
Problem Solutions – Chapter 10

Problem 10.2.1 Solution

• In Example 10.3, the daily noontime temperature at Newark Airport is a discrete time,
continuous value random process. However, if the temperature is recorded only in units of
one degree, then the process was would be discrete value.

• In Example 10.4, the number of active telephone calls is discrete time and discrete value.

• The dice rolling experiment of Example 10.5 yields a discrete time, discrete value random
process.

• The QPSK system of Example 10.6 is a continuous time and continuous value random process.

Problem 10.2.2 Solution
The sample space of the underlying experiment is S = {s0, s1, s2, s3}. The four elements in the
sample space are equally likely. The ensemble of sample functions is {x(t, si)|i = 0, 1, 2, 3} where

x(t, si) = cos(2πf0t + π/4 + iπ/2) (0 ≤ t ≤ T ) (1)

For f0 = 5/T , this ensemble is shown below.
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Problem 10.2.3 Solution
The eight possible waveforms correspond to the bit sequences

{(0, 0, 0), (1, 0, 0), (1, 1, 0), . . . , (1, 1, 1)} (1)

The corresponding eight waveforms are:
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Problem 10.2.4 Solution
The statement is false. As a counterexample, consider the rectified cosine waveform X(t) =
R| cos 2πft| of Example 10.9. When t = π/2, then cos 2πft = 0 so that X(π/2) = 0. Hence
X(π/2) has PDF

fX(π/2) (x) = δ(x) (1)

That is, X(π/2) is a discrete random variable.

Problem 10.3.1 Solution
In this problem, we start from first principles. What makes this problem fairly straightforward is
that the ramp is defined for all time. That is, the ramp doesn’t start at time t = W .

P [X(t) ≤ x] = P [t − W ≤ x] = P [W ≥ t − x] (1)

Since W ≥ 0, if x ≥ t then P [W ≥ t − x] = 1. When x < t,

P [W ≥ t − x] =
∫ ∞

t−x
fW (w) dw = e−(t−x) (2)

Combining these facts, we have

FX(t) (x) = P [W ≥ t − x] =
{

e−(t−x) x < t
1 t ≤ x

(3)

We note that the CDF contain no discontinuities. Taking the derivative of the CDF FX(t)(x) with
respect to x, we obtain the PDF

fX(t) (x) =
{

ex−t x < t
0 otherwise

(4)
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Problem 10.3.2 Solution

(a) Each resistor has frequency W in Hertz with uniform PDF

fR (r) =
{

0.025 9980 ≤ r ≤ 1020
0 otherwise

(1)

The probability that a test yields a one part in 104 oscillator is

p = P [9999 ≤ W ≤ 10001] =
∫ 10001

9999
(0.025) dr = 0.05 (2)

(b) To find the PMF of T1, we view each oscillator test as an independent trial. A success occurs
on a trial with probability p if we find a one part in 104 oscillator. The first one part in 104

oscillator is found at time T1 = t if we observe failures on trials 1, . . . , t − 1 followed by a
success on trial t. Hence, just as in Example 2.11, T1 has the geometric PMF

PT1 (t) =
{

(1 − p)t−1p t = 1, 2, . . .
9 otherwise

(3)

A geometric random variable with success probability p has mean 1/p. This is derived in
Theorem 2.5. The expected time to find the first good oscillator is E[T1] = 1/p = 20 minutes.

(c) Since p = 0.05, the probability the first one part in 104 oscillator is found in exactly 20
minutes is PT1(20) = (0.95)19(0.05) = 0.0189.

(d) The time T5 required to find the 5th one part in 104 oscillator is the number of trials needed
for 5 successes. T5 is a Pascal random variable. If this is not clear, see Example 2.15 where
the Pascal PMF is derived. When we are looking for 5 successes, the Pascal PMF is

PT5 (t) =
{ (

t−1
4

)
p5(1 − p)t−5 t = 5, 6, . . .

0 otherwise
(4)

Looking up the Pascal PMF in Appendix A, we find that E[T5] = 5/p = 100 minutes. The
following argument is a second derivation of the mean of T5. Once we find the first one part in
104 oscillator, the number of additional trials needed to find the next one part in 104 oscillator
once again has a geometric PMF with mean 1/p since each independent trial is a success with
probability p. Similarly, the time required to find 5 one part in 104 oscillators is the sum of
five independent geometric random variables. That is,

T5 = K1 + K2 + K3 + K4 + K5 (5)

where each Ki is identically distributed to T1. Since the expectation of the sum equals the
sum of the expectations,

E [T5] = E [K1 + K2 + K3 + K4 + K5] = 5E [Ki] = 5/p = 100 minutes (6)
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Problem 10.3.3 Solution
Once we find the first one part in 104 oscillator, the number of additional tests needed to find
the next one part in 104 oscillator once again has a geometric PMF with mean 1/p since each
independent trial is a success with probability p. That is T2 = T1 +T ′ where T ′ is independent and
identically distributed to T1. Thus,

E [T2|T1 = 3] = E [T1|T1 = 3] + E
[
T ′|T1 = 3

]
(1)

= 3 + E
[
T ′] = 23 minutes. (2)

Problem 10.3.4 Solution
Since the problem states that the pulse is delayed, we will assume T ≥ 0. This problem is difficult
because the answer will depend on t. In particular, for t < 0, X(t) = 0 and fX(t)(x) = δ(x). Things
are more complicated when t > 0. For x < 0, P [X(t) > x] = 1. For x ≥ 1, P [X(t) > x] = 0.
Lastly, for 0 ≤ x < 1,

P [X(t) > x] = P
[
e−(t−T )u(t − T ) > x

]
(1)

= P [t + lnx < T ≤ t] (2)
= FT (t) − FT (t + lnx) (3)

Note that condition T ≤ t is needed to make sure that the pulse doesn’t arrive after time t. The
other condition T > t + lnx ensures that the pulse didn’t arrrive too early and already decay too
much. We can express these facts in terms of the CDF of X(t).

FX(t) (x) = 1 − P [X(t) > x] =

⎧⎨
⎩

0 x < 0
1 + FT (t + lnx) − FT (t) 0 ≤ x < 1
1 x ≥ 1

(4)

We can take the derivative of the CDF to find the PDF. However, we need to keep in mind that
the CDF has a jump discontinuity at x = 0. In particular, since ln 0 = −∞,

FX(t) (0) = 1 + FT (−∞) − FT (t) = 1 − FT (t) (5)

Hence, when we take a derivative, we will see an impulse at x = 0. The PDF of X(t) is

fX(t) (x) =
{

(1 − FT (t))δ(x) + fT (t + lnx) /x 0 ≤ x < 1
0 otherwise

(6)

Problem 10.4.1 Solution
Each Yk is the sum of two identical independent Gaussian random variables. Hence, each Yk must
have the same PDF. That is, the Yk are identically distributed. Next, we observe that the sequence
of Yk is independent. To see this, we observe that each Yk is composed of two samples of Xk that
are unused by any other Yj for j �= k.

Problem 10.4.2 Solution
Each Wn is the sum of two identical independent Gaussian random variables. Hence, each Wn

must have the same PDF. That is, the Wn are identically distributed. However, since Wn−1 and
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Wn both use Xn−1 in their averaging, Wn−1 and Wn are dependent. We can verify this observation
by calculating the covariance of Wn−1 and Wn. First, we observe that for all n,

E [Wn] = (E [Xn] + E [Xn−1])/2 = 30 (1)

Next, we observe that Wn−1 and Wn have covariance

Cov [Wn−1, Wn] = E [Wn−1Wn] − E [Wn] E [Wn−1] (2)

=
1
4
E [(Xn−1 + Xn−2)(Xn + Xn−1)] − 900 (3)

We observe that for n �= m, E[XnXm] = E[Xn]E[Xm] = 900 while

E
[
X2

n

]
= Var[Xn] + (E [Xn])2 = 916 (4)

Thus,

Cov [Wn−1, Wn] =
900 + 916 + 900 + 900

4
− 900 = 4 (5)

Since Cov[Wn−1, Wn] �= 0, Wn and Wn−1 must be dependent.

Problem 10.4.3 Solution
The number Yk of failures between successes k − 1 and k is exactly y ≥ 0 iff after success k − 1,
there are y failures followed by a success. Since the Bernoulli trials are independent, the probability
of this event is (1 − p)yp. The complete PMF of Yk is

PYk
(y) =

{
(1 − p)yp y = 0, 1, . . .
0 otherwise

(1)

Since this argument is valid for all k including k = 1, we can conclude that Y1, Y2, . . . are identically
distributed. Moreover, since the trials are independent, the failures between successes k − 1 and k
and the number of failures between successes k′− 1 and k′ are independent. Hence, Y1, Y2, . . . is an
iid sequence.

Problem 10.5.1 Solution
This is a very straightforward problem. The Poisson process has rate λ = 4 calls per second. When
t is measured in seconds, each N(t) is a Poisson random variable with mean 4t and thus has PMF

PN(t) (n) =
{

(4t)n

n! e−4t n = 0, 1, 2, . . .
0 otherwise

(1)

Using the general expression for the PMF, we can write down the answer for each part.

(a) PN(1)(0) = 40e−4/0! = e−4 ≈ 0.0183.

(b) PN(1)(4) = 44e−4/4! = 32e−4/3 ≈ 0.1954.

(c) PN(2)(2) = 82e−8/2! = 32e−8 ≈ 0.0107.
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Problem 10.5.2 Solution
Following the instructions given, we express each answer in terms of N(m) which has PMF

PN(m) (n) =
{

(6m)ne−6m/n! n = 0, 1, 2, . . .
0 otherwise

(1)

(a) The probability of no queries in a one minute interval is PN(1)(0) = 60e−6/0! = 0.00248.

(b) The probability of exactly 6 queries arriving in a one minute interval is PN(1)(6) = 66e−6/6! =
0.161.

(c) The probability of exactly three queries arriving in a one-half minute interval is PN(0.5)(3) =
33e−3/3! = 0.224.

Problem 10.5.3 Solution
Since there is always a backlog an the service times are iid exponential random variables, The time
between service completions are a sequence of iid exponential random variables. that is, the service
completions are a Poisson process. Since the expected service time is 30 minutes, the rate of the
Poisson process is λ = 1/30 per minute. Since t hours equals 60t minutes, the expected number
serviced is λ(60t) or 2t. Moreover, the number serviced in the first t hours has the Poisson PMF

PN(t) (n) =

{
(2t)ne−2t

n! n = 0, 1, 2, . . .
0 otherwise

(1)

Problem 10.5.4 Solution
Since D(t) is a Poisson process with rate 0.1 drops/day, the random variable D(t) is a Poisson
random variable with parameter α = 0.1t. The PMF of D(t). the number of drops after t days, is

PD(t) (d) =
{

(0.1t)de−0.1t/d! d = 0, 1, 2, . . .
0 otherwise

(1)

Problem 10.5.5 Solution
Note that it matters whether t ≥ 2 minutes. If t ≤ 2, then any customers that have arrived must
still be in service. Since a Poisson number of arrivals occur during (0, t],

PN(t) (n) =
{

(λt)ne−λt/n! n = 0, 1, 2, . . .
0 otherwise

(0 ≤ t ≤ 2) (1)

For t ≥ 2, the customers in service are precisely those customers that arrived in the interval (t−2, t].
The number of such customers has a Poisson PMF with mean λ[t − (t − 2)] = 2λ. The resulting
PMF of N(t) is

PN(t) (n) =
{

(2λ)ne−2λ/n! n = 0, 1, 2, . . .
0 otherwise

(t ≥ 2) (2)
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Problem 10.5.6 Solution
The time T between queries are independent exponential random variables with PDF

fT (t) =
{

(1/8)e−t/8 t ≥ 0
0 otherwise

(1)

From the PDF, we can calculate for t > 0,

P [T ≥ t] =
∫ t

0
fT

(
t′
)

dt′ = e−t/8 (2)

Using this formula, each question can be easily answered.

(a) P [T ≥ 4] = e−4/8 ≈ 0.951.

(b)

P [T ≥ 13|T ≥ 5] =
P [T ≥ 13, T ≥ 5]

P [T ≥ 5]
(3)

=
P [T ≥ 13]
P [T ≥ 5]

=
e−13/8

e−5/8
= e−1 ≈ 0.368 (4)

(c) Although the time betwen queries are independent exponential random variables, N(t) is not
exactly a Poisson random process because the first query occurs at time t = 0. Recall that
in a Poisson process, the first arrival occurs some time after t = 0. However N(t) − 1 is a
Poisson process of rate 8. Hence, for n = 0, 1, 2, . . .,

P [N(t) − 1 = n] = (t/8)ne−t/8/n! (5)

Thus, for n = 1, 2, . . ., the PMF of N(t) is

PN(t) (n) = P [N(t) − 1 = n − 1] = (t/8)n−1e−t/8/(n − 1)! (6)

The complete expression of the PMF of N(t) is

PN(t) (n) =
{

(t/8)n−1e−t/8/(n − 1)! n = 1, 2, . . .
0 otherwise

(7)

Problem 10.5.7 Solution
This proof is just a simplified version of the proof given for Theorem 10.3. The first arrival occurs
at time X1 > x ≥ 0 iff there are no arrivals in the interval (0, x]. Hence, for x ≥ 0,

P [X1 > x] = P [N(x) = 0] = (λx)0e−λx/0! = e−λx (1)

Since P [X1 ≤ x] = 0 for x < 0, the CDF of X1 is the exponential CDF

FX1 (x) =
{

0 x < 0
1 − e−λx x ≥ 0

(2)
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Problem 10.5.8 Solution

(a) For Xi = − ln Ui, we can write

P [Xi > x] = P [− lnUi > x] = P [lnUi ≤ −x] = P
[
Ui ≤ e−x

]
(1)

When x < 0, e−x > 1 so that P [Ui ≤ e−x] = 1. When x ≥ 0, we have 0 < e−x ≤ 1, implying
P [Ui ≤ e−x] = e−x. Combining these facts, we have

P [Xi > x] =
{

1 x < 0
e−x x ≥ 0

(2)

This permits us to show that the CDF of Xi is

FXi (x) = 1 − P [Xi > x] =
{

0 x < 0
1 − e−x x > 0

(3)

We see that Xi has an exponential CDF with mean 1.

(b) Note that N = n iff
n∏

i=1

Ui ≥ e−t >

n+1∏
i=1

Ui (4)

By taking the logarithm of both inequalities, we see that N = n iff

n∑
i=1

lnUi ≥ −t >
n+1∑
i=1

lnUi (5)

Next, we multiply through by −1 and recall that Xi = − lnUi is an exponential random
variable. This yields N = n iff

n∑
i=1

Xi ≤ t <
n+1∑
i=1

Xi (6)

Now we recall that a Poisson process N(t) of rate 1 has independent exponential interarrival
times X1, X2, . . .. That is, the ith arrival occurs at time

∑i
j=1 Xj . Moreover, N(t) = n iff

the first n arrivals occur by time t but arrival n + 1 occurs after time t. Since the random
variable N(t) has a Poisson distribution with mean t, we can write

P

[
n∑

i=1

Xi ≤ t <

n+1∑
i=1

Xi

]
= P [N(t) = n] =

tne−t

n!
. (7)

Problem 10.6.1 Solution
Customers entering (or not entering) the casino is a Bernoulli decomposition of the Poisson process
of arrivals at the casino doors. By Theorem 10.6, customers entering the casino are a Poisson
process of rate 100/2 = 50 customers/hour. Thus in the two hours from 5 to 7 PM, the number, N ,
of customers entering the casino is a Poisson random variable with expected value α = 2 ·50 = 100.
The PMF of N is

PN (n) =
{

100ne−100/n! n = 0, 1, 2, . . .
0 otherwise

(1)
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Problem 10.6.2 Solution
In an interval (t, t + Δ] with an infinitesimal Δ, let Ai denote the event of an arrival of the process
Ni(t). Also, let A = A1∪A2 denote the event of an arrival of either process. Since Ni(t) is a Poisson
process, the alternative model says that P [Ai] = λiΔ. Also, since N1(t)+N2(t) is a Poisson process,
the proposed Poisson process model says

P [A] = (λ1 + λ2)Δ (1)

Lastly, the conditional probability of a type 1 arrival given an arrival of either type is

P [A1|A] =
P [A1A]
P [A]

=
P [A1]
P [A]

=
λ1Δ

(λ1 + λ2)Δ
=

λ1

λ1 + λ2
(2)

This solution is something of a cheat in that we have used the fact that the sum of Poisson processes
is a Poisson process without using the proposed model to derive this fact.

Problem 10.6.3 Solution
We start with the case when t ≥ 2. When each service time is equally likely to be either 1 minute
or 2 minutes, we have the following situation. Let M1 denote those customers that arrived in the
interval (t − 1, 1]. All M1 of these customers will be in the bank at time t and M1 is a Poisson
random variable with mean λ.

Let M2 denote the number of customers that arrived during (t − 2, t − 1]. Of course, M2 is
Poisson with expected value λ. We can view each of the M2 customers as flipping a coin to determine
whether to choose a 1 minute or a 2 minute service time. Only those customers that chooses a
2 minute service time will be in service at time t. Let M ′

2 denote those customers choosing a 2
minute service time. It should be clear that M ′

2 is a Poisson number of Bernoulli random variables.
Theorem 10.6 verifies that using Bernoulli trials to decide whether the arrivals of a rate λ Poisson
process should be counted yields a Poisson process of rate pλ. A consequence of this result is that a
Poisson number of Bernoulli (success probability p) random variables has Poisson PMF with mean
pλ. In this case, M ′

2 is Poisson with mean λ/2. Moreover, the number of customers in service at
time t is N(t) = M1 + M ′

2. Since M1 and M ′
2 are independent Poisson random variables, their sum

N(t) also has a Poisson PMF. This was verified in Theorem 6.9. Hence N(t) is Poisson with mean
E[N(t)] = E[M1] + E[M ′

2] = 3λ/2. The PMF of N(t) is

PN(t) (n) =
{

(3λ/2)ne−3λ/2/n! n = 0, 1, 2, . . .
0 otherwise

(t ≥ 2) (1)

Now we can consider the special cases arising when t < 2. When 0 ≤ t < 1, every arrival is still in
service. Thus the number in service N(t) equals the number of arrivals and has the PMF

PN(t) (n) =
{

(λt)ne−λt/n! n = 0, 1, 2, . . .
0 otherwise

(0 ≤ t ≤ 1) (2)

When 1 ≤ t < 2, let M1 denote the number of customers in the interval (t−1, t]. All M1 customers
arriving in that interval will be in service at time t. The M2 customers arriving in the interval
(0, t − 1] must each flip a coin to decide one a 1 minute or two minute service time. Only those
customers choosing the two minute service time will be in service at time t. Since M2 has a Poisson
PMF with mean λ(t− 1), the number M ′

2 of those customers in the system at time t has a Poisson
PMF with mean λ(t − 1)/2. Finally, the number of customers in service at time t has a Poisson
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PMF with expected value E[N(t)] = E[M1] + E[M ′
2] = λ + λ(t − 1)/2. Hence, the PMF of N(t)

becomes

PN(t) (n) =
{

(λ(t + 1)/2)ne−λ(t+1)/2/n! n = 0, 1, 2, . . .
0 otherwise

(1 ≤ t ≤ 2) (3)

Problem 10.6.4 Solution
Since the arrival times S1, . . . , Sn are ordered in time and since a Poisson process cannot have two
simultaneous arrivals, the conditional PDF fS1,...,Sn|N (S1, . . . , Sn|n) is nonzero only if s1 < s2 <
· · · < sn < T . In this case, consider an arbitrarily small Δ; in particular, Δ < mini(si+1 − si)/2
implies that the intervals (si, si + Δ] are non-overlapping. We now find the joint probability

P [s1 < S1 ≤ s1 + Δ, . . . , sn < Sn ≤ sn + Δ, N = n]

that each Si is in the interval (si, si + Δ] and that N = n. This joint event implies that there
were zero arrivals in each interval (si + Δ, si+1]. That is, over the interval [0, T ], the Poisson
process has exactly one arrival in each interval (si, si + Δ] and zero arrivals in the time period
T −⋃n

i=1(si, si + Δ]. The collection of intervals in which there was no arrival had a total duration
of T − nΔ. Note that the probability of exactly one arrival in the interval (si, si + Δ] is λΔe−λδ

and the probability of zero arrivals in a period of duration T − nΔ is e−λ(Tn−Δ). In addition, the
event of one arrival in each interval (si, si + Δ) and zero events in the period of length T − nΔ are
independent events because they consider non-overlapping periods of the Poisson process. Thus,

P [s1 < S1 ≤ s1 + Δ, . . . , sn < Sn ≤ sn + Δ, N = n] =
(
λΔe−λΔ

)n
e−λ(T−nΔ) (1)

= (λΔ)ne−λT (2)

Since P [N = n] = (λT )ne−λT /n!, we see that

P [s1 < S1 ≤ s1 + Δ, . . . , sn < Sn ≤ sn + Δ|N = n]

=
P [s1 < S1 ≤ s1 + Δ, . . . , sn < Sn ≤ sn + Δ, N = n]

P [N = n]
(3)

=
(λΔ)ne−λT

(λT )ne−λT /n!
(4)

=
n!
Tn

Δn (5)

Finally, for infinitesimal Δ, the conditional PDF of S1, . . . , Sn given N = n satisfies

fS1,...,Sn|N (s1, . . . , sn|n) Δn = P [s1 < S1 ≤ s1 + Δ, . . . , sn < Sn ≤ sn + Δ|N = n] (6)

=
n!
Tn

Δn (7)

Since the conditional PDF is zero unless s1 < s2 < · · · < sn ≤ T , it follows that

fS1,...,Sn|N (s1, . . . , sn|n) =
{

n!/Tn 0 ≤ s1 < · · · < sn ≤ T,
0 otherwise.

(8)

If it seems that the above argument had some “hand-waving,” we now do the derivation of
P [s1 < S1 ≤ s1 + Δ, . . . , sn < Sn ≤ sn + Δ|N = n] in somewhat excruciating detail. (Feel free to
skip the following if you were satisfied with the earlier explanation.)

360



For the interval (s, t], we use the shorthand notation 0(s,t) and 1(s,t) to denote the events of 0
arrivals and 1 arrival respectively. This notation permits us to write

P [s1 < S1 ≤ s1 + Δ, . . . , sn < Sn ≤ sn + Δ, N = n]
= P

[
0(0,s1)1(s1,s1+Δ)0(s1+Δ,s2)1(s2,s2+Δ)0(s2+Δ,s3) · · · 1(sn,sn+Δ)0(sn+Δ,T )

]
(9)

The set of events 0(0,s1), 0(sn+Δ,T ), and for i = 1, . . . , n−1, 0(si+Δ,si+1) and 1(si,si+Δ) are independent
because each devent depend on the Poisson process in a time interval that overlaps none of the
other time intervals. In addition, since the Poisson process has rate λ, P [0(s,t)] = e−λ(t−s) and
P [1(si,si+Δ)] = (λΔ)e−λΔ. Thus,

P [s1 < S1 ≤ s1 + Δ, . . . , sn < Sn ≤ sn + Δ, N = n]
= P

[
0(0,s1)

]
P
[
1(s1,s1+Δ)

]
P
[
0(s1+Δ,s2)

] · · ·P [1(sn,sn+Δ)

]
P
[
0(sn+Δ,T )

]
(10)

= e−λs1

(
λΔe−λΔ

)
e−λ(s2−s1−Δ) · · ·

(
λΔe−λΔ

)
e−λ(T−sn−Δ) (11)

= (λΔ)ne−λT (12)

Problem 10.7.1 Solution
From the problem statement, the change in the stock price is X(8)−X(0) and the standard deviation
of X(8)−X(0) is 1/2 point. In other words, the variance of X(8)−X(0) is Var[X(8)−X(0)] = 1/4.
By the definition of Brownian motion. Var[X(8) − X(0)] = 8α. Hence α = 1/32.

Problem 10.7.2 Solution
We need to verify that Y (t) = X(ct) satisfies the conditions given in Definition 10.10. First
we observe that Y (0) = X(c · 0) = X(0) = 0. Second, we note that since X(t) is Brownian
motion process implies that Y (t)− Y (s) = X(ct)−X(cs) is a Gaussian random variable. Further,
X(ct) − X(cs) is independent of X(t′) for all t′ ≤ cs. Equivalently, we can say that X(ct) − X(cs)
is independent of X(cτ) for all τ ≤ s. In other words, Y (t) − Y (s) is independent of Y (τ) for all
τ ≤ s. Thus Y (t) is a Brownian motion process.

Problem 10.7.3 Solution
First we observe that Yn = Xn−Xn−1 = X(n)−X(n−1) is a Gaussian random variable with mean
zero and variance α. Since this fact is true for all n, we can conclude that Y1, Y2, . . . are identically
distributed. By Definition 10.10 for Brownian motion, Yn = X(n) − X(n − 1) is independent of
X(m) for any m ≤ n − 1. Hence Yn is independent of Ym = X(m) − X(m − 1) for any m ≤ n − 1.
Equivalently, Y1, Y2, . . . is a sequence of independent random variables.

Problem 10.7.4 Solution
Recall that the vector X of increments has independent components Xn = Wn − Wn−1. Alterna-
tively, each Wn can be written as the sum

W1 = X1 (1)
W2 = X1 + X2 (2)

...
Wk = X1 + X2 + · · · + Xk. (3)
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In terms of matrices, W = AX where A is the lower triangular matrix

A =

⎡
⎢⎢⎢⎣

1
1 1
...

. . .
1 · · · · · · 1

⎤
⎥⎥⎥⎦ . (4)

Since E[W] = AE[X] = 0, it folows from Theorem 5.16 that

fW (w) =
1

|det (A)|fX

(
A−1w

)
. (5)

Since A is a lower triangular matrix, det(A) = 1, the product of its diagonal entries. In addition,
reflecting the fact that each Xn = Wn − Wn−1,

A−1 =

⎡
⎢⎢⎢⎢⎢⎣

1
−1 1
0 −1 1
...

. . . . . . . . .
0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦ and A−1W =

⎡
⎢⎢⎢⎢⎢⎣

W1

W2 − W1

W3 − W2
...

Wk − Wk−1

⎤
⎥⎥⎥⎥⎥⎦ . (6)

Combining these facts with the observation that fX(x) =
∏k

n=1 fXn(xn), we can write

fW (w) = fX

(
A−1w

)
=

k∏
n=1

fXn (wn − wn−1) , (7)

which completes the missing steps in the proof of Theorem 10.8.

Problem 10.8.1 Solution
The discrete time autocovariance function is

CX [m, k] = E [(Xm − μX)(Xm+k − μX)] (1)

for k = 0, CX [m, 0] = Var[Xm] = σ2
X . For k �= 0, Xm and Xm+k are independent so that

CX [m, k] = E [(Xm − μX)] E [(Xm+k − μX)] = 0 (2)

Thus the autocovariance of Xn is

CX [m, k] =
{

σ2
X k = 0

0 k �= 0
(3)

Problem 10.8.2 Solution
Recall that X(t) = t − W where E[W ] = 1 and E[W 2] = 2.

(a) The mean is μX(t) = E[t − W ] = t − E[W ] = t − 1.

(b) The autocovariance is

CX(t, τ) = E [X(t)X(t + τ)] − μX(t)μX(t + τ) (1)
= E [(t − W )(t + τ − W )] − (t − 1)(t + τ − 1) (2)

= t(t + τ) − E [(2t + τ)W ] + E
[
W 2

]− t(t + τ) + 2t + τ − 1 (3)
= −(2t + τ)E [W ] + 2 + 2t + τ − 1 (4)
= 1 (5)
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Problem 10.8.3 Solution
In this problem, the daily temperature process results from

Cn = 16
[
1 − cos

2πn

365

]
+ 4Xn (1)

where Xn is an iid random sequence of N [0, 1] random variables. The hardest part of this problem
is distinguishing between the process Cn and the covariance function CC [k].

(a) The expected value of the process is

E [Cn] = 16E
[
1 − cos

2πn

365

]
+ 4E [Xn] = 16

[
1 − cos

2πn

365

]
(2)

(b) The autocovariance of Cn is

CC [m, k] = E

[(
Cm − 16

[
1 − cos

2πm

365

])(
Cm+k − 16

[
1 − cos

2π(m + k)
365

])]
(3)

= 16E [XmXm+k] =
{

16 k = 0
0 otherwise

(4)

(c) A model of this type may be able to capture the mean and variance of the daily temperature.
However, one reason this model is overly simple is because day to day temperatures are
uncorrelated. A more realistic model might incorporate the effects of “heat waves” or “cold
spells” through correlated daily temperatures.

Problem 10.8.4 Solution
By repeated application of the recursion Cn = Cn−1/2 + 4Xn, we obtain

Cn =
Cn−2

4
+ 4

[
Xn−1

2
+ Xn

]
(1)

=
Cn−3

8
+ 4

[
Xn−2

4
+

Xn−1

2
+ Xn

]
(2)

... (3)

=
C0

2n
+ 4

[
X1

2n−1
+

X2

2n−2
+ · · · + Xn

]
=

C0

2n
+ 4

n∑
i=1

Xi

2n−i
(4)

(a) Since C0, X1, X2, . . . all have zero mean,

E [Cn] =
E [C0]

2n
+ 4

n∑
i=1

E [Xi]
2n−i

= 0 (5)

(b) The autocovariance is

CC [m, k] = E

⎡
⎣(C0

2n
+ 4

n∑
i=1

Xi

2n−i

)⎛⎝ C0

2m + k
+ 4

m+k∑
j=1

Xj

2m+k−j

⎞
⎠
⎤
⎦ (6)
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Since C0, X1, X2, . . . are independent (and zero mean), E[C0Xi] = 0. This implies

CC [m, k] =
E
[
C2

0

]
22m+k

+ 16
m∑

i=1

m+k∑
j=1

E [XiXj ]
2m−i2m+k−j

(7)

For i �= j, E[XiXj ] = 0 so that only the i = j terms make any contribution to the double
sum. However, at this point, we must consider the cases k ≥ 0 and k < 0 separately. Since
each Xi has variance 1, the autocovariance for k ≥ 0 is

CC [m, k] =
1

22m+k
+ 16

m∑
i=1

1
22m+k−2i

(8)

=
1

22m+k
+

16
2k

m∑
i=1

(1/4)m−i (9)

=
1

22m+k
+

16
2k

1 − (1/4)m

3/4
(10)

For k < 0, we can write

CC [m, k] =
E
[
C2

0

]
22m+k

+ 16
m∑

i=1

m+k∑
j=1

E [XiXj ]
2m−i2m+k−j

(11)

=
1

22m+k
+ 16

m+k∑
i=1

1
22m+k−2i

(12)

=
1

22m+k
+

16
2−k

m+k∑
i=1

(1/4)m+k−i (13)

=
1

22m+k
+

16
2k

1 − (1/4)m+k

3/4
(14)

A general expression that’s valid for all m and k is

CC [m, k] =
1

22m+k
+

16
2|k|

1 − (1/4)min(m,m+k)

3/4
(15)

(c) Since E[Ci] = 0 for all i, our model has a mean daily temperature of zero degrees Celsius for
the entire year. This is not a reasonable model for a year.

(d) For the month of January, a mean temperature of zero degrees Celsius seems quite reasonable.
we can calculate the variance of Cn by evaluating the covariance at n = m. This yields

Var[Cn] =
1
4n

+
16
4n

4(4n − 1)
3

(16)

Note that the variance is upper bounded by

Var[Cn] ≤ 64/3 (17)

Hence the daily temperature has a standard deviation of 8/
√

3 ≈ 4.6 degrees. Without actual
evidence of daily temperatures in January, this model is more difficult to discredit.
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Problem 10.8.5 Solution
This derivation of the Poisson process covariance is almost identical to the derivation of the Brown-
ian motion autocovariance since both rely on the use of independent increments. From the definition
of the Poisson process, we know that μN (t) = λt. When τ ≥ 0, we can write

CN (t, τ) = E [N(t)N(t + τ)] − (λt)[λ(t + τ)] (1)

= E [N(t)[(N(t + τ) − N(t)) + N(t)]] − λ2t(t + τ) (2)

= E [N(t)[N(t + τ) − N(t)]] + E
[
N2(t)

]− λ2t(t + τ) (3)

By the definition of the Poisson process, N(t + τ) − N(t) is the number of arrivals in the interval
[t, t + τ) and is independent of N(t) for τ > 0. This implies

E [N(t)[N(t + τ) − N(t)]] = E [N(t)] E [N(t + τ) − N(t)] = λt[λ(t + τ) − λt] (4)

Note that since N(t) is a Poisson random variable, Var[N(t)] = λt. Hence

E
[
N2(t)

]
= Var[N(t)] + (E [N(t)]2 = λt + (λt)2 (5)

Therefore, for τ ≥ 0,

CN (t, τ) = λt[λ(t + τ) − λt) + λt + (λt)2 − λ2t(t + τ) = λt (6)

If τ < 0, then we can interchange the labels t and t+τ in the above steps to show CN (t, τ) = λ(t+τ).
For arbitrary t and τ , we can combine these facts to write

CN (t, τ) = λ min(t, t + τ) (7)

Problem 10.9.1 Solution
For an arbitrary set of samples Y (t1), . . . , Y (tk), we observe that Y (tj) = X(tj + a). This implies

fY (t1),...,Y (tk) (y1, . . . , yk) = fX(t1+a),...,X(tk+a) (y1, . . . , yk) (1)

Thus,

fY (t1+τ),...,Y (tk+τ) (y1, . . . , yk) = fX(t1+τ+a),...,X(tk+τ+a) (y1, . . . , yk) (2)

Since X(t) is a stationary process,

fX(t1+τ+a),...,X(tk+τ+a) (y1, . . . , yk) = fX(t1+a),...,X(tk+a) (y1, . . . , yk) (3)

This implies

fY (t1+τ),...,Y (tk+τ) (y1, . . . , yk) = fX(t1+a),...,X(tk+a) (y1, . . . , yk) (4)

= fY (t1),...,Y (tk) (y1, . . . , yk) (5)

We can conclude that Y (t) is a stationary process.
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Problem 10.9.2 Solution
For an arbitrary set of samples Y (t1), . . . , Y (tk), we observe that Y (tj) = X(atj). This implies

fY (t1),...,Y (tk) (y1, . . . , yk) = fX(at1),...,X(atk) (y1, . . . , yk) (1)

Thus,

fY (t1+τ),...,Y (tk+τ) (y1, . . . , yk) = fX(at1+aτ),...,X(atk+aτ) (y1, . . . , yk) (2)

We see that a time offset of τ for the Y (t) process corresponds to an offset of time τ ′ = aτ for the
X(t) process. Since X(t) is a stationary process,

fY (t1+τ),...,Y (tk+τ) (y1, . . . , yk) = fX(at1+τ ′),...,X(atk+τ ′) (y1, . . . , yk) (3)

= fX(at1),...,X(atk) (y1, . . . , yk) (4)

= fY (t1),...,Y (tk) (y1, . . . , yk) (5)

We can conclude that Y (t) is a stationary process.

Problem 10.9.3 Solution
For a set of time samples n1, . . . , nm and an offset k, we note that Yni+k = X((ni + k)Δ). This
implies

fYn1+k,...,Ynm+k
(y1, . . . , ym) = fX((n1+k)Δ),...,X((nm+k)Δ) (y1, . . . , ym) (1)

Since X(t) is a stationary process,

fX((n1+k)Δ),...,X((nm+k)Δ) (y1, . . . , ym) = fX(n1Δ),...,X(nmΔ) (y1, . . . , ym) (2)

Since X(niΔ) = Yni , we see that

fYn1+k,...,Ynm+k
(y1, . . . , ym) = fYn1 ,...,Ynm

(y1, . . . , ym) (3)

Hence Yn is a stationary random sequence.

Problem 10.9.4 Solution
Since Yn = Xkn,

fYn1+l,...,Ynm+l
(y1, . . . , ym) = fXkn1+kl,...,Xknm+kl

(y1, . . . , ym) (1)

Stationarity of the Xn process implies

fXkn1+kl,...,Xknm+kl
(y1, . . . , ym) = fXkn1

,...,Xknm
(y1, . . . , ym) (2)

= fYn1 ,...,Ynm
(y1, . . . , ym) . (3)

We combine these steps to write

fYn1+l,...,Ynm+l
(y1, . . . , ym) = fYn1 ,...,Ynm

(y1, . . . , ym) . (4)

Thus Yn is a stationary process.

Comment: The first printing of the text asks whether Yn is wide stationary if Xn is wide sense
stationary. This fact is also true; however, since wide sense stationarity isn’t addressed until the
next section, the problem was corrected to ask about stationarity.
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Problem 10.9.5 Solution
Given A = a, Y (t) = aX(t) which is a special case of Y (t) = aX(t) + b given in Theorem 10.10.
Applying the result of Theorem 10.10 with b = 0 yields

fY (t1),...,Y (tn)|A (y1, . . . , yn|a) =
1
an

fX(t1),...,X(tn)

(y1

a
, . . . ,

yn

a

)
(1)

Integrating over the PDF fA(a) yields

fY (t1),...,Y (tn) (y1, . . . , yn) =
∫ ∞

0
fY (t1),...,Y (tn)|A (y1, . . . , yn|a) fA (a) da (2)

=
∫ ∞

0

1
an

fX(t1),...,X(tn)

(y1

a
, . . . ,

yn

a

)
fA (a) da (3)

This complicated expression can be used to find the joint PDF of Y (t1 + τ), . . . , Y (tn + τ):

fY (t1+τ),...,Y (tn+τ) (y1, . . . , yn) =
∫ ∞

0

1
an

fX(t1+τ),...,X(tn+τ)

(y1

a
, . . . ,

yn

a

)
fA (a) da (4)

Since X(t) is a stationary process, the joint PDF of X(t1 + τ), . . . , X(tn + τ) is the same as the
joint PDf of X(t1), . . . , X(tn). Thus

fY (t1+τ),...,Y (tn+τ) (y1, . . . , yn) =
∫ ∞

0

1
an

fX(t1+τ),...,X(tn+τ)

(y1

a
, . . . ,

yn

a

)
fA (a) da (5)

=
∫ ∞

0

1
an

fX(t1),...,X(tn)

(y1

a
, . . . ,

yn

a

)
fA (a) da (6)

= fY (t1),...,Y (tn) (y1, . . . , yn) (7)

We can conclude that Y (t) is a stationary process.

Problem 10.9.6 Solution
Since g(·) is an unspecified function, we will work with the joint CDF of Y (t1 + τ), . . . , Y (tn + τ).
To show Y (t) is a stationary process, we will show that for all τ ,

FY (t1+τ),...,Y (tn+τ) (y1, . . . , yn) = FY (t1),...,Y (tn) (y1, . . . , yn) (1)

By taking partial derivatives with respect to y1, . . . , yn, it should be apparent that this implies that
the joint PDF fY (t1+τ),...,Y (tn+τ)(y1, . . . , yn) will not depend on τ . To proceed, we write

FY (t1+τ),...,Y (tn+τ) (y1, . . . , yn) = P [Y (t1 + τ) ≤ y1, . . . , Y (tn + τ) ≤ yn] (2)

= P

⎡
⎢⎣g(X(t1 + τ)) ≤ y1, . . . , g(X(tn + τ)) ≤ yn︸ ︷︷ ︸

Aτ

⎤
⎥⎦ (3)

In principle, we can calculate P [Aτ ] by integrating fX(t1+τ),...,X(tn+τ)(x1, . . . , xn) over the region
corresponding to event Aτ . Since X(t) is a stationary process,

fX(t1+τ),...,X(tn+τ) (x1, . . . , xn) = fX(t1),...,X(tn) (x1, . . . , xn) (4)

This implies P [Aτ ] does not depend on τ . In particular,

FY (t1+τ),...,Y (tn+τ) (y1, . . . , yn) = P [Aτ ] (5)

= P [g(X(t1)) ≤ y1, . . . , g(X(tn)) ≤ yn] (6)
= FY (t1),...,Y (tn) (y1, . . . , yn) (7)
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Problem 10.10.1 Solution
The autocorrelation function RX(τ) = δ(τ) is mathematically valid in the sense that it meets the
conditions required in Theorem 10.12. That is,

RX(τ) = δ(τ) ≥ 0 (1)
RX(τ) = δ(τ) = δ(−τ) = RX(−τ) (2)
RX(τ) ≤ RX(0) = δ(0) (3)

However, for a process X(t) with the autocorrelation RX(τ) = δ(τ), Definition 10.16 says that the
average power of the process is

E
[
X2(t)

]
= RX(0) = δ(0) = ∞ (4)

Processes with infinite average power cannot exist in practice.

Problem 10.10.2 Solution
Since Y (t) = A + X(t), the mean of Y (t) is

E [Y (t)] = E [A] + E [X(t)] = E [A] + μX (1)

The autocorrelation of Y (t) is

RY (t, τ) = E [(A + X(t)) (A + X(t + τ))] (2)

= E
[
A2
]
+ E [A] E [X(t)] + AE [X(t + τ)] + E [X(t)X(t + τ)] (3)

= E
[
A2
]
+ 2E [A] μX + RX(τ) (4)

We see that neither E[Y (t)] nor RY (t, τ) depend on t. Thus Y (t) is a wide sense stationary process.

Problem 10.10.3 Solution
In this problem, we find the autocorrelation RW (t, τ) when

W (t) = X cos 2πf0t + Y sin 2πf0t, (1)

and X and Y are uncorrelated random variables with E[X] = E[Y ] = 0.
We start by writing

RW (t, τ) = E [W (t)W (t + τ)] (2)
= E [(X cos 2πf0t + Y sin 2πf0t) (X cos 2πf0(t + τ) + Y sin 2πf0(t + τ))] . (3)

Since X and Y are uncorrelated, E[XY ] = E[X]E[Y ] = 0. Thus, when we expand E[W (t)W (t + τ)]
and take the expectation, all of the XY cross terms will be zero. This implies

RW (t, τ) = E
[
X2
]
cos 2πf0t cos 2πf0(t + τ) + E

[
Y 2
]
sin 2πf0t sin 2πf0(t + τ) (4)

Since E[X] = E[Y ] = 0,

E
[
X2
]

= Var[X] − (E [X])2 = σ2, E
[
Y 2
]

= Var[Y ] − (E [Y ])2 = σ2. (5)

In addition, from Math Fact B.2, we use the formulas

cos A cos B =
1
2
[
cos(A − B) + cos(A + B)

]
(6)

sin A sin B =
1
2
[
cos(A − B) − cos(A + B)

]
(7)
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to write

RW (t, τ) =
σ2

2
(cos 2πf0τ + cos 2πf0(2t + τ)) +

σ2

2
(cos 2πf0τ − cos 2πf0(2t + τ)) (8)

= σ2 cos 2πf0τ (9)

Thus RW (t, τ) = RW (τ). Since

E [W (t)] = E [X] cos 2πf0t + E [Y ] sin 2πf0t = 0, (10)

we can conclude that W (t) is a wide sense stationary process. However, we note that if E[X2] �=
E[Y 2], then the cos 2πf0(2t + τ) terms in RW (t, τ) would not cancel and W (t) would not be wide
sense stationary.

Problem 10.10.4 Solution

(a) In the problem statement, we are told that X(t) has average power equal to 1. By Defini-
tion 10.16, the average power of X(t) is E[X2(t)] = 1.

(b) Since Θ has a uniform PDF over [0, 2π],

fΘ (θ) =
{

1/(2π) 0 ≤ θ ≤ 2π
0 otherwise

(1)

The expected value of the random phase cosine is

E [cos(2πfct + Θ)] =
∫ ∞

−∞
cos(2πfct + θ)fΘ (θ) dθ (2)

=
∫ 2π

0
cos(2πfct + θ)

1
2π

dθ (3)

=
1
2π

sin(2πfct + θ)|2π
0 (4)

=
1
2π

(sin(2πfct + 2π) − sin(2πfct)) = 0 (5)

(c) Since X(t) and Θ are independent,

E [Y (t)] = E [X(t) cos(2πfct + Θ)] = E [X(t)] E [cos(2πfct + Θ)] = 0 (6)

Note that the mean of Y (t) is zero no matter what the mean of X(t) since the random phase
cosine has zero mean.

(d) Independence of X(t) and Θ results in the average power of Y (t) being

E
[
Y 2(t)

]
= E

[
X2(t) cos2(2πfct + Θ)

]
(7)

= E
[
X2(t)

]
E
[
cos2(2πfct + Θ)

]
(8)

= E
[
cos2(2πfct + Θ)

]
(9)

Note that we have used the fact from part (a) that X(t) has unity average power. To finish
the problem, we use the trigonometric identity cos2 φ = (1 + cos 2φ)/2. This yields

E
[
Y 2(t)

]
= E

[
1
2

(1 + cos(2π(2fc)t + Θ))
]

= 1/2 (10)

Note that E[cos(2π(2fc)t + Θ)] = 0 by the argument given in part (b) with 2fc replacing fc.
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Problem 10.10.5 Solution
This proof simply parallels the proof of Theorem 10.12. For the first item, RX [0] = RX [m, 0] =
E[X2

m]. Since X2
m ≥ 0, we must have E[X2

m] ≥ 0. For the second item, Definition 10.13 implies
that

RX [k] = RX [m, k] = E [XmXm+k] = E [Xm+kXm] = RX [m + k,−k] (1)

Since Xm is wide sense stationary, RX [m + k,−k] = RX [−k]. The final item requires more effort.
First, we note that when Xm is wide sense stationary, Var[Xm] = CX [0], a constant for all t.
Second, Theorem 4.17 says that

|CX [m, k]| ≤ σXmσXm+k
= CX [0] . (2)

Note that CX [m, k] ≤ |CX [m, k]|, and thus it follows that

CX [m, k] ≤ σXmσXm+k
= CX [0] , (3)

(This little step was unfortunately omitted from the proof of Theorem 10.12.) Now for any numbers
a, b, and c, if a ≤ b and c ≥ 0, then (a + c)2 ≤ (b + c)2. Choosing a = CX [m, k], b = CX [0], and
c = μ2

X yields (
CX [m, m + k] + μ2

X

)2 ≤ (
CX [0] + μ2

X

)2 (4)

In the above expression, the left side equals (RX [k])2 while the right side is (RX [0])2, which proves
the third part of the theorem.

Problem 10.10.6 Solution
The solution to this problem is essentially the same as the proof of Theorem 10.13 except integrals
are replaced by sums. First we verify that Xm is unbiased:

E
[
Xm

]
=

1
2m + 1

E

[
m∑

n=−m

Xn

]
(1)

=
1

2m + 1

m∑
n=−m

E [Xn] =
1

2m + 1

m∑
n=−m

μX = μX (2)

To show consistency, it is sufficient to show that limm→∞ Var[Xm] = 0. First, we observe that
Xm − μX = 1

2m+1

∑m
n=−m(Xn − μX). This implies

Var[X(T )] = E

⎡
⎣( 1

2m + 1

m∑
n=−m

(Xn − μX)

)2
⎤
⎦ (3)

= E

[
1

(2m + 1)2

(
m∑

n=−m

(Xn − μX)

)(
m∑

n′=−m

(Xn′ − μX)

)]
(4)

=
1

(2m + 1)2

m∑
n=−m

m∑
n′=−m

E [(Xn − μX)(Xn′ − μX)] (5)

=
1

(2m + 1)2

m∑
n=−m

m∑
n′=−m

CX

[
n′ − n

]
. (6)
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We note that
m∑

n′=−m

CX

[
n′ − n

] ≤ m∑
n′=−m

∣∣CX

[
n′ − n

]∣∣ (7)

≤
∞∑

n′=−∞

∣∣CX

[
n′ − n

]∣∣ =
∞∑

k=−∞
|CX(k)| < ∞. (8)

Hence there exists a constant K such that

Var[Xm] ≤ 1
(2m + 1)2

m∑
n=−m

K =
K

2m + 1
. (9)

Thus limm→∞ Var[Xm] ≤ limm→∞ K
2m+1 = 0.

Problem 10.11.1 Solution

(a) Since X(t) and Y (t) are independent processes,

E [W (t)] = E [X(t)Y (t)] = E [X(t)] E [Y (t)] = μXμY . (1)

In addition,

RW (t, τ) = E [W (t)W (t + τ)] (2)
= E [X(t)Y (t)X(t + τ)Y (t + τ)] (3)
= E [X(t)X(t + τ)] E [Y (t)Y (t + τ)] (4)
= RX(τ)RY (τ) (5)

We can conclude that W (t) is wide sense stationary.

(b) To examine whether X(t) and W (t) are jointly wide sense stationary, we calculate

RWX(t, τ) = E [W (t)X(t + τ)] = E [X(t)Y (t)X(t + τ)] . (6)

By independence of X(t) and Y (t),

RWX(t, τ) = E [X(t)X(t + τ)] E [Y (t)] = μY RX(τ). (7)

Since W (t) and X(t) are both wide sense stationary and since RWX(t, τ) depends only on
the time difference τ , we can conclude from Definition 10.18 that W (t) and X(t) are jointly
wide sense stationary.

Problem 10.11.2 Solution
To show that X(t) and Xi(t) are jointly wide sense stationary, we must first show that Xi(t) is wide
sense stationary and then we must show that the cross correlation RXXi(t, τ) is only a function of
the time difference τ . For each Xi(t), we have to check whether these facts are implied by the fact
that X(t) is wide sense stationary.
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(a) Since E[X1(t)] = E[X(t + a)] = μX and

RX1(t, τ) = E [X1(t)X1(t + τ)] (1)
= E [X(t + a)X(t + τ + a)] (2)
= RX(τ), (3)

we have verified that X1(t) is wide sense stationary. Now we calculate the cross correlation

RXX1(t, τ) = E [X(t)X1(t + τ)] (4)
= E [X(t)X(t + τ + a)] (5)
= RX(τ + a). (6)

Since RXX1(t, τ) depends on the time difference τ but not on the absolute time t, we conclude
that X(t) and X1(t) are jointly wide sense stationary.

(b) Since E[X2(t)] = E[X(at)] = μX and

RX2(t, τ) = E [X2(t)X2(t + τ)] (7)
= E [X(at)X(a(t + τ))] (8)
= E [X(at)X(at + aτ)] = RX(aτ), (9)

we have verified that X2(t) is wide sense stationary. Now we calculate the cross correlation

RXX2(t, τ) = E [X(t)X2(t + τ)] (10)
= E [X(t)X(a(t + τ))] (11)
= RX((a − 1)t + τ). (12)

Except for the trivial case when a = 1 and X2(t) = X(t), RXX2(t, τ) depends on both the
absolute time t and the time difference τ , we conclude that X(t) and X2(t) are not jointly
wide sense stationary.

Problem 10.11.3 Solution

(a) Y (t) has autocorrelation function

RY (t, τ) = E [Y (t)Y (t + τ)] (1)
= E [X(t − t0)X(t + τ − t0)] (2)
= RX(τ). (3)

(b) The cross correlation of X(t) and Y (t) is

RXY (t, τ) = E [X(t)Y (t + τ)] (4)
= E [X(t)X(t + τ − t0)] (5)
= RX(τ − t0). (6)

(c) We have already verified that RY (t, τ) depends only on the time difference τ . Since E[Y (t)] =
E[X(t − t0)] = μX , we have verified that Y (t) is wide sense stationary.

(d) Since X(t) and Y (t) are wide sense stationary and since we have shown that RXY (t, τ)
depends only on τ , we know that X(t) and Y (t) are jointly wide sense stationary.

Comment: This problem is badly designed since the conclusions don’t depend on the specific
RX(τ) given in the problem text. (Sorry about that!)
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Problem 10.12.1 Solution
Writing Y (t + τ) =

∫ t+τ
0 N(v) dv permits us to write the autocorrelation of Y (t) as

RY (t, τ) = E [Y (t)Y (t + τ)] = E

[∫ t

0

∫ t+τ

0
N(u)N(v) dv du

]
(1)

=
∫ t

0

∫ t+τ

0
E [N(u)N(v)] dv du (2)

=
∫ t

0

∫ t+τ

0
αδ(u − v) dv du. (3)

At this point, it matters whether τ ≥ 0 or if τ < 0. When τ ≥ 0, then v ranges from 0 to t + τ and
at some point in the integral over v we will have v = u. That is, when τ ≥ 0,

RY (t, τ) =
∫ t

0
α du = αt. (4)

When τ < 0, then we must reverse the order of integration. In this case, when the inner integral
is over u, we will have u = v at some point so that

RY (t, τ) =
∫ t+τ

0

∫ t

0
αδ(u − v) du dv =

∫ t+τ

0
α dv = α(t + τ). (5)

Thus we see the autocorrelation of the output is

RY (t, τ) = α min {t, t + τ} (6)

Perhaps surprisingly, RY (t, τ) is what we found in Example 10.19 to be the autocorrelation of a
Brownian motion process. In fact, Brownian motion is the integral of the white noise process.

Problem 10.12.2 Solution
Let μi = E[X(ti)].

(a) Since CX(t1, t2 − t1) = ρσ1σ2, the covariance matrix is

C =
[

CX(t1, 0) CX(t1, t2 − t1)
CX(t2, t1 − t2) CX(t2, 0)

]
=
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
(1)

Since C is a 2 × 2 matrix, it has determinant |C| = σ2
1σ

2
2(1 − ρ2).

(b) Is is easy to verify that

C−1 =
1

1 − ρ2

⎡
⎢⎣

1
σ2

1

−ρ

σ1σ2−ρ

σ1σ2

1
σ2

1

⎤
⎥⎦ (2)

(c) The general form of the multivariate density for X(t1), X(t2) is

fX(t1),X(t2) (x1, x2) =
1

(2π)k/2 |C|1/2
e−

1
2
(x−μX)′C−1(x−μX) (3)

where k = 2 and x =
[
x1 x2

]′ and μX =
[
μ1 μ2

]′. Hence,

1

(2π)k/2 |C|1/2
=

1
2π
√

σ2
1σ

2
2(1 − ρ2)

. (4)
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Furthermore, the exponent is

− 1
2
(x̄ − μ̄X)�C−1(x̄ − μ̄X)

= −1
2
[
x1 − μ1 x2 − μ2

] 1
1 − ρ2

⎡
⎢⎣

1
σ2

1

−ρ

σ1σ2−ρ

σ1σ2

1
σ2

1

⎤
⎥⎦[x1 − μ1

x2 − μ2

]
(5)

= −

(
x1 − μ1

σ1

)2

− 2ρ(x1 − μ1)(x2 − μ2)
σ1σ2

+
(

x2 − μ2

σ2

)2

2(1 − ρ2)
(6)

Plugging in each piece into the joint PDF fX(t1),X(t2)(x1, x2) given above, we obtain the
bivariate Gaussian PDF.

Problem 10.12.3 Solution
Let W =

[
W (t1) W (t2) · · · W (tn)

]′ denote a vector of samples of a Brownian motion process.
To prove that W (t) is a Gaussian random process, we must show that W is a Gaussian random
vector. To do so, let

X =
[
X1 · · · Xn

]′ (1)

=
[
W (t1) W (t2) − W (t1) W (t3) − W (t2) · · · W (tn) − W (tn−1)

]′ (2)

denote the vector of increments. By the definition of Brownian motion, X1, . . . , Xn is a sequence
of independent Gaussian random variables. Thus X is a Gaussian random vector. Finally,

W =

⎡
⎢⎢⎢⎣

W1

W2
...

Wn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

X1

X1 + X2
...

X1 + · · · + Xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
1 1
...

. . .
1 · · · · · · 1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

X. (3)

Since X is a Gaussian random vector and W = AX with A a rank n matrix, Theorem 5.16 implies
that W is a Gaussian random vector.

Problem 10.13.1 Solution
From the instructions given in the problem, the program noisycosine.m will generate the four
plots.

n=1000; t=0.001*(-n:n);

w=gaussrv(0,0.01,(2*n)+1);

%Continuous Time, Continuous Value

xcc=2*cos(2*pi*t) + w’;

plot(t,xcc);

xlabel(’\it t’);ylabel(’\it X_{cc}(t)’);

axis([-1 1 -3 3]);

figure; %Continuous Time, Discrete Value

xcd=round(xcc); plot(t,xcd);

xlabel(’\it t’);ylabel(’\it X_{cd}(t)’);

axis([-1 1 -3 3]);

figure; %Discrete time, Continuous Value

ts=subsample(t,100); xdc=subsample(xcc,100);

plot(ts,xdc,’b.’);

xlabel(’\it t’);ylabel(’\it X_{dc}(t)’);

axis([-1 1 -3 3]);

figure; %Discrete Time, Discrete Value

xdd=subsample(xcd,100); plot(ts,xdd,’b.’);

xlabel(’\it t’);ylabel(’\it X_{dd}(t)’);

axis([-1 1 -3 3]);
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In noisycosine.m, we use a function subsample.m to obtain the discrete time sample functions.
In fact, subsample is hardly necessary since it’s such a simple one-line Matlab function:

function y=subsample(x,n)
%input x(1), x(2) ...
%output y(1)=x(1), y(2)=x(1+n), y(3)=x(2n+1)
y=x(1:n:length(x));

However, we use it just to make noisycosine.m a little more clear.

Problem 10.13.2 Solution

>> t=(1:600)’;
>> M=simswitch(10,0.1,t);
>> Mavg=cumsum(M)./t;
>> plot(t,M,t,Mavg);

These commands will simulate the switch for 600 minutes, pro-
ducing the vector M of samples of M(t) each minute, the vector
Mavg which is the sequence of time average estimates, and a plot
resembling this one:
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From the figure, it appears that the time average is converging to a value in th neighborhood of 100.
In particular, because the switch is initially empty with M(0) = 0, it takes a few hundred minutes
for the time average to climb to something close to 100. Following the problem instructions, we
can write the following short program to examine ten simulation runs:

function Mavg=simswitchavg(T,k)
%Usage: Mavg=simswitchavg(T,k)
%simulate k runs of duration T of the
%telephone switch in Chapter 10
%and plot the time average of each run
t=(1:k)’;
%each column of Mavg is a time average sample run
Mavg=zeros(T,k);
for n=1:k,

M=simswitch(10,0.1,t);
Mavg(:,n)=cumsum(M)./t;

end
plot(t,Mavg);

The command simswitchavg(600,10) produced this graph:
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From the graph, one can see that even after T = 600 minutes, each sample run produces a time
average M600 around 100. Note that in Chapter 12, we will able Markov chains to prove that the
expected number of calls in the switch is in fact 100. However, note that even if T is large, MT is
still a random variable. From the above plot, one might guess that M600 has a standard deviation
of perhaps σ = 2 or σ = 3. An exact calculation of the variance of M600 is fairly difficult because
it is a sum of dependent random variables, each of which has a PDF that is in itself reasonably
difficult to calculate.

Problem 10.13.3 Solution
In this problem, our goal is to find out the average number of ongoing calls in the switch. Before
we use the approach of Problem 10.13.2, its worth a moment to consider the physical situation. In
particular, calls arrive as a Poisson process of rate λ = 100 call/minute and each call has duration
of exactly one minute. As a result, if we inspect the system at an arbitrary time t at least one
minute past initialization, the number of calls at the switch will be exactly the number of calls
N1 that arrived in the previous minute. Since calls arrive as a Poisson proces of rate λ = 100
calls/minute. N1 is a Poisson random variable with E[N1] = 100.

In fact, this should be true for every inspection time t. Hence it should surprising if we compute
the time average and find the time average number in the queue to be something other than
100. To check out this quickie analysis, we use the method of Problem 10.13.2. However, unlike
Problem 10.13.2, we cannot directly use the function simswitch.m because the call duration are no
longer exponential random variables. Instead, we must modify simswitch.m for the deterministic
one minute call durations, yielding the function simswitchd.m:

function M=simswitchd(lambda,T,t)
%Poisson arrivals, rate lambda
%Deterministic (T) call duration
%For vector t of times
%M(i) = no. of calls at time t(i)
s=poissonarrivals(lambda,max(t));
y=s+T;
A=countup(s,t);
D=countup(y,t);
M=A-D;

Note that if you compare simswitch.m in the text
with simswitchd.m here, two changes occurred. The
first is that the exponential call durations are replaced
by the deterministic time T . The other change is
that count(s,t) is replaced by countup(s,t). In
fact, n=countup(x,y) does exactly the same thing as
n=count(x,y); in both cases, n(i) is the number of el-
ements less than or equal to y(i). The difference is that
countup requires that the vectors x and y be nondecreas-
ing.

Now we use the same procedure as in Problem 10.13.2 and form the time average

M(T ) =
1
T

T∑
t=1

M(t). (1)
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>> t=(1:600)’;
>> M=simswitchd(100,1,t);
>> Mavg=cumsum(M)./t;
>> plot(t,Mavg);

We form and plot the time average using these commands will
yield a plot vaguely similar to that shown below.
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We used the word “vaguely” because at t = 1, the time average is simply the number of arrivals in
the first minute, which is a Poisson (α = 100) random variable which has not been averaged. Thus,
the left side of the graph will be random for each run. As expected, the time average appears to
be converging to 100.

Problem 10.13.4 Solution
The random variable Sn is the sum of n exponential (λ) random variables. That is, Sn is an Erlang
(n, λ) random variable. Since K = 1 if and only if Sn > T , P [K = 1] = P [Sn > T ]. Typically,
P [K = 1] is fairly high because

E [Sn] =
n

λ
=

	1.1λT 

λ

≈ 1.1T. (1)

Increasing n increases P [K = 1]; however, poissonarrivals then does more work generating expo-
nential random variables. Although we don’t want to generate more exponential random variables
than necessary, if we need to generate a lot of arrivals (ie a lot of exponential interarrival times),
then Matlab is typically faster generating a vector of them all at once rather than generating
them one at a time. Choosing n = 	1.1λT 
 generates about 10 percent more exponential random
variables than we typically need. However, as long as P [K = 1] is high, a ten percent penalty won’t
be too costly.

When n is small, it doesn’t much matter if we are efficient because the amount of calculation is
small. The question that must be addressed is to estimate P [K = 1] when n is large. In this case,
we can use the central limit theorem because Sn is the sum of n exponential random variables.
Since E[Sn] = n/λ and Var[Sn] = n/λ2,

P [Sn > T ] = P

[
Sn − n/λ√

n/λ2
>

T − n/λ√
n/λ2

]
≈ Q

(
λT − n√

n

)
(2)

To simplify our algebra, we assume for large n that 0.1λT is an integer. In this case, n = 1.1λT
and

P [Sn > T ] ≈ Q

(
− 0.1λT√

1.1λT

)
= Φ

(√
λT

110

)
(3)

Thus for large λT , P [K = 1] is very small. For example, if λT = 1,000, P [Sn > T ] ≈ Φ(3.01) =
0.9987. If λT = 10,000, P [Sn > T ] ≈ Φ(9.5).
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Problem 10.13.5 Solution
Following the problem instructions, we can write the function newarrivals.m. For convenience,
here are newarrivals and poissonarrivals side by side.

function s=newarrivals(lam,T)
%Usage s=newarrivals(lam,T)
%Returns Poisson arrival times
%s=[s(1) ... s(n)] over [0,T]
n=poissonrv(lam*T,1);
s=sort(T*rand(n,1));

function s=poissonarrivals(lam,T)
%arrival times s=[s(1) ... s(n)]
% s(n)<= T < s(n+1)
n=ceil(1.1*lam*T);
s=cumsum(exponentialrv(lam,n));
while (s(length(s))< T),
s_new=s(length(s))+ ...
cumsum(exponentialrv(lam,n));

s=[s; s_new];
end
s=s(s<=T);

Clearly the code for newarrivals is shorter, more readable, and perhaps, with the help of
Problem 10.6.4, more logical than poissonarrivals. Unfortunately this doesn’t mean the code
runs better. Here are some cputime comparisons:

>> t=cputime;s=poissonarrivals(1,100000);t=cputime-t
t =

0.1110
>> t=cputime;s=newarrivals(1,100000);t=cputime-t
t =

0.5310
>> t=cputime;poissonrv(100000,1);t=cputime-t
t =

0.5200
>>

Unfortunately, these results were highly repeatable. The function poissonarrivals generated
100,000 arrivals of a rate 1 Poisson process required roughly 0.1 seconds of cpu time. The same
task took newarrivals about 0.5 seconds, or roughly 5 times as long! In the newarrivals code,
the culprit is the way poissonrv generates a single Poisson random variable with expected value
100,000. In this case, poissonrv generates the first 200,000 terms of the Poisson PMF! This
required calculation is so large that it dominates the work need to generate 100,000 uniform random
numbers. In fact, this suggests that a more efficient way to generate a Poisson (α) random variable
N is to generate arrivals of a rate α Poisson process until the Nth arrival is after time 1.

Problem 10.13.6 Solution
We start with brownian.m to simulate the Brownian motion process with barriers, Since the goal
is to estimate the barrier probability P [|X(t)| = b], we don’t keep track of the value of the process
over all time. Also, we simply assume that a unit time step τ = 1 for the process. Thus, the process
starts at n = 0 at position W0 = 0 at each step n, the position, if we haven’t reached a barrier, is
Wn = Wn−1 + Xn, where X1, . . . , XT are iid Gaussian (0,

√
α) random variables. Accounting for

the effect of barriers,
Wn = max(min(Wn−1 + Xn, b),−b). (1)

To implement the simulation, we can generate the vector x of increments all at once. However to
check at each time step whether we are crossing a barrier, we need to proceed sequentially. (This
is analogous to the problem in Quiz 10.13.)
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In brownbarrier shown below, pb(1) tracks how often the process touches the left barrier at
−b while pb(2) tracks how often the right side barrier at b is reached. By symmetry, P [X(t) = b] =
P [X(t) = −b]. Thus if T is chosen very large, we should expect pb(1)=pb(2). The extent to which
this is not the case gives an indication of the extent to which we are merely estimating the barrier
probability. Here is the code and for each T ∈ {10,000, 100,000, 1,000,000}, here two sample runs:

function pb=brownwall(alpha,b,T)
%pb=brownwall(alpha,b,T)
%Brownian motion, param. alpha
%walls at [-b, b], sampled
%unit of time until time T
%each Returns vector pb:
%pb(1)=fraction of time at -b
%pb(2)=fraction of time at b
T=ceil(T);
x=sqrt(alpha).*gaussrv(0,1,T);
w=0;pb=zeros(1,2);
for k=1:T,

w=w+x(k);
if (w <= -b)

w=-b;
pb(1)=pb(1)+1;

elseif (w >= b)
w=b;
pb(2)=pb(2)+1;

end
end
pb=pb/T;

>> pb=brownwall(0.01,1,1e4)
pb =

0.0301 0.0353
>> pb=brownwall(0.01,1,1e4)
pb =

0.0417 0.0299
>> pb=brownwall(0.01,1,1e5)
pb =

0.0333 0.0360
>> pb=brownwall(0.01,1,1e5)
pb =

0.0341 0.0305
>> pb=brownwall(0.01,1,1e6)
pb =

0.0323 0.0342
>> pb=brownwall(0.01,1,1e6)
pb =

0.0333 0.0324
>>

The sample runs show that for α = 0.1 and b = 1 that the

P [X(t) = −b] ≈ P [X(t) = b] ≈ 0.03. (2)

Otherwise, the numerical simulations are not particularly instructive. Perhaps the most important
thing to understand is that the Brownian motion process with barriers is very different from the
ordinary Brownian motion process. Remember that for ordinary Brownian motion, the variance
of X(t) always increases linearly with t. For the process with barriers, X2(t) ≤ b2 and thus
Var[X(t)] ≤ b2. In fact, for the process with barriers, the PDF of X(t) converges to a limit as t
becomes large. If you’re curious, you shouldn’t have much trouble digging in the library to find out
more.

Problem 10.13.7 Solution
In this problem, we start with the simswitch.m code to generate the vector of departure times y.
We then construct the vector I of inter-departure times. The command hist,20 will generate a
20 bin histogram of the departure times. The fact that this histogram resembles an exponential
PDF suggests that perhaps it is reasonable to try to match the PDF of an exponential (μ) random
variable against the histogram.

In most problems in which one wants to fit a PDF to measured data, a key issue is how to
choose the parameters of the PDF. In this problem, choosing μ is simple. Recall that the switch
has a Poisson arrival process of rate λ so interarrival times are exponential (λ) random variables.
If 1/μ < 1/λ, then the average time between departures from the switch is less than the average
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time between arrivals to the switch. In this case, calls depart the switch faster than they arrive
which is impossible because each departing call was an arriving call at an earlier time. Similarly,
if 1/μ > 1/λ , then calls would be departing from the switch more slowly than they arrived. This
can happen to an overloaded switch; however, it’s impossible in this system because each arrival
departs after an exponential time. Thus the only possibility is that 1/μ = 1/λ. In the program
simswitchdepart.m, we plot a histogram of departure times for a switch with arrival rate λ against
the scaled exponential (λ) PDF λe−λxb where b is the histogram bin size. Here is the code:

function I=simswitchdepart(lambda,mu,T)
%Usage: I=simswitchdepart(lambda,mu,T)
%Poisson arrivals, rate lambda
%Exponential (mu) call duration
%Over time [0,T], returns I,
%the vector of inter-departure times
%M(i) = no. of calls at time t(i)
s=poissonarrivals(lambda,T);
y=s+exponentialrv(mu,length(s));
y=sort(y);
n=length(y);
I=y-[0; y(1:n-1)]; %interdeparture times
imax=max(I);b=ceil(n/100);
id=imax/b; x=id/2:id:imax;
pd=hist(I,x); pd=pd/sum(pd);
px=exponentialpdf(lambda,x)*id;
plot(x,px,x,pd);
xlabel(’\it x’);ylabel(’Probability’);
legend(’Exponential PDF’,’Relative Frequency’);

Here is an example of the output corresponding to simswitchdepart(10,1,1000).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

 x

P
ro

ba
bi

lit
y

Exponential PDF
Relative Frequency

As seen in the figure, the match is quite good. Although this is not a carefully designed statistical
test of whether the inter-departure times are exponential random variables, it is enough evidence
that one may want to pursue whether such a result can be proven.

In fact, the switch in this problem is an example of an M/M/∞ queuing system for which
it has been shown that not only do the inter-departure have an exponential distribution, but the
steady-state departure process is a Poisson process. For the curious reader, details can be found,
for example, in the text Discrete Stochastic Processes by Gallager.
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