
Problem Solutions – Chapter 3

Problem 3.1.1 Solution
The CDF of X is

FX (x) =

⎧⎨
⎩

0 x < −1
(x + 1)/2 −1 ≤ x < 1
1 x ≥ 1

(1)

Each question can be answered by expressing the requested probability in terms of FX(x).

(a)
P [X > 1/2] = 1 − P [X ≤ 1/2] = 1 − FX (1/2) = 1 − 3/4 = 1/4 (2)

(b) This is a little trickier than it should be. Being careful, we can write

P [−1/2 ≤ X < 3/4] = P [−1/2 < X ≤ 3/4] + P [X = −1/2] − P [X = 3/4] (3)

Since the CDF of X is a continuous function, the probability that X takes on any specific
value is zero. This implies P [X = 3/4] = 0 and P [X = −1/2] = 0. (If this is not clear at this
point, it will become clear in Section 3.6.) Thus,

P [−1/2 ≤ X < 3/4] = P [−1/2 < X ≤ 3/4] = FX (3/4) − FX (−1/2) = 5/8 (4)

(c)
P [|X| ≤ 1/2] = P [−1/2 ≤ X ≤ 1/2] = P [X ≤ 1/2] − P [X < −1/2] (5)

Note that P [X ≤ 1/2] = FX(1/2) = 3/4. Since the probability that P [X = −1/2] = 0,
P [X < −1/2] = P [X ≤ 1/2]. Hence P [X < −1/2] = FX(−1/2) = 1/4. This implies

P [|X| ≤ 1/2] = P [X ≤ 1/2] − P [X < −1/2] = 3/4 − 1/4 = 1/2 (6)

(d) Since FX(1) = 1, we must have a ≤ 1. For a ≤ 1, we need to satisfy

P [X ≤ a] = FX (a) =
a + 1

2
= 0.8 (7)

Thus a = 0.6.

Problem 3.1.2 Solution
The CDF of V was given to be

FV (v) =

⎧⎨
⎩

0 v < −5
c(v + 5)2 −5 ≤ v < 7
1 v ≥ 7

(1)

(a) For V to be a continuous random variable, FV (v) must be a continuous function. This occurs
if we choose c such that FV (v) doesn’t have a discontinuity at v = 7. We meet this requirement
if c(7 + 5)2 = 1. This implies c = 1/144.
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(b)
P [V > 4] = 1 − P [V ≤ 4] = 1 − FV (4) = 1 − 81/144 = 63/144 (2)

(c)
P [−3 < V ≤ 0] = FV (0) − FV (−3) = 25/144 − 4/144 = 21/144 (3)

(d) Since 0 ≤ FV (v) ≤ 1 and since FV (v) is a nondecreasing function, it must be that −5 ≤ a ≤ 7.
In this range,

P [V > a] = 1 − FV (a) = 1 − (a + 5)2/144 = 2/3 (4)

The unique solution in the range −5 ≤ a ≤ 7 is a = 4
√

3 − 5 = 1.928.

Problem 3.1.3 Solution
In this problem, the CDF of W is

FW (w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 w < −5
(w + 5)/8 −5 ≤ w < −3
1/4 −3 ≤ w < 3
1/4 + 3(w − 3)/8 3 ≤ w < 5
1 w ≥ 5.

(1)

Each question can be answered directly from this CDF.

(a)
P [W ≤ 4] = FW (4) = 1/4 + 3/8 = 5/8. (2)

(b)
P [−2 < W ≤ 2] = FW (2) − FW (−2) = 1/4 − 1/4 = 0. (3)

(c)
P [W > 0] = 1 − P [W ≤ 0] = 1 − FW (0) = 3/4 (4)

(d) By inspection of FW (w), we observe that P [W ≤ a] = FW (a) = 1/2 for a in the range
3 ≤ a ≤ 5. In this range,

FW (a) = 1/4 + 3(a − 3)/8 = 1/2 (5)

This implies a = 11/3.

Problem 3.1.4 Solution

(a) By definition, �nx� is the smallest integer that is greater than or equal to nx. This implies
nx ≤ �nx� ≤ nx + 1.

(b) By part (a),
nx

n
≤ �nx�

n
≤ nx + 1

n
(1)

That is,

x ≤ �nx�
n

≤ x +
1
n

(2)

This implies

x ≤ lim
n→∞

�nx�
n

≤ lim
n→∞x +

1
n

= x (3)
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(c) In the same way, �nx� is the largest integer that is less than or equal to nx. This implies
nx − 1 ≤ �nx� ≤ nx. It follows that

nx − 1
n

≤ �nx�
n

≤ nx

n
(4)

That is,

x − 1
n
≤ �nx�

n
≤ x (5)

This implies

lim
n→∞x − 1

n
= x ≤ lim

n→∞
�nx�

n
≤ x (6)

Problem 3.2.1 Solution

fX (x) =
{

cx 0 ≤ x ≤ 2
0 otherwise

(1)

(a) From the above PDF we can determine the value of c by integrating the PDF and setting it
equal to 1. ∫ 2

0
cx dx = 2c = 1 (2)

Therefore c = 1/2.

(b) P [0 ≤ X ≤ 1] =
∫ 1
0

x
2 dx = 1/4

(c) P [−1/2 ≤ X ≤ 1/2] =
∫ 1/2
0

x
2 dx = 1/16

(d) The CDF of X is found by integrating the PDF from 0 to x.

FX (x) =
∫ x

0
fX

(
x′) dx′ =

⎧⎨
⎩

0 x < 0
x2/4 0 ≤ x ≤ 2
1 x > 2

(3)

Problem 3.2.2 Solution
From the CDF, we can find the PDF by direct differentiation. The CDF and correponding PDF
are

FX (x) =

⎧⎨
⎩

0 x < −1
(x + 1)/2 −1 ≤ x ≤ 1
1 x > 1

fX (x) =
{

1/2 −1 ≤ x ≤ 1
0 otherwise

(1)

Problem 3.2.3 Solution
We find the PDF by taking the derivative of FU (u) on each piece that FU (u) is defined. The CDF
and corresponding PDF of U are

FU (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 u < −5
(u + 5)/8 −5 ≤ u < −3
1/4 −3 ≤ u < 3
1/4 + 3(u − 3)/8 3 ≤ u < 5
1 u ≥ 5.

fU (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 u < −5
1/8 −5 ≤ u < −3
0 −3 ≤ u < 3
3/8 3 ≤ u < 5
0 u ≥ 5.

(1)
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Problem 3.2.4 Solution
For x < 0, FX(x) = 0. For x ≥ 0,

FX (x) =
∫ x

0
fX (y) dy (1)

=
∫ x

0
a2ye−a2y2/2 dy (2)

= −e−a2y2/2
∣∣∣x
0

= 1 − e−a2x2/2 (3)

A complete expression for the CDF of X is

FX (x) =
{

0 x < 0
1 − e−a2x2/2 x ≥ 0

(4)

Problem 3.2.5 Solution

fX (x) =
{

ax2 + bx 0 ≤ x ≤ 1
0 otherwise

(1)

First, we note that a and b must be chosen such that the above PDF integrates to 1.∫ 1

0
(ax2 + bx) dx = a/3 + b/2 = 1 (2)

Hence, b = 2 − 2a/3 and our PDF becomes

fX (x) = x(ax + 2 − 2a/3) (3)

For the PDF to be non-negative for x ∈ [0, 1], we must have ax + 2 − 2a/3 ≥ 0 for all x ∈ [0, 1].
This requirement can be written as

a(2/3 − x) ≤ 2 (0 ≤ x ≤ 1) (4)

For x = 2/3, the requirement holds for all a. However, the problem is tricky because we must
consider the cases 0 ≤ x < 2/3 and 2/3 < x ≤ 1 separately because of the sign change of the
inequality. When 0 ≤ x < 2/3, we have 2/3 − x > 0 and the requirement is most stringent at
x = 0 where we require 2a/3 ≤ 2 or a ≤ 3. When 2/3 < x ≤ 1, we can write the constraint as
a(x − 2/3) ≥ −2. In this case, the constraint is most stringent at x = 1, where we must have
a/3 ≥ −2 or a ≥ −6. Thus a complete expression for our requirements are

−6 ≤ a ≤ 3 b = 2 − 2a/3 (5)

As we see in the following plot, the shape of the PDF fX(x) varies greatly with the value of a.
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Problem 3.3.1 Solution

fX (x) =
{

1/4 −1 ≤ x ≤ 3
0 otherwise

(1)

We recognize that X is a uniform random variable from [-1,3].

(a) E[X] = 1 and Var[X] = (3+1)2

12 = 4/3.

(b) The new random variable Y is defined as Y = h(X) = X2. Therefore

h(E [X]) = h(1) = 1 (2)

and
E [h(X)] = E

[
X2

]
= Var [X] + E [X]2 = 4/3 + 1 = 7/3 (3)

(c) Finally

E [Y ] = E [h(X)] = E
[
X2

]
= 7/3 (4)

Var [Y ] = E
[
X4

] − E
[
X2

]2 =
∫ 3

−1

x4

4
dx − 49

9
=

61
5

− 49
9

(5)

Problem 3.3.2 Solution

(a) Since the PDF is uniform over [1,9]

E [X] =
1 + 9

2
= 5 Var [X] =

(9 − 1)2

12
=

16
3

(1)

(b) Define h(X) = 1/
√

X then

h(E [X]) = 1/
√

5 (2)

E [h(X)] =
∫ 9

1

x−1/2

8
dx = 1/2 (3)
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(c)

E [Y ] = E [h(X)] = 1/2 (4)

Var [Y ] = E
[
Y 2

] − (E [Y ])2 =
∫ 9

1

x−1

8
dx − E [X]2 =

ln 9
8

− 1/4 (5)

Problem 3.3.3 Solution
The CDF of X is

FX (x) =

⎧⎨
⎩

0 x < 0
x/2 0 ≤ x < 2
1 x ≥ 2

(1)

(a) To find E[X], we first find the PDF by differentiating the above CDF.

fX (x) =
{

1/2 0 ≤ x ≤ 2
0 otherwise

(2)

The expected value is then

E [X] =
∫ 2

0

x

2
dx = 1 (3)

(b)

E
[
X2

]
=

∫ 2

0

x2

2
dx = 8/3 (4)

Var[X] = E
[
X2

] − E [X]2 = 8/3 − 1 = 5/3 (5)

Problem 3.3.4 Solution
We can find the expected value of X by direct integration of the given PDF.

fY (y) =
{

y/2 0 ≤ y ≤ 2
0 otherwise

(1)

The expectation is

E [Y ] =
∫ 2

0

y2

2
dy = 4/3 (2)

To find the variance, we first find the second moment

E
[
Y 2

]
=

∫ 2

0

y3

2
dy = 2. (3)

The variance is then Var[Y ] = E[Y 2] − E[Y ]2 = 2 − (4/3)2 = 2/9.

Problem 3.3.5 Solution
The CDF of Y is

FY (y) =

⎧⎨
⎩

0 y < −1
(y + 1)/2 −1 ≤ y < 1
1 y ≥ 1

(1)
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(a) We can find the expected value of Y by first differentiating the above CDF to find the PDF

fY (y) =
{

1/2 −1 ≤ y ≤ 1,
0 otherwise.

(2)

It follows that

E [Y ] =
∫ 1

−1
y/2 dy = 0. (3)

(b)

E
[
Y 2

]
=

∫ 1

−1

y2

2
dy = 1/3 (4)

Var[Y ] = E
[
Y 2

] − E [Y ]2 = 1/3 − 0 = 1/3 (5)

Problem 3.3.6 Solution
To evaluate the moments of V , we need the PDF fV (v), which we find by taking the derivative of
the CDF FV (v). The CDF and corresponding PDF of V are

FV (v) =

⎧⎨
⎩

0 v < −5
(v + 5)2/144 −5 ≤ v < 7
1 v ≥ 7

fV (v) =

⎧⎨
⎩

0 v < −5
(v + 5)/72 −5 ≤ v < 7
0 v ≥ 7

(1)

(a) The expected value of V is

E [V ] =
∫ ∞

−∞
vfV (v) dv =

1
72

∫ 7

−5
(v2 + 5v) dv (2)

=
1
72

(
v3

3
+

5v2

2

)∣∣∣∣7
−5

=
1
72

(
343
3

+
245
2

+
125
3

− 125
2

)
= 3 (3)

(b) To find the variance, we first find the second moment

E
[
V 2

]
=

∫ ∞

−∞
v2fV (v) dv =

1
72

∫ 7

−5
(v3 + 5v2) dv (4)

=
1
72

(
v4

4
+

5v3

3

)∣∣∣∣7
−5

= 6719/432 = 15.55 (5)

The variance is Var[V ] = E[V 2] − (E[V ])2 = 2831/432 = 6.55.

(c) The third moment of V is

E
[
V 3

]
=

∫ ∞

−∞
v3fV (v) dv =

1
72

∫ 7

−5
(v4 + 5v3) dv (6)

=
1
72

(
v5

5
+

5v4

4

)∣∣∣∣7
−5

= 86.2 (7)
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Problem 3.3.7 Solution
To find the moments, we first find the PDF of U by taking the derivative of FU (u). The CDF and
corresponding PDF are

FU (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 u < −5
(u + 5)/8 −5 ≤ u < −3
1/4 −3 ≤ u < 3
1/4 + 3(u − 3)/8 3 ≤ u < 5
1 u ≥ 5.

fU (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 u < −5
1/8 −5 ≤ u < −3
0 −3 ≤ u < 3
3/8 3 ≤ u < 5
0 u ≥ 5.

(1)

(a) The expected value of U is

E [U ] =
∫ ∞

−∞
ufU (u) du =

∫ −3

−5

u

8
du +

∫ 5

3

3u

8
du (2)

=
u2

16

∣∣∣∣−3

−5

+
3u2

16

∣∣∣∣5
3

= 2 (3)

(b) The second moment of U is

E
[
U2

] ∫ ∞

−∞
u2fU (u) du =

∫ −3

−5

u2

8
du +

∫ 5

3

3u2

8
du (4)

=
u3

24

∣∣∣∣−3

−5

+
u3

8

∣∣∣∣5
3

= 49/3 (5)

The variance of U is Var[U ] = E[U2] − (E[U ])2 = 37/3.

(c) Note that 2U = e(ln 2)U . This implies that∫
2u du =

∫
e(ln 2)u du =

1
ln 2

e(ln 2)u =
2u

ln 2
(6)

The expected value of 2U is then

E
[
2U

]
=

∫ ∞

−∞
2ufU (u) du =

∫ −3

−5

2u

8
du +

∫ 5

3

3 · 2u

8
du (7)

=
2u

8 ln 2

∣∣∣∣−3

−5

+
3 · 2u

8 ln 2

∣∣∣∣5
3

=
2307

256 ln 2
= 13.001 (8)

Problem 3.3.8 Solution
The Pareto (α, μ) random variable has PDF

fX (x) =
{

(α/μ) (x/μ)−(α+1) x ≥ μ
0 otherwise

(1)

The nth moment is

E [Xn] =
∫ ∞

μ
xn α

μ

(
x

μ

)−(α+1)

dx = μn

∫ ∞

μ

α

μ

(
x

μ

)−(α−n+1)

dx (2)
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With the variable substitution y = x/μ, we obtain

E [Xn] = αμn

∫ ∞

1
y−(α−n+1) dy (3)

We see that E[Xn] < ∞ if and only if α − n + 1 > 1, or, equivalently, n < α. In this case,

E [Xn] =
αμn

−(α − n + 1) + 1
y−(α−n+1)+1

∣∣∣∣y=∞

y=1

(4)

=
−αμn

α − n
y−(α−n)

∣∣∣∣y=∞

y=1

=
αμn

α − n
(5)

Problem 3.4.1 Solution
The reflected power Y has an exponential (λ = 1/P0) PDF. From Theorem 3.8, E[Y ] = P0. The
probability that an aircraft is correctly identified is

P [Y > P0] =
∫ ∞

P0

1
P0

e−y/P0 dy = e−1. (1)

Fortunately, real radar systems offer better performance.

Problem 3.4.2 Solution
From Appendix A, we observe that an exponential PDF Y with parameter λ > 0 has PDF

fY (y) =
{

λe−λy y ≥ 0
0 otherwise

(1)

In addition, the mean and variance of Y are

E [Y ] =
1
λ

Var[Y ] =
1
λ2

(2)

(a) Since Var[Y ] = 25, we must have λ = 1/5.

(b) The expected value of Y is E[Y ] = 1/λ = 5.

(c)

P [Y > 5] =
∫ ∞

5
fY (y) dy = −e−y/5

∣∣∣∞
5

= e−1 (3)

Problem 3.4.3 Solution
From Appendix A, an Erlang random variable X with parameters λ > 0 and n has PDF

fX (x) =
{

λnxn−1e−λx/(n − 1)! x ≥ 0
0 otherwise

(1)

In addition, the mean and variance of X are

E [X] =
n

λ
Var[X] =

n

λ2
(2)

(a) Since λ = 1/3 and E[X] = n/λ = 15, we must have n = 5.

(b) Substituting the parameters n = 5 and λ = 1/3 into the given PDF, we obtain

fX (x) =
{

(1/3)5x4e−x/3/24 x ≥ 0
0 otherwise

(3)

(c) From above, we know that Var[X] = n/λ2 = 45.
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Problem 3.4.4 Solution
Since Y is an Erlang random variable with parameters λ = 2 and n = 2, we find in Appendix A
that

fY (y) =
{

4ye−2y y ≥ 0
0 otherwise

(1)

(a) Appendix A tells us that E[Y ] = n/λ = 1.

(b) Appendix A also tells us that Var[Y ] = n/λ2 = 1/2.

(c) The probability that 1/2 ≤ Y < 3/2 is

P [1/2 ≤ Y < 3/2] =
∫ 3/2

1/2
fY (y) dy =

∫ 3/2

1/2
4ye−2y dy (2)

This integral is easily completed using the integration by parts formula
∫

u dv = uv − ∫
v du

with

u = 2y dv = 2e−2y

du = 2dy v = −e−2y

Making these substitutions, we obtain

P [1/2 ≤ Y < 3/2] = −2ye−2y
∣∣3/2

1/2
+

∫ 3/2

1/2
2e−2y dy (3)

= 2e−1 − 4e−3 = 0.537 (4)

Problem 3.4.5 Solution

(a) The PDF of a continuous uniform (−5, 5) random variable is

fX (x) =
{

1/10 −5 ≤ x ≤ 5
0 otherwise

(1)

(b) For x < −5, FX(x) = 0. For x ≥ 5, FX(x) = 1. For −5 ≤ x ≤ 5, the CDF is

FX (x) =
∫ x

−5
fX (τ) dτ =

x + 5
10

(2)

The complete expression for the CDF of X is

FX (x) =

⎧⎨
⎩

0 x < −5
(x + 5)/10 5 ≤ x ≤ 5
1 x > 5

(3)

(c) The expected value of X is ∫ 5

−5

x

10
dx =

x2

20

∣∣∣∣5
−5

= 0 (4)

Another way to obtain this answer is to use Theorem 3.6 which says the expected value of X
is E[X] = (5 + −5)/2 = 0.
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(d) The fifth moment of X is ∫ 5

−5

x5

10
dx =

x6

60

∣∣∣∣5
−5

= 0 (5)

(e) The expected value of eX is∫ 5

−5

ex

10
dx =

ex

10

∣∣∣∣5
−5

=
e5 − e−5

10
= 14.84 (6)

Problem 3.4.6 Solution
We know that X has a uniform PDF over [a, b) and has mean μX = 7 and variance Var[X] = 3.
All that is left to do is determine the values of the constants a and b, to complete the model of the
uniform PDF.

E [X] =
a + b

2
= 7 Var[X] =

(b − a)2

12
= 3 (1)

Since we assume b > a, this implies

a + b = 14 b − a = 6 (2)

Solving these two equations, we arrive at

a = 4 b = 10 (3)

And the resulting PDF of X is,

fX (x) =
{

1/6 4 ≤ x ≤ 10
0 otherwise

(4)

Problem 3.4.7 Solution
Given that

fX (x) =
{

(1/2)e−x/2 x ≥ 0
0 otherwise

(1)

(a)

P [1 ≤ X ≤ 2] =
∫ 2

1
(1/2)e−x/2 dx = e−1/2 − e−1 = 0.2387 (2)

(b) The CDF of X may be be expressed as

FX (x) =
{

0 x < 0∫ x
0 (1/2)e−x/2 dτ x ≥ 0

=
{

0 x < 0
1 − e−x/2 x ≥ 0

(3)

(c) X is an exponential random variable with parameter a = 1/2. By Theorem 3.8, the expected
value of X is E[X] = 1/a = 2.

(d) By Theorem 3.8, the variance of X is Var[X] = 1/a2 = 4.
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Problem 3.4.8 Solution
Given the uniform PDF

fU (u) =
{

1/(b − a) a ≤ u ≤ b
0 otherwise

(1)

The mean of U can be found by integrating

E [U ] =
∫ b

a
u/(b − a) du =

b2 − a2

2(b − a)
=

b + a

2
(2)

Where we factored (b2−a2) = (b−a)(b+a). The variance of U can also be found by finding E[U2].

E
[
U2

]
=

∫ b

a
u2/(b − a) du =

(b3 − a3)
3(b − a)

(3)

Therefore the variance is

Var[U ] =
(b3 − a3)
3(b − a)

−
(

b + a

2

)2

=
(b − a)2

12
(4)

Problem 3.4.9 Solution
Let X denote the holding time of a call. The PDF of X is

fX (x) =
{

(1/τ)e−x/τ x ≥ 0
0 otherwise

(1)

We will use CA(X) and CB(X) to denote the cost of a call under the two plans. From the problem
statement, we note that CA(X) = 10X so that E[CA(X)] = 10E[X] = 10τ . On the other hand

CB(X) = 99 + 10(X − 20)+ (2)

where y+ = y if y ≥ 0; otherwise y+ = 0 for y < 0. Thus,

E [CB(X)] = E
[
99 + 10(X − 20)+

]
(3)

= 99 + 10E
[
(X − 20)+

]
(4)

= 99 + 10E
[
(X − 20)+|X ≤ 20

]
P [X ≤ 20]

+ 10E
[
(X − 20)+|X > 20

]
P [X > 20] (5)

Given X ≤ 20, (X − 20)+ = 0. Thus E[(X − 20)+|X ≤ 20] = 0 and

E [CB(X)] = 99 + 10E [(X − 20)|X > 20] P [X > 20] (6)

Finally, we observe that P [X > 20] = e−20/τ and that

E [(X − 20)|X > 20] = τ (7)

since given X ≥ 20, X−20 has a PDF identical to X by the memoryless property of the exponential
random variable. Thus,

E [CB(X)] = 99 + 10τe−20/τ (8)

Some numeric comparisons show that E[CB(X)] ≤ E[CA(X)] if τ > 12.34 minutes. That is, the
flat price for the first 20 minutes is a good deal only if your average phone call is sufficiently long.
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Problem 3.4.10 Solution
The integral I1 is

I1 =
∫ ∞

0
λe−λx dx = −e−λx

∣∣∣∞
0

= 1 (1)

For n > 1, we have

In =
∫ ∞

0

λn−1xn−1

(n − 1)!︸ ︷︷ ︸
u

λe−λx dt︸ ︷︷ ︸
dv

(2)

We define u and dv as shown above in order to use the integration by parts formula
∫

u dv =
uv − ∫

v du. Since

du =
λn−1xn−1

(n − 2)!
dx v = −e−λx (3)

we can write

In = uv|∞0 −
∫ ∞

0
v du (4)

= −λn−1xn−1

(n − 1)!
e−λx

∣∣∣∣∞
0

+
∫ ∞

0

λn−1xn−1

(n − 2)!
e−λx dx = 0 + In−1 (5)

Hence, In = 1 for all n ≥ 1.

Problem 3.4.11 Solution
For an Erlang (n, λ) random variable X, the kth moment is

E
[
Xk

]
=

∫ ∞

0
xkfX (x) dt (1)

=
∫ ∞

0

λnxn+k−1

(n − 1)!
e−λx dt =

(n + k − 1)!
λk(n − 1)!

∫ ∞

0

λn+kxn+k−1

(n + k − 1)!
e−λt dt︸ ︷︷ ︸

1

(2)

The above marked integral equals 1 since it is the integral of an Erlang PDF with parameters λ
and n + k over all possible values. Hence,

E
[
Xk

]
=

(n + k − 1)!
λk(n − 1)!

(3)

This implies that the first and second moments are

E [X] =
n!

(n − 1)!λ
=

n

λ
E

[
X2

]
=

(n + 1)!
λ2(n − 1)!

=
(n + 1)n

λ2
(4)

It follows that the variance of X is n/λ2.

Problem 3.4.12 Solution
In this problem, we prove Theorem 3.11 which says that for x ≥ 0, the CDF of an Erlang (n, λ)
random variable Xn satisfies

FXn (x) = 1 −
n−1∑
k=0

(λx)ke−λx

k!
. (1)

We do this in two steps. First, we derive a relationship between FXn(x) and FXn−1(x). Second, we
use that relationship to prove the theorem by induction.
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(a) By Definition 3.7, the CDF of Erlang (n, λ) random variable Xn is

FXn (x) =
∫ x

−∞
fXn (t) dt =

∫ x

0

λntn−1e−λt

(n − 1)!
dt. (2)

(b) To use integration by parts, we define

u =
tn−1

(n − 1)!
dv = λne−λt dt (3)

du =
tn−2

(n − 2)!
v = −λn−1e−λt (4)

Thus, using the integration by parts formula
∫

u dv = uv − ∫
v du, we have

FXn (x) =
∫ x

0

λntn−1e−λt

(n − 1)!
dt = −λn−1tn−1e−λt

(n − 1)!

∣∣∣∣x
0

+
∫ x

0

λn−1tn−2e−λt

(n − 2)!
dt (5)

= −λn−1xn−1e−λx

(n − 1)!
+ FXn−1 (x) (6)

(c) Now we do proof by induction. For n = 1, the Erlang (n, λ) random variable X1 is simply
an exponential random variable. Hence for x ≥ 0, FX1(x) = 1 − e−λx. Now we suppose the
claim is true for FXn−1(x) so that

FXn−1 (x) = 1 −
n−2∑
k=0

(λx)ke−λx

k!
. (7)

Using the result of part (a), we can write

FXn (x) = FXn−1 (x) − (λx)n−1e−λx

(n − 1)!
(8)

= 1 −
n−2∑
k=0

(λx)ke−λx

k!
− (λx)n−1e−λx

(n − 1)!
(9)

which proves the claim.

Problem 3.4.13 Solution
For n = 1, we have the fact E[X] = 1/λ that is given in the problem statement. Now we assume that
E[Xn−1] = (n − 1)!/λn−1. To complete the proof, we show that this implies that E[Xn] = n!/λn.
Specifically, we write

E [Xn] =
∫

0
xnλe−λx dx (1)

Now we use the integration by parts formula
∫

u dv = uv − ∫
v du with u = xn and dv = λe−λx dx.

This implies du = nxn−1 dx and v = −e−λx so that

E [Xn] = −xne−λx
∣∣∣∞
0

+
∫ ∞

0
nxn−1e−λx dx (2)

= 0 +
n

λ

∫ ∞

0
xn−1λe−λx dx (3)

=
n

λ
E

[
Xn−1

]
(4)
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By our induction hyothesis, E[Xn−1] = (n − 1)!/λn−1 which implies

E [Xn] = n!/λn (5)

Problem 3.4.14 Solution

(a) Since fX(x) ≥ 0 and x ≥ r over the entire integral, we can write∫ ∞

r
xfX (x) dx ≥

∫ ∞

r
rfX (x) dx = rP [X > r] (1)

(b) We can write the expected value of X in the form

E [X] =
∫ r

0
xfX (x) dx +

∫ ∞

r
xfX (x) dx (2)

Hence,

rP [X > r] ≤
∫ ∞

r
xfX (x) dx = E [X] −

∫ r

0
xfX (x) dx (3)

Allowing r to approach infinity yields

lim
r→∞ rP [X > r] ≤ E [X] − lim

r→∞

∫ r

0
xfX (x) dx = E [X] − E [X] = 0 (4)

Since rP [X > r] ≥ 0 for all r ≥ 0, we must have limr→∞ rP [X > r] = 0.

(c) We can use the integration by parts formula
∫

u dv = uv − ∫
v du by defining u = 1 − FX(x)

and dv = dx. This yields∫ ∞

0
[1 − FX (x)] dx = x[1 − FX (x)]|∞0 +

∫ ∞

0
xfX (x) dx (5)

By applying part (a), we now observe that

x [1 − FX (x)]|∞0 = lim
r→∞ r[1 − FX (r)] − 0 = lim

r→∞ rP [X > r] (6)

By part (b), limr→∞ rP [X > r] = 0 and this implies x[1 − FX(x)]|∞0 = 0. Thus,∫ ∞

0
[1 − FX (x)] dx =

∫ ∞

0
xfX (x) dx = E [X] (7)

Problem 3.5.1 Solution
Given that the peak temperature, T , is a Gaussian random variable with mean 85 and standard
deviation 10 we can use the fact that FT (t) = Φ((t−μT )/σT ) and Table 3.1 on page 123 to evaluate
the following

P [T > 100] = 1 − P [T ≤ 100] = 1 − FT (100) = 1 − Φ
(

100 − 85
10

)
(1)

= 1 − Φ(1.5) = 1 − 0.933 = 0.066 (2)

P [T < 60] = Φ
(

60 − 85
10

)
= Φ(−2.5) (3)

= 1 − Φ(2.5) = 1 − .993 = 0.007 (4)
P [70 ≤ T ≤ 100] = FT (100) − FT (70) (5)

= Φ(1.5) − Φ(−1.5) = 2Φ(1.5) − 1 = .866 (6)
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Problem 3.5.2 Solution
The standard normal Gaussian random variable Z has mean μ = 0 and variance σ2 = 1. Making
these substitutions in Definition 3.8 yields

fZ (z) =
1√
2π

e−z2/2 (1)

Problem 3.5.3 Solution
X is a Gaussian random variable with zero mean but unknown variance. We do know, however,
that

P [|X| ≤ 10] = 0.1 (1)

We can find the variance Var[X] by expanding the above probability in terms of the Φ(·) function.

P [−10 ≤ X ≤ 10] = FX (10) − FX (−10) = 2Φ
(

10
σX

)
− 1 (2)

This implies Φ(10/σX) = 0.55. Using Table 3.1 for the Gaussian CDF, we find that 10/σX = 0.15
or σX = 66.6.

Problem 3.5.4 Solution
Repeating Definition 3.11,

Q(z) =
1√
2π

∫ ∞

z
e−u2/2 du (1)

Making the substitution x = u/
√

2, we have

Q(z) =
1√
π

∫ ∞

z/
√

2
e−x2

dx =
1
2
erfc

(
z√
2

)
(2)

Problem 3.5.5 Solution
Moving to Antarctica, we find that the temperature, T is still Gaussian but with variance 225. We
also know that with probability 1/2, T exceeds 10 degrees. First we would like to find the mean
temperature, and we do so by looking at the second fact.

P [T > 10] = 1 − P [T ≤ 10] = 1 − Φ
(

10 − μT

15

)
= 1/2 (1)

By looking at the table we find that if Φ(Γ) = 1/2, then Γ = 0. Therefore,

Φ
(

10 − μT

15

)
= 1/2 (2)

implies that (10− μT )/15 = 0 or μT = 10. Now we have a Gaussian T with mean 10 and standard
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deviation 15. So we are prepared to answer the following problems.

P [T > 32] = 1 − P [T ≤ 32] = 1 − Φ
(

32 − 10
15

)
(3)

= 1 − Φ(1.45) = 1 − 0.926 = 0.074 (4)

P [T < 0] = FT (0) = Φ
(

0 − 10
15

)
(5)

= Φ(−2/3) = 1 − Φ(2/3) (6)
= 1 − Φ(0.67) = 1 − 0.749 = 0.251 (7)

P [T > 60] = 1 − P [T ≤ 60] = 1 − FT (60) (8)

= 1 − Φ
(

60 − 10
15

)
= 1 − Φ(10/3) (9)

= Q(3.33) = 4.34 · 10−4 (10)

Problem 3.5.6 Solution
In this problem, we use Theorem 3.14 and the tables for the Φ and Q functions to answer the
questions. Since E[Y20] = 40(20) = 800 and Var[Y20] = 100(20) = 2000, we can write

P [Y20 > 1000] = P

[
Y20 − 800√

2000
>

1000 − 800√
2000

]
(1)

= P

[
Z >

200
20
√

5

]
= Q(4.47) = 3.91 × 10−6 (2)

The second part is a little trickier. Since E[Y25] = 1000, we know that the prof will spend around
$1000 in roughly 25 years. However, to be certain with probability 0.99 that the prof spends $1000
will require more than 25 years. In particular, we know that

P [Yn > 1000] = P

[
Yn − 40n√

100n
>

1000 − 40n√
100n

]
= 1 − Φ

(
100 − 4n√

n

)
= 0.99 (3)

Hence, we must find n such that

Φ
(

100 − 4n√
n

)
= 0.01 (4)

Recall that Φ(x) = 0.01 for a negative value of x. This is consistent with our earlier observation that
we would need n > 25 corresponding to 100− 4n < 0. Thus, we use the identity Φ(x) = 1−Φ(−x)
to write

Φ
(

100 − 4n√
n

)
= 1 − Φ

(
4n − 100√

n

)
= 0.01 (5)

Equivalently, we have

Φ
(

4n − 100√
n

)
= 0.99 (6)

From the table of the Φ function, we have that (4n − 100)/
√

n = 2.33, or

(n − 25)2 = (0.58)2n = 0.3393n. (7)

Solving this quadratic yields n = 28.09. Hence, only after 28 years are we 99 percent sure that the
prof will have spent $1000. Note that a second root of the quadratic yields n = 22.25. This root is
not a valid solution to our problem. Mathematically, it is a solution of our quadratic in which we
choose the negative root of

√
n. This would correspond to assuming the standard deviation of Yn

is negative.
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Problem 3.5.7 Solution
We are given that there are 100,000,000 men in the United States and 23,000 of them are at least 7
feet tall, and the heights of U.S men are independent Gaussian random variables with mean 5′10′′.

(a) Let H denote the height in inches of a U.S male. To find σX , we look at the fact that the
probability that P [H ≥ 84] is the number of men who are at least 7 feet tall divided by the
total number of men (the frequency interpretation of probability). Since we measure H in
inches, we have

P [H ≥ 84] =
23,000

100,000,000
= Φ

(
70 − 84

σX

)
= 0.00023 (1)

Since Φ(−x) = 1 − Φ(x) = Q(x),

Q(14/σX) = 2.3 · 10−4 (2)

From Table 3.2, this implies 14/σX = 3.5 or σX = 4.

(b) The probability that a randomly chosen man is at least 8 feet tall is

P [H ≥ 96] = Q

(
96 − 70

4

)
= Q(6.5) (3)

Unfortunately, Table 3.2 doesn’t include Q(6.5), although it should be apparent that the
probability is very small. In fact, Q(6.5) = 4.0 × 10−11.

(c) First we need to find the probability that a man is at least 7’6”.

P [H ≥ 90] = Q

(
90 − 70

4

)
= Q(5) ≈ 3 · 10−7 = β (4)

Although Table 3.2 stops at Q(4.99), if you’re curious, the exact value is Q(5) = 2.87 · 10−7.

Now we can begin to find the probability that no man is at least 7’6”. This can be modeled
as 100,000,000 repetitions of a Bernoulli trial with parameter 1− β. The probability that no
man is at least 7’6” is

(1 − β)100,000,000 = 9.4 × 10−14 (5)

(d) The expected value of N is just the number of trials multiplied by the probability that a man
is at least 7’6”.

E [N ] = 100,000,000 · β = 30 (6)

Problem 3.5.8 Solution
This problem is in the wrong section since the erf(·) function is defined later on in Section 3.9 as

erf(x) =
2√
π

∫ x

0
e−u2

du. (1)
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(a) Since Y is Gaussian (0, 1/
√

2), Y has variance 1/2 and

fY (y) =
1√

2π(1/2)
e−y2/[2(1/2)] =

1√
π

e−y2
. (2)

For y ≥ 0, FY (y) =
∫ y
−∞ fY (u) du = 1/2 +

∫ y
0 fY (u) du. Substituting fY (u) yields

FY (y) =
1
2

+
1√
π

∫ y

0
e−u2

du =
1
2

+ erf(y). (3)

(b) Since Y is Gaussian (0, 1/
√

2), Z =
√

2Y is Gaussian with expected value E[Z] =
√

2E[Y ] = 0
and variance Var[Z] = 2 Var[Y ] = 1. Thus Z is Gaussian (0, 1) and

Φ(z) = FZ (z) = P
[√

2Y ≤ z
]

= P

[
Y ≤ z√

2

]
= FY

(
z√
2

)
=

1
2

+ erf
(

z√
2

)
(4)

Problem 3.5.9 Solution
First we note that since W has an N [μ, σ2] distribution, the integral we wish to evaluate is

I =
∫ ∞

−∞
fW (w) dw =

1√
2πσ2

∫ ∞

−∞
e−(w−μ)2/2σ2

dw (1)

(a) Using the substitution x = (w − μ)/σ, we have dx = dw/σ and

I =
1√
2π

∫ ∞

−∞
e−x2/2 dx (2)

(b) When we write I2 as the product of integrals, we use y to denote the other variable of
integration so that

I2 =
(

1√
2π

∫ ∞

−∞
e−x2/2 dx

) (
1√
2π

∫ ∞

−∞
e−y2/2 dy

)
(3)

=
1
2π

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2 dx dy (4)

(c) By changing to polar coordinates, x2 + y2 = r2 and dx dy = r dr dθ so that

I2 =
1
2π

∫ 2π

0

∫ ∞

0
e−r2/2r dr dθ (5)

=
1
2π

∫ 2π

0
−e−r2/2

∣∣∣∞
0

dθ =
1
2π

∫ 2π

0
dθ = 1 (6)

Problem 3.5.10 Solution
This problem is mostly calculus and only a little probability. From the problem statement, the
SNR Y is an exponential (1/γ) random variable with PDF

fY (y) =
{

(1/γ)e−y/γ y ≥ 0,
0 otherwise.

(1)
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Thus, from the problem statement, the BER is

P e = E [Pe(Y )] =
∫ ∞

−∞
Q(

√
2y)fY (y) dy =

∫ ∞

0
Q(

√
2y)

y

γ
e−y/γ dy (2)

Like most integrals with exponential factors, its a good idea to try integration by parts. Before
doing so, we recall that if X is a Gaussian (0, 1) random variable with CDF FX(x), then

Q(x) = 1 − FX (x) . (3)

It follows that Q(x) has derivative

Q′(x) =
dQ(x)

dx
= −dFX (x)

dx
= −fX (x) = − 1√

2π
e−x2/2 (4)

To solve the integral, we use the integration by parts formula
∫ b
a u dv = uv|ba −

∫ b
a v du, where

u = Q(
√

2y) dv =
1
γ

e−y/γ dy (5)

du = Q′(
√

2y)
1√
2y

= − e−y

2
√

πy
v = −e−y/γ (6)

From integration by parts, it follows that

P e = uv|∞0 −
∫ ∞

0
v du = −Q(

√
2y)e−y/γ

∣∣∣∞
0

−
∫ ∞

0

1√
y
e−y[1+(1/γ)] dy (7)

= 0 + Q(0)e−0 − 1
2
√

π

∫ ∞

0
y−1/2e−y/γ̄ dy (8)

where γ̄ = γ/(1 + γ). Next, recalling that Q(0) = 1/2 and making the substitution t = y/γ̄, we
obtain

P e =
1
2
− 1

2

√
γ̄

π

∫ ∞

0
t−1/2e−t dt (9)

From Math Fact B.11, we see that the remaining integral is the Γ(z) function evaluated z = 1/2.
Since Γ(1/2) =

√
π,

P e =
1
2
− 1

2

√
γ̄

π
Γ(1/2) =

1
2

[
1 −√

γ̄
]

=
1
2

[
1 −

√
γ

1 + γ

]
(10)

Problem 3.6.1 Solution

(a) Using the given CDF

P [X < −1] = FX

(−1−
)

= 0 (1)
P [X ≤ −1] = FX (−1) = −1/3 + 1/3 = 0 (2)

Where FX(−1−) denotes the limiting value of the CDF found by approaching −1 from the
left. Likewise, FX(−1+) is interpreted to be the value of the CDF found by approaching
−1 from the right. We notice that these two probabilities are the same and therefore the
probability that X is exactly −1 is zero.
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(b)

P [X < 0] = FX

(
0−

)
= 1/3 (3)

P [X ≤ 0] = FX (0) = 2/3 (4)

Here we see that there is a discrete jump at X = 0. Approached from the left the CDF yields
a value of 1/3 but approached from the right the value is 2/3. This means that there is a
non-zero probability that X = 0, in fact that probability is the difference of the two values.

P [X = 0] = P [X ≤ 0] − P [X < 0] = 2/3 − 1/3 = 1/3 (5)

(c)

P [0 < X ≤ 1] = FX (1) − FX

(
0+

)
= 1 − 2/3 = 1/3 (6)

P [0 ≤ X ≤ 1] = FX (1) − FX

(
0−

)
= 1 − 1/3 = 2/3 (7)

The difference in the last two probabilities above is that the first was concerned with the
probability that X was strictly greater then 0, and the second with the probability that X
was greater than or equal to zero. Since the the second probability is a larger set (it includes
the probability that X = 0) it should always be greater than or equal to the first probability.
The two differ by the probability that X = 0, and this difference is non-zero only when the
random variable exhibits a discrete jump in the CDF.

Problem 3.6.2 Solution
Similar to the previous problem we find

(a)

P [X < −1] = FX

(−1−
)

= 0 P [X ≤ −1] = FX (−1) = 1/4 (1)

Here we notice the discontinuity of value 1/4 at x = −1.

(b)

P [X < 0] = FX

(
0−

)
= 1/2 P [X ≤ 0] = FX (0) = 1/2 (2)

Since there is no discontinuity at x = 0, FX(0−) = FX(0+) = FX(0).

(c)

P [X > 1] = 1 − P [X ≤ 1] = 1 − FX (1) = 0 (3)
P [X ≥ 1] = 1 − P [X < 1] = 1 − FX

(
1−

)
= 1 − 3/4 = 1/4 (4)

Again we notice a discontinuity of size 1/4, here occurring at x = 1.

Problem 3.6.3 Solution

(a) By taking the derivative of the CDF FX(x) given in Problem 3.6.2, we obtain the PDF

fX (x) =
{

δ(x+1)
4 + 1/4 + δ(x−1)

4 −1 ≤ x ≤ 1
0 otherwise

(1)
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(b) The first moment of X is

E [X] =
∫ ∞

−∞
xfX (x) dx (2)

= x/4|x=−1 + x2/8
∣∣1
−1

+ x/4|x=1 = −1/4 + 0 + 1/4 = 0. (3)

(c) The second moment of X is

E
[
X2

]
=

∫ ∞

−∞
x2fX (x) dx (4)

= x2/4
∣∣
x=−1

+ x3/12
∣∣1
−1

+ x2/4
∣∣
x=1

= 1/4 + 1/6 + 1/4 = 2/3. (5)

Since E[X] = 0, Var[X] = E[X2] = 2/3.

Problem 3.6.4 Solution
The PMF of a Bernoulli random variable with mean p is

PX (x) =

⎧⎨
⎩

1 − p x = 0
p x = 1
0 otherwise

(1)

The corresponding PDF of this discrete random variable is

fX (x) = (1 − p)δ(x) + pδ(x − 1) (2)

Problem 3.6.5 Solution
The PMF of a geometric random variable with mean 1/p is

PX (x) =
{

p(1 − p)x−1 x = 1, 2, . . .
0 otherwise

(1)

The corresponding PDF is

fX (x) = pδ(x − 1) + p(1 − p)δ(x − 2) + · · · (2)

=
∞∑

j=1

p(1 − p)j−1δ(x − j) (3)

Problem 3.6.6 Solution

(a) Since the conversation time cannot be negative, we know that FW (w) = 0 for w < 0. The
conversation time W is zero iff either the phone is busy, no one answers, or if the conversation
time X of a completed call is zero. Let A be the event that the call is answered. Note that
the event Ac implies W = 0. For w ≥ 0,

FW (w) = P [Ac] + P [A] FW |A (w) = (1/2) + (1/2)FX (w) (1)

Thus the complete CDF of W is

FW (w) =
{

0 w < 0
1/2 + (1/2)FX (w) w ≥ 0

(2)
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(b) By taking the derivative of FW (w), the PDF of W is

fW (w) =
{

(1/2)δ(w) + (1/2)fX (w)
0 otherwise

(3)

Next, we keep in mind that since X must be nonnegative, fX(x) = 0 for x < 0. Hence,

fW (w) = (1/2)δ(w) + (1/2)fX (w) (4)

(c) From the PDF fW (w), calculating the moments is straightforward.

E [W ] =
∫ ∞

−∞
wfW (w) dw = (1/2)

∫ ∞

−∞
wfX (w) dw = E [X] /2 (5)

The second moment is

E
[
W 2

]
=

∫ ∞

−∞
w2fW (w) dw = (1/2)

∫ ∞

−∞
w2fX (w) dw = E

[
X2

]
/2 (6)

The variance of W is

Var[W ] = E
[
W 2

] − (E [W ])2 = E
[
X2

]
/2 − (E [X] /2)2 (7)

= (1/2) Var[X] + (E [X])2/4 (8)

Problem 3.6.7 Solution
The professor is on time 80 percent of the time and when he is late his arrival time is uniformly
distributed between 0 and 300 seconds. The PDF of T , is

fT (t) =
{

0.8δ(t − 0) + 0.2
300 0 ≤ t ≤ 300

0 otherwise
(1)

The CDF can be found be integrating

FT (t) =

⎧⎨
⎩

0 t < −1
0.8 + 0.2t

300 0 ≤ t < 300
1 t ≥ 300

(2)

Problem 3.6.8 Solution
Let G denote the event that the throw is good, that is, no foul occurs. The CDF of D obeys

FD (y) = P [D ≤ y|G]P [G] + P [D ≤ y|Gc] P [Gc] (1)

Given the event G,

P [D ≤ y|G] = P [X ≤ y − 60] = 1 − e−(y−60)/10 (y ≥ 60) (2)

Of course, for y < 60, P [D ≤ y|G] = 0. From the problem statement, if the throw is a foul, then
D = 0. This implies

P [D ≤ y|Gc] = u(y) (3)
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where u(·) denotes the unit step function. Since P [G] = 0.7, we can write

FD (y) = P [G]P [D ≤ y|G] + P [Gc] P [D ≤ y|Gc] (4)

=
{

0.3u(y) y < 60
0.3 + 0.7(1 − e−(y−60)/10) y ≥ 60

(5)

Another way to write this CDF is

FD (y) = 0.3u(y) + 0.7u(y − 60)(1 − e−(y−60)/10) (6)

However, when we take the derivative, either expression for the CDF will yield the PDF. However,
taking the derivative of the first expression perhaps may be simpler:

fD (y) =
{

0.3δ(y) y < 60
0.07e−(y−60)/10 y ≥ 60

(7)

Taking the derivative of the second expression for the CDF is a little tricky because of the product
of the exponential and the step function. However, applying the usual rule for the differentation of
a product does give the correct answer:

fD (y) = 0.3δ(y) + 0.7δ(y − 60)(1 − e−(y−60)/10) + 0.07u(y − 60)e−(y−60)/10 (8)

= 0.3δ(y) + 0.07u(y − 60)e−(y−60)/10 (9)

The middle term δ(y − 60)(1 − e−(y−60)/10) dropped out because at y = 60, e−(y−60)/10 = 1.

Problem 3.6.9 Solution
The professor is on time and lectures the full 80 minutes with probability 0.7. In terms of math,

P [T = 80] = 0.7. (1)

Likewise when the professor is more than 5 minutes late, the students leave and a 0 minute lecture
is observed. Since he is late 30% of the time and given that he is late, his arrival is uniformly
distributed between 0 and 10 minutes, the probability that there is no lecture is

P [T = 0] = (0.3)(0.5) = 0.15 (2)

The only other possible lecture durations are uniformly distributed between 75 and 80 minutes,
because the students will not wait longer then 5 minutes, and that probability must add to a total
of 1 − 0.7 − 0.15 = 0.15. So the PDF of T can be written as

fT (t) =

⎧⎪⎪⎨
⎪⎪⎩

0.15δ(t) t = 0
0.03 75 ≤ 7 < 80
0.7δ(t − 80) t = 80
0 otherwise

(3)

Problem 3.7.1 Solution
Since 0 ≤ X ≤ 1, Y = X2 satisfies 0 ≤ Y ≤ 1. We can conclude that FY (y) = 0 for y < 0 and that
FY (y) = 1 for y ≥ 1. For 0 ≤ y < 1,

FY (y) = P
[
X2 ≤ y

]
= P [X ≤ √

y] (1)
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Since fX(x) = 1 for 0 ≤ x ≤ 1, we see that for 0 ≤ y < 1,

P [X ≤ √
y] =

∫ √
y

0
dx =

√
y (2)

Hence, the CDF of Y is

FY (y) =

⎧⎨
⎩

0 y < 0√
y 0 ≤ y < 1

1 y ≥ 1
(3)

By taking the derivative of the CDF, we obtain the PDF

fY (y) =
{

1/(2
√

y) 0 ≤ y < 1
0 otherwise

(4)

Problem 3.7.2 Solution
Since Y =

√
X, the fact that X is nonegative and that we asume the squre root is always positive

implies FY (y) = 0 for y < 0. In addition, for y ≥ 0, we can find the CDF of Y by writing

FY (y) = P [Y ≤ y] = P
[√

X ≤ y
]

= P
[
X ≤ y2

]
= FX

(
y2

)
(1)

For x ≥ 0, FX(x) = 1 − e−λx. Thus,

FY (y) =
{

1 − e−λy2
y ≥ 0

0 otherwise
(2)

By taking the derivative with respect to y, it follows that the PDF of Y is

fY (y) =
{

2λye−λy2
y ≥ 0

0 otherwise
(3)

In comparing this result to the Rayleigh PDF given in Appendix A, we observe that Y is a Rayleigh
(a) random variable with a =

√
2λ.

Problem 3.7.3 Solution
Since X is non-negative, W = X2 is also non-negative. Hence for w < 0, fW (w) = 0. For w ≥ 0,

FW (w) = P [W ≤ w] = P
[
X2 ≤ w

]
(1)

= P [X ≤ w] (2)

= 1 − e−λ
√

w (3)

Taking the derivative with respect to w yields fW (w) = λe−λ
√

w/(2
√

w). The complete expression
for the PDF is

fW (w) =

{
λe−λ

√
w

2
√

w
w ≥ 0

0 otherwise
(4)
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Problem 3.7.4 Solution
From Problem 3.6.1, random variable X has CDF

FX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x < −1
x/3 + 1/3 −1 ≤ x < 0
x/3 + 2/3 0 ≤ x < 1
1 1 ≤ x

(1)

(a) We can find the CDF of Y , FY (y) by noting that Y can only take on two possible values, 0
and 100. And the probability that Y takes on these two values depends on the probability
that X < 0 and X ≥ 0, respectively. Therefore

FY (y) = P [Y ≤ y] =

⎧⎨
⎩

0 y < 0
P [X < 0] 0 ≤ y < 100
1 y ≥ 100

(2)

The probabilities concerned with X can be found from the given CDF FX(x). This is the
general strategy for solving problems of this type: to express the CDF of Y in terms of the
CDF of X. Since P [X < 0] = FX(0−) = 1/3, the CDF of Y is

FY (y) = P [Y ≤ y] =

⎧⎨
⎩

0 y < 0
1/3 0 ≤ y < 100
1 y ≥ 100

(3)

(b) The CDF FY (y) has jumps of 1/3 at y = 0 and 2/3 at y = 100. The corresponding PDF of
Y is

fY (y) = δ(y)/3 + 2δ(y − 100)/3 (4)

(c) The expected value of Y is

E [Y ] =
∫ ∞

−∞
yfY (y) dy = 0 · 1

3
+ 100 · 2

3
= 66.66 (5)

Problem 3.7.5 Solution
Before solving for the PDF, it is helpful to have a sketch of the function X = − ln(1 − U).

0 0.5 1
0

2

4

U

X

(a) From the sketch, we observe that X will be nonnegative. Hence FX(x) = 0 for x < 0. Since
U has a uniform distribution on [0, 1], for 0 ≤ u ≤ 1, P [U ≤ u] = u. We use this fact to find
the CDF of X. For x ≥ 0,

FX (x) = P [− ln(1 − U) ≤ x] = P
[
1 − U ≥ e−x

]
= P

[
U ≤ 1 − e−x

]
(1)
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For x ≥ 0, 0 ≤ 1 − e−x ≤ 1 and so

FX (x) = FU

(
1 − e−x

)
= 1 − e−x (2)

The complete CDF can be written as

FX (x) =
{

0 x < 0
1 − e−x x ≥ 0

(3)

(b) By taking the derivative, the PDF is

fX (x) =
{

e−x x ≥ 0
0 otherwise

(4)

Thus, X has an exponential PDF. In fact, since most computer languages provide uniform
[0, 1] random numbers, the procedure outlined in this problem provides a way to generate
exponential random variables from uniform random variables.

(c) Since X is an exponential random variable with parameter a = 1, E[X] = 1.

Problem 3.7.6 Solution
We wish to find a transformation that takes a uniformly distributed random variable on [0,1] to
the following PDF for Y .

fY (y) =
{

3y2 0 ≤ y ≤ 1
0 otherwise

(1)

We begin by realizing that in this case the CDF of Y must be

FY (y) =

⎧⎨
⎩

0 y < 0
y3 0 ≤ y ≤ 1
1 otherwise

(2)

Therefore, for 0 ≤ y ≤ 1,
P [Y ≤ y] = P [g(X) ≤ y] = y3 (3)

Thus, using g(X) = X1/3, we see that for 0 ≤ y ≤ 1,

P [g(X) ≤ y] = P
[
X1/3 ≤ y

]
= P

[
X ≤ y3

]
= y3 (4)

which is the desired answer.

Problem 3.7.7 Solution
Since the microphone voltage V is uniformly distributed between -1 and 1 volts, V has PDF and
CDF

fV (v) =
{

1/2 −1 ≤ v ≤ 1
0 otherwise

FV (v) =

⎧⎨
⎩

0 v < −1
(v + 1)/2 −1 ≤ v ≤ 1
1 v > 1

(1)

The voltage is processed by a limiter whose output magnitude is given by below

L =
{ |V | |V | ≤ 0.5

0.5 otherwise
(2)
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(a)

P [L = 0.5] = P [|V | ≥ 0.5] = P [V ≥ 0.5] + P [V ≤ −0.5] (3)
= 1 − FV (0.5) + FV (−0.5) (4)
= 1 − 1.5/2 + 0.5/2 = 1/2 (5)

(b) For 0 ≤ l ≤ 0.5,

FL (l) = P [|V | ≤ l] = P [−l ≤ v ≤ l] = FV (l) − FV (−l) (6)
= 1/2(l + 1) − 1/2(−l + 1) = l (7)

So the CDF of L is

FL (l) =

⎧⎨
⎩

0 l < 0
l 0 ≤ l < 0.5
1 l ≥ 0.5

(8)

(c) By taking the derivative of FL(l), the PDF of L is

fL (l) =
{

1 + (0.5)δ(l − 0.5) 0 ≤ l ≤ 0.5
0 otherwise

(9)

The expected value of L is

E [L] =
∫ ∞

−∞
lfL (l) dl =

∫ 0.5

0
l dl + 0.5

∫ 0.5

0
l(0.5)δ(l − 0.5) dl = 0.375 (10)

Problem 3.7.8 Solution
Let X denote the position of the pointer and Y denote the area within the arc defined by the
stopping position of the pointer.

(a) If the disc has radius r, then the area of the disc is πr2. Since the circumference of the disc
is 1 and X is measured around the circumference, Y = πr2X. For example, when X = 1, the
shaded area is the whole disc and Y = πr2. Similarly, if X = 1/2, then Y = πr2/2 is half the
area of the disc. Since the disc has circumference 1, r = 1/(2π) and

Y = πr2X =
X

4π
(1)

(b) The CDF of Y can be expressed as

FY (y) = P [Y ≤ y] = P

[
X

4π
≤ y

]
= P [X ≤ 4πy] = FX (4πy) (2)

Therefore the CDF is

FY (y) =

⎧⎨
⎩

0 y < 0
4πy 0 ≤ y ≤ 1

4π
1 y ≥ 1

4π

(3)

(c) By taking the derivative of the CDF, the PDF of Y is

fY (y) =
{

4π 0 ≤ y ≤ 1
4π

0 otherwise
(4)

(d) The expected value of Y is E[Y ] =
∫ 1/(4π)
0 4πy dy = 1/(8π).
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Problem 3.7.9 Solution
The uniform (0, 2) random variable U has PDF and CDF

fU (u) =
{

1/2 0 ≤ u ≤ 2,
0 otherwise,

FU (u) =

⎧⎨
⎩

0 u < 0,
u/2 0 ≤ u < 2,
1 u > 2.

(1)

The uniform random variable U is subjected to the following clipper.

W = g(U) =
{

U U ≤ 1
1 U > 1

(2)

To find the CDF of the output of the clipper, W , we remember that W = U for 0 ≤ U ≤ 1
while W = 1 for 1 ≤ U ≤ 2. First, this implies W is nonnegative, i.e., FW (w) = 0 for w < 0.
Furthermore, for 0 ≤ w ≤ 1,

FW (w) = P [W ≤ w] = P [U ≤ w] = FU (w) = w/2 (3)

Lastly, we observe that it is always true that W ≤ 1. This implies FW (w) = 1 for w ≥ 1. Therefore
the CDF of W is

FW (w) =

⎧⎨
⎩

0 w < 0
w/2 0 ≤ w < 1
1 w ≥ 1

(4)

From the jump in the CDF at w = 1, we see that P [W = 1] = 1/2. The corresponding PDF can
be found by taking the derivative and using the delta function to model the discontinuity.

fW (w) =
{

1/2 + (1/2)δ(w − 1) 0 ≤ w ≤ 1
0 otherwise

(5)

The expected value of W is

E [W ] =
∫ ∞

−∞
wfW (w) dw =

∫ 1

0
w[1/2 + (1/2)δ(w − 1)] dw (6)

= 1/4 + 1/2 = 3/4. (7)

Problem 3.7.10 Solution
Given the following function of random variable X,

Y = g(X) =
{

10 X < 0
−10 X ≥ 0

(1)

we follow the same procedure as in Problem 3.7.4. We attempt to express the CDF of Y in terms
of the CDF of X. We know that Y is always less than −10. We also know that −10 ≤ Y < 10
when X ≥ 0, and finally, that Y = 10 when X < 0. Therefore

FY (y) = P [Y ≤ y] =

⎧⎨
⎩

0 y < −10
P [X ≥ 0] = 1 − FX (0) −10 ≤ y < 10
1 y ≥ 10

(2)
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Problem 3.7.11 Solution
The PDF of U is

fU (u) =
{

1/2 −1 ≤ u ≤ 1
0 otherwise

(1)

Since W ≥ 0, we see that FW (w) = 0 for w < 0. Next, we observe that the rectifier output W is a
mixed random variable since

P [W = 0] = P [U < 0] =
∫ 0

−1
fU (u) du = 1/2 (2)

The above facts imply that

FW (0) = P [W ≤ 0] = P [W = 0] = 1/2 (3)

Next, we note that for 0 < w < 1,

FW (w) = P [U ≤ w] =
∫ w

−1
fU (u) du = (w + 1)/2 (4)

Finally, U ≤ 1 implies W ≤ 1, which implies FW (w) = 1 for w ≥ 1. Hence, the complete expression
for the CDF is

FW (w) =

⎧⎨
⎩

0 w < 0
(w + 1)/2 0 ≤ w ≤ 1
1 w > 1

(5)

By taking the derivative of the CDF, we find the PDF of W ; however, we must keep in mind that
the discontinuity in the CDF at w = 0 yields a corresponding impulse in the PDF.

fW (w) =
{

(δ(w) + 1)/2 0 ≤ w ≤ 1
0 otherwise

(6)

From the PDF, we can calculate the expected value

E [W ] =
∫ 1

0
w(δ(w) + 1)/2 dw = 0 +

∫ 1

0
(w/2) dw = 1/4 (7)

Perhaps an easier way to find the expected value is to use Theorem 2.10. In this case,

E [W ] =
∫ ∞

−∞
g(u)fW (w) du =

∫ 1

0
u(1/2) du = 1/4 (8)

As we expect, both approaches give the same answer.

Problem 3.7.12 Solution
Theorem 3.19 states that for a constant a > 0, Y = aX has CDF and PDF

FY (y) = FX (y/a) fY (y) =
1
a
fX (y/a) (1)

(a) If X is uniform (b, c), then Y = aX has PDF

fY (y) =
1
a
fX (y/a) =

{ 1
a(c−b) b ≤ y/a ≤ c

0 otherwise
=

{
1

ac−ab ab ≤ y ≤ ac

0 otherwise
(2)

Thus Y has the PDF of a uniform (ab, ac) random variable.
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(b) Using Theorem 3.19, the PDF of Y = aX is

fY (y) =
1
a
fX (y/a) =

{
λ
ae−λ(y/a) y/a ≥ 0
0 otherwise

(3)

=
{

(λ/a)e−(λ/a)y y ≥ 0
0 otherwise

(4)

Hence Y is an exponential (λ/a) exponential random variable.

(c) Using Theorem 3.19, the PDF of Y = aX is

fY (y) =
1
a
fX (y/a) =

{
λn(y/a)n−1e−λ(y/a)

a(n−1)! y/a ≥ 0
0 otherwise

(5)

=

{
(λ/a)nyn−1e−(λ/a)y

(n−1)! y ≥ 0,

0 otherwise,
(6)

which is an Erlang (n, λ) PDF.

(d) If X is a Gaussian (μ, σ) random variable, then Y = aX has PDF

fY (y) = fX (y/a) =
1

a
√

2πσ2
e−((y/a)−μ)2/2σ2

(7)

=
1√

2πa2σ2
e−(y−aμ)2/2(a2σ2) (8)

(9)

Thus Y is a Gaussian random variable with expected value E[Y ] = aμ and Var[Y ] = a2σ2.
That is, Y is a Gaussian (aμ, aσ) random variable.

Problem 3.7.13 Solution
If X has a uniform distribution from 0 to 1 then the PDF and corresponding CDF of X are

fX (x) =
{

1 0 ≤ x ≤ 1
0 otherwise

FX (x) =

⎧⎨
⎩

0 x < 0
x 0 ≤ x ≤ 1
1 x > 1

(1)

For b − a > 0, we can find the CDF of the function Y = a + (b − a)X

FY (y) = P [Y ≤ y] = P [a + (b − a)X ≤ y] (2)

= P

[
X ≤ y − a

b − a

]
(3)

= FX

(
y − a

b − a

)
=

y − a

b − a
(4)

Therefore the CDF of Y is

FY (y) =

⎧⎨
⎩

0 y < a
y−a
b−a a ≤ y ≤ b

1 y ≥ b

(5)

By differentiating with respect to y we arrive at the PDF

fY (y) =
{

1/(b − a) a ≤ x ≤ b
0 otherwise

(6)

which we recognize as the PDF of a uniform (a, b) random variable.
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Problem 3.7.14 Solution
Since X = F−1(U), it is desirable that the function F−1(u) exist for all 0 ≤ u ≤ 1. However, for the
continuous uniform random variable U , P [U = 0] = P [U = 1] = 0. Thus, it is a zero probability
event that F−1(U) will be evaluated at U = 0 or U = 1. Asa result, it doesn’t matter whether
F−1(u) exists at u = 0 or u = 1.

Problem 3.7.15 Solution
The relationship between X and Y is shown in the following figure:

0 1 2 3
0

1

2

3

X

Y

(a) Note that Y = 1/2 if and only if 0 ≤ X ≤ 1. Thus,

P [Y = 1/2] = P [0 ≤ X ≤ 1] =
∫ 1

0
fX (x) dx =

∫ 1

0
(x/2) dx = 1/4 (1)

(b) Since Y ≥ 1/2, we can conclude that FY (y) = 0 for y < 1/2. Also, FY (1/2) = P [Y = 1/2] =
1/4. Similarly, for 1/2 < y ≤ 1,

FY (y) = P [0 ≤ X ≤ 1] = P [Y = 1/2] = 1/4 (2)

Next, for 1 < y ≤ 2,

FY (y) = P [X ≤ y] =
∫ y

0
fX (x) dx = y2/4 (3)

Lastly, since Y ≤ 2, FY (y) = 1 for y ≥ 2. The complete expression of the CDF is

FY (y) =

⎧⎪⎪⎨
⎪⎪⎩

0 y < 1/2
1/4 1/2 ≤ y ≤ 1
y2/4 1 < y < 2
1 y ≥ 2

(4)

Problem 3.7.16 Solution
We can prove the assertion by considering the cases where a > 0 and a < 0, respectively. For the
case where a > 0 we have

FY (y) = P [Y ≤ y] = P

[
X ≤ y − b

a

]
= FX

(
y − b

a

)
(1)

Therefore by taking the derivative we find that

fY (y) =
1
a
fX

(
y − b

a

)
a > 0 (2)
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Similarly for the case when a < 0 we have

FY (y) = P [Y ≤ y] = P

[
X ≥ y − b

a

]
= 1 − FX

(
y − b

a

)
(3)

And by taking the derivative, we find that for negative a,

fY (y) = −1
a
fX

(
y − b

a

)
a < 0 (4)

A valid expression for both positive and negative a is

fY (y) =
1
|a|fX

(
y − b

a

)
(5)

Therefore the assertion is proved.

Problem 3.7.17 Solution
Understanding this claim may be harder than completing the proof. Since 0 ≤ F (x) ≤ 1, we know
that 0 ≤ U ≤ 1. This implies FU (u) = 0 for u < 0 and FU (u) = 1 for u ≥ 1. Moreover, since F (x)
is an increasing function, we can write for 0 ≤ u ≤ 1,

FU (u) = P [F (X) ≤ u] = P
[
X ≤ F−1(u)

]
= FX

(
F−1(u)

)
(1)

Since FX(x) = F (x), we have for 0 ≤ u ≤ 1,

FU (u) = F (F−1(u)) = u (2)

Hence the complete CDF of U is

FU (u) =

⎧⎨
⎩

0 u < 0
u 0 ≤ u < 1
1 u ≥ 1

(3)

That is, U is a uniform [0, 1] random variable.

Problem 3.7.18 Solution

(a) Given FX(x) is a continuous function, there exists x0 such that FX(x0) = u. For each
value of u, the corresponding x0 is unique. To see this, suppose there were also x1 such
that FX(x1) = u. Without loss of generality, we can assume x1 > x0 since otherwise we
could exchange the points x0 and x1. Since FX(x0) = FX(x1) = u, the fact that FX(x)
is nondecreasing implies FX(x) = u for all x ∈ [x0, x1], i.e., FX(x) is flat over the interval
[x0, x1], which contradicts the assumption that FX(x) has no flat intervals. Thus, for any
u ∈ (0, 1), there is a unique x0 such that FX(x) = u. Moreiver, the same x0 is the minimum
of all x′ such that FX(x′) ≥ u. The uniqueness of x0 such that FX(x)x0 = u permits us to
define F̃ (u) = x0 = F−1

X (u).

(b) In this part, we are given that FX(x) has a jump discontinuity at x0. That is, there exists
u−

0 = FX(x−
0 ) and u+

0 = FX(x+
0 ) with u−

0 < u+
0 . Consider any u in the interval [u−

0 , u+
0 ].

Since FX(x0) = FX(x+
0 ) and FX(x) is nondecreasing,

FX (x) ≥ FX (x0) = u+
0 , x ≥ x0. (1)
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Moreover,
FX (x) < FX

(
x−

0

)
= u−

0 , x < x0. (2)

Thus for any u satisfying u−
o ≤ u ≤ u+

0 , FX(x) < u for x < x0 and FX(x) ≥ u for x ≥ x0.
Thus, F̃ (u) = min{x|FX(x) ≥ u} = x0.

(c) We note that the first two parts of this problem were just designed to show the properties of
F̃ (u). First, we observe that

P
[
X̂ ≤ x

]
= P

[
F̃ (U) ≤ x

]
= P

[
min

{
x′|FX

(
x′) ≥ U

} ≤ x
]
. (3)

To prove the claim, we define, for any x, the events

A : min
{
x′|FX

(
x′) ≥ U

} ≤ x, (4)
B : U ≤ FX (x) . (5)

Note that P [A] = P [X̂ ≤ x]. In addition, P [B] = P [U ≤ FX(x)] = FX(x) since P [U ≤ u] = u
for any u ∈ [0, 1].

We will show that the events A and B are the same. This fact implies

P
[
X̂ ≤ x

]
= P [A] = P [B] = P [U ≤ FX (x)] = FX (x) . (6)

All that remains is to show A and B are the same. As always, we need to show that A ⊂ B
and that B ⊂ A.

• To show A ⊂ B, suppose A is true and min{x′|FX(x′) ≥ U} ≤ x. This implies there
exists x0 ≤ x such that FX(x0) ≥ U . Since x0 ≤ x, it follows from FX(x) being
nondecreasing that FX(x0) ≤ FX(x). We can thus conclude that

U ≤ FX (x0) ≤ FX (x) . (7)

That is, event B is true.

• To show B ⊂ A, we suppose event B is true so that U ≤ FX(x). We define the set

L =
{
x′|FX

(
x′) ≥ U

}
. (8)

We note x ∈ L. It follows that the minimum element min{x′|x′ ∈ L} ≤ x. That is,

min
{
x′|FX

(
x′) ≥ U

} ≤ x, (9)

which is simply event A.

Problem 3.8.1 Solution
The PDF of X is

fX (x) =
{

1/10 −5 ≤ x ≤ 5
0 otherwise

(1)
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(a) The event B has probability

P [B] = P [−3 ≤ X ≤ 3] =
∫ 3

−3

1
10

dx =
3
5

(2)

From Definition 3.15, the conditional PDF of X given B is

fX|B (x) =
{

fX (x) /P [B] x ∈ B
0 otherwise

=
{

1/6 |x| ≤ 3
0 otherwise

(3)

(b) Given B, we see that X has a uniform PDF over [a, b] with a = −3 and b = 3. From
Theorem 3.6, the conditional expected value of X is E[X|B] = (a + b)/2 = 0.

(c) From Theorem 3.6, the conditional variance of X is Var[X|B] = (b − a)2/12 = 3.

Problem 3.8.2 Solution
From Definition 3.6, the PDF of Y is

fY (y) =
{

(1/5)e−y/5 y ≥ 0
0 otherwise

(1)

(a) The event A has probability

P [A] = P [Y < 2] =
∫ 2

0
(1/5)e−y/5 dy = −e−y/5

∣∣∣2
0

= 1 − e−2/5 (2)

From Definition 3.15, the conditional PDF of Y given A is

fY |A (y) =
{

fY (y) /P [A] x ∈ A
0 otherwise

(3)

=
{

(1/5)e−y/5/(1 − e−2/5) 0 ≤ y < 2
0 otherwise

(4)

(b) The conditional expected value of Y given A is

E [Y |A] =
∫ ∞

−∞
yfY |A (y) dy =

1/5
1 − e−2/5

∫ 2

0
ye−y/5 dy (5)

Using the integration by parts formula
∫

u dv = uv − ∫
v du with u = y and dv = e−y/5 dy

yields

E [Y |A] =
1/5

1 − e−2/5

(
−5ye−y/5

∣∣∣2
0
+

∫ 2

0
5e−y/5 dy

)
(6)

=
1/5

1 − e−2/5

(
−10e−2/5 − 25e−y/5

∣∣∣2
0

)
(7)

=
5 − 7e−2/5

1 − e−2/5
(8)
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Problem 3.8.3 Solution
The condition right side of the circle is R = [0, 1/2]. Using the PDF in Example 3.5, we have

P [R] =
∫ 1/2

0
fY (y) dy =

∫ 1/2

0
3y2 dy = 1/8 (1)

Therefore, the conditional PDF of Y given event R is

fY |R (y) =
{

24y2 0 ≤ y ≤ 1/2
0 otherwise

(2)

The conditional expected value and mean square value are

E [Y |R] =
∫ ∞

−∞
yfY |R (y) dy =

∫ 1/2

0
24y3 dy = 3/8 meter (3)

E
[
Y 2|R]

=
∫ ∞

−∞
y2fY |R (y) dy =

∫ 1/2

0
24y4 dy = 3/20 m2 (4)

The conditional variance is

Var [Y |R] = E
[
Y 2|R] − (E [Y |R])2 =

3
20

−
(

3
8

)2

= 3/320 m2 (5)

The conditional standard deviation is σY |R =
√

Var[Y |R] = 0.0968 meters.

Problem 3.8.4 Solution
From Definition 3.8, the PDF of W is

fW (w) =
1√
32π

e−w2/32 (1)

(a) Since W has expected value μ = 0, fW (w) is symmetric about w = 0. Hence P [C] =
P [W > 0] = 1/2. From Definition 3.15, the conditional PDF of W given C is

fW |C (w) =
{

fW (w) /P [C] w ∈ C
0 otherwise

=
{

2e−w2/32/
√

32π w > 0
0 otherwise

(2)

(b) The conditional expected value of W given C is

E [W |C] =
∫ ∞

−∞
wfW |C (w) dw =

2
4
√

2π

∫ ∞

0
we−w2/32 dw (3)

Making the substitution v = w2/32, we obtain

E [W |C] =
32√
32π

∫ ∞

0
e−v dv =

32√
32π

(4)

(c) The conditional second moment of W is

E
[
W 2|C]

=
∫ ∞

−∞
w2fW |C (w) dw = 2

∫ ∞

0
w2fW (w) dw (5)
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We observe that w2fW (w) is an even function. Hence

E
[
W 2|C]

= 2
∫ ∞

0
w2fW (w) dw (6)

=
∫ ∞

−∞
w2fW (w) dw = E

[
W 2

]
= σ2 = 16 (7)

Lastly, the conditional variance of W given C is

Var[W |C] = E
[
W 2|C] − (E [W |C])2 = 16 − 32/π = 5.81 (8)

Problem 3.8.5 Solution

(a) We first find the conditional PDF of T . The PDF of T is

fT (t) =
{

100e−100t t ≥ 0
0 otherwise

(1)

The conditioning event has probability

P [T > 0.02] =
∫ ∞

0.02
fT (t) dt = −e−100t

∣∣∞
0.02

= e−2 (2)

From Definition 3.15, the conditional PDF of T is

fT |T>0.02 (t) =

{
fT (t)

P [T>0.02] t ≥ 0.02
0 otherwise

=
{

100e−100(t−0.02) t ≥ 0.02
0 otherwise

(3)

The conditional expected value of T is

E [T |T > 0.02] =
∫ ∞

0.02
t(100)e−100(t−0.02) dt (4)

The substitution τ = t − 0.02 yields

E [T |T > 0.02] =
∫ ∞

0
(τ + 0.02)(100)e−100τ dτ (5)

=
∫ ∞

0
(τ + 0.02)fT (τ) dτ = E [T + 0.02] = 0.03 (6)

(b) The conditional second moment of T is

E
[
T 2|T > 0.02

]
=

∫ ∞

0.02
t2(100)e−100(t−0.02) dt (7)

The substitution τ = t − 0.02 yields

E
[
T 2|T > 0.02

]
=

∫ ∞

0
(τ + 0.02)2(100)e−100τ dτ (8)

=
∫ ∞

0
(τ + 0.02)2fT (τ) dτ (9)

= E
[
(T + 0.02)2

]
(10)
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Now we can calculate the conditional variance.

Var[T |T > 0.02] = E
[
T 2|T > 0.02

] − (E [T |T > 0.02])2 (11)

= E
[
(T + 0.02)2

] − (E [T + 0.02])2 (12)
= Var[T + 0.02] (13)
= Var[T ] = 0.01 (14)

Problem 3.8.6 Solution

(a) In Problem 3.6.8, we found that the PDF of D is

fD (y) =
{

0.3δ(y) y < 60
0.07e−(y−60)/10 y ≥ 60

(1)

First, we observe that D > 0 if the throw is good so that P [D > 0] = 0.7. A second way to
find this probability is

P [D > 0] =
∫ ∞

0+

fD (y) dy = 0.7 (2)

From Definition 3.15, we can write

fD|D>0 (y) =

{
fD(y)

P [D>0] y > 0
0 otherwise

=
{

(1/10)e−(y−60)/10 y ≥ 60
0 otherwise

(3)

(b) If instead we learn that D ≤ 70, we can calculate the conditional PDF by first calculating

P [D ≤ 70] =
∫ 70

0
fD (y) dy (4)

=
∫ 60

0
0.3δ(y) dy +

∫ 70

60
0.07e−(y−60)/10 dy (5)

= 0.3 + −0.7e−(y−60)/10
∣∣∣70
60

= 1 − 0.7e−1 (6)

The conditional PDF is

fD|D≤70 (y) =

{
fD(y)

P [D≤70] y ≤ 70
0 otherwise

(7)

=

⎧⎨
⎩

0.3
1−0.7e−1 δ(y) 0 ≤ y < 60

0.07
1−0.7e−1 e−(y−60)/10 60 ≤ y ≤ 70
0 otherwise

(8)

Problem 3.8.7 Solution

(a) Given that a person is healthy, X is a Gaussian (μ = 90, σ = 20) random variable. Thus,

fX|H (x) =
1

σ
√

2π
e−(x−μ)2/2σ2

=
1

20
√

2π
e−(x−90)2/800 (1)
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(b) Given the event H, we use the conditional PDF fX|H(x) to calculate the required probabilities

P
[
T+|H]

= P [X ≥ 140|H] = P [X − 90 ≥ 50|H] (2)

= P

[
X − 90

20
≥ 2.5|H

]
= 1 − Φ(2.5) = 0.006 (3)

Similarly,

P
[
T−|H]

= P [X ≤ 110|H] = P [X − 90 ≤ 20|H] (4)

= P

[
X − 90

20
≤ 1|H

]
= Φ(1) = 0.841 (5)

(c) Using Bayes Theorem, we have

P
[
H|T−]

=
P [T−|H] P [H]

P [T−]
=

P [T−|H] P [H]
P [T−|D] P [D] + P [T−|H] P [H]

(6)

In the denominator, we need to calculate

P
[
T−|D]

= P [X ≤ 110|D] = P [X − 160 ≤ −50|D] (7)

= P

[
X − 160

40
≤ −1.25|D

]
(8)

= Φ(−1.25) = 1 − Φ(1.25) = 0.106 (9)

Thus,

P
[
H|T−]

=
P [T−|H]P [H]

P [T−|D]P [D] + P [T−|H] P [H]
(10)

=
0.841(0.9)

0.106(0.1) + 0.841(0.9)
= 0.986 (11)

(d) Since T−, T 0, and T+ are mutually exclusive and collectively exhaustive,

P
[
T 0|H]

= 1 − P
[
T−|H] − P

[
T+|H]

= 1 − 0.841 − 0.006 = 0.153 (12)

We say that a test is a failure if the result is T 0. Thus, given the event H, each test has
conditional failure probability of q = 0.153, or success probability p = 1 − q = 0.847. Given
H, the number of trials N until a success is a geometric (p) random variable with PMF

PN |H (n) =
{

(1 − p)n−1p n = 1, 2, . . . ,
0 otherwise.

(13)

Problem 3.8.8 Solution
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(a) The event Bi that Y = Δ/2 + iΔ occurs if and only if iΔ ≤ X < (i + 1)Δ. In particular,
since X has the uniform (−r/2, r/2) PDF

fX (x) =
{

1/r −r/2 ≤ x < r/2,
0 otherwise,

(1)

we observe that

P [Bi] =
∫ (i+1)Δ

iΔ

1
r

dx =
Δ
r

(2)

In addition, the conditional PDF of X given Bi is

fX|Bi
(x) =

{
fX (x) /P [B] x ∈ Bi

0 otherwise
=

{
1/Δ iΔ ≤ x < (i + 1)Δ
0 otherwise

(3)

It follows that given Bi, Z = X − Y = X − Δ/2 − iΔ, which is a uniform (−Δ/2, Δ/2)
random variable. That is,

fZ|Bi
(z) =

{
1/Δ −Δ/2 ≤ z < Δ/2
0 otherwise

(4)

(b) We observe that fZ|Bi
(z) is the same for every i. Thus, we can write

fZ (z) =
∑

i

P [Bi] fZ|Bi
(z) = fZ|B0

(z)
∑

i

P [Bi] = fZ|B0
(z) (5)

Thus, Z is a uniform (−Δ/2, Δ/2) random variable. From the definition of a uniform (a, b)
random variable, Z has mean and variance

E [Z] = 0, Var[Z] =
(Δ/2 − (−Δ/2))2

12
=

Δ2

12
. (6)

Problem 3.8.9 Solution
For this problem, almost any non-uniform random variable X will yield a non-uniform random
variable Z. For example, suppose X has the “triangular” PDF

fX (x) =
{

8x/r2 0 ≤ x ≤ r/2
0 otherwise

(1)

In this case, the event Bi that Y = iΔ + Δ/2 occurs if and only if iΔ ≤ X < (i + 1)Δ. Thus

P [Bi] =
∫ (i+1)Δ

iΔ

8x

r2
dx =

8Δ(iΔ + Δ/2)
r2

(2)

It follows that the conditional PDF of X given Bi is

fX|Bi
(x) =

{
fX(x)
P [Bi]

x ∈ Bi

0 otherwise
=

{ x
Δ(iΔ+Δ/2) iΔ ≤ x < (i + 1)Δ
0 otherwise

(3)

Given event Bi, Y = iΔ + Δ/2, so that Z = X − Y = X − iΔ − Δ/2. This implies

fZ|Bi
(z) = fX|Bi

(z + iΔ + Δ/2) =

{
z+iΔ+Δ/2
Δ(iΔ+Δ/2) −Δ/2 ≤ z < Δ/2
0 otherwise

(4)

We observe that the PDF of Z depends on which event Bi occurs. Moreover, fZ|Bi
(z) is non-uniform

for all Bi.
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Problem 3.9.1 Solution
Taking the derivative of the CDF FY (y) in Quiz 3.1, we obtain

fY (y) =
{

1/4 0 ≤ y ≤ 4
0 otherwise

(1)

We see that Y is a uniform (0, 4) random variable. By Theorem 3.20, if X is a uniform (0, 1)
random variable, then Y = 4X is a uniform (0, 4) random variable. Using rand as Matlab’s
uniform (0, 1) random variable, the program quiz31rv is essentially a one line program:

function y=quiz31rv(m)
%Usage y=quiz31rv(m)
%Returns the vector y holding m
%samples of the uniform (0,4) random
%variable Y of Quiz 3.1
y=4*rand(m,1);

Problem 3.9.2 Solution
The modem receiver voltage is genrated by taking a ±5 voltage representing data, and adding to
it a Gaussian (0, 2) noise variable. Although siuations in which two random variables are added
together are not analyzed until Chapter 4, generating samples of the receiver voltage is easy in
Matlab. Here is the code:

function x=modemrv(m);
%Usage: x=modemrv(m)
%generates m samples of X, the modem
%receiver voltage in Exampe 3.32.
%X=+-5 + N where N is Gaussian (0,2)
sb=[-5; 5]; pb=[0.5; 0.5];
b=finiterv(sb,pb,m);
noise=gaussrv(0,2,m);
x=b+noise;

The commands

x=modemrv(10000); hist(x,100);

generate 10,000 sample of the modem receiver voltage and plots the relative frequencies using 100
bins. Here is an example plot:
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As expected, the result is qualitatively similar (“hills” around X = −5 and X = 5) to the sketch
in Figure 3.3.
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Problem 3.9.3 Solution
The code for Q̂(z) is the Matlab function

function p=qapprox(z);
%approximation to the Gaussian
% (0,1) complementary CDF Q(z)
t=1./(1.0+(0.231641888.*z(:)));
a=[0.127414796; -0.142248368; 0.7107068705; ...

-0.7265760135; 0.5307027145];
p=([t t.^2 t.^3 t.^4 t.^5]*a).*exp(-(z(:).^2)/2);

This code generates two plots of the relative error e(z) as a function of z:

z=0:0.02:6;
q=1.0-phi(z(:));
qhat=qapprox(z);
e=(q-qhat)./q;
plot(z,e); figure;
semilogy(z,abs(e));

Here are the output figures of qtest.m:

0 2 4 6
−4

−3

−2

−1

0

1
x 10

−3

z

e(
z)

0 2 4 6
10

−10

10
−8

10
−6

10
−4

10
−2

The left side plot graphs e(z) versus z. It appears that the e(z) = 0 for z ≤ 3. In fact, e(z) is
nonzero over that range, but the relative error is so small that it isn’t visible in comparison to
e(6) ≈ −3.5 × 10−3. To see the error for small z, the right hand graph plots |e(z)| versus z in log
scale where we observe very small relative errors on the order of 10−7.

Problem 3.9.4 Solution
By Theorem 3.9, if X is an exponential (λ) random variable, then K = �X� is a geometric (p)
random variable with p = 1 − e−λ. Thus, given p, we can write λ = − ln(1 − p) and �X� is a
geometric (p) random variable. Here is the Matlab function that implements this technique:

function k=georv(p,m);
lambda= -log(1-p);
k=ceil(exponentialrv(lambda,m));

To compare this technique with that use in geometricrv.m, we first examine the code for exponentialrv.m:

function x=exponentialrv(lambda,m)
x=-(1/lambda)*log(1-rand(m,1));
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To analyze how m = 1 random sample is generated, let R = rand(1,1). In terms of mathematics,
exponentialrv(lambda,1) generates the random variable

X = − ln(1 − R)
λ

(1)

For λ = − ln(1 − p), we have that

K = �X� =
⌈

ln(1 − R)
ln(1 − p)

⌉
(2)

This is precisely the same function implemented by geometricrv.m. In short, the two methods for
generating geometric (p) random samples are one in the same.

Problem 3.9.5 Solution
Given 0 ≤ u ≤ 1, we need to find the “inverse” function that finds the value of w satisfying
u = FW (w). The problem is that for u = 1/4, any w in the interval [−3, 3] satisfies FW (w) = 1/4.
However, in terms of generating samples of random variable W , this doesn’t matter. For a uniform
(0, 1) random variable U , P [U = 1/4] = 0. Thus we can choose any w ∈ [−3, 3]. In particular, we
define the inverse CDF as

w = F−1
W (u) =

{
8u − 5 0 ≤ u ≤ 1/4
(8u + 7)/3 1/4 < u ≤ 1

(1)

Note that because 0 ≤ FW (w) ≤ 1, the inverse F−1
W (u) is defined only for 0 ≤ u ≤ 1. Careful

inspection will show that u = (w + 5)/8 for −5 ≤ w < −3 and that u = 1/4 + 3(w − 3)/8 for
−3 ≤ w ≤ 5. Thus, for a uniform (0, 1) random variable U , the function W = F−1

W (U) produces a
random variable with CDF FW (w). To implement this solution in Matlab, we define

function w=iwcdf(u);
w=((u>=0).*(u <= 0.25).*(8*u-5))+...

((u > 0.25).*(u<=1).*((8*u+7)/3));

so that the Matlab code W=icdfrv(@iwcdf,m) generates m samples of random variable W .

Problem 3.9.6 Solution

(a) To test the exponential random variables, the following code

function exponentialtest(lambda,n)
delta=0.01;
x=exponentialrv(lambda,n);
xr=(0:delta:(5.0/lambda))’;
fxsample=(histc(x,xr)/(n*delta));
fx=exponentialpdf(lambda,xr);
plot(xr,fx,xr,fxsample);

generates n samples of an exponential λ random variable and plots the relative frequency
ni/(nΔ) against the corresponding exponential PDF. Note that the histc function generates
a histogram using xr to define the edges of the bins. Two representative plots for n = 1,000
and n = 100,000 samples appear in the following figure:
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For n = 1,000, the jaggedness of the relative frequency occurs because δ is sufficiently small
that the number of sample of X in each bin iΔ < X ≤ (i+1)Δ is fairly small. For n = 100,000,
the greater smoothness of the curve demonstrates how the relative frequency is becoming a
better approximation to the actual PDF.

(b) Similar results hold for Gaussian random variables. The following code generates the same
comparison between the Gaussian PDF and the relative frequency of n samples.

function gausstest(mu,sigma2,n)
delta=0.01;
x=gaussrv(mu,sigma2,n);
xr=(0:delta:(mu+(3*sqrt(sigma2))))’;
fxsample=(histc(x,xr)/(n*delta));
fx=gausspdf(mu,sigma2,xr);
plot(xr,fx,xr,fxsample);

Here are two typical plots produced by gaussiantest.m:
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Problem 3.9.7 Solution
First we need to build a uniform (−r/2, r/2) b-bit quantizer. The function uquantize does this.

function y=uquantize(r,b,x)
%uniform (-r/2,r/2) b bit quantizer
n=2^b;
delta=r/n;
x=min(x,(r-delta/2)/2);
x=max(x,-(r-delta/2)/2);
y=(delta/2)+delta*floor(x/delta);
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Note that if |x| > r/2, then x is truncated so that the quantizer output has maximum amplitude.
Next, we generate Gaussian samples, quantize them and record the errors:

function stdev=quantizegauss(r,b,m)
x=gaussrv(0,1,m);
x=x((x<=r/2)&(x>=-r/2));
y=uquantize(r,b,x);
z=x-y;
hist(z,100);
stdev=sqrt(sum(z.^2)/length(z));

For a Gaussian random variable X, P [|X| > r/2] > 0 for any value of r. When we generate enough
Gaussian samples, we will always see some quantization errors due to the finite (−r/2, r/2) range.
To focus our attention on the effect of b bit quantization, quantizegauss.m eliminates Gaussian
samples outside the range (−r/2, r/2). Here are outputs of quantizegauss for b = 1, 2, 3 bits.

−2 0 2
0

5000

10000

15000

−1 0 1
0

5000

10000

15000

−0.5 0 0.5
0

5000

10000

15000

b = 1 b = 2 b = 3

It is obvious that for b = 1 bit quantization, the error is decidely not uniform. However, it appears
that the error is uniform for b = 2 and b = 3. You can verify that uniform errors is a reasonable
model for larger values of b.

Problem 3.9.8 Solution
To solve this problem, we want to use Theorem 3.22. One complication is that in the theorem,
U denotes the uniform random variable while X is the derived random variable. In this problem,
we are using U for the random variable we want to derive. As a result, we will use Theorem 3.22
with the roles of X and U reversed. Given U with CDF FU (u) = F (u), we need to find the inverse
functon F−1(x) = F−1

U (x) so that for a uniform (0, 1) random variable X, U = F−1(X).
Recall that random variable U defined in Problem 3.3.7 has CDF

−5 0 5
0

0.5

1

 u

 F
U

(u
)

FU (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 u < −5
(u + 5)/8 −5 ≤ u < −3
1/4 −3 ≤ u < 3
1/4 + 3(u − 3)/8 3 ≤ u < 5
1 u ≥ 5.

(1)

At x = 1/4, there are multiple values of u such that FU (u) = 1/4. However, except for x = 1/4,
the inverse F−1

U (x) is well defined over 0 < x < 1. At x = 1/4, we can arbitrarily define a value for
F−1

U (1/4) because when we produce sample values of F−1
U (X), the event X = 1/4 has probability

zero. To generate the inverse CDF, given a value of x, 0 < x < 1, we ave to find the value of u
such that x = FU (u). From the CDF we see that

0 ≤ x ≤ 1
4

⇒ x =
u + 5

8
(2)

1
4

< x ≤ 1 ⇒ x =
1
4

+
3
8
(u − 3) (3)

(4)
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These conditions can be inverted to express u as a function of x.

u = F−1(x) =
{

8x − 5 0 ≤ x ≤ 1/4
(8x + 7)/3 1/4 < x ≤ 1

(5)

In particular, when X is a uniform (0, 1) random variable, U = F−1(X) will generate samples of
the rndom variable U . A Matlab program to implement this solution is now straightforward:

function u=urv(m)
%Usage: u=urv(m)
%Generates m samples of the random
%variable U defined in Problem 3.3.7
x=rand(m,1);
u=(x<=1/4).*(8*x-5);
u=u+(x>1/4).*(8*x+7)/3;

To see that this generates the correct output, we can generate a histogram of a million sample
values of U using the commands

u=urv(1000000); hist(u,100);

The output is shown in the following graph, alongside the corresponding PDF of U .
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fU (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 u < −5
1/8 −5 ≤ u < −3
0 −3 ≤ u < 3
3/8 3 ≤ u < 5
0 u ≥ 5.

(6)

Note that the scaling constant 104 on the histogram plot comes from the fact that the histogram
was generated using 106 sample points and 100 bins. The width of each bin is Δ = 10/100 = 0.1.
Consider a bin of idth Δ centered at u0. A sample value of U would fall in that bin with probability
fU (u0)Δ. Given that we generate m = 106 samples, we would expect about mfU (u0)Δ = 105fU (u0)
samples in each bin. For −5 < u0 < −3, we would expect to see about 1.25 × 104 samples in each
bin. For 3 < u0 < 5, we would expect to see about 3.75× 104 samples in each bin. As can be seen,
these conclusions are consistent with the histogam data.

Finally, we comment that if you generate histograms for a range of values of m, the number of
samples, you will see that the histograms will become more and more similar to a scaled version of
the PDF. This gives the (false) impression that any bin centered on u0 has a number of samples
increasingly close to mfU (u0)Δ. Because the histpgram is always the same height, what is actually
happening is that the vertical axis is effectively scaled by 1/m and the height of a histogram bar is
proportional to the fraction of m samples that land in that bin. We will see in Chapter 7 that the
fraction of samples in a bin does converge to the probability of a sample being in that bin as the
number of samples m goes to infinity.

Problem 3.9.9 Solution
From Quiz 3.6, random variable X has CDF The CDF of X is
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F
X
(x

)

FX (x) =

⎧⎨
⎩

0 x < −1,
(x + 1)/4 −1 ≤ x < 1,
1 x ≥ 1.

(1)
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Following the procedure outlined in Problem 3.7.18, we define for 0 < u ≤ 1,

F̃ (u) = min {x|FX (x) ≥ u} . (2)

We observe that if 0 < u < 1/4, then we can choose x so that FX(x) = u. In this case, (x+1)/4 = u,
or equivalently, x = 4u − 1. For 1/4 ≤ u ≤ 1, the minimum x that satisfies FX(x) ≥ u is x = 1.
These facts imply

F̃ (u) =
{

4u − 1 0 < u < 1/4
1 1/4 ≤ u ≤ 1

(3)

It follows that if U is a uniform (0, 1) random variable, then F̃ (U) has the same CDF as X. This
is trivial to implement in Matlab.

function x=quiz36rv(m)
%Usage x=quiz36rv(m)
%Returns the vector x holding m samples
%of the random variable X of Quiz 3.6
u=rand(m,1);
x=((4*u-1).*(u< 0.25))+(1.0*(u>=0.25));

123


