
Problem Solutions – Chapter 2

Problem 2.2.1 Solution

(a) We wish to find the value of c that makes the PMF sum up to one.

PN (n) =
{

c(1/2)n n = 0, 1, 2
0 otherwise

(1)

Therefore,
∑2

n=0 PN (n) = c + c/2 + c/4 = 1, implying c = 4/7.

(b) The probability that N ≤ 1 is

P [N ≤ 1] = P [N = 0] + P [N = 1] = 4/7 + 2/7 = 6/7 (2)

Problem 2.2.2 Solution
From Example 2.5, we can write the PMF of X and the PMF of R as

PX (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/8 x = 0
3/8 x = 1
3/8 x = 2
1/8 x = 3
0 otherwise

PR (r) =

⎧⎨
⎩

1/4 r = 0
3/4 r = 2
0 otherwise

(1)

From the PMFs PX(x) and PR(r), we can calculate the requested probabilities

(a) P [X = 0] = PX(0) = 1/8.

(b) P [X < 3] = PX(0) + PX(1) + PX(2) = 7/8.

(c) P [R > 1] = PR(2) = 3/4.

Problem 2.2.3 Solution

(a) We must choose c to make the PMF of V sum to one.
4∑

v=1

PV (v) = c(12 + 22 + 32 + 42) = 30c = 1 (1)

Hence c = 1/30.

(b) Let U = {u2|u = 1, 2, . . .} so that

P [V ∈ U ] = PV (1) + PV (4) =
1
30

+
42

30
=

17
30

(2)

(c) The probability that V is even is

P [V is even] = PV (2) + PV (4) =
22

30
+

42

30
=

2
3

(3)

(d) The probability that V > 2 is

P [V > 2] = PV (3) + PV (4) =
32

30
+

42

30
=

5
6

(4)
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Problem 2.2.4 Solution

(a) We choose c so that the PMF sums to one.

∑
x

PX (x) =
c

2
+

c

4
+

c

8
=

7c

8
= 1 (1)

Thus c = 8/7.

(b)

P [X = 4] = PX (4) =
8

7 · 4 =
2
7

(2)

(c)

P [X < 4] = PX (2) =
8

7 · 2 =
4
7

(3)

(d)

P [3 ≤ X ≤ 9] = PX (4) + PX (8) =
8

7 · 4 +
8

7 · 8 =
3
7

(4)

Problem 2.2.5 Solution
Using B (for Bad) to denote a miss and G (for Good) to denote a successful free throw, the sample
tree for the number of points scored in the 1 and 1 is

������ B1−p

Gp
������ B1−p

Gp

•Y =0 •Y =1

•Y =2

From the tree, the PMF of Y is

PY (y) =

⎧⎪⎪⎨
⎪⎪⎩

1 − p y = 0
p(1 − p) y = 1
p2 y = 2
0 otherwise

(1)

Problem 2.2.6 Solution
The probability that a caller fails to get through in three tries is (1− p)3. To be sure that at least
95% of all callers get through, we need (1 − p)3 ≤ 0.05. This implies p = 0.6316.

Problem 2.2.7 Solution
In Problem 2.2.6, each caller is willing to make 3 attempts to get through. An attempt is a failure
if all n operators are busy, which occurs with probability q = (0.8)n. Assuming call attempts are
independent, a caller will suffer three failed attempts with probability q3 = (0.8)3n. The problem
statement requires that (0.8)3n ≤ 0.05. This implies n ≥ 4.48 and so we need 5 operators.
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Problem 2.2.8 Solution
From the problem statement, a single is twice as likely as a double, which is twice as likely as a
triple, which is twice as likely as a home-run. If p is the probability of a home run, then

PB (4) = p PB (3) = 2p PB (2) = 4p PB (1) = 8p (1)

Since a hit of any kind occurs with probability of .300, p + 2p + 4p + 8p = 0.300 which implies
p = 0.02. Hence, the PMF of B is

PB (b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.70 b = 0
0.16 b = 1
0.08 b = 2
0.04 b = 3
0.02 b = 4
0 otherwise

(2)

Problem 2.2.9 Solution

(a) In the setup of a mobile call, the phone will send the “SETUP” message up to six times.
Each time the setup message is sent, we have a Bernoulli trial with success probability p. Of
course, the phone stops trying as soon as there is a success. Using r to denote a successful
response, and n a non-response, the sample tree is

����� rp

n1−p
����� rp

n1−p
����� rp

n1−p
����� rp

n1−p
����� rp

n1−p
����� rp

n1−p

•K=1 •K=2 •K=3 •K=4 •K=5 •K=6

•K=6

(b) We can write the PMF of K, the number of “SETUP” messages sent as

PK (k) =

⎧⎨
⎩

(1 − p)k−1p k = 1, 2, . . . , 5
(1 − p)5p + (1 − p)6 = (1 − p)5 k = 6
0 otherwise

(1)

Note that the expression for PK(6) is different because K = 6 if either there was a success or
a failure on the sixth attempt. In fact, K = 6 whenever there were failures on the first five
attempts which is why PK(6) simplifies to (1 − p)5.

(c) Let B denote the event that a busy signal is given after six failed setup attempts. The
probability of six consecutive failures is P [B] = (1 − p)6.

(d) To be sure that P [B] ≤ 0.02, we need p ≥ 1 − (0.02)1/6 = 0.479.

Problem 2.3.1 Solution

(a) If it is indeed true that Y , the number of yellow M&M’s in a package, is uniformly distributed
between 5 and 15, then the PMF of Y , is

PY (y) =
{

1/11 y = 5, 6, 7, . . . , 15
0 otherwise

(1)
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(b)
P [Y < 10] = PY (5) + PY (6) + · · · + PY (9) = 5/11 (2)

(c)
P [Y > 12] = PY (13) + PY (14) + PY (15) = 3/11 (3)

(d)
P [8 ≤ Y ≤ 12] = PY (8) + PY (9) + · · · + PY (12) = 5/11 (4)

Problem 2.3.2 Solution

(a) Each paging attempt is an independent Bernoulli trial with success probability p. The number
of times K that the pager receives a message is the number of successes in n Bernoulli trials
and has the binomial PMF

PK (k) =
{ (

n
k

)
pk(1 − p)n−k k = 0, 1, . . . , n

0 otherwise
(1)

(b) Let R denote the event that the paging message was received at least once. The event R has
probability

P [R] = P [B > 0] = 1 − P [B = 0] = 1 − (1 − p)n (2)

To ensure that P [R] ≥ 0.95 requires that n ≥ ln(0.05)/ ln(1 − p). For p = 0.8, we must have
n ≥ 1.86. Thus, n = 2 pages would be necessary.

Problem 2.3.3 Solution
Whether a hook catches a fish is an independent trial with success probability h. The the number
of fish hooked, K, has the binomial PMF

PK (k) =
{ (

m
k

)
hk(1 − h)m−k k = 0, 1, . . . , m

0 otherwise
(1)

Problem 2.3.4 Solution

(a) Let X be the number of times the frisbee is thrown until the dog catches it and runs away.
Each throw of the frisbee can be viewed as a Bernoulli trial in which a success occurs if the
dog catches the frisbee an runs away. Thus, the experiment ends on the first success and X
has the geometric PMF

PX (x) =
{

(1 − p)x−1p x = 1, 2, . . .
0 otherwise

(1)

(b) The child will throw the frisbee more than four times iff there are failures on the first 4
trials which has probability (1 − p)4. If p = 0.2, the probability of more than four throws is
(0.8)4 = 0.4096.
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Problem 2.3.5 Solution
Each paging attempt is a Bernoulli trial with success probability p where a success occurs if the
pager receives the paging message.

(a) The paging message is sent again and again until a success occurs. Hence the number of
paging messages is N = n if there are n−1 paging failures followed by a paging success. That
is, N has the geometric PMF

PN (n) =
{

(1 − p)n−1p n = 1, 2, . . .
0 otherwise

(1)

(b) The probability that no more three paging attempts are required is

P [N ≤ 3] = 1 − P [N > 3] = 1 −
∞∑

n=4

PN (n) = 1 − (1 − p)3 (2)

This answer can be obtained without calculation since N > 3 if the first three paging attempts
fail and that event occurs with probability (1 − p)3. Hence, we must choose p to satisfy
1 − (1 − p)3 ≥ 0.95 or (1 − p)3 ≤ 0.05. This implies

p ≥ 1 − (0.05)1/3 ≈ 0.6316 (3)

Problem 2.3.6 Solution
The probability of more than 500,000 bits is

P [B > 500,000] = 1 −
500,000∑

b=1

PB (b) (1)

= 1 − p

500,000∑
b=1

(1 − p)b−1 (2)

Math Fact B.4 implies that (1−x)
∑500,000

b=1 xb−1 = 1−x500,000. Substituting, x = 1− p, we obtain:

P [B > 500,000] = 1 − (1 − (1 − p)500,000) (3)

= (1 − 0.25 × 10−5)500,000 ≈ exp(−500,000/400,000) = 0.29. (4)

Problem 2.3.7 Solution
Since an average of T/5 buses arrive in an interval of T minutes, buses arrive at the bus stop at a
rate of 1/5 buses per minute.

(a) From the definition of the Poisson PMF, the PMF of B, the number of buses in T minutes,
is

PB (b) =
{

(T/5)be−T/5/b! b = 0, 1, . . .
0 otherwise

(1)

(b) Choosing T = 2 minutes, the probability that three buses arrive in a two minute interval is

PB (3) = (2/5)3e−2/5/3! ≈ 0.0072 (2)
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(c) By choosing T = 10 minutes, the probability of zero buses arriving in a ten minute interval is

PB (0) = e−10/5/0! = e−2 ≈ 0.135 (3)

(d) The probability that at least one bus arrives in T minutes is

P [B ≥ 1] = 1 − P [B = 0] = 1 − e−T/5 ≥ 0.99 (4)

Rearranging yields T ≥ 5 ln 100 ≈ 23.0 minutes.

Problem 2.3.8 Solution

(a) If each message is transmitted 8 times and the probability of a successful transmission is p,
then the PMF of N , the number of successful transmissions has the binomial PMF

PN (n) =
{ (

8
n

)
pn(1 − p)8−n n = 0, 1, . . . , 8

0 otherwise
(1)

(b) The indicator random variable I equals zero if and only if N = 8. Hence,

P [I = 0] = P [N = 0] = 1 − P [I = 1] (2)

Thus, the complete expression for the PMF of I is

PI (i) =

⎧⎨
⎩

(1 − p)8 i = 0
1 − (1 − p)8 i = 1
0 otherwise

(3)

Problem 2.3.9 Solution
The requirement that

∑n
x=1 PX(x) = 1 implies

n = 1 : c(1)
[
1
1

]
= 1 c(1) = 1 (1)

n = 2 : c(2)
[
1
1

+
1
2

]
= 1 c(2) =

2
3

(2)

n = 3 : c(3)
[
1
1

+
1
2

+
1
3

]
= 1 c(3) =

6
11

(3)

n = 4 : c(4)
[
1
1

+
1
2

+
1
3

+
1
4

]
= 1 c(4) =

12
25

(4)

n = 5 : c(5)
[
1
1

+
1
2

+
1
3

+
1
4

+
1
5

]
= 1 c(5) =

12
25

(5)

n = 6 : c(6)
[
1
1

+
1
2

+
1
3

+
1
4

+
1
6

]
= 1 c(6) =

20
49

(6)

As an aside, find c(n) for large values of n is easy using the recursion

1
c(n + 1)

=
1

c(n)
+

1
n + 1

. (7)
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Problem 2.3.10 Solution

(a) We can view whether each caller knows the birthdate as a Bernoulli trial. As a result, L is
the number of trials needed for 6 successes. That is, L has a Pascal PMF with parameters
p = 0.75 and k = 6 as defined by Definition 2.8. In particular,

PL (l) =
{ (

l−1
5

)
(0.75)6(0.25)l−6 l = 6, 7, . . .

0 otherwise
(1)

(b) The probability of finding the winner on the tenth call is

PL (10) =
(

9
5

)
(0.75)6(0.25)4 ≈ 0.0876 (2)

(c) The probability that the station will need nine or more calls to find a winner is

P [L ≥ 9] = 1 − P [L < 9] (3)
= 1 − PL (6) − PL (7) − PL (8) (4)

= 1 − (0.75)6[1 + 6(0.25) + 21(0.25)2] ≈ 0.321 (5)

Problem 2.3.11 Solution
The packets are delay sensitive and can only be retransmitted d times. For t < d, a packet is
transmitted t times if the first t− 1 attempts fail followed by a successful transmission on attempt
t. Further, the packet is transmitted d times if there are failures on the first d − 1 transmissions,
no matter what the outcome of attempt d. So the random variable T , the number of times that a
packet is transmitted, can be represented by the following PMF.

PT (t) =

⎧⎨
⎩

p(1 − p)t−1 t = 1, 2, . . . , d − 1
(1 − p)d−1 t = d
0 otherwise

(1)

Problem 2.3.12 Solution

(a) Since each day is independent of any other day, P [W33] is just the probability that a winning
lottery ticket was bought. Similarly for P [L87] and P [N99] become just the probability that a
losing ticket was bought and that no ticket was bought on a single day, respectively. Therefore

P [W33] = p/2 P [L87] = (1 − p)/2 P [N99] = 1/2 (1)

(b) Suppose we say a success occurs on the kth trial if on day k we buy a ticket. Otherwise, a
failure occurs. The probability of success is simply 1/2. The random variable K is just the
number of trials until the first success and has the geometric PMF

PK (k) =
{

(1/2)(1/2)k−1 = (1/2)k k = 1, 2, . . .
0 otherwise

(2)
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(c) The probability that you decide to buy a ticket and it is a losing ticket is (1−p)/2, independent
of any other day. If we view buying a losing ticket as a Bernoulli success, R, the number of
losing lottery tickets bought in m days, has the binomial PMF

PR (r) =
{ (

m
r

)
[(1 − p)/2]r[(1 + p)/2]m−r r = 0, 1, . . . , m

0 otherwise
(3)

(d) Letting D be the day on which the j-th losing ticket is bought, we can find the probability
that D = d by noting that j−1 losing tickets must have been purchased in the d−1 previous
days. Therefore D has the Pascal PMF

PD (d) =

{ (
d−1
j−1

)
[(1 − p)/2]j [(1 + p)/2]d−j d = j, j + 1, . . .

0 otherwise
(4)

Problem 2.3.13 Solution

(a) Let Sn denote the event that the Sixers win the series in n games. Similarly, Cn is the event
that the Celtics in in n games. The Sixers win the series in 3 games if they win three straight,
which occurs with probability

P [S3] = (1/2)3 = 1/8 (1)

The Sixers win the series in 4 games if they win two out of the first three games and they
win the fourth game so that

P [S4] =
(

3
2

)
(1/2)3(1/2) = 3/16 (2)

The Sixers win the series in five games if they win two out of the first four games and then
win game five. Hence,

P [S5] =
(

4
2

)
(1/2)4(1/2) = 3/16 (3)

By symmetry, P [Cn] = P [Sn]. Further we observe that the series last n games if either the
Sixers or the Celtics win the series in n games. Thus,

P [N = n] = P [Sn] + P [Cn] = 2P [Sn] (4)

Consequently, the total number of games, N , played in a best of 5 series between the Celtics
and the Sixers can be described by the PMF

PN (n) =

⎧⎪⎪⎨
⎪⎪⎩

2(1/2)3 = 1/4 n = 3
2
(
3
1

)
(1/2)4 = 3/8 n = 4

2
(
4
2

)
(1/2)5 = 3/8 n = 5

0 otherwise

(5)

(b) For the total number of Celtic wins W , we note that if the Celtics get w < 3 wins, then the
Sixers won the series in 3 + w games. Also, the Celtics win 3 games if they win the series in
3,4, or 5 games. Mathematically,

P [W = w] =
{

P [S3+w] w = 0, 1, 2
P [C3] + P [C4] + P [C5] w = 3

(6)
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Thus, the number of wins by the Celtics, W , has the PMF shown below.

PW (w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P [S3] = 1/8 w = 0
P [S4] = 3/16 w = 1
P [S5] = 3/16 w = 2
1/8 + 3/16 + 3/16 = 1/2 w = 3
0 otherwise

(7)

(c) The number of Celtic losses L equals the number of Sixers’ wins WS . This implies PL(l) =
PWS

(l). Since either team is equally likely to win any game, by symmetry, PWS
(w) = PW (w).

This implies PL(l) = PWS
(l) = PW (l). The complete expression of for the PMF of L is

PL (l) = PW (l) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/8 l = 0
3/16 l = 1
3/16 l = 2
1/2 l = 3
0 otherwise

(8)

Problem 2.3.14 Solution
Since a and b are positive, let K be a binomial random variable for n trials and success probability
p = a/(a + b). First, we observe that the sum of over all possible values of the PMF of K is

n∑
k=0

PK (k) =
n∑

k=0

(
n

k

)
pk(1 − p)n−k (1)

=
n∑

k=0

(
n

k

)(
a

a + b

)k ( b

a + b

)n−k

(2)

=
∑n

k=0

(
n
k

)
akbn−k

(a + b)n
(3)

Since
∑n

k=0 PK(k) = 1, we see that

(a + b)n = (a + b)n
n∑

k=0

PK (k) =
n∑

k=0

(
n

k

)
akbn−k (4)

Problem 2.4.1 Solution
Using the CDF given in the problem statement we find that

(a) P [Y < 1] = 0

(b) P [Y ≤ 1] = 1/4

(c) P [Y > 2] = 1 − P [Y ≤ 2] = 1 − 1/2 = 1/2

(d) P [Y ≥ 2] = 1 − P [Y < 2] = 1 − 1/4 = 3/4

(e) P [Y = 1] = 1/4
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(f) P [Y = 3] = 1/2

(g) From the staircase CDF of Problem 2.4.1, we see that Y is a discrete random variable. The
jumps in the CDF occur at at the values that Y can take on. The height of each jump equals
the probability of that value. The PMF of Y is

PY (y) =

⎧⎪⎪⎨
⎪⎪⎩

1/4 y = 1
1/4 y = 2
1/2 y = 3
0 otherwise

(1)

Problem 2.4.2 Solution

(a) The given CDF is shown in the diagram below.

−2 −1 0 1 2

0
0.2
0.4
0.6
0.8

1

x

F
X
(x

)

FX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x < −1
0.2 −1 ≤ x < 0
0.7 0 ≤ x < 1
1 x ≥ 1

(1)

(b) The corresponding PMF of X is

PX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 x = −1
0.5 x = 0
0.3 x = 1
0 otherwise

(2)

Problem 2.4.3 Solution

(a) Similar to the previous problem, the graph of the CDF is shown below.

−3 0 5 7

0
0.2
0.4
0.6
0.8

1

x

F
X
(x

)

FX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x < −3
0.4 −3 ≤ x < 5
0.8 5 ≤ x < 7
1 x ≥ 7

(1)

(b) The corresponding PMF of X is

PX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.4 x = −3
0.4 x = 5
0.2 x = 7
0 otherwise

(2)
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Problem 2.4.4 Solution
Let q = 1 − p, so the PMF of the geometric (p) random variable K is

PK (k) =
{

pqk−1 k = 1, 2, . . . ,
0 otherwise.

(1)

For any integer k ≥ 1, the CDF obeys

FK (k) =
k∑

j=1

PK (j) =
k∑

j=1

pqj−1 = 1 − qk. (2)

Since K is integer valued, FK(k) = FK(�k�) for all integer and non-integer values of k. (If this
point is not clear, you should review Example 2.24.) Thus, the complete expression for the CDF
of K is

FK (k) =
{

0 k < 1,

1 − (1 − p)�k� k ≥ 1.
(3)

Problem 2.4.5 Solution
Since mushrooms occur with probability 2/3, the number of pizzas sold before the first mushroom
pizza is N = n < 100 if the first n pizzas do not have mushrooms followed by mushrooms on pizza
n + 1. Also, it is possible that N = 100 if all 100 pizzas are sold without mushrooms. the resulting
PMF is

PN (n) =

⎧⎨
⎩

(1/3)n(2/3) n = 0, 1, . . . , 99
(1/3)100 n = 100
0 otherwise

(1)

For integers n < 100, the CDF of N obeys

FN (n) =
n∑

i=0

PN (i) =
n∑

i=0

(1/3)i(2/3) = 1 − (1/3)n+1 (2)

A complete expression for FN (n) must give a valid answer for every value of n, including non-integer
values. We can write the CDF using the floor function �x� which denote the largest integer less
than or equal to X. The complete expression for the CDF is

FN (x) =

⎧⎨
⎩

0 x < 0
1 − (1/3)�x�+1 0 ≤ x < 100
1 x ≥ 100

(3)

Problem 2.4.6 Solution
From Problem 2.2.8, the PMF of B is

PB (b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.70 b = 0
0.16 b = 1
0.08 b = 2
0.04 b = 3
0.02 b = 4
0 otherwise

(1)
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The corresponding CDF is

−1 0 1 2 3 4 5
0

0.25
0.5

0.75
1

b

F
B
(b

)

FB (b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 b < 0
0.70 0 ≤ b < 1
0.86 1 ≤ b < 2
0.94 2 ≤ b < 3
0.98 3 ≤ b < 4
1.0 b ≥ 4

(2)

Problem 2.4.7 Solution
In Problem 2.2.5, we found the PMF of Y . This PMF, and its corresponding CDF are

PY (y) =

⎧⎪⎪⎨
⎪⎪⎩

1 − p y = 0
p(1 − p) y = 1
p2 y = 2
0 otherwise

FY (y) =

⎧⎪⎪⎨
⎪⎪⎩

0 y < 0
1 − p 0 ≤ y < 1
1 − p2 1 ≤ y < 2
1 y ≥ 2

(1)

For the three values of p, the CDF resembles

−1 0 1 2 3

0
0.25
0.5

0.75
1

y

F
Y
(y

)

−1 0 1 2 3

0
0.25
0.5

0.75
1

y

F
Y
(y

)

−1 0 1 2 3

0
0.25
0.5

0.75
1

y

F
Y
(y

)

p = 1/4 p = 1/2 p = 3/4

(2)

Problem 2.4.8 Solution
From Problem 2.2.9, the PMF of the number of call attempts is

PN (n) =

⎧⎨
⎩

(1 − p)k−1p k = 1, 2, . . . , 5
(1 − p)5p + (1 − p)6 = (1 − p)5 k = 6
0 otherwise

(1)

For p = 1/2, the PMF can be simplified to

PN (n) =

⎧⎨
⎩

(1/2)n n = 1, 2, . . . , 5
(1/2)5 n = 6
0 otherwise

(2)

The corresponding CDF of N is

0 1 2 3 4 5 6 7

0
0.25
0.5

0.75
1

n

F
N
(n

)

FN (n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 n < 1
1/2 1 ≤ n < 2
3/4 2 ≤ n < 3
7/8 3 ≤ n < 4
15/16 4 ≤ n < 5
31/32 5 ≤ n < 6
1 n ≥ 6

(3)
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Problem 2.5.1 Solution
For this problem, we just need to pay careful attention to the definitions of mode and median.

(a) The mode must satisfy PX(xmod) ≥ PX(x) for all x. In the case of the uniform PMF, any
integer x′ between 1 and 100 is a mode of the random variable X. Hence, the set of all modes
is

Xmod = {1, 2, . . . , 100} (1)

(b) The median must satisfy P [X < xmed] = P [X > xmed]. Since

P [X ≤ 50] = P [X ≥ 51] = 1/2 (2)

we observe that xmed = 50.5 is a median since it satisfies

P [X < xmed] = P [X > xmed] = 1/2 (3)

In fact, for any x′ satisfying 50 < x′ < 51, P [X < x′] = P [X > x′] = 1/2. Thus,

Xmed = {x|50 < x < 51} (4)

Problem 2.5.2 Solution
Voice calls and data calls each cost 20 cents and 30 cents respectively. Furthermore the respective
probabilities of each type of call are 0.6 and 0.4.

(a) Since each call is either a voice or data call, the cost of one call can only take the two values
associated with the cost of each type of call. Therefore the PMF of X is

PX (x) =

⎧⎨
⎩

0.6 x = 20
0.4 x = 30
0 otherwise

(1)

(b) The expected cost, E[C], is simply the sum of the cost of each type of call multiplied by the
probability of such a call occurring.

E [C] = 20(0.6) + 30(0.4) = 24 cents (2)

Problem 2.5.3 Solution
From the solution to Problem 2.4.1, the PMF of Y is

PY (y) =

⎧⎪⎪⎨
⎪⎪⎩

1/4 y = 1
1/4 y = 2
1/2 y = 3
0 otherwise

(1)

The expected value of Y is

E [Y ] =
∑

y

yPY (y) = 1(1/4) + 2(1/4) + 3(1/2) = 9/4 (2)
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Problem 2.5.4 Solution
From the solution to Problem 2.4.2, the PMF of X is

PX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 x = −1
0.5 x = 0
0.3 x = 1
0 otherwise

(1)

The expected value of X is

E [X] =
∑

x

xPX (x) = −1(0.2) + 0(0.5) + 1(0.3) = 0.1 (2)

Problem 2.5.5 Solution
From the solution to Problem 2.4.3, the PMF of X is

PX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.4 x = −3
0.4 x = 5
0.2 x = 7
0 otherwise

(1)

The expected value of X is

E [X] =
∑

x

xPX (x) = −3(0.4) + 5(0.4) + 7(0.2) = 2.2 (2)

Problem 2.5.6 Solution
From Definition 2.7, random variable X has PMF

PX (x) =
{ (

4
x

)
(1/2)4 x = 0, 1, 2, 3, 4

0 otherwise
(1)

The expected value of X is

E [X] =
4∑

x=0

xPX (x) = 0
(

4
0

)
1
24

+ 1
(

4
1

)
1
24

+ 2
(

4
2

)
1
24

+ 3
(

4
3

)
1
24

+ 4
(

4
4

)
1
24

(2)

= [4 + 12 + 12 + 4]/24 = 2 (3)

Problem 2.5.7 Solution
From Definition 2.7, random variable X has PMF

PX (x) =
{ (

5
x

)
(1/2)5 x = 0, 1, 2, 3, 4, 5

0 otherwise
(1)

The expected value of X is

E [X] =
5∑

x=0

xPX (x) (2)

= 0
(

5
0

)
1
25

+ 1
(

5
1

)
1
25

+ 2
(

5
2

)
1
25

+ 3
(

5
3

)
1
25

+ 4
(

5
4

)
1
25

+ 5
(

5
5

)
1
25

(3)

= [5 + 20 + 30 + 20 + 5]/25 = 2.5 (4)
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Problem 2.5.8 Solution
The following experiments are based on a common model of packet transmissions in data networks.
In these networks, each data packet contains a cylic redundancy check (CRC) code that permits
the receiver to determine whether the packet was decoded correctly. In the following, we assume
that a packet is corrupted with probability ε = 0.001, independent of whether any other packet is
corrupted.

(a) Let X = 1 if a data packet is decoded correctly; otherwise X = 0. Random variable X is a
Bernoulli random variable with PMF

PX (x) =

⎧⎨
⎩

0.001 x = 0
0.999 x = 1
0 otherwise

(1)

The parameter ε = 0.001 is the probability a packet is corrupted. The expected value of X is

E [X] = 1 − ε = 0.999 (2)

(b) Let Y denote the number of packets received in error out of 100 packets transmitted. Y has
the binomial PMF

PY (y) =
{ (

100
y

)
(0.001)y(0.999)100−y y = 0, 1, . . . , 100

0 otherwise
(3)

The expected value of Y is
E [Y ] = 100ε = 0.1 (4)

(c) Let L equal the number of packets that must be received to decode 5 packets in error. L has
the Pascal PMF

PL (l) =
{ (

l−1
4

)
(0.001)5(0.999)l−5 l = 5, 6, . . .

0 otherwise
(5)

The expected value of L is

E [L] =
5
ε

=
5

0.001
= 5000 (6)

(d) If packet arrivals obey a Poisson model with an average arrival rate of 1000 packets per
second, then the number N of packets that arrive in 5 seconds has the Poisson PMF

PN (n) =
{

5000ne−5000/n! n = 0, 1, . . .
0 otherwise

(7)

The expected value of N is E[N ] = 5000.

Problem 2.5.9 Solution
In this ”double-or-nothing” type game, there are only two possible payoffs. The first is zero dollars,
which happens when we lose 6 straight bets, and the second payoff is 64 dollars which happens
unless we lose 6 straight bets. So the PMF of Y is

PY (y) =

⎧⎨
⎩

(1/2)6 = 1/64 y = 0
1 − (1/2)6 = 63/64 y = 64
0 otherwise

(1)

The expected amount you take home is

E [Y ] = 0(1/64) + 64(63/64) = 63 (2)

So, on the average, we can expect to break even, which is not a very exciting proposition.

49



Problem 2.5.10 Solution
By the definition of the expected value,

E [Xn] =
n∑

x=1

x

(
n

x

)
px(1 − p)n−x (1)

= np

n∑
x=1

(n − 1)!
(x − 1)!(n − 1 − (x − 1))!

px−1(1 − p)n−1−(x−1) (2)

With the substitution x′ = x − 1, we have

E [Xn] = np

n−1∑
x′=0

(
n − 1

x′

)
px′

(1 − p)n−x′

︸ ︷︷ ︸
1

= np

n−1∑
x′=0

PXn−1 (x) = np (3)

The above sum is 1 because it is the sum of a binomial random variable for n − 1 trials over all
possible values.

Problem 2.5.11 Solution
We write the sum as a double sum in the following way:

∞∑
i=0

P [X > i] =
∞∑
i=0

∞∑
j=i+1

PX (j) (1)

At this point, the key step is to reverse the order of summation. You may need to make a sketch
of the feasible values for i and j to see how this reversal occurs. In this case,

∞∑
i=0

P [X > i] =
∞∑

j=1

j−1∑
i=0

PX (j) =
∞∑

j=1

jPX (j) = E [X] (2)

Problem 2.6.1 Solution
From the solution to Problem 2.4.1, the PMF of Y is

PY (y) =

⎧⎪⎪⎨
⎪⎪⎩

1/4 y = 1
1/4 y = 2
1/2 y = 3
0 otherwise

(1)

(a) Since Y has range SY = {1, 2, 3}, the range of U = Y 2 is SU = {1, 4, 9}. The PMF of U can
be found by observing that

P [U = u] = P
[
Y 2 = u

]
= P

[
Y =

√
u
]
+ P

[
Y = −√

u
]

(2)

Since Y is never negative, PU (u) = PY (
√

u). Hence,

PU (1) = PY (1) = 1/4 PU (4) = PY (2) = 1/4 PU (9) = PY (3) = 1/2 (3)

For all other values of u, PU (u) = 0. The complete expression for the PMF of U is

PU (u) =

⎧⎪⎪⎨
⎪⎪⎩

1/4 u = 1
1/4 u = 4
1/2 u = 9
0 otherwise

(4)
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(b) From the PMF, it is straighforward to write down the CDF.

FU (u) =

⎧⎪⎪⎨
⎪⎪⎩

0 u < 1
1/4 1 ≤ u < 4
1/2 4 ≤ u < 9
1 u ≥ 9

(5)

(c) From Definition 2.14, the expected value of U is

E [U ] =
∑

u

uPU (u) = 1(1/4) + 4(1/4) + 9(1/2) = 5.75 (6)

From Theorem 2.10, we can calculate the expected value of U as

E [U ] = E
[
Y 2
]

=
∑

y

y2PY (y) = 12(1/4) + 22(1/4) + 32(1/2) = 5.75 (7)

As we expect, both methods yield the same answer.

Problem 2.6.2 Solution
From the solution to Problem 2.4.2, the PMF of X is

PX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 x = −1
0.5 x = 0
0.3 x = 1
0 otherwise

(1)

(a) The PMF of V = |X| satisfies

PV (v) = P [|X| = v] = PX (v) + PX (−v) (2)

In particular,

PV (0) = PX (0) = 0.5 PV (1) = PX (−1) + PX (1) = 0.5 (3)

The complete expression for the PMF of V is

PV (v) =

⎧⎨
⎩

0.5 v = 0
0.5 v = 1
0 otherwise

(4)

(b) From the PMF, we can construct the staircase CDF of V .

FV (v) =

⎧⎨
⎩

0 v < 0
0.5 0 ≤ v < 1
1 v ≥ 1

(5)

(c) From the PMF PV (v), the expected value of V is

E [V ] =
∑

v

PV (v) = 0(1/2) + 1(1/2) = 1/2 (6)

You can also compute E[V ] directly by using Theorem 2.10.
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Problem 2.6.3 Solution
From the solution to Problem 2.4.3, the PMF of X is

PX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.4 x = −3
0.4 x = 5
0.2 x = 7
0 otherwise

(1)

(a) The PMF of W = −X satisfies

PW (w) = P [−X = w] = PX (−w) (2)

This implies

PW (−7) = PX (7) = 0.2 PW (−5) = PX (5) = 0.4 PW (3) = PX (−3) = 0.4 (3)

The complete PMF for W is

PW (w) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 w = −7
0.4 w = −5
0.4 w = 3
0 otherwise

(4)

(b) From the PMF, the CDF of W is

FW (w) =

⎧⎪⎪⎨
⎪⎪⎩

0 w < −7
0.2 −7 ≤ w < −5
0.6 −5 ≤ w < 3
1 w ≥ 3

(5)

(c) From the PMF, W has expected value

E [W ] =
∑
w

wPW (w) = −7(0.2) + −5(0.4) + 3(0.4) = −2.2 (6)

Problem 2.6.4 Solution
A tree for the experiment is

������� D=99.751/3

D=100
1/3

������� D=100.251/3

•C=100074.75

•C=10100

•C=10125.13

Thus C has three equally likely outcomes. The PMF of C is

PC (c) =
{

1/3 c = 100,074.75, 10,100, 10,125.13
0 otherwise

(1)
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Problem 2.6.5 Solution

(a) The source continues to transmit packets until one is received correctly. Hence, the total
number of times that a packet is transmitted is X = x if the first x− 1 transmissions were in
error. Therefore the PMF of X is

PX (x) =
{

qx−1(1 − q) x = 1, 2, . . .
0 otherwise

(1)

(b) The time required to send a packet is a millisecond and the time required to send an acknowl-
edgment back to the source takes another millisecond. Thus, if X transmissions of a packet
are needed to send the packet correctly, then the packet is correctly received after T = 2X−1
milliseconds. Therefore, for an odd integer t > 0, T = t iff X = (t + 1)/2. Thus,

PT (t) = PX ((t + 1)/2) =
{

q(t−1)/2(1 − q) t = 1, 3, 5, . . .
0 otherwise

(2)

Problem 2.6.6 Solution
The cellular calling plan charges a flat rate of $20 per month up to and including the 30th minute,
and an additional 50 cents for each minute over 30 minutes. Knowing that the time you spend on
the phone is a geometric random variable M with mean 1/p = 30, the PMF of M is

PM (m) =
{

(1 − p)m−1p m = 1, 2, . . .
0 otherwise

(1)

The monthly cost, C obeys

PC (20) = P [M ≤ 30] =
30∑

m=1

(1 − p)m−1p = 1 − (1 − p)30 (2)

When M ≥ 30, C = 20 + (M − 30)/2 or M = 2C − 10. Thus,

PC (c) = PM (2c − 10) c = 20.5, 21, 21.5, . . . (3)

The complete PMF of C is

PC (c) =
{

1 − (1 − p)30 c = 20
(1 − p)2c−10−1p c = 20.5, 21, 21.5, . . .

(4)

Problem 2.7.1 Solution
From the solution to Quiz 2.6, we found that T = 120 − 15N . By Theorem 2.10,

E [T ] =
∑

n∈SN

(120 − 15n)PN (n) (1)

= 0.1(120) + 0.3(120 − 15) + 0.3(120 − 30) + 0.3(120 − 45) = 93 (2)

Also from the solution to Quiz 2.6, we found that

PT (t) =

⎧⎨
⎩

0.3 t = 75, 90, 105
0.1 t = 120
0 otherwise

(3)
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Using Definition 2.14,

E [T ] =
∑
t∈ST

tPT (t) = 0.3(75) + 0.3(90) + 0.3(105) + 0.1(120) = 93 (4)

As expected, the two calculations give the same answer.

Problem 2.7.2 Solution
Whether a lottery ticket is a winner is a Bernoulli trial with a success probability of 0.001. If we
buy one every day for 50 years for a total of 50 · 365 = 18250 tickets, then the number of winning
tickets T is a binomial random variable with mean

E [T ] = 18250(0.001) = 18.25 (1)

Since each winning ticket grosses $1000, the revenue we collect over 50 years is R = 1000T dollars.
The expected revenue is

E [R] = 1000E [T ] = 18250 (2)

But buying a lottery ticket everyday for 50 years, at $2.00 a pop isn’t cheap and will cost us a total
of 18250 · 2 = $36500. Our net profit is then Q = R − 36500 and the result of our loyal 50 year
patronage of the lottery system, is disappointing expected loss of

E [Q] = E [R] − 36500 = −18250 (3)

Problem 2.7.3 Solution
Let X denote the number of points the shooter scores. If the shot is uncontested, the expected
number of points scored is

E [X] = (0.6)2 = 1.2 (1)

If we foul the shooter, then X is a binomial random variable with mean E[X] = 2p. If 2p > 1.2,
then we should not foul the shooter. Generally, p will exceed 0.6 since a free throw is usually
even easier than an uncontested shot taken during the action of the game. Furthermore, fouling
the shooter ultimately leads to the the detriment of players possibly fouling out. This suggests
that fouling a player is not a good idea. The only real exception occurs when facing a player like
Shaquille O’Neal whose free throw probability p is lower than his field goal percentage during a
game.

Problem 2.7.4 Solution
Given the distributions of D, the waiting time in days and the resulting cost, C, we can answer the
following questions.

(a) The expected waiting time is simply the expected value of D.

E [D] =
4∑

d=1

d · PD(d) = 1(0.2) + 2(0.4) + 3(0.3) + 4(0.1) = 2.3 (1)

(b) The expected deviation from the waiting time is

E [D − μD] = E [D] − E [μd] = μD − μD = 0 (2)
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(c) C can be expressed as a function of D in the following manner.

C(D) =

⎧⎪⎪⎨
⎪⎪⎩

90 D = 1
70 D = 2
40 D = 3
40 D = 4

(3)

(d) The expected service charge is

E [C] = 90(0.2) + 70(0.4) + 40(0.3) + 40(0.1) = 62 dollars (4)

Problem 2.7.5 Solution
As a function of the number of minutes used, M , the monthly cost is

C(M) =
{

20 M ≤ 30
20 + (M − 30)/2 M ≥ 30

(1)

The expected cost per month is

E [C] =
∞∑

m=1

C(m)PM (m) =
30∑

m=1

20PM (m) +
∞∑

m=31

(20 + (m − 30)/2)PM (m) (2)

= 20
∞∑

m=1

PM (m) +
1
2

∞∑
m=31

(m − 30)PM (m) (3)

Since
∑∞

m=1 PM (m) = 1 and since PM (m) = (1 − p)m−1p for m ≥ 1, we have

E [C] = 20 +
(1 − p)30

2

∞∑
m=31

(m − 30)(1 − p)m−31p (4)

Making the substitution j = m − 30 yields

E [C] = 20 +
(1 − p)30

2

∞∑
j=1

j(1 − p)j−1p = 20 +
(1 − p)30

2p
(5)

Problem 2.7.6 Solution
Since our phone use is a geometric random variable M with mean value 1/p,

PM (m) =
{

(1 − p)m−1p m = 1, 2, . . .
0 otherwise

(1)

For this cellular billing plan, we are given no free minutes, but are charged half the flat fee. That
is, we are going to pay 15 dollars regardless and $1 for each minute we use the phone. Hence
C = 15 + M and for c ≥ 16, P [C = c] = P [M = c − 15]. Thus we can construct the PMF of the
cost C

PC (c) =
{

(1 − p)c−16p c = 16, 17, . . .
0 otherwise

(2)
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Since C = 15 + M , the expected cost per month of the plan is

E [C] = E [15 + M ] = 15 + E [M ] = 15 + 1/p (3)

In Problem 2.7.5, we found that that the expected cost of the plan was

E [C] = 20 + [(1 − p)30]/(2p) (4)

In comparing the expected costs of the two plans, we see that the new plan is better (i.e. cheaper)
if

15 + 1/p ≤ 20 + [(1 − p)30]/(2p) (5)

A simple plot will show that the new plan is better if p ≤ p0 ≈ 0.2.

Problem 2.7.7 Solution
We define random variable W such that W = 1 if the circuit works or W = 0 if the circuit is
defective. (In the probability literature, W is called an indicator random variable.) Let Rs denote
the profit on a circuit with standard devices. Let Ru denote the profit on a circuit with ultrareliable
devices. We will compare E[Rs] and E[Ru] to decide which circuit implementation offers the highest
expected profit.

The circuit with standard devices works with probability (1 − q)10 and generates revenue of k
dollars if all of its 10 constituent devices work. We observe that we can we can express Rs as a
function rs(W ) and that we can find the PMF PW (w):

Rs = rs(W ) =
{ −10 W = 0,

k − 10 W = 1,
PW (w) =

⎧⎨
⎩

1 − (1 − q)10 w = 0,
(1 − q)10 w = 1,
0 otherwise.

(1)

Thus we can express the expected profit as

E [rs(W )] =
1∑

w=0

PW (w) rs(w) (2)

= PW (0) (−10) + PW (1) (k − 10) (3)

= (1 − (1 − q)10)(−10) + (1 − q)10(k − 10) = (0.9)10k − 10. (4)

For the ultra-reliable case,

Ru = ru(W ) =
{ −30 W = 0,

k − 30 W = 1,
PW (w) =

⎧⎨
⎩

1 − (1 − q/2)10 w = 0,
(1 − q/2)10 w = 1,
0 otherwise.

(5)

Thus we can express the expected profit as

E [ru(W )] =
1∑

w=0

PW (w) ru(w) (6)

= PW (0) (−30) + PW (1) (k − 30) (7)

= (1 − (1 − q/2)10)(−30) + (1 − q/2)10(k − 30) = (0.95)10k − 30 (8)

To determine which implementation generates the most profit, we solve E[Ru] ≥ E[Rs], yielding
k ≥ 20/[(0.95)10 − (0.9)10] = 80.21. So for k < $80.21 using all standard devices results in greater
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revenue, while for k > $80.21 more revenue will be generated by implementing all ultra-reliable
devices. That is, when the price commanded for a working circuit is sufficiently high, we should
build more-expensive higher-reliability circuits.
If you have read ahead to Section 2.9 and learned about conditional expected values, you might prefer
the following solution. If not, you might want to come back and review this alternate approach after
reading Section 2.9.

Let W denote the event that a circuit works. The circuit works and generates revenue of k
dollars if all of its 10 constituent devices work. For each implementation, standard or ultra-reliable,
let R denote the profit on a device. We can express the expected profit as

E [R] = P [W ] E [R|W ] + P [W c] E [R|W c] (9)

Let’s first consider the case when only standard devices are used. In this case, a circuit works
with probability P [W ] = (1 − q)10. The profit made on a working device is k − 10 dollars while a
nonworking circuit has a profit of -10 dollars. That is, E[R|W ] = k − 10 and E[R|W c] = −10. Of
course, a negative profit is actually a loss. Using Rs to denote the profit using standard circuits,
the expected profit is

E [Rs] = (1 − q)10(k − 10) + (1 − (1 − q)10)(−10) = (0.9)10k − 10 (10)

And for the ultra-reliable case, the circuit works with probability P [W ] = (1−q/2)10. The profit per
working circuit is E[R|W ] = k − 30 dollars while the profit for a nonworking circuit is E[R|W c] =
−30 dollars. The expected profit is

E [Ru] = (1 − q/2)10(k − 30) + (1 − (1 − q/2)10)(−30) = (0.95)10k − 30 (11)

Not surprisingly, we get the same answers for E[Ru] and E[Rs] as in the first solution by performing
essentially the same calculations. it should be apparent that indicator random variable W in the
first solution indicates the occurrence of the conditioning event W in the second solution. That is,
indicators are a way to track conditioning events.

Problem 2.7.8 Solution

(a) There are
(
46
6

)
equally likely winning combinations so that

q =
1(
46
6

) =
1

9,366,819
≈ 1.07 × 10−7 (1)

(b) Assuming each ticket is chosen randomly, each of the 2n − 1 other tickets is independently a
winner with probability q. The number of other winning tickets Kn has the binomial PMF

PKn (k) =
{ (

2n−1
k

)
qk(1 − q)2n−1−k k = 0, 1, . . . , 2n − 1

0 otherwise
(2)

(c) Since there are Kn + 1 winning tickets in all, the value of your winning ticket is Wn =
n/(Kn + 1) which has mean

E [Wn] = nE

[
1

Kn + 1

]
(3)
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Calculating the expected value

E

[
1

Kn + 1

]
=

2n−1∑
k=0

(
1

k + 1

)
PKn (k) (4)

is fairly complicated. The trick is to express the sum in terms of the sum of a binomial
PMF.

E

[
1

Kn + 1

]
=

2n−1∑
k=0

1
k + 1

(2n − 1)!
k!(2n − 1 − k)!

qk(1 − q)2n−1−k (5)

=
1
2n

2n−1∑
k=0

(2n)!
(k + 1)!(2n − (k + 1))!

qk(1 − q)2n−(k+1) (6)

By factoring out 1/q, we obtain

E

[
1

Kn + 1

]
=

1
2nq

2n−1∑
k=0

(
2n

k + 1

)
qk+1(1 − q)2n−(k+1) (7)

=
1

2nq

2n∑
j=1

(
2n

j

)
qj(1 − q)2n−j

︸ ︷︷ ︸
A

(8)

We observe that the above sum labeled A is the sum of a binomial PMF for 2n trials and
success probability q over all possible values except j = 0. Thus

A = 1 −
(

2n

0

)
q0(1 − q)2n−0 = 1 − (1 − q)2n (9)

This implies

E

[
1

Kn + 1

]
=

1 − (1 − q)2n

2nq
(10)

Our expected return on a winning ticket is

E [Wn] = nE

[
1

Kn + 1

]
=

1 − (1 − q)2n

2q
(11)

Note that when nq 	 1, we can use the approximation that (1− q)2n ≈ 1− 2nq to show that

E [Wn] ≈ 1 − (1 − 2nq)
2q

= n (nq 	 1) (12)

However, in the limit as the value of the prize n approaches infinity, we have

lim
n→∞E [Wn] =

1
2q

≈ 4.683 × 106 (13)

That is, as the pot grows to infinity, the expected return on a winning ticket doesn’t approach
infinity because there is a corresponding increase in the number of other winning tickets. If
it’s not clear how large n must be for this effect to be seen, consider the following table:

n 106 107 108

E [Wn] 9.00 × 105 4.13 × 106 4.68 × 106 (14)

When the pot is $1 million, our expected return is $900,000. However, we see that when the
pot reaches $100 million, our expected return is very close to 1/(2q), less than $5 million!
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Problem 2.7.9 Solution

(a) There are
(
46
6

)
equally likely winning combinations so that

q =
1(
46
6

) =
1

9,366,819
≈ 1.07 × 10−7 (1)

(b) Assuming each ticket is chosen randomly, each of the 2n − 1 other tickets is independently a
winner with probability q. The number of other winning tickets Kn has the binomial PMF

PKn (k) =
{ (

2n−1
k

)
qk(1 − q)2n−1−k k = 0, 1, . . . , 2n − 1

0 otherwise
(2)

Since the pot has n + r dollars, the expected amount that you win on your ticket is

E [V ] = 0(1 − q) + qE

[
n + r

Kn + 1

]
= q(n + r)E

[
1

Kn + 1

]
(3)

Note that E[1/Kn + 1] was also evaluated in Problem 2.7.8. For completeness, we repeat
those steps here.

E

[
1

Kn + 1

]
=

2n−1∑
k=0

1
k + 1

(2n − 1)!
k!(2n − 1 − k)!

qk(1 − q)2n−1−k (4)

=
1
2n

2n−1∑
k=0

(2n)!
(k + 1)!(2n − (k + 1))!

qk(1 − q)2n−(k+1) (5)

By factoring out 1/q, we obtain

E

[
1

Kn + 1

]
=

1
2nq

2n−1∑
k=0

(
2n

k + 1

)
qk+1(1 − q)2n−(k+1) (6)

=
1

2nq

2n∑
j=1

(
2n

j

)
qj(1 − q)2n−j

︸ ︷︷ ︸
A

(7)

We observe that the above sum labeled A is the sum of a binomial PMF for 2n trials and
success probability q over all possible values except j = 0. Thus A = 1 − (2n

0

)
q0(1 − q)2n−0,

which implies

E

[
1

Kn + 1

]
=

A

2nq
=

1 − (1 − q)2n

2nq
(8)

The expected value of your ticket is

E [V ] =
q(n + r)[1 − (1 − q)2n]

2nq
=

1
2

(
1 +

r

n

)
[1 − (1 − q)2n] (9)

Each ticket tends to be more valuable when the carryover pot r is large and the number of
new tickets sold, 2n, is small. For any fixed number n, corresponding to 2n tickets sold,
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a sufficiently large pot r will guarantee that E[V ] > 1. For example if n = 107, (20 million
tickets sold) then

E [V ] = 0.44
(
1 +

r

107

)
(10)

If the carryover pot r is 30 million dollars, then E[V ] = 1.76. This suggests that buying a
one dollar ticket is a good idea. This is an unusual situation because normally a carryover
pot of 30 million dollars will result in far more than 20 million tickets being sold.

(c) So that we can use the results of the previous part, suppose there were 2n − 1 tickets sold
before you must make your decision. If you buy one of each possible ticket, you are guaranteed
to have one winning ticket. From the other 2n − 1 tickets, there will be Kn winners. The
total number of winning tickets will be Kn + 1. In the previous part we found that

E

[
1

Kn + 1

]
=

1 − (1 − q)2n

2nq
(11)

Let R denote the expected return from buying one of each possible ticket. The pot had
r dollars beforehand. The 2n − 1 other tickets are sold add n − 1/2 dollars to the pot.
Furthermore, you must buy 1/q tickets, adding 1/(2q) dollars to the pot. Since the cost of
the tickets is 1/q dollars, your expected profit

E [R] = E

[
r + n − 1/2 + 1/(2q)

Kn + 1

]
− 1

q
(12)

=
q(2r + 2n − 1) + 1

2q
E

[
1

Kn + 1

]
− 1

q
(13)

=
[q(2r + 2n − 1) + 1](1 − (1 − q)2n)

4nq2
− 1

q
(14)

For fixed n, sufficiently large r will make E[R] > 0. On the other hand, for fixed r,
limn→∞ E[R] = −1/(2q). That is, as n approaches infinity, your expected loss will be quite
large.

Problem 2.8.1 Solution
Given the following PMF

PN (n) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 n = 0
0.7 n = 1
0.1 n = 2
0 otherwise

(1)

(a) E[N ] = (0.2)0 + (0.7)1 + (0.1)2 = 0.9

(b) E[N2] = (0.2)02 + (0.7)12 + (0.1)22 = 1.1

(c) Var[N ] = E[N2] − E[N ]2 = 1.1 − (0.9)2 = 0.29

(d) σN =
√

Var[N ] =
√

0.29
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Problem 2.8.2 Solution
From the solution to Problem 2.4.1, the PMF of Y is

PY (y) =

⎧⎪⎪⎨
⎪⎪⎩

1/4 y = 1
1/4 y = 2
1/2 y = 3
0 otherwise

(1)

The expected value of Y is

E [Y ] =
∑

y

yPY (y) = 1(1/4) + 2(1/4) + 3(1/2) = 9/4 (2)

The expected value of Y 2 is

E
[
Y 2
]

=
∑

y

y2PY (y) = 12(1/4) + 22(1/4) + 32(1/2) = 23/4 (3)

The variance of Y is

Var[Y ] = E
[
Y 2
]− (E [Y ])2 = 23/4 − (9/4)2 = 11/16 (4)

Problem 2.8.3 Solution
From the solution to Problem 2.4.2, the PMF of X is

PX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 x = −1
0.5 x = 0
0.3 x = 1
0 otherwise

(1)

The expected value of X is

E [X] =
∑

x

xPX (x) = (−1)(0.2) + 0(0.5) + 1(0.3) = 0.1 (2)

The expected value of X2 is

E
[
X2
]

=
∑

x

x2PX (x) = (−1)2(0.2) + 02(0.5) + 12(0.3) = 0.5 (3)

The variance of X is

Var[X] = E
[
X2
]− (E [X])2 = 0.5 − (0.1)2 = 0.49 (4)

Problem 2.8.4 Solution
From the solution to Problem 2.4.3, the PMF of X is

PX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.4 x = −3
0.4 x = 5
0.2 x = 7
0 otherwise

(1)

61



The expected value of X is

E [X] =
∑

x

xPX (x) = −3(0.4) + 5(0.4) + 7(0.2) = 2.2 (2)

The expected value of X2 is

E
[
X2
]

=
∑

x

x2PX (x) = (−3)2(0.4) + 52(0.4) + 72(0.2) = 23.4 (3)

The variance of X is

Var[X] = E
[
X2
]− (E [X])2 = 23.4 − (2.2)2 = 18.56 (4)

Problem 2.8.5 Solution

(a) The expected value of X is

E [X] =
4∑

x=0

xPX (x) = 0
(

4
0

)
1
24

+ 1
(

4
1

)
1
24

+ 2
(

4
2

)
1
24

+ 3
(

4
3

)
1
24

+ 4
(

4
4

)
1
24

(1)

= [4 + 12 + 12 + 4]/24 = 2 (2)

The expected value of X2 is

E
[
X2
]

=
4∑

x=0

x2PX (x) = 02

(
4
0

)
1
24

+ 12

(
4
1

)
1
24

+ 22

(
4
2

)
1
24

+ 32

(
4
3

)
1
24

+ 42

(
4
4

)
1
24

(3)

= [4 + 24 + 36 + 16]/24 = 5 (4)

The variance of X is
Var[X] = E

[
X2
]− (E [X])2 = 5 − 22 = 1 (5)

Thus, X has standard deviation σX =
√

Var[X] = 1.

(b) The probability that X is within one standard deviation of its expected value is

P [μX − σX ≤ X ≤ μX + σX ] = P [2 − 1 ≤ X ≤ 2 + 1] = P [1 ≤ X ≤ 3] (6)

This calculation is easy using the PMF of X.

P [1 ≤ X ≤ 3] = PX (1) + PX (2) + PX (3) = 7/8 (7)

Problem 2.8.6 Solution

(a) The expected value of X is

E [X] =
5∑

x=0

xPX (x) (1)

= 0
(

5
0

)
1
25

+ 1
(

5
1

)
1
25

+ 2
(

5
2

)
1
25

+ 3
(

5
3

)
1
25

+ 4
(

5
4

)
1
25

+ 5
(

5
5

)
1
25

(2)

= [5 + 20 + 30 + 20 + 5]/25 = 5/2 (3)
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The expected value of X2 is

E
[
X2
]

=
5∑

x=0

x2PX (x) (4)

= 02

(
5
0

)
1
25

+ 12

(
5
1

)
1
25

+ 22

(
5
2

)
1
25

+ 32

(
5
3

)
1
25

+ 42

(
5
4

)
1
25

+ 52

(
5
5

)
1
25

(5)

= [5 + 40 + 90 + 80 + 25]/25 = 240/32 = 15/2 (6)

The variance of X is

Var[X] = E
[
X2
]− (E [X])2 = 15/2 − 25/4 = 5/4 (7)

By taking the square root of the variance, the standard deviation of X is σX =
√

5/4 ≈ 1.12.

(b) The probability that X is within one standard deviation of its mean is

P [μX − σX ≤ X ≤ μX + σX ] = P [2.5 − 1.12 ≤ X ≤ 2.5 + 1.12] (8)
= P [1.38 ≤ X ≤ 3.62] (9)
= P [2 ≤ X ≤ 3] (10)

By summing the PMF over the desired range, we obtain

P [2 ≤ X ≤ 3] = PX (2) + PX (3) = 10/32 + 10/32 = 5/8 (11)

Problem 2.8.7 Solution
For Y = aX + b, we wish to show that Var[Y ] = a2 Var[X]. We begin by noting that Theorem 2.12
says that E[aX + b] = aE[X] + b. Hence, by the definition of variance.

Var [Y ] = E
[
(aX + b − (aE [X] + b))2

]
(1)

= E
[
a2(X − E [X])2

]
(2)

= a2E
[
(X − E [X])2

]
(3)

Since E[(X − E[X])2] = Var[X], the assertion is proved.

Problem 2.8.8 Solution
Given the following description of the random variable Y ,

Y =
1
σx

(X − μX) (1)

we can use the linearity property of the expectation operator to find the mean value

E [Y ] =
E [X − μX ]

σX
=

E [X] − E [X]
σX

= 0 (2)

Using the fact that Var[aX + b] = a2 Var[X], the variance of Y is found to be

Var [Y ] =
1

σ2
X

Var [X] = 1 (3)
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Problem 2.8.9 Solution
With our measure of jitter being σT , and the fact that T = 2X − 1, we can express the jitter as a
function of q by realizing that

Var[T ] = 4 Var[X] =
4q

(1 − q)2
(1)

Therefore, our maximum permitted jitter is

σT =
2
√

q

(1 − q)
= 2 msec (2)

Solving for q yields q2 − 3q + 1 = 0. By solving this quadratic equation, we obtain

q =
3 ±√

5
2

= 3/2 ±
√

5/2 (3)

Since q must be a value between 0 and 1, we know that a value of q = 3/2 − √
5/2 ≈ 0.382 will

ensure a jitter of at most 2 milliseconds.

Problem 2.8.10 Solution
We wish to minimize the function

e(x̂) = E
[
(X − x̂)2

]
(1)

with respect to x̂. We can expand the square and take the expectation while treating x̂ as a
constant. This yields

e(x̂) = E
[
X2 − 2x̂X + x̂2

]
= E

[
X2
]− 2x̂E [X] + x̂2 (2)

Solving for the value of x̂ that makes the derivative de(x̂)/dx̂ equal to zero results in the value of
x̂ that minimizes e(x̂). Note that when we take the derivative with respect to x̂, both E[X2] and
E[X] are simply constants.

d

dx̂

(
E
[
X2
]− 2x̂E [X] + x̂2

)
= 2E [X] − 2x̂ = 0 (3)

Hence we see that x̂ = E[X]. In the sense of mean squared error, the best guess for a random
variable is the mean value. In Chapter 9 this idea is extended to develop minimum mean squared
error estimation.

Problem 2.8.11 Solution
The PMF of K is the Poisson PMF

PK (k) =
{

λke−λ/k! k = 0, 1, . . .
0 otherwise

(1)

The mean of K is

E [K] =
∞∑

k=0

k
λke−λ

k!
= λ

∞∑
k=1

λk−1e−λ

(k − 1)!
= λ (2)

To find E[K2], we use the hint and first find

E [K(K − 1)] =
∞∑

k=0

k(k − 1)
λke−λ

k!
=

∞∑
k=2

λke−λ

(k − 2)!
(3)
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By factoring out λ2 and substituting j = k − 2, we obtain

E [K(K − 1)] = λ2
∞∑

j=0

λje−λ

j!︸ ︷︷ ︸
1

= λ2 (4)

The above sum equals 1 because it is the sum of a Poisson PMF over all possible values. Since
E[K] = λ, the variance of K is

Var[K] = E
[
K2
]− (E [K])2 (5)

= E [K(K − 1)] + E [K] − (E [K])2 (6)

= λ2 + λ − λ2 = λ (7)

Problem 2.8.12 Solution
The standard deviation can be expressed as

σD =
√

Var[D] =
√

E [D2] − E [D]2 (1)

where

E
[
D2
]

=
4∑

d=1

d2PD(d) = 0.2 + 1.6 + 2.7 + 1.6 = 6.1 (2)

So finally we have
σD =

√
6.1 − 2.32 =

√
0.81 = 0.9 (3)

Problem 2.9.1 Solution
From the solution to Problem 2.4.1, the PMF of Y is

PY (y) =

⎧⎪⎪⎨
⎪⎪⎩

1/4 y = 1
1/4 y = 2
1/2 y = 3
0 otherwise

(1)

The probability of the event B = {Y < 3} is P [B] = 1−P [Y = 3] = 1/2. From Theorem 2.17, the
conditional PMF of Y given B is

PY |B (y) =

{
PY (y)
P [B] y ∈ B

0 otherwise
=

⎧⎨
⎩

1/2 y = 1
1/2 y = 2
0 otherwise

(2)

The conditional first and second moments of Y are

E [Y |B] =
∑

y

yPY |B (y) = 1(1/2) + 2(1/2) = 3/2 (3)

E
[
Y 2|B] =

∑
y

y2PY |B (y) = 12(1/2) + 22(1/2) = 5/2 (4)

The conditional variance of Y is

Var[Y |B] = E
[
Y 2|B]− (E [Y |B])2 = 5/2 − 9/4 = 1/4 (5)
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Problem 2.9.2 Solution
From the solution to Problem 2.4.2, the PMF of X is

PX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 x = −1
0.5 x = 0
0.3 x = 1
0 otherwise

(1)

The event B = {|X| > 0} has probability P [B] = P [X 
= 0] = 0.5. From Theorem 2.17, the
conditional PMF of X given B is

PX|B (x) =

{
PX(x)
P [B] x ∈ B

0 otherwise
=

⎧⎨
⎩

0.4 x = −1
0.6 x = 1
0 otherwise

(2)

The conditional first and second moments of X are

E [X|B] =
∑

x

xPX|B (x) = (−1)(0.4) + 1(0.6) = 0.2 (3)

E
[
X2|B] =

∑
x

x2PX|B (x) = (−1)2(0.4) + 12(0.6) = 1 (4)

The conditional variance of X is

Var[X|B] = E
[
X2|B]− (E [X|B])2 = 1 − (0.2)2 = 0.96 (5)

Problem 2.9.3 Solution
From the solution to Problem 2.4.3, the PMF of X is

PX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.4 x = −3
0.4 x = 5
0.2 x = 7
0 otherwise

(1)

The event B = {X > 0} has probability P [B] = PX(5) + PX(7) = 0.6. From Theorem 2.17, the
conditional PMF of X given B is

PX|B (x) =

{
PX(x)
P [B] x ∈ B

0 otherwise
=

⎧⎨
⎩

2/3 x = 5
1/3 x = 7
0 otherwise

(2)

The conditional first and second moments of X are

E [X|B] =
∑

x

xPX|B (x) = 5(2/3) + 7(1/3) = 17/3 (3)

E
[
X2|B] =

∑
x

x2PX|B (x) = 52(2/3) + 72(1/3) = 33 (4)

The conditional variance of X is

Var[X|B] = E
[
X2|B]− (E [X|B])2 = 33 − (17/3)2 = 8/9 (5)
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Problem 2.9.4 Solution
The event B = {X 
= 0} has probability P [B] = 1 − P [X = 0] = 15/16. The conditional PMF of
X given B is

PX|B (x) =

{
PX(x)
P [B] x ∈ B

0 otherwise
=
{ (

4
x

)
1
15 x = 1, 2, 3, 4

0 otherwise
(1)

The conditional first and second moments of X are

E [X|B] =
4∑

x=1

xPX|B (x) = 1
(

4
1

)
1
15

2
(

4
2

)
1
15

+ 3
(

4
3

)
1
15

+ 4
(

4
4

)
1
15

(2)

= [4 + 12 + 12 + 4]/15 = 32/15 (3)

E
[
X2|B] =

4∑
x=1

x2PX|B (x) = 12

(
4
1

)
1
15

22

(
4
2

)
1
15

+ 32

(
4
3

)
1
15

+ 42

(
4
4

)
1
15

(4)

= [4 + 24 + 36 + 16]/15 = 80/15 (5)

The conditional variance of X is

Var[X|B] = E
[
X2|B]− (E [X|B])2 = 80/15 − (32/15)2 = 176/225 ≈ 0.782 (6)

Problem 2.9.5 Solution
The probability of the event B is

P [B] = P [X ≥ μX ] = P [X ≥ 3] = PX (3) + PX (4) + PX (5) (1)

=

(
5
3

)
+
(
5
4

)
+
(
5
5

)
32

= 21/32 (2)

The conditional PMF of X given B is

PX|B (x) =

{
PX(x)
P [B] x ∈ B

0 otherwise
=
{ (

5
x

)
1
21 x = 3, 4, 5

0 otherwise
(3)

The conditional first and second moments of X are

E [X|B] =
5∑

x=3

xPX|B (x) = 3
(

5
3

)
1
21

+ 4
(

5
4

)
1
21

+ 5
(

5
5

)
1
21

(4)

= [30 + 20 + 5]/21 = 55/21 (5)

E
[
X2|B] =

5∑
x=3

x2PX|B (x) = 32

(
5
3

)
1
21

+ 42

(
5
4

)
1
21

+ 52

(
5
5

)
1
21

(6)

= [90 + 80 + 25]/21 = 195/21 = 65/7 (7)

The conditional variance of X is

Var[X|B] = E
[
X2|B]− (E [X|B])2 = 65/7 − (55/21)2 = 1070/441 = 2.43 (8)
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Problem 2.9.6 Solution

(a) Consider each circuit test as a Bernoulli trial such that a failed circuit is called a success.
The number of trials until the first success (i.e. a failed circuit) has the geometric PMF

PN (n) =
{

(1 − p)n−1p n = 1, 2, . . .
0 otherwise

(1)

(b) The probability there are at least 20 tests is

P [B] = P [N ≥ 20] =
∞∑

n=20

PN (n) = (1 − p)19 (2)

Note that (1 − p)19 is just the probability that the first 19 circuits pass the test, which is
what we would expect since there must be at least 20 tests if the first 19 circuits pass. The
conditional PMF of N given B is

PN |B (n) =

{
PN (n)
P [B] n ∈ B

0 otherwise
=
{

(1 − p)n−20p n = 20, 21, . . .
0 otherwise

(3)

(c) Given the event B, the conditional expectation of N is

E [N |B] =
∑

n

nPN |B (n) =
∞∑

n=20

n(1 − p)n−20p (4)

Making the substitution j = n − 19 yields

E [N |B] =
∞∑

j=1

(j + 19)(1 − p)j−1p = 1/p + 19 (5)

We see that in the above sum, we effectively have the expected value of J + 19 where J is
geometric random variable with parameter p. This is not surprising since the N ≥ 20 iff we
observed 19 successful tests. After 19 successful tests, the number of additional tests needed
to find the first failure is still a geometric random variable with mean 1/p.

Problem 2.9.7 Solution

(a) The PMF of M , the number of miles run on an arbitrary day is

PM (m) =
{

q(1 − q)m m = 0, 1, . . .
0 otherwise

(1)

And we can see that the probability that M > 0, is

P [M > 0] = 1 − P [M = 0] = 1 − q (2)
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(b) The probability that we run a marathon on any particular day is the probability that M ≥ 26.

r = P [M ≥ 26] =
∞∑

m=26

q(1 − q)m = (1 − q)26 (3)

(c) We run a marathon on each day with probability equal to r, and we do not run a marathon
with probability 1− r. Therefore in a year we have 365 tests of our jogging resolve, and thus
365 chances to run a marathon. So the PMF of the number of marathons run in a year, J ,
can be expressed as

PJ (j) =
{ (

365
j

)
rj(1 − r)365−j j = 0, 1, . . . , 365

0 otherwise
(4)

(d) The random variable K is defined as the number of miles we run above that required for a
marathon, K = M − 26. Given the event, A, that we have run a marathon, we wish to know
how many miles in excess of 26 we in fact ran. So we want to know the conditional PMF
PK|A(k).

PK|A (k) =
P [K = k, A]

P [A]
=

P [M = 26 + k]
P [A]

(5)

Since P [A] = r, for k = 0, 1, . . .,

PK|A (k) =
(1 − q)26+kq

(1 − q)26
= (1 − q)kq (6)

The complete expression of for the conditional PMF of K is

PK|A (k) =
{

(1 − q)kq k = 0, 1, . . .
0 otherwise

(7)

Problem 2.9.8 Solution
Recall that the PMF of the number of pages in a fax is

PX (x) =

⎧⎨
⎩

0.15 x = 1, 2, 3, 4
0.1 x = 5, 6, 7, 8
0 otherwise

(1)

(a) The event that a fax was sent to machine A can be expressed mathematically as the event
that the number of pages X is an even number. Similarly, the event that a fax was sent
to B is the event that X is an odd number. Since SX = {1, 2, . . . , 8}, we define the set
A = {2, 4, 6, 8}. Using this definition for A, we have that the event that a fax is sent to A is
equivalent to the event X ∈ A. The event A has probability

P [A] = PX (2) + PX (4) + PX (6) + PX (8) = 0.5 (2)

Given the event A, the conditional PMF of X is

PX|A (x) =

{
PX(x)
P [A] x ∈ A

0 otherwise
=

⎧⎨
⎩

0.3 x = 2, 4
0.2 x = 6, 8
0 otherwise

(3)
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The conditional first and second moments of X given A is

E [X|A] =
∑

x

xPX|A (x) = 2(0.3) + 4(0.3) + 6(0.2) + 8(0.2) = 4.6 (4)

E
[
X2|A] =

∑
x

x2PX|A (x) = 4(0.3) + 16(0.3) + 36(0.2) + 64(0.2) = 26 (5)

The conditional variance and standard deviation are

Var[X|A] = E
[
X2|A]− (E [X|A])2 = 26 − (4.6)2 = 4.84 (6)

σX|A =
√

Var[X|A] = 2.2 (7)

(b) Let the event B′ denote the event that the fax was sent to B and that the fax had no more
than 6 pages. Hence, the event B′ = {1, 3, 5} has probability

P
[
B′] = PX (1) + PX (3) + PX (5) = 0.4 (8)

The conditional PMF of X given B′ is

PX|B′ (x) =

{
PX(x)
P [B′] x ∈ B′

0 otherwise
=

⎧⎨
⎩

3/8 x = 1, 3
1/4 x = 5
0 otherwise

(9)

Given the event B′, the conditional first and second moments are

E
[
X|B′] =

∑
x

xPX|B′ (x) = 1(3/8) + 3(3/8) + 5(1/4)+ = 11/4 (10)

E
[
X2|B′] =

∑
x

x2PX|B′ (x) = 1(3/8) + 9(3/8) + 25(1/4) = 10 (11)

The conditional variance and standard deviation are

Var[X|B′] = E
[
X2|B′]− (E

[
X|B′])2 = 10 − (11/4)2 = 39/16 (12)

σX|B′ =
√

Var[X|B′] =
√

39/4 ≈ 1.56 (13)

Problem 2.10.1 Solution
For a binomial (n, p) random variable X, the solution in terms of math is

P [E2] =
�√n�∑
x=0

PX

(
x2
)

(1)

In terms of Matlab, the efficient solution is to generate the vector of perfect squares x =
[0 1 4 9 16 ...] and then to pass that vector to the binomialpmf.m. In this case, the val-
ues of the binomial PMF are calculated only once. Here is the code:

function q=perfectbinomial(n,p);
i=0:floor(sqrt(n));
x=i.^2;
q=sum(binomialpmf(n,p,x));

For a binomial (100, 0.5) random variable X, the probability X is a perfect square is
>> perfectbinomial(100,0.5)
ans =

0.0811
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Problem 2.10.2 Solution
The random variable X given in Example 2.29 is just a finite random variable. We can generate
random samples using the finiterv function. The code is

function x=faxlength8(m);
sx=1:8;
p=[0.15*ones(1,4) 0.1*ones(1,4)];
x=finiterv(sx,p,m);

Problem 2.10.3 Solution
First we use faxlength8 from Problem 2.10.2 to generate m samples of the faqx length X. Next
we convert that to m samples of the fax cost Y . Summing these samples and dividing by m, we
obtain the average cost of m samples. Here is the code:

function y=avgfax(m);
x=faxlength8(m);
yy=cumsum([10 9 8 7 6]);
yy=[yy 50 50 50];
y=sum(yy(x))/m;

Each time we perform the experiment of executing the function avgfax, we generate m random
samples of X, and m corresponding samples of Y . The sum Y = 1

m

∑m
i=1 Yi is random. For m = 10,

four samples of Y are

>> [avgfax(10) avgfax(10) avgfax(10) avgfax(10)]
ans =

31.9000 31.2000 29.6000 34.1000
>>

For m = 100, the results are arguably more consistent:

>> [avgfax(100) avgfax(100) avgfax(100) avgfax(100)]
ans =

34.5300 33.3000 29.8100 33.6900
>>

Finally, for m = 1000, we obtain results reasonably close to E[Y ]:

>> [avgfax(1000) avgfax(1000) avgfax(1000) avgfax(1000)]
ans =

32.1740 31.8920 33.1890 32.8250
>>

In Chapter 7, we will develop techniques to show how Y converges to E[Y ] as m → ∞.

Problem 2.10.4 Solution
Suppose Xn is a Zipf (n, α = 1) random variable and thus has PMF

PX (x) =
{

c(n)/x x = 1, 2, . . . , n
0 otherwise

(1)

The problem asks us to find the smallest value of k such that P [Xn ≤ k] ≥ 0.75. That is, if the
server caches the k most popular files, then with P [Xn ≤ k] the request is for one of the k cached
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files. First, we might as well solve this problem for any probability p rather than just p = 0.75.
Thus, in math terms, we are looking for

k = min
{
k′|P [Xn ≤ k′] ≥ p

}
. (2)

What makes the Zipf distribution hard to analyze is that there is no closed form expression for

c(n) =

(
n∑

x=1

1
x

)−1

. (3)

Thus, we use Matlab to grind through the calculations. The following simple program generates
the Zipf distributions and returns the correct value of k.

function k=zipfcache(n,p);
%Usage: k=zipfcache(n,p);
%for the Zipf (n,alpha=1) distribution, returns the smallest k
%such that the first k items have total probability p
pmf=1./(1:n);
pmf=pmf/sum(pmf); %normalize to sum to 1
cdf=cumsum(pmf);
k=1+sum(cdf<=p);

The program zipfcache generalizes 0.75 to be the probability p. Although this program is suffi-
cient, the problem asks us to find k for all values of n from 1 to 103!. One way to do this is to call
zipfcache a thousand times to find k for each value of n. A better way is to use the properties of
the Zipf PDF. In particular,

P
[
Xn ≤ k′] = c(n)

k′∑
x=1

1
x

=
c(n)
c(k′)

(4)

Thus we wish to find

k = min
{

k′| c(n)
c(k′)

≥ p

}
= min

{
k′| 1

c(k′)
≥ p

c(n)

}
. (5)

Note that the definition of k implies that

1
c(k′)

<
p

c(n)
, k′ = 1, . . . , k − 1. (6)

Using the notation |A| to denote the number of elements in the set A, we can write

k = 1 +
∣∣∣∣
{

k′| 1
c(k′)

<
p

c(n)

}∣∣∣∣ (7)

This is the basis for a very short Matlab program:

function k=zipfcacheall(n,p);
%Usage: k=zipfcacheall(n,p);
%returns vector k such that the first
%k(m) items have total probability >= p
%for the Zipf(m,1) distribution.
c=1./cumsum(1./(1:n));
k=1+countless(1./c,p./c);
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Note that zipfcacheall uses a short Matlab program countless.m that is almost the same as
count.m introduced in Example 2.47. If n=countless(x,y), then n(i) is the number of elements
of x that are strictly less than y(i) while count returns the number of elements less than or equal
to y(i).

In any case, the commands

k=zipfcacheall(1000,0.75);
plot(1:1000,k);

is sufficient to produce this figure of k as a function of m:

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

n

k

We see in the figure that the number of files that must be cached grows slowly with the total
number of files n.

Finally, we make one last observation. It is generally desirable for Matlab to execute opera-
tions in parallel. The program zipfcacheall generally will run faster than n calls to zipfcache.
However, to do its counting all at once, countless generates and n × n array. When n is not too
large, say n ≤ 1000, the resulting array with n2 = 1,000,000 elements fits in memory. For much
large values of n, say n = 106 (as was proposed in the original printing of this edition of the text,
countless will cause an “out of memory” error.

Problem 2.10.5 Solution
We use poissonrv.m to generate random samples of a Poisson (α = 5) random variable. To
compare the Poisson PMF against the output of poissonrv, relative frequencies are calculated
using the hist function. The following code plots the relative frequency against the PMF.

function diff=poissontest(alpha,m)
x=poissonrv(alpha,m);
xr=0:ceil(3*alpha);
pxsample=hist(x,xr)/m;
pxsample=pxsample(:);
%pxsample=(countequal(x,xr)/m);
px=poissonpmf(alpha,xr);
plot(xr,pxsample,xr,px);
diff=sum((pxsample-px).^2);

For m = 100, 1000, 10000, here are sample plots comparing the PMF and the relative frequency.
The plots show reasonable agreement for m = 10000 samples.
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Problem 2.10.6 Solution
We can compare the binomial and Poisson PMFs for (n, p) = (100, 0.1) using the following Matlab
code:

x=0:20;
p=poissonpmf(100,x);
b=binomialpmf(100,0.1,x);
plot(x,p,x,b);

For (n, p) = (10, 1), the binomial PMF has no randomness. For (n, p) = (100, 0.1), the approxima-
tion is reasonable:
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Finally, for (n, p) = (1000, 0.01), and (n, p) = (10000, 0.001), the approximation is very good:
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Problem 2.10.7 Solution
Following the Random Sample algorithm, we generate a sample value R = rand(1) and then we
find k∗ such that

FK (k∗ − 1) < R < FK (k∗) . (1)

From Problem 2.4.4, we know for integers k ≥ 1 that geometric (p) random variable K has CDF
FK(k) = 1 − (1 − p)k. Thus,

1 − (1 − p)k∗−1 < R ≤ 1 − (1 − p)k∗
. (2)

Subtracting 1 from each side and then multiplying through by −1 (which reverses the inequalities),
we obtain

(1 − p)k∗−1 > 1 − R ≥ (1 − p)k∗
. (3)

Next we take the logarithm of each side. Since logarithms are monotonic functions, we have

(k∗ − 1) ln(1 − p) > ln(1 − R) ≥ k∗ ln(1 − p). (4)

Since 0 < p < 1, we have that ln(1 − p) < 0. Thus dividing through by ln(1 − p) reverses the
inequalities, yielding

k∗ − 1 >
ln(1 − R)
ln(1 − p)

≤ k∗. (5)

Since k∗ is an integer, it must be the smallest integer greater than or equal to ln(1−R)/ ln(1− p).
That is, following the last step of the random sample algorithm,

K = k∗ =
⌈

ln(1 − R)
ln(1 − p)

⌉
(6)

The Matlab algorithm that implements this operation is quite simple:

function x=geometricrv(p,m)
%Usage: x=geometricrv(p,m)
% returns m samples of a geometric (p) rv
r=rand(m,1);
x=ceil(log(1-r)/log(1-p));
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Problem 2.10.8 Solution
For the PC version of Matlab employed for this test, poissonpmf(n,n) reported Inf for n =
n∗ = 714. The problem with the poissonpmf function in Example 2.44 is that the cumulative
product that calculated nk/k! can have an overflow. Following the hint, we can write an alternate
poissonpmf function as follows:

function pmf=poissonpmf(alpha,x)
%Poisson (alpha) rv X,
%out=vector pmf: pmf(i)=P[X=x(i)]
x=x(:);
if (alpha==0)

pmf=1.0*(x==0);
else

k=(1:ceil(max(x)))’;
logfacts =cumsum(log(k));
pb=exp([-alpha; ...

-alpha+ (k*log(alpha))-logfacts]);
okx=(x>=0).*(x==floor(x));
x=okx.*x;
pmf=okx.*pb(x+1);

end
%pmf(i)=0 for zero-prob x(i)

By summing logarithms, the intermediate terms are much less likely to overflow.
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