5x2

2
dy dx (1)

+ 2
∫ 1

1/2

∫ 1/4

0

5x2

2
dy dx

=
∫ 1/2

0
5x4 dx +

∫ 1

1/2

5x2

4
dx (2)

= x5
∣∣1/2

0
+ 5x3/12

∣∣1
1/2

(3)

= 19/48 (4)
This implies

fX,Y |A (x, y) =
{

fX,Y (x, y) /P [A] (x, y) ∈ A
0 otherwise

(5)

=
{

120x2/19 −1 ≤ x ≤ 1, 0 ≤ y ≤ x2, y ≤ 1/4
0 otherwise

(6)

(b)

fY |A (y) =
∫ ∞

−∞
fX,Y |A (x, y) dx = 2

∫ 1

√
y

120x2

19
dx =

{
80
19(1 − y3/2) 0 ≤ y ≤ 1/4
0 otherwise

(7)

(c) The conditional expectation of Y given A is

E [Y |A] =
∫ 1/4

0
y
80
19

(1 − y3/2) dy =
80
19

(
y2

2
− 2y7/2

7

)∣∣∣∣∣
1/4

0

=
65
532

(8)

(d) To find fX|A(x), we can write fX|A(x) =
∫∞
−∞ fX,Y |A(x, y) dy. However, when we substitute

fX,Y |A(x, y), the limits will depend on the value of x. When |x| ≤ 1/2,

fX|A (x) =
∫ x2

0

120x2

19
dy =

120x4

19
(9)

When −1 ≤ x ≤ −1/2 or 1/2 ≤ x ≤ 1,

fX|A (x) =
∫ 1/4

0

120x2

19
dy =

30x2

19
(10)

The complete expression for the conditional PDF of X given A is

fX|A (x) =

⎧⎪⎪⎨
⎪⎪⎩

30x2/19 −1 ≤ x ≤ −1/2
120x4/19 −1/2 ≤ x ≤ 1/2
30x2/19 1/2 ≤ x ≤ 1
0 otherwise

(11)
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(e) The conditional mean of X given A is

E [X|A] =
∫ −1/2

−1

30x3

19
dx +

∫ 1/2

−1/2

120x5

19
dx +

∫ 1

1/2

30x3

19
dx = 0 (12)

Problem 4.9.1 Solution
The main part of this problem is just interpreting the problem statement. No calculations are
necessary. Since a trip is equally likely to last 2, 3 or 4 days,

PD (d) =
{

1/3 d = 2, 3, 4
0 otherwise

(1)

Given a trip lasts d days, the weight change is equally likely to be any value between −d and d
pounds. Thus,

PW |D (w|d) =
{

1/(2d + 1) w = −d,−d + 1, . . . , d
0 otherwise

(2)

The joint PMF is simply

PD,W (d, w) = PW |D (w|d) PD (d) (3)

=
{

1/(6d + 3) d = 2, 3, 4; w = −d, . . . , d
0 otherwise

(4)

Problem 4.9.2 Solution
We can make a table of the possible outcomes and the corresponding values of W and Y

outcome P [·] W Y

hh p2 0 2
ht p(1 − p) 1 1
th p(1 − p) −1 1
tt (1 − p)2 0 0

(1)

In the following table, we write the joint PMF PW,Y (w, y) along with the marginal PMFs PY (y)
and PW (w).

PW,Y (w, y) w = −1 w = 0 w = 1 PY (y)
y = 0 0 (1 − p)2 0 (1 − p)2

y = 1 p(1 − p) 0 p(1 − p) 2p(1 − p)
y = 2 0 p2 0 p2

PW (w) p(1 − p) 1 − 2p + 2p2 p(1 − p)

(2)

Using the definition PW |Y (w|y) = PW,Y (w, y)/PY (y), we can find the conditional PMFs of W given
Y .

PW |Y (w|0) =
{

1 w = 0
0 otherwise

PW |Y (w|1) =
{

1/2 w = −1, 1
0 otherwise

(3)

PW |Y (w|2) =
{

1 w = 0
0 otherwise

(4)
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Similarly, the conditional PMFs of Y given W are

PY |W (y| − 1) =
{

1 y = 1
0 otherwise

PY |W (y|0) =

⎧⎪⎨
⎪⎩

(1−p)2

1−2p+2p2 y = 0
p2

1−2p+2p2 y = 2
0 otherwise

(5)

PY |W (y|1) =
{

1 y = 1
0 otherwise

(6)

Problem 4.9.3 Solution

fX,Y (x, y) =
{

(x + y) 0 ≤ x, y ≤ 1
0 otherwise

(1)

(a) The conditional PDF fX|Y (x|y) is defined for all y such that 0 ≤ y ≤ 1. For 0 ≤ y ≤ 1,

fX|Y (x) =
fX,Y (x, y)

fX (x)
=

(x + y)∫ 1
0 (x + y) dy

=

{
(x+y)
x+1/2 0 ≤ x ≤ 1
0 otherwise

(2)

(b) The conditional PDF fY |X(y|x) is defined for all values of x in the interval [0, 1]. For 0 ≤
x ≤ 1,

fY |X (y) =
fX,Y (x, y)

fY (y)
=

(x + y)∫ 1
0 (x + y) dx

=

{
(x+y)
y+1/2 0 ≤ y ≤ 1
0 otherwise

(3)

Problem 4.9.4 Solution
Random variables X and Y have joint PDF

Y

X

1

1

fX,Y (x, y) =
{

2 0 ≤ y ≤ x ≤ 1
0 otherwise

(1)

For 0 ≤ y ≤ 1,

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx =

∫ 1

y
2 dx = 2(1 − y) (2)

Also, for y < 0 or y > 1, fY (y) = 0. The complete expression for the marginal PDF is

fY (y) =
{

2(1 − y) 0 ≤ y ≤ 1
0 otherwise

(3)

By Theorem 4.24, the conditional PDF of X given Y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=
{ 1

1−y y ≤ x ≤ 1
0 otherwise

(4)
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That is, since Y ≤ X ≤ 1, X is uniform over [y, 1] when Y = y. The conditional expectation of X
given Y = y can be calculated as

E [X|Y = y] =
∫ ∞

−∞
xfX|Y (x|y) dx (5)

=
∫ 1

y

x

1 − y
dx =

x2

2(1 − y)

∣∣∣∣1
y

=
1 + y

2
(6)

In fact, since we know that the conditional PDF of X is uniform over [y, 1] when Y = y, it wasn’t
really necessary to perform the calculation.

Problem 4.9.5 Solution
Random variables X and Y have joint PDF

Y

X

1

1

fX,Y (x, y) =
{

2 0 ≤ y ≤ x ≤ 1
0 otherwise

(1)

For 0 ≤ x ≤ 1, the marginal PDF for X satisfies

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ x

0
2 dy = 2x (2)

Note that fX(x) = 0 for x < 0 or x > 1. Hence the complete expression for the marginal PDF of
X is

fX (x) =
{

2x 0 ≤ x ≤ 1
0 otherwise

(3)

The conditional PDF of Y given X = x is

fY |X (y|x) =
fX,Y (x, y)

fX (x)
=
{

1/x 0 ≤ y ≤ x
0 otherwise

(4)

Given X = x, Y has a uniform PDF over [0, x] and thus has conditional expected value E[Y |X = x] =
x/2. Another way to obtain this result is to calculate

∫∞
−∞ yfY |X(y|x) dy.

Problem 4.9.6 Solution
We are told in the problem statement that if we know r, the number of feet a student sits from the
blackboard, then we also know that that student’s grade is a Gaussian random variable with mean
80 − r and standard deviation r. This is exactly

fX|R (x|r) =
1√

2πr2
e−(x−[80−r])2/2r2

(1)

Problem 4.9.7 Solution
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(a) First we observe that A takes on the values SA = {−1, 1} while B takes on values from
SB = {0, 1}. To construct a table describing PA,B(a, b) we build a table for all possible values
of pairs (A, B). The general form of the entries is

PA,B (a, b) b = 0 b = 1
a = −1 PB|A (0| − 1) PA (−1) PB|A (1| − 1) PA (−1)
a = 1 PB|A (0|1) PA (1) PB|A (1|1) PA (1)

(1)

Now we fill in the entries using the conditional PMFs PB|A(b|a) and the marginal PMF PA(a).
This yields

PA,B (a, b) b = 0 b = 1
a = −1 (1/3)(1/3) (2/3)(1/3)
a = 1 (1/2)(2/3) (1/2)(2/3)

which simplifies to
PA,B (a, b) b = 0 b = 1
a = −1 1/9 2/9
a = 1 1/3 1/3

(2)

(b) Since PA(1) = PA,B(1, 0) + PA,B(1, 1) = 2/3,

PB|A (b|1) =
PA,B (1, b)

PA (1)
=
{

1/2 b = 0, 1,
0 otherwise.

(3)

If A = 1, the conditional expectation of B is

E [B|A = 1] =
1∑

b=0

bPB|A (b|1) = PB|A (1|1) = 1/2. (4)

(c) Before finding the conditional PMF PA|B(a|1), we first sum the columns of the joint PMF
table to find

PB (b) =
{

4/9 b = 0
5/9 b = 1

(5)

The conditional PMF of A given B = 1 is

PA|B (a|1) =
PA,B (a, 1)

PB (1)
=
{

2/5 a = −1
3/5 a = 1

(6)

(d) Now that we have the conditional PMF PA|B(a|1), calculating conditional expectations is
easy.

E [A|B = 1] =
∑

a=−1,1

aPA|B (a|1) = −1(2/5) + (3/5) = 1/5 (7)

E
[
A2|B = 1

]
=

∑
a=−1,1

a2PA|B (a|1) = 2/5 + 3/5 = 1 (8)

The conditional variance is then

Var[A|B = 1] = E
[
A2|B = 1

]− (E [A|B = 1])2 = 1 − (1/5)2 = 24/25 (9)
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(e) To calculate the covariance, we need

E [A] =
∑

a=−1,1

aPA (a) = −1(1/3) + 1(2/3) = 1/3 (10)

E [B] =
1∑

b=0

bPB (b) = 0(4/9) + 1(5/9) = 5/9 (11)

E [AB] =
∑

a=−1,1

1∑
b=0

abPA,B (a, b) (12)

= −1(0)(1/9) + −1(1)(2/9) + 1(0)(1/3) + 1(1)(1/3) = 1/9 (13)

The covariance is just

Cov [A, B] = E [AB] − E [A] E [B] = 1/9 − (1/3)(5/9) = −2/27 (14)

Problem 4.9.8 Solution
First we need to find the conditional expectations

E [B|A = −1] =
1∑

b=0

bPB|A (b| − 1) = 0(1/3) + 1(2/3) = 2/3 (1)

E [B|A = 1] =
1∑

b=0

bPB|A (b|1) = 0(1/2) + 1(1/2) = 1/2 (2)

Keep in mind that E[B|A] is a random variable that is a function of A. that is we can write

E [B|A] = g(A) =
{

2/3 A = −1
1/2 A = 1

(3)

We see that the range of U is SU = {1/2, 2/3}. In particular,

PU (1/2) = PA (1) = 2/3 PU (2/3) = PA (−1) = 1/3 (4)

The complete PMF of U is

PU (u) =
{

2/3 u = 1/2
1/3 u = 2/3

(5)

Note that
E [E [B|A]] = E [U ] =

∑
u

uPU (u) = (1/2)(2/3) + (2/3)(1/3) = 5/9 (6)

You can check that E[U ] = E[B].

Problem 4.9.9 Solution
Random variables N and K have the joint PMF

PN,K (n, k) =

⎧⎨
⎩

100ne−100

(n+1)!

k = 0, 1, . . . , n;
n = 0, 1, . . .

0 otherwise
(1)
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We can find the marginal PMF for N by summing over all possible K. For n ≥ 0,

PN (n) =
n∑

k=0

100ne−100

(n + 1)!
=

100ne−100

n!
(2)

We see that N has a Poisson PMF with expected value 100. For n ≥ 0, the conditional PMF of K
given N = n is

PK|N (k|n) =
PN,K (n, k)

PN (n)
=
{

1/(n + 1) k = 0, 1, . . . , n
0 otherwise

(3)

That is, given N = n, K has a discrete uniform PMF over {0, 1, . . . , n}. Thus,

E [K|N = n] =
n∑

k=0

k/(n + 1) = n/2 (4)

We can conclude that E[K|N ] = N/2. Thus, by Theorem 4.25,

E [K] = E [E [K|N ]] = E [N/2] = 50. (5)

Problem 4.9.10 Solution
This problem is fairly easy when we use conditional PMF’s. In particular, given that N = n pizzas
were sold before noon, each of those pizzas has mushrooms with probability 1/3. The conditional
PMF of M given N is the binomial distribution

PM |N (m|n) =
{ (

n
m

)
(1/3)m(2/3)n−m m = 0, 1, . . . , n

0 otherwise
(1)

The other fact we know is that for each of the 100 pizzas sold, the pizza is sold before noon with
probability 1/2. Hence, N has the binomial PMF

PN (n) =
{ (

100
n

)
(1/2)n(1/2)100−n n = 0, 1, . . . , 100

0 otherwise
(2)

The joint PMF of N and M is for integers m, n,

PM,N (m, n) = PM |N (m|n) PN (n) (3)

=
{ (

n
m

)(
100
n

)
(1/3)m(2/3)n−m(1/2)100 0 ≤ m ≤ n ≤ 100

0 otherwise
(4)

Problem 4.9.11 Solution
Random variables X and Y have joint PDF

Y

X

1

-1

fX,Y (x, y) =
{

1/2 −1 ≤ x ≤ y ≤ 1
0 otherwise

(1)
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(a) For −1 ≤ y ≤ 1, the marginal PDF of Y is

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx =

1
2

∫ y

−1
dx = (y + 1)/2 (2)

The complete expression for the marginal PDF of Y is

fY (y) =
{

(y + 1)/2 −1 ≤ y ≤ 1
0 otherwise

(3)

(b) The conditional PDF of X given Y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=
{ 1

1+y −1 ≤ x ≤ y

0 otherwise
(4)

(c) Given Y = y, the conditional PDF of X is uniform over [−1, y]. Hence the conditional
expected value is E[X|Y = y] = (y − 1)/2.

Problem 4.9.12 Solution
We are given that the joint PDF of X and Y is

fX,Y (x, y) =
{

1/(πr2) 0 ≤ x2 + y2 ≤ r2

0 otherwise
(1)

(a) The marginal PDF of X is

fX (x) = 2
∫ √

r2−x2

0

1
πr2

dy =

{
2
√

r2−x2

πr2 −r ≤ x ≤ r
0 otherwise

(2)

The conditional PDF of Y given X is

fY |X (y|x) =
fX,Y (x, y)

fX (x)
=
{

1/(2
√

r2 − x2) y2 ≤ r2 − x2

0 otherwise
(3)

(b) Given X = x, we observe that over the interval [−√
r2 − x2,

√
r2 − x2], Y has a uniform PDF.

Since the conditional PDF fY |X(y|x) is symmetric about y = 0,

E [Y |X = x] = 0 (4)

Problem 4.9.13 Solution
The key to solving this problem is to find the joint PMF of M and N . Note that N ≥ M . For
n > m, the joint event {M = m, N = n} has probability

P [M = m, N = n] = P [

m − 1
calls︷ ︸︸ ︷

dd · · · d v

n − m − 1
calls︷ ︸︸ ︷

dd · · · d v] (1)

= (1 − p)m−1p(1 − p)n−m−1p (2)

= (1 − p)n−2p2 (3)
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A complete expression for the joint PMF of M and N is

PM,N (m, n) =
{

(1 − p)n−2p2 m = 1, 2, . . . , n − 1; n = m + 1, m + 2, . . .
0 otherwise

(4)

The marginal PMF of N satisfies

PN (n) =
n−1∑
m=1

(1 − p)n−2p2 = (n − 1)(1 − p)n−2p2, n = 2, 3, . . . (5)

Similarly, for m = 1, 2, . . ., the marginal PMF of M satisfies

PM (m) =
∞∑

n=m+1

(1 − p)n−2p2 (6)

= p2[(1 − p)m−1 + (1 − p)m + · · · ] (7)

= (1 − p)m−1p (8)

The complete expressions for the marginal PMF’s are

PM (m) =
{

(1 − p)m−1p m = 1, 2, . . .
0 otherwise

(9)

PN (n) =
{

(n − 1)(1 − p)n−2p2 n = 2, 3, . . .
0 otherwise

(10)

Not surprisingly, if we view each voice call as a successful Bernoulli trial, M has a geometric PMF
since it is the number of trials up to and including the first success. Also, N has a Pascal PMF
since it is the number of trials required to see 2 successes. The conditional PMF’s are now easy to
find.

PN |M (n|m) =
PM,N (m, n)

PM (m)
=
{

(1 − p)n−m−1p n = m + 1, m + 2, . . .
0 otherwise

(11)

The interpretation of the conditional PMF of N given M is that given M = m, N = m+N ′ where
N ′ has a geometric PMF with mean 1/p. The conditional PMF of M given N is

PM |N (m|n) =
PM,N (m, n)

PN (n)
=
{

1/(n − 1) m = 1, . . . , n − 1
0 otherwise

(12)

Given that call N = n was the second voice call, the first voice call is equally likely to occur in any
of the previous n − 1 calls.

Problem 4.9.14 Solution

(a) The number of buses, N , must be greater than zero. Also, the number of minutes that
pass cannot be less than the number of buses. Thus, P [N = n, T = t] > 0 for integers n, t
satisfying 1 ≤ n ≤ t.
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(b) First, we find the joint PMF of N and T by carefully considering the possible sample paths.
In particular, PN,T (n, t) = P [ABC] = P [A]P [B]P [C] where the events A, B and C are

A = {n − 1 buses arrive in the first t − 1 minutes} (1)
B = {none of the first n − 1 buses are boarded} (2)
C = {at time t a bus arrives and is boarded} (3)

These events are independent since each trial to board a bus is independent of when the buses
arrive. These events have probabilities

P [A] =
(

t − 1
n − 1

)
pn−1(1 − p)t−1−(n−1) (4)

P [B] = (1 − q)n−1 (5)
P [C] = pq (6)

Consequently, the joint PMF of N and T is

PN,T (n, t) =
{ (

t−1
n−1

)
pn−1(1 − p)t−n(1 − q)n−1pq n ≥ 1, t ≥ n

0 otherwise
(7)

(c) It is possible to find the marginal PMF’s by summing the joint PMF. However, it is much
easier to obtain the marginal PMFs by consideration of the experiment. Specifically, when a
bus arrives, it is boarded with probability q. Moreover, the experiment ends when a bus is
boarded. By viewing whether each arriving bus is boarded as an independent trial, N is the
number of trials until the first success. Thus, N has the geometric PMF

PN (n) =
{

(1 − q)n−1q n = 1, 2, . . .
0 otherwise

(8)

To find the PMF of T , suppose we regard each minute as an independent trial in which a
success occurs if a bus arrives and that bus is boarded. In this case, the success probability
is pq and T is the number of minutes up to and including the first success. The PMF of T is
also geometric.

PT (t) =
{

(1 − pq)t−1pq t = 1, 2, . . .
0 otherwise

(9)

(d) Once we have the marginal PMFs, the conditional PMFs are easy to find.

PN |T (n|t) =
PN,T (n, t)

PT (t)
=

{ (
t−1
n−1

) (p(1−q)
1−pq

)n−1 (
1−p
1−pq

)t−1−(n−1)
n = 1, 2, . . . , t

0 otherwise
(10)

That is, given you depart at time T = t, the number of buses that arrive during minutes
1, . . . , t−1 has a binomial PMF since in each minute a bus arrives with probability p. Similarly,
the conditional PMF of T given N is

PT |N (t|n) =
PN,T (n, t)

PN (n)
=
{ (

t−1
n−1

)
pn(1 − p)t−n t = n, n + 1, . . .

0 otherwise
(11)

This result can be explained. Given that you board bus N = n, the time T when you leave
is the time for n buses to arrive. If we view each bus arrival as a success of an independent
trial, the time for n buses to arrive has the above Pascal PMF.
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Problem 4.9.15 Solution
If you construct a tree describing what type of call (if any) that arrived in any 1 millisecond period,
it will be apparent that a fax call arrives with probability α = pqr or no fax arrives with probability
1 − α. That is, whether a fax message arrives each millisecond is a Bernoulli trial with success
probability α. Thus, the time required for the first success has the geometric PMF

PT (t) =
{

(1 − α)t−1α t = 1, 2, . . .
0 otherwise

(1)

Note that N is the number of trials required to observe 100 successes. Moreover, the number of
trials needed to observe 100 successes is N = T + N ′ where N ′ is the number of trials needed
to observe successes 2 through 100. Since N ′ is just the number of trials needed to observe 99
successes, it has the Pascal (k = 99, p) PMF

PN ′ (n) =
(

n − 1
98

)
α99(1 − α)n−99. (2)

Since the trials needed to generate successes 2 though 100 are independent of the trials that yield
the first success, N ′ and T are independent. Hence

PN |T (n|t) = PN ′|T (n − t|t) = PN ′ (n − t) . (3)

Applying the PMF of N ′ found above, we have

PN |T (n|t) =
(

n − t − 1
98

)
α99(1 − α)n−t−99. (4)

Finally the joint PMF of N and T is

PN,T (n, t) = PN |T (n|t) PT (t) (5)

=
{ (

n−t−1
98

)
α100(1 − α)n−100 t = 1, 2, . . . ; n = 99 + t, 100 + t, . . .

0 otherwise
(6)

This solution can also be found a consideration of the sample sequence of Bernoulli trials in which
we either observe or do not observe a fax message.

To find the conditional PMF PT |N (t|n), we first must recognize that N is simply the number
of trials needed to observe 100 successes and thus has the Pascal PMF

PN (n) =
(

n − 1
99

)
α100(1 − α)n−100 (7)

Hence for any integer n ≥ 100, the conditional PMF is

PT |N (t|n) =
PN,T (n, t)

PN (n)
=

⎧⎨
⎩

(n−t−1
98 )

(n−1
99 ) t = 1, 2, . . . , n − 99

0 otherwise.
(8)

Problem 4.10.1 Solution
Flip a fair coin 100 times and let X be the number of heads in the first 75 flips and Y be the
number of heads in the last 25 flips. We know that X and Y are independent and can find their
PMFs easily.

PX (x) =
(

75
x

)
(1/2)75 PY (y) =

(
25
y

)
(1/2)25 (1)
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The joint PMF of X and N can be expressed as the product of the marginal PMFs because we
know that X and Y are independent.

PX,Y (x, y) =
(

75
x

)(
25
y

)
(1/2)100 (2)

Problem 4.10.2 Solution
Using the following probability model

PX (k) = PY (k) =

⎧⎨
⎩

3/4 k = 0
1/4 k = 20
0 otherwise

(1)

We can calculate the requested moments.

E [X] = 3/4 · 0 + 1/4 · 20 = 5 (2)

Var[X] = 3/4 · (0 − 5)2 + 1/4 · (20 − 5)2 = 75 (3)
E [X + Y ] = E [X] + E [X] = 2E [X] = 10 (4)

Since X and Y are independent, Theorem 4.27 yields

Var[X + Y ] = Var[X] + Var[Y ] = 2 Var[X] = 150 (5)

Since X and Y are independent, PX,Y (x, y) = PX(x)PY (y) and

E
[
XY 2XY

]
=

∑
x=0,20

∑
y=0,20

XY 2XY PX,Y (x, y) = (20)(20)220(20)PX (20)PY (20) (6)

= 2.75 × 1012 (7)

Problem 4.10.3 Solution

(a) Normally, checking independence requires the marginal PMFs. However, in this problem, the
zeroes in the table of the joint PMF PX,Y (x, y) allows us to verify very quickly that X and
Y are dependent. In particular, PX(−1) = 1/4 and PY (1) = 14/48 but

PX,Y (−1, 1) = 0 	= PX (−1) PY (1) (1)

(b) To fill in the tree diagram, we need the marginal PMF PX(x) and the conditional PMFs
PY |X(y|x). By summing the rows on the table for the joint PMF, we obtain

PX,Y (x, y) y = −1 y = 0 y = 1 PX (x)
x = −1 3/16 1/16 0 1/4
x = 0 1/6 1/6 1/6 1/2
x = 1 0 1/8 1/8 1/4

(2)

Now we use the conditional PMF PY |X(y|x) = PX,Y (x, y)/PX(x) to write

PY |X (y| − 1) =

⎧⎨
⎩

3/4 y = −1
1/4 y = 0
0 otherwise

PY |X (y|0) =
{

1/3 y = −1, 0, 1
0 otherwise

(3)

PY |X (y|1) =
{

1/2 y = 0, 1
0 otherwise

(4)

175



Now we can us these probabilities to label the tree. The generic solution and the specific
solution with the exact values are














X=−1

PX(−1)

�
�

�
�

�� X=1

PX(1)

X=0
PX(0)

������Y =−1PY |X(−1|−1)

Y =0PY |X(0|−1)

������Y =−1PY |X(−1|0)

������ Y =1PY |X(1|0)

Y =0
PY |X(0|0)

Y =0
PY |X(0|1)						 Y =1PY |X(1|1)














X=−1

1/4

�
�

�
�

�� X=1

1/4

X=0
1/2

������Y =−13/4

Y =01/4

������Y =−11/3

������ Y =11/3

Y =0
1/3

Y =0
1/2						 Y =11/2

Problem 4.10.4 Solution
In the solution to Problem 4.9.10, we found that the conditional PMF of M given N is

PM |N (m|n) =
{ (

n
m

)
(1/3)m(2/3)n−m m = 0, 1, . . . , n

0 otherwise
(1)

Since PM |N (m|n) depends on the event N = n, we see that M and N are dependent.

Problem 4.10.5 Solution
We can solve this problem for the general case when the probability of heads is p. For the fair coin,
p = 1/2. Viewing each flip as a Bernoulli trial in which heads is a success, the number of flips until
heads is the number of trials needed for the first success which has the geometric PMF

PX1 (x) =
{

(1 − p)x−1p x = 1, 2, . . .
0 otherwise

(1)

Similarly, no matter how large X1 may be, the number of additional flips for the second heads
is the same experiment as the number of flips needed for the first occurrence of heads. That
is, PX2(x) = PX1(x). Moreover, the flips needed to generate the second occurrence of heads are
independent of the flips that yield the first heads. Hence, it should be apparent that X1 and X2

are independent and

PX1,X2 (x1, x2) = PX1 (x1) PX2 (x2) =
{

(1 − p)x1+x2−2p2 x1 = 1, 2, . . . ; x2 = 1, 2, . . .
0 otherwise

(2)

However, if this independence is not obvious, it can be derived by examination of the sample path.
When x1 ≥ 1 and x2 ≥ 1, the event {X1 = x1, X2 = x2} occurs iff we observe the sample sequence

tt · · · t︸ ︷︷ ︸
x1 − 1 times

h tt · · · t︸ ︷︷ ︸
x2 − 1 times

h (3)

The above sample sequence has probability (1−p)x1−1p(1−p)x2−1p which in fact equals PX1,X2(x1, x2)
given earlier.
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Problem 4.10.6 Solution
We will solve this problem when the probability of heads is p. For the fair coin, p = 1/2. The
number X1 of flips until the first heads and the number X2 of additional flips for the second heads
both have the geometric PMF

PX1 (x) = PX2 (x) =
{

(1 − p)x−1p x = 1, 2, . . .
0 otherwise

(1)

Thus, E[Xi] = 1/p and Var[Xi] = (1 − p)/p2. By Theorem 4.14,

E [Y ] = E [X1] − E [X2] = 0 (2)

Since X1 and X2 are independent, Theorem 4.27 says

Var[Y ] = Var[X1] + Var[−X2] = Var[X1] + Var[X2] =
2(1 − p)

p2
(3)

Problem 4.10.7 Solution
X and Y are independent random variables with PDFs

fX (x) =
{

1
3e−x/3 x ≥ 0
0 otherwise

fY (y) =
{

1
2e−y/2 y ≥ 0
0 otherwise

(1)

(a) To calculate P [X > Y ], we use the joint PDF fX,Y (x, y) = fX(x)fY (y).

P [X > Y ] =
∫∫

x>y
fX (x) fY (y) dx dy (2)

=
∫ ∞

0

1
2
e−y/2

∫ ∞

y

1
3
e−x/3 dx dy (3)

=
∫ ∞

0

1
2
e−y/2e−y/3 dy (4)

=
∫ ∞

0

1
2
e−(1/2+1/3)y dy =

1/2
1/2 + 2/3

=
3
7

(5)

(b) Since X and Y are exponential random variables with parameters λX = 1/3 and λY = 1/2,
Appendix A tells us that E[X] = 1/λX = 3 and E[Y ] = 1/λY = 2. Since X and Y are
independent, the correlation is E[XY ] = E[X]E[Y ] = 6.

(c) Since X and Y are independent, Cov[X, Y ] = 0.

Problem 4.10.8 Solution

(a) Since E[−X2] = −E[X2], we can use Theorem 4.13 to write

E [X1 − X2] = E [X1 + (−X2)] = E [X1] + E [−X2] (1)
= E [X1] − E [X2] (2)
= 0 (3)
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(b) By Theorem 3.5(f), Var[−X2] = (−1)2 Var[X2] = Var[X2]. Since X1 and X2 are independent,
Theorem 4.27(a) says that

Var[X1 − X2] = Var[X1 + (−X2)] (4)
= Var[X1] + Var[−X2] (5)
= 2 Var[X] (6)

Problem 4.10.9 Solution
Since X and Y are take on only integer values, W = X + Y is integer valued as well. Thus for an
integer w,

PW (w) = P [W = w] = P [X + Y = w] . (1)

Suppose X = k, then W = w if and only if Y = w − k. To find all ways that X + Y = w, we must
consider each possible integer k such that X = k. Thus

PW (w) =
∞∑

k=−∞
P [X = k, Y = w − k] =

∞∑
k=−∞

PX,Y (k, w − k) . (2)

Since X and Y are independent, PX,Y (k, w − k) = PX(k)PY (w − k). It follows that for any integer
w,

PW (w) =
∞∑

k=−∞
PX (k) PY (w − k) . (3)

Problem 4.10.10 Solution
The key to this problem is understanding that “short order” and “long order” are synonyms for
N = 1 and N = 2. Similarly, “vanilla”, “chocolate”, and “strawberry” correspond to the events
D = 20, D = 100 and D = 300.

(a) The following table is given in the problem statement.

vanilla choc. strawberry
short
order

0.2 0.2 0.2

long
order

0.1 0.2 0.1

This table can be translated directly into the joint PMF of N and D.

PN,D (n, d) d = 20 d = 100 d = 300

n = 1 0.2 0.2 0.2

n = 2 0.1 0.2 0.1

(1)
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(b) We find the marginal PMF PD(d) by summing the columns of the joint PMF. This yields

PD (d) =

⎧⎪⎪⎨
⎪⎪⎩

0.3 d = 20,
0.4 d = 100,
0.3 d = 300,
0 otherwise.

(2)

(c) To find the conditional PMF PD|N (d|2), we first need to find the probability of the condition-
ing event

PN (2) = PN,D (2, 20) + PN,D (2, 100) + PN,D (2, 300) = 0.4 (3)

The conditional PMF of N D given N = 2 is

PD|N (d|2) =
PN,D (2, d)

PN (2)
=

⎧⎪⎪⎨
⎪⎪⎩

1/4 d = 20
1/2 d = 100
1/4 d = 300
0 otherwise

(4)

(d) The conditional expectation of D given N = 2 is

E [D|N = 2] =
∑

d

dPD|N (d|2) = 20(1/4) + 100(1/2) + 300(1/4) = 130 (5)

(e) To check independence, we could calculate the marginal PMFs of N and D. In this case,
however, it is simpler to observe that PD(d) 	= PD|N (d|2). Hence N and D are dependent.

(f) In terms of N and D, the cost (in cents) of a fax is C = ND. The expected value of C is

E [C] =
∑
n,d

ndPN,D (n, d) (6)

= 1(20)(0.2) + 1(100)(0.2) + 1(300)(0.2) (7)
+ 2(20)(0.3) + 2(100)(0.4) + 2(300)(0.3) = 356 (8)

Problem 4.10.11 Solution
The key to this problem is understanding that “Factory Q” and “Factory R” are synonyms for
M = 60 and M = 180. Similarly, “small”, “medium”, and “large” orders correspond to the events
B = 1, B = 2 and B = 3.

(a) The following table given in the problem statement

Factory Q Factory R
small order 0.3 0.2
medium order 0.1 0.2
large order 0.1 0.1

can be translated into the following joint PMF for B and M .

PB,M (b, m) m = 60 m = 180
b = 1 0.3 0.2
b = 2 0.1 0.2
b = 3 0.1 0.1

(1)
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(b) Before we find E[B], it will prove helpful to find the marginal PMFs PB(b) and PM (m). These
can be found from the row and column sums of the table of the joint PMF

PB,M (b, m) m = 60 m = 180 PB (b)
b = 1 0.3 0.2 0.5
b = 2 0.1 0.2 0.3
b = 3 0.1 0.1 0.2
PM (m) 0.5 0.5

(2)

The expected number of boxes is

E [B] =
∑

b

bPB (b) = 1(0.5) + 2(0.3) + 3(0.2) = 1.7 (3)

(c) From the marginal PMF of B, we know that PB(2) = 0.3. The conditional PMF of M given
B = 2 is

PM |B (m|2) =
PB,M (2, m)

PB (2)
=

⎧⎨
⎩

1/3 m = 60
2/3 m = 180
0 otherwise

(4)

(d) The conditional expectation of M given B = 2 is

E [M |B = 2] =
∑
m

mPM |B (m|2) = 60(1/3) + 180(2/3) = 140 (5)

(e) From the marginal PMFs we calculated in the table of part (b), we can conclude that B and
M are not independent. since PB,M (1, 60) 	= PB(1)PM (m)60.

(f) In terms of M and B, the cost (in cents) of sending a shipment is C = BM . The expected
value of C is

E [C] =
∑
b,m

bmPB,M (b, m) (6)

= 1(60)(0.3) + 2(60)(0.1) + 3(60)(0.1) (7)
+ 1(180)(0.2) + 2(180)(0.2) + 3(180)(0.1) = 210 (8)

Problem 4.10.12 Solution
Random variables X1 and X2 are iiid with PDF

fX (x) =
{

x/2 0 ≤ x ≤ 2,
0 otherwise.

(1)

(a) Since X1 and X2 are identically distributed they will share the same CDF FX(x).

FX (x) =
∫ x

0
fX

(
x′) dx′ =

⎧⎨
⎩

0 x ≤ 0
x2/4 0 ≤ x ≤ 2
1 x ≥ 2

(2)
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(b) Since X1 and X2 are independent, we can say that

P [X1 ≤ 1, X2 ≤ 1] = P [X1 ≤ 1] P [X2 ≤ 1] = FX1 (1)FX2 (1) = [FX (1)]2 =
1
16

(3)

(c) For W = max(X1, X2),

FW (1) = P [max(X1, X2) ≤ 1] = P [X1 ≤ 1, X2 ≤ 1] (4)

Since X1 and X2 are independent,

FW (1) = P [X1 ≤ 1] P [X2 ≤ 1] = [FX (1)]2 = 1/16 (5)

(d)

FW (w) = P [max(X1, X2) ≤ w] = P [X1 ≤ w, X2 ≤ w] (6)

Since X1 and X2 are independent,

FW (w) = P [X1 ≤ w] P [X2 ≤ w] = [FX (w)]2 =

⎧⎨
⎩

0 w ≤ 0
w4/16 0 ≤ w ≤ 2
1 w ≥ 2

(7)

Problem 4.10.13 Solution
X and Y are independent random variables with PDFs

fX (x) =
{

2x 0 ≤ x ≤ 1
0 otherwise

fY (y) =
{

3y2 0 ≤ y ≤ 1
0 otherwise

(1)

For the event A = {X > Y }, this problem asks us to calculate the conditional expectations E[X|A]
and E[Y |A]. We will do this using the conditional joint PDF fX,Y |A(x, y). Since X and Y are
independent, it is tempting to argue that the event X > Y does not alter the probability model
for X and Y . Unfortunately, this is not the case. When we learn that X > Y , it increases the
probability that X is large and Y is small. We will see this when we compare the conditional
expectations E[X|A] and E[Y |A] to E[X] and E[Y ].

(a) We can calculate the unconditional expectations, E[X] and E[Y ], using the marginal PDFs
fX(x) and fY (y).

E [X] =
∫ ∞

−∞
fX (x) dx =

∫ 1

0
2x2 dx = 2/3 (2)

E [Y ] =
∫ ∞

−∞
fY (y) dy =

∫ 1

0
3y3 dy = 3/4 (3)

(b) First, we need to calculate the conditional joint PDF ipdfX, Y |Ax, y. The first step is to
write down the joint PDF of X and Y :

fX,Y (x, y) = fX (x) fY (y) =
{

6xy2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise

(4)
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Y

X

1

1

X>Y

The event A has probability

P [A] =
∫∫

x>y
fX,Y (x, y) dy dx (5)

=
∫ 1

0

∫ x

0
6xy2 dy dx (6)

=
∫ 1

0
2x4 dx = 2/5 (7)

Y

X

1

1

The conditional joint PDF of X and Y given A is

fX,Y |A (x, y) =

{
fX,Y (x,y)

P [A] (x, y) ∈ A

0 otherwise
(8)

=
{

15xy2 0 ≤ y ≤ x ≤ 1
0 otherwise

(9)

The triangular region of nonzero probability is a signal that given A, X and Y are no longer
independent. The conditional expected value of X given A is

E [X|A] =
∫ ∞

−∞

∫ ∞

−∞
xfX,Y |A (x, y|a) x, y dy dx (10)

= 15
∫ 1

0
x2

∫ x

0
y2 dy dx (11)

= 5
∫ 1

0
x5 dx = 5/6. (12)

The conditional expected value of Y given A is

E [Y |A] =
∫ ∞

−∞

∫ ∞

−∞
yfX,Y |A (x, y) dy dx (13)

= 15
∫ 1

0
x

∫ x

0
y3 dy dx (14)

=
15
4

∫ 1

0
x5 dx = 5/8. (15)

We see that E[X|A] > E[X] while E[Y |A] < E[Y ]. That is, learning X > Y gives us a clue
that X may be larger than usual while Y may be smaller than usual.

Problem 4.10.14 Solution
This problem is quite straightforward. From Theorem 4.4, we can find the joint PDF of X and Y
is

fX,Y (x, y) =
∂2[FX (x) FY (y)]

∂x ∂y
=

∂[fX (x) FY (y)]
∂y

= fX (x) fY (y) (1)

Hence, FX,Y (x, y) = FX(x)FY (y) implies that X and Y are independent.
If X and Y are independent, then

fX,Y (x, y) = fX (x) fY (y) (2)
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By Definition 4.3,

FX,Y (x, y) =
∫ x

−∞

∫ y

−∞
fX,Y (u, v) dv du (3)

=
(∫ x

−∞
fX (u) du

)(∫ y

−∞
fY (v) dv

)
(4)

= FX (x) FX (x) (5)

Problem 4.10.15 Solution
Random variables X and Y have joint PDF

fX,Y (x, y) =
{

λ2e−λy 0 ≤ x ≤ y
0 otherwise

(1)

For W = Y −X we can find fW (w) by integrating over the region indicated in the figure below to
get FW (w) then taking the derivative with respect to w. Since Y ≥ X, W = Y −X is nonnegative.
Hence FW (w) = 0 for w < 0. For w ≥ 0,

Y

X

w
X<Y<X+w

FW (w) = 1 − P [W > w] = 1 − P [Y > X + w] (2)

= 1 −
∫ ∞

0

∫ ∞

x+w
λ2e−λy dy dx (3)

= 1 − e−λw (4)

The complete expressions for the joint CDF and corresponding joint PDF are

FW (w) =
{

0 w < 0
1 − e−λw w ≥ 0

fW (w) =
{

0 w < 0
λe−λw w ≥ 0

(5)

Problem 4.10.16 Solution

(a) To find if W and X are independent, we must be able to factor the joint density function
fX,W (x, w) into the product fX(x)fW (w) of marginal density functions. To verify this, we
must find the joint PDF of X and W . First we find the joint CDF.

FX,W (x, w) = P [X ≤ x, W ≤ w] (1)
= P [X ≤ x, Y − X ≤ w] = P [X ≤ x, Y ≤ X + w] (2)

Since Y ≥ X, the CDF of W satisfies FX,W (x, w) = P [X ≤ x, X ≤ Y ≤ X + w]. Thus, for
x ≥ 0 and w ≥ 0,

Y

X

w

{X<x} {X<Y<X+w}∩

x

FX,W (x, w) =
∫ x

0

∫ x′+w

x′
λ2e−λy dy dx′ (3)

=
∫ x

0

(
−λe−λy

∣∣∣x′+w

x′

)
dx′ (4)

=
∫ x

0

(
−λe−λ(x′+w) + λe−λx′)

dx′ (5)

= e−λ(x′+w) − e−λx′
∣∣∣x
0

(6)

= (1 − e−λx)(1 − e−λw) (7)
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We see that FX,W (x, w) = FX(x)FW (w). Moreover, by applying Theorem 4.4,

fX,W (x, w) =
∂2FX,W (x, w)

∂x ∂w
= λe−λxλe−λw = fX (x) fW (w) . (8)

Since we have our desired factorization, W and X are independent.

(b) Following the same procedure, we find the joint CDF of Y and W .

FW,Y (w, y) = P [W ≤ w, Y ≤ y] = P [Y − X ≤ w, Y ≤ y] (9)
= P [Y ≤ X + w, Y ≤ y] . (10)

The region of integration corresponding to the event {Y ≤ x + w, Y ≤ y} depends on whether
y < w or y ≥ w. Keep in mind that although W = Y −X ≤ Y , the dummy arguments y and
w of fW,Y (w, y) need not obey the same constraints. In any case, we must consider each case
separately.

Y

X

w

{Y<y} {Y<X+w}�

y

yy-w

For y > w, the integration is

FW,Y (w, y) =
∫ y−w

0

∫ u+w

u
λ2e−λv dv du

+
∫ y

y−w

∫ y

u
λ2e−λv dv du (11)

= λ

∫ y−w

0

[
e−λu − e−λ(u+w)

]
du

+ λ

∫ y

y−w

[
e−λu − e−λy

]
du (12)

It follows that

FW,Y (w, y) =
[
−e−λu + e−λ(u+w)

]∣∣∣y−w

0
+
[
−e−λu − uλe−λy

]∣∣∣y
y−w

(13)

= 1 − e−λw − λwe−λy. (14)

For y ≤ w,

Y

X

w

{Y<y}

y

FW,Y (w, y) =
∫ y

0

∫ y

u
λ2e−λv dv du (15)

=
∫ y

0

[
−λe−λy + λe−λu

]
du (16)

= −λue−λy − e−λu
∣∣∣y
0

(17)

= 1 − (1 + λy)e−λy (18)
The complete expression for the joint CDF is

FW,Y (w, y) =

⎧⎨
⎩

1 − e−λw − λwe−λy 0 ≤ w ≤ y
1 − (1 + λy)e−λy 0 ≤ y ≤ w
0 otherwise

(19)

Applying Theorem 4.4 yields

fW,Y (w, y) =
∂2FW,Y (w, y)

∂w ∂y
=
{

2λ2e−λy 0 ≤ w ≤ y
0 otherwise

(20)

The joint PDF fW,Y (w, y) doesn’t factor and thus W and Y are dependent.
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Problem 4.10.17 Solution
We need to define the events A = {U ≤ u} and B = {V ≤ v}. In this case,

FU,V (u, v) = P [AB] = P [B] − P [AcB] = P [V ≤ v] − P [U > u, V ≤ v] (1)

Note that U = min(X, Y ) > u if and only if X > u and Y > u. In the same way, since V =
max(X, Y ), V ≤ v if and only if X ≤ v and Y ≤ v. Thus

P [U > u, V ≤ v] = P [X > u, Y > u, X ≤ v, Y ≤ v] (2)
= P [u < X ≤ v, u < Y ≤ v] (3)

Thus, the joint CDF of U and V satisfies

FU,V (u, v) = P [V ≤ v] − P [U > u, V ≤ v] (4)
= P [X ≤ v, Y ≤ v] − P [u < X ≤ v, u < X ≤ v] (5)

Since X and Y are independent random variables,

FU,V (u, v) = P [X ≤ v] P [Y ≤ v] − P [u < X ≤ v] P [u < X ≤ v] (6)
= FX (v) FY (v) − (FX (v) − FX (u)) (FY (v) − FY (u)) (7)
= FX (v) FY (u) + FX (u) FY (v) − FX (u) FY (u) (8)

The joint PDF is

fU,V (u, v) =
∂2FU,V (u, v)

∂u∂v
(9)

=
∂

∂u
[fX (v) FY (u) + FX (u) fY (v)] (10)

= fX (u) fY (v) + fX (v) fY (v) (11)

Problem 4.11.1 Solution

fX,Y (x, y) = ce−(x2/8)−(y2/18) (1)

The omission of any limits for the PDF indicates that it is defined over all x and y. We know that
fX,Y (x, y) is in the form of the bivariate Gaussian distribution so we look to Definition 4.17 and
attempt to find values for σY , σX , E[X], E[Y ] and ρ. First, we know that the constant is

c =
1

2πσXσY

√
1 − ρ2

(2)

Because the exponent of fX,Y (x, y) doesn’t contain any cross terms we know that ρ must be zero,
and we are left to solve the following for E[X], E[Y ], σX , and σY :(

x − E [X]
σX

)2

=
x2

8

(
y − E [Y ]

σY

)2

=
y2

18
(3)

From which we can conclude that

E [X] = E [Y ] = 0 (4)

σX =
√

8 (5)

σY =
√

18 (6)

Putting all the pieces together, we find that c = 1
24π . Since ρ = 0, we also find that X and Y are

independent.
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Problem 4.11.2 Solution
For the joint PDF

fX,Y (x, y) = ce−(2x2−4xy+4y2), (1)

we proceed as in Problem 4.11.1 to find values for σY , σX , E[X], E[Y ] and ρ.

(a) First, we try to solve the following equations(
x − E [X]

σX

)2

= 4(1 − ρ2)x2 (2)(
y − E [Y ]

σY

)2

= 8(1 − ρ2)y2 (3)

2ρ

σXσY
= 8(1 − ρ2) (4)

The first two equations yield E[X] = E[Y ] = 0

(b) To find the correlation coefficient ρ, we observe that

σX = 1/
√

4(1 − ρ2) σY = 1/
√

8(1 − ρ2) (5)

Using σX and σY in the third equation yields ρ = 1/
√

2.

(c) Since ρ = 1/
√

2, now we can solve for σX and σY .

σX = 1/
√

2 σY = 1/2 (6)

(d) From here we can solve for c.

c =
1

2πσXσY

√
1 − ρ2

=
2
π

(7)

(e) X and Y are dependent because ρ 	= 0.

Problem 4.11.3 Solution
From the problem statement, we learn that

μX = μY = 0 σ2
X = σ2

Y = 1 (1)

From Theorem 4.30, the conditional expectation of Y given X is

E [Y |X] = μ̃Y (X) = μY + ρ
σY

σX
(X − μX) = ρX (2)

In the problem statement, we learn that E[Y |X] = X/2. Hence ρ = 1/2. From Definition 4.17, the
joint PDF is

fX,Y (x, y) =
1√
3π2

e−2(x2−xy+y2)/3 (3)
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Problem 4.11.4 Solution
The event B is the set of outcomes satisfying X2 + Y 2 ≤ 22. Of ocurse, the calculation of P [B]
depends on the probability model for X and Y .

(a) In this instance, X and Y have the same PDF

fX (x) = fY (x) =
{

0.01 −50 ≤ x ≤ 50
0 otherwise

(1)

Since X and Y are independent, their joint PDF is

fX,Y (x, y) = fX (x) fY (y) =
{

10−4 −50 ≤ x ≤ 50,−50 ≤ y ≤ 50
0 otherwise

(2)

Because X and Y have a uniform PDF over the bullseye area, P [B] is just the value of the
joint PDF over the area times the area of the bullseye.

P [B] = P
[
X2 + Y 2 ≤ 22

]
= 10−4 · π22 = 4π · 10−4 ≈ 0.0013 (3)

(b) In this case, the joint PDF of X and Y is inversely proportional to the area of the target.

fX,Y (x, y) =
{

1/[π502] x2 + y2 ≤ 502

0 otherwise
(4)

The probability of a bullseye is

P [B] = P
[
X2 + Y 2 ≤ 22

]
=

π22

π502
=
(

1
25

)2

≈ 0.0016. (5)

(c) In this instance, X and Y have the identical Gaussian (0, σ) PDF with σ2 = 100; i.e.,

fX (x) = fY (x) =
1√

2πσ2
e−x2/2σ2

(6)

Since X and Y are independent, their joint PDF is

fX,Y (x, y) = fX (x) fY (y) =
1

2πσ2
e−(x2+y2)/2σ2

(7)

To find P [B], we write

P [B] = P
[
X2 + Y 2 ≤ 22

]
=
∫∫

x2+y2≤22

fX,Y (x, y) dx dy (8)

=
1

2πσ2

∫∫
x2+y2≤22

e−(x2+y2)/2σ2
dx dy (9)

This integral is easy using polar coordinates. With the substitutions x2 + y2 = r2, and
dx dy = r dr dθ,

P [B] =
1

2πσ2

∫ 2

0

∫ 2π

0
e−r2/2σ2

r dr dθ (10)

=
1
σ2

∫ 2

0
re−r2/2σ2

dr (11)

= −e−r2/2σ2
∣∣∣2
0

= 1 − e−4/200 ≈ 0.0198. (12)
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Problem 4.11.5 Solution

(a) The person’s temperature is high with probability

p = P [T > 38] = P [T − 37 > 38 − 37] = 1 − Φ(1) = 0.159. (1)

Given that the temperature is high, then W is measured. Since ρ = 0, W and T are inde-
pendent and

q = P [W > 10] = P

[
W − 7

2
>

10 − 7
2

]
= 1 − Φ(1.5) = 0.067. (2)

The tree for this experiment is

���������T>38p

T≤38
1−p

���������W>10q

W≤10
1−q

The probability the person is ill is

P [I] = P [T > 38, W > 10] = P [T > 38] P [W > 10] = pq = 0.0107. (3)

(b) The general form of the bivariate Gaussian PDF is

fW,T (w, t) =

exp

⎡
⎢⎣−

(
w−μ1

σ1

)2 − 2ρ(w−μ1)(t−μ2)
σ1σ2

+
(

t−μ2

σ2

)2

2(1 − ρ2)

⎤
⎥⎦

2πσ1σ2

√
1 − ρ2

(4)

With μ1 = E[W ] = 7, σ1 = σW = 2, μ2 = E[T ] = 37 and σ2 = σT = 1 and ρ = 1/
√

2, we
have

fW,T (w, t) =
1

2π
√

2
exp

[
−(w − 7)2

4
−

√
2(w − 7)(t − 37)

2
+ (t − 37)2

]
(5)

To find the conditional probability P [I|T = t], we need to find the conditional PDF of W
given T = t. The direct way is simply to use algebra to find

fW |T (w|t) =
fW,T (w, t)

fT (t)
(6)

The required algebra is essentially the same as that needed to prove Theorem 4.29. Its easier
just to apply Theorem 4.29 which says that given T = t, the conditional distribution of W is
Gaussian with

E [W |T = t] = E [W ] + ρ
σW

σT
(t − E [T ]) (7)

Var[W |T = t] = σ2
W (1 − ρ2) (8)
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Plugging in the various parameters gives

E [W |T = t] = 7 +
√

2(t − 37) and Var [W |T = t] = 2 (9)

Using this conditional mean and variance, we obtain the conditional Gaussian PDF

fW |T (w|t) =
1√
4π

e−(w−(7+
√

2(t−37)))2
/4. (10)

Given T = t, the conditional probability the person is declared ill is

P [I|T = t] = P [W > 10|T = t] (11)

= P

[
W − (7 +

√
2(t − 37))√

2
>

10 − (7 +
√

2(t − 37))√
2

]
(12)

= P

[
Z >

3 −√
2(t − 37)√

2

]
= Q

(
3
√

2
2

− (t − 37)

)
. (13)

Problem 4.11.6 Solution
The given joint PDF is

fX,Y (x, y) = de−(a2x2+bxy+c2y2) (1)

In order to be an example of the bivariate Gaussian PDF given in Definition 4.17, we must have

a2 =
1

2σ2
X(1 − ρ2)

c2 =
1

2σ2
Y (1 − ρ2)

b =
−ρ

σXσY (1 − ρ2)
d =

1

2πσXσY

√
1 − ρ2

We can solve for σX and σY , yielding

σX =
1

a
√

2(1 − ρ2)
σY =

1
c
√

2(1 − ρ2)
(2)

Plugging these values into the equation for b, it follows that b = −2acρ, or, equivalently, ρ = −b/2ac.
This implies

d2 =
1

4π2σ2
Xσ2

Y (1 − ρ2)
= (1 − ρ2)a2c2 = a2c2 − b2/4 (3)

Since |ρ| ≤ 1, we see that |b| ≤ 2ac. Further, for any choice of a, b and c that meets this constraint,
choosing d =

√
a2c2 − b2/4 yields a valid PDF.

Problem 4.11.7 Solution
From Equation (4.146), we can write the bivariate Gaussian PDF as

fX,Y (x, y) =
1

σX

√
2π

e−(x−μX)2/2σ2
X

1
σ̃Y

√
2π

e−(y−μ̃Y (x))2/2σ̃2
Y (1)

where μ̃Y (x) = μY + ρ σY
σX

(x − μX) and σ̃Y = σY

√
1 − ρ2. However, the definitions of μ̃Y (x) and

σ̃Y are not particularly important for this exercise. When we integrate the joint PDF over all x
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and y, we obtain∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy =

∫ ∞

−∞
1

σX

√
2π

e−(x−μX)2/2σ2
X

∫ ∞

−∞
1

σ̃Y

√
2π

e−(y−μ̃Y (x))2/2σ̃2
Y dy︸ ︷︷ ︸

1

dx (2)

=
∫ ∞

−∞
1

σX

√
2π

e−(x−μX)2/2σ2
X dx (3)

The marked integral equals 1 because for each value of x, it is the integral of a Gaussian PDF of
one variable over all possible values. In fact, it is the integral of the conditional PDF fY |X(y|x)
over all possible y. To complete the proof, we see that∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy =

∫ ∞

−∞
1

σX

√
2π

e−(x−μX)2/2σ2
X dx = 1 (4)

since the remaining integral is the integral of the marginal Gaussian PDF fX(x) over all possible
x.

Problem 4.11.8 Solution
In this problem, X1 and X2 are jointly Gaussian random variables with E[Xi] = μi, Var[Xi] = σ2

i ,
and correlation coefficient ρ12 = ρ. The goal is to show that Y = X1X2 has variance

Var[Y ] = (1 + ρ2)σ2
1σ

2
2 + μ2

1σ
2
2 + μ2

2σ
2
1 + 2ρμ1μ2σ1σ2. (1)

Since Var[Y ] = E[Y 2] − (E[Y ])2, we will find the moments of Y . The first moment is

E [Y ] = E [X1X2] = Cov [X1, X2] + E [X1] E [X2] = ρσ1σ2 + μ1μ2. (2)

For the second moment of Y , we follow the problem hint and use the iterated expectation

E
[
Y 2
]

= E
[
X2

1X2
2

]
= E

[
E
[
X2

1X2
2 |X2

]]
= E

[
X2

2E
[
X2

1 |X2

]]
. (3)

Given X2 = x2, we observe from Theorem 4.30 that X1 is is Gaussian with

E [X1|X2 = x2] = μ1 + ρ
σ1

σ2
(x2 − μ2), Var[X1|X2 = x2] = σ2

1(1 − ρ2). (4)

Thus, the conditional second moment of X1 is

E
[
X2

1 |X2

]
= (E [X1|X2])

2 + Var[X1|X2] (5)

=
(

μ1 + ρ
σ1

σ2
(X2 − μ2)

)2

+ σ2
1(1 − ρ2) (6)

= [μ2
1 + σ2

1(1 − ρ2)] + 2ρμ1
σ1

σ2
(X2 − μ2) + ρ2 σ2

1

σ2
2

(X2 − μ2)2. (7)

It follows that

E
[
X2

1X2
2

]
= E

[
X2

2E
[
X2

1 |X2
2

]]
(8)

= E

[
[μ2

1 + σ2
1(1 − ρ2)]X2

2 + 2ρμ1
σ1

σ2
(X2 − μ2)X2

2 + ρ2 σ2
1

σ2
2

(X2 − μ2)2X2
2

]
. (9)
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Since E[X2
2 ] = σ2

2 + μ2
2,

E
[
X2

1X2
2

]
=
(
μ2

1 + σ2
1(1 − ρ2)

)
(σ2

2 + μ2
2)

+ 2ρμ1
σ1

σ2
E
[
(X2 − μ2)X2

2

]
+ ρ2 σ2

1

σ2
2

E
[
(X2 − μ2)2X2

2

]
. (10)

We observe that

E
[
(X2 − μ2)X2

2

]
= E

[
(X2 − μ2)(X2 − μ2 + μ2)2

]
(11)

= E
[
(X2 − μ2)

(
(X2 − μ2)2 + 2μ2(X2 − μ2) + μ2

2

)]
(12)

= E
[
(X2 − μ2)3

]
+ 2μ2E

[
(X2 − μ2)2

]
+ μ2E [(X2 − μ2)] (13)

We recall that E[X2 − μ2] = 0 and that E[(X2 − μ2)2] = σ2
2. We now look ahead to Problem 6.3.4

to learn that
E
[
(X2 − μ2)3

]
= 0, E

[
(X2 − μ2)4

]
= 3σ4

2. (14)

This implies

E
[
(X2 − μ2)X2

2

]
= 2μ2σ

2
2. (15)

Following this same approach, we write

E
[
(X2 − μ2)2X2

2

]
= E

[
(X2 − μ2)2(X2 − μ2 + μ2)2

]
(16)

= E
[
(X2 − μ2)2

(
(X2 − μ2)2 + 2μ2(X2 − μ2) + μ2

2

)]
(17)

= E
[
(X2 − μ2)2

(
(X2 − μ2)2 + 2μ2(X2 − μ2) + μ2

2

)]
(18)

= E
[
(X2 − μ2)4

]
+ 2μ2E

[
X2 − μ2)3

]
+ μ2

2E
[
(X2 − μ2)2

]
. (19)

It follows that

E
[
(X2 − μ2)2X2

2

]
= 3σ4

2 + μ2
2σ

2
2. (20)

Combining the above results, we can conclude that

E
[
X2

1X2
2

]
=
(
μ2

1 + σ2
1(1 − ρ2)

)
(σ2

2 + μ2
2) + 2ρμ1

σ1

σ2
(2μ2σ

2
2) + ρ2 σ2

1

σ2
2

(3σ4
2 + μ2

2σ
2
2) (21)

= (1 + 2ρ2)σ2
1σ

2
2 + μ2

2σ
2
1 + μ2

1σ
2
2 + μ2

1μ
2
2 + 4ρμ1μ2σ1σ2. (22)

Finally, combining Equations (2) and (22) yields

Var[Y ] = E
[
X2

1X2
2

]− (E [X1X2])
2 (23)

= (1 + ρ2)σ2
1σ

2
2 + μ2

1σ
2
2 + μ2

2σ
2
1 + 2ρμ1μ2σ1σ2. (24)

Problem 4.12.1 Solution
The script imagepmf in Example 4.27 generates the grid variables SX, SY, and PXY. Recall that
for each entry in the grid, SX. SY and PXY are the corresponding values of x, y and PX,Y (x, y).
Displaying them as adjacent column vectors forms the list of all possible pairs x, y and the proba-
bilities PX,Y (x, y). Since any Matlab vector or matrix x is reduced to a column vector with the
command x(:), the following simple commands will generate the list:
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>> format rat;
>> imagepmf;
>> [SX(:) SY(:) PXY(:)]
ans =

800 400 1/5
1200 400 1/20
1600 400 0
800 800 1/20

1200 800 1/5
1600 800 1/10
800 1200 1/10

1200 1200 1/10
1600 1200 1/5

>>

Note that the command format rat wasn’t necessary; it just formats the output as rational num-
bers, i.e., ratios of integers, which you may or may not find esthetically pleasing.

Problem 4.12.2 Solution
In this problem, we need to calculate E[X], E[Y ], the correlation E[XY ], and the covariance
Cov[X, Y ] for random variables X and Y in Example 4.27. In this case, we can use the script
imagepmf.m in Example 4.27 to generate the grid variables SX, SY and PXY that describe the joint
PMF PX,Y (x, y).

However, for the rest of the problem, a general solution is better than a specific solution. The
general problem is that given a pair of finite random variables described by the grid variables SX,
SY and PXY, we want Matlab to calculate an expected value E[g(X, Y )]. This problem is solved
in a few simple steps. First we write a function that calculates the expected value of any finite
random variable.

function ex=finiteexp(sx,px);
%Usage: ex=finiteexp(sx,px)
%returns the expected value E[X]
%of finite random variable X described
%by samples sx and probabilities px
ex=sum((sx(:)).*(px(:)));

Note that finiteexp performs its calculations on the sample values sx and probabilities px using
the column vectors sx(:) and px(:). As a result, we can use the same finiteexp function when
the random variable is represented by grid variables. For example, we can calculate the correlation
r = E[XY ] as

r=finiteexp(SX.*SY,PXY)

It is also convenient to define a function that returns the covariance:

function covxy=finitecov(SX,SY,PXY);
%Usage: cxy=finitecov(SX,SY,PXY)
%returns the covariance of
%finite random variables X and Y
%given by grids SX, SY, and PXY
ex=finiteexp(SX,PXY);
ey=finiteexp(SY,PXY);
R=finiteexp(SX.*SY,PXY);
covxy=R-ex*ey;
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The following script calculates the desired quantities:

%imageavg.m
%Solution for Problem 4.12.2
imagepmf; %defines SX, SY, PXY
ex=finiteexp(SX,PXY)
ey=finiteexp(SY,PXY)
rxy=finiteexp(SX.*SY,PXY)
cxy=finitecov(SX,SY,PXY)

>> imageavg
ex =

1180
ey =

860
rxy =

1064000
cxy =

49200
>>

The careful reader will observe that imagepmf is inefficiently coded in that the correlation E[XY ]
is calculated twice, once directly and once inside of finitecov. For more complex problems, it
would be worthwhile to avoid this duplication.

Problem 4.12.3 Solution
The script is just a Matlab calculation of FX,Y (x, y) in Equation (4.29).

%trianglecdfplot.m
[X,Y]=meshgrid(0:0.05:1.5);
R=(0<=Y).*(Y<=X).*(X<=1).*(2*(X.*Y)-(Y.^2));
R=R+((0<=X).*(X<Y).*(X<=1).*(X.^2));
R=R+((0<=Y).*(Y<=1).*(1<X).*((2*Y)-(Y.^2)));
R=R+((X>1).*(Y>1));
mesh(X,Y,R);
xlabel(’\it x’);
ylabel(’\it y’);

For functions like FX,Y (x, y) that have multiple cases, we calculate the function for each case and
multiply by the corresponding boolean condition so as to have a zero contribution when that case
doesn’t apply. Using this technique, its important to define the boundary conditions carefully to
make sure that no point is included in two different boundary conditions.

Problem 4.12.4 Solution
By following the formulation of Problem 4.2.6, the code to set up the sample grid is reasonably
straightforward:

function [SX,SY,PXY]=circuits(n,p);
%Usage: [SX,SY,PXY]=circuits(n,p);
% (See Problem 4.12.4)
[SX,SY]=ndgrid(0:n,0:n);
PXY=0*SX;
PXY(find((SX==n) & (SY==n)))=p^n;
for y=0:(n-1),

I=find((SY==y) &(SX>=SY) &(SX<n));
PXY(I)=(p^y)*(1-p)* ...

binomialpmf(n-y-1,p,SX(I)-y);
end;

The only catch is that for a given value of y, we need to calculate the binomial probability of x− y
successes in (n − y − 1) trials. We can do this using the function call

binomialpmf(n-y-1,p,x-y)
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However, this function expects the argument n-y-1 to be a scalar. As a result, we must perform a
separate call to binomialpmf for each value of y.

An alternate solution is direct calculation of the PMF PX,Y (x, y) in Problem 4.2.6. In this
case, we calculate m! using the Matlab function gamma(m+1). Because, gamma(x) function will
calculate the gamma function for each element in a vector x, we can calculate the PMF without
any loops:

function [SX,SY,PXY]=circuits2(n,p);
%Usage: [SX,SY,PXY]=circuits2(n,p);
% (See Problem 4.12.4)
[SX,SY]=ndgrid(0:n,0:n);
PXY=0*SX;
PXY(find((SX==n) & (SY==n)))=p^n;
I=find((SY<=SX) &(SX<n));
PXY(I)=(gamma(n-SY(I))./(gamma(SX(I)-SY(I)+1)...

.*gamma(n-SX(I)))).*(p.^SX(I)).*((1-p).^(n-SX(I)));

Some experimentation with cputime will show that circuits2(n,p) runs much faster than circuits(n,p).
As is typical, the for loop in circuit results in time wasted running the Matlab interpretor and
in regenerating the binomial PMF in each cycle.

To finish the problem, we need to calculate the correlation coefficient

ρX,Y =
Cov [X, Y ]

σXσY
. (1)

In fact, this is one of those problems where a general solution is better than a specific solution.
The general problem is that given a pair of finite random variables described by the grid variables
SX, SY and PMF PXY, we wish to calculate the correlation coefficient

This problem is solved in a few simple steps. First we write a function that calculates the
expected value of a finite random variable.

function ex=finiteexp(sx,px);
%Usage: ex=finiteexp(sx,px)
%returns the expected value E[X]
%of finite random variable X described
%by samples sx and probabilities px
ex=sum((sx(:)).*(px(:)));

Note that finiteexp performs its calculations on the sample values sx and probabilities px using
the column vectors sx(:) and px(:). As a result, we can use the same finiteexp function when
the random variable is represented by grid variables. We can build on finiteexp to calculate the
variance using finitevar:

function v=finitevar(sx,px);
%Usage: ex=finitevar(sx,px)
% returns the variance Var[X]
% of finite random variables X described by
% samples sx and probabilities px
ex2=finiteexp(sx.^2,px);
ex=finiteexp(sx,px);
v=ex2-(ex^2);

Putting these pieces together, we can calculate the correlation coefficient.
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function rho=finitecoeff(SX,SY,PXY);
%Usage: rho=finitecoeff(SX,SY,PXY)
%Calculate the correlation coefficient rho of
%finite random variables X and Y
ex=finiteexp(SX,PXY); vx=finitevar(SX,PXY);
ey=finiteexp(SY,PXY); vy=finitevar(SY,PXY);
R=finiteexp(SX.*SY,PXY);
rho=(R-ex*ey)/sqrt(vx*vy);

Calculating the correlation coefficient of X and Y , is now a two line exercise..

>> [SX,SY,PXY]=circuits2(50,0.9);
>> rho=finitecoeff(SX,SY,PXY)
rho =

0.4451
>>

Problem 4.12.5 Solution
In the first approach X is an exponential (λ) random variable, Y is an independent exponential
(μ) random variable, and W = Y/X. we implement this approach in the function wrv1.m shown
below.

In the second approach, we use Theorem 3.22 and generate samples of a uniform (0, 1) random
variable U and calculate W = F−1

W (U). In this problem,

FW (w) = 1 − λ/μ

λ/μ + w
. (1)

Setting u = FW (w) and solving for w yields

w = F−1
W (u) =

λ

μ

(
u

1 − u

)
(2)

We implement this solution in the function wrv2. Here are the two solutions:

function w=wrv1(lambda,mu,m)
%Usage: w=wrv1(lambda,mu,m)
%Return m samples of W=Y/X
%X is exponential (lambda)
%Y is exponential (mu)

x=exponentialrv(lambda,m);
y=exponentialrv(mu,m);
w=y./x;

function w=wrv2(lambda,mu,m)
%Usage: w=wrv1(lambda,mu,m)
%Return m samples of W=Y/X
%X is exponential (lambda)
%Y is exponential (mu)
%Uses CDF of F_W(w)

u=rand(m,1);
w=(lambda/mu)*u./(1-u);

We would expect that wrv2 would be faster simply because it does less work. In fact, its
instructive to account for the work each program does.

• wrv1 Each exponential random sample requires the generation of a uniform random variable,
and the calculation of a logarithm. Thus, we generate 2m uniform random variables, calculate
2m logarithms, and perform m floating point divisions.

• wrv2 Generate m uniform random variables and perform m floating points divisions.

This quickie analysis indicates that wrv1 executes roughly 5m operations while wrv2 executes about
2m operations. We might guess that wrv2 would be faster by a factor of 2.5. Experimentally, we
calculated the execution time associated with generating a million samples:
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>> t2=cputime;w2=wrv2(1,1,1000000);t2=cputime-t2
t2 =

0.2500
>> t1=cputime;w1=wrv1(1,1,1000000);t1=cputime-t1
t1 =

0.7610
>>

We see in our simple experiments that wrv2 is faster by a rough factor of 3. (Note that repeating
such trials yielded qualitatively similar results.)
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