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6.3 WSS RANDOM PROCESSES IN LINEAR SYSTEMS

6.3.1 Time- and Frequency-Domain Analysis

We began Sec. 6.2 with a review of spectral analysis. We dealt there with the analysis of signals
in linear systems. Generally, we introduced the voltage spectrum, V(w), and the system function,
H(jw), and from these we derived the power spectrum, S(w), and the system function for power,
\H(jw)|*. We also introduced the convolution relationship between the time-domain input signal
and the impulse response of the system. We showed that convolution depends on the concept
of the impulse response and the linear time-invariant nature of the system. Fourier transform
relationships need not be involved.

When we discussed the spectra of random signals, as modeled by WSS random processes,
we stressed that no voltage spectrum exists but that a power spectrum does exist. This means that
we cannot use the relationship between input and output power spectra based on the reasoning
that led to Eq. (6.2.18), at least not until we prove its validity by other means. Such proof we
now give based on time-domain analysis. This proof completes the explication of the definition
of the PSD as the Fourier transform of the autocorrelation function.

A double convolution. Because the frequency-domain path is not available to us, we
take the time-domain approach. We consider a linear system with a random process input, as
shown in Fig. 6.3.1.

Because each member function of the input random process is related to a corresponding
member function of the output random process by convolution, we attribute the convolution
relationship to the entire random process:

+00
Voul(r) = ] Vin(t —a)h(x)da (6.3.1)
—00

We calculate the output autocorrelation function by taking E[ Vo (1) Vow (r + T)], which involves
two convolution integrals and an expectation on the right-hand side. Because integration and
expectation are linear operations we take the expectation inside the convolution integrals. We also
let the variable of integration in the second convolution integral be @ — B. The result is

E[Vou (N Vou(r + 1)] = f / E[Vin(t — @) Vin(t — B+ DIh(@)h(B)dadp  (632)
—0Q —0Q

Via(2) Vou(t) = Vi (1) = (1)
—— h(r) e

Figure 6.3.1 The input random process and the output random process are related by a
convolution relationship.
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The two expectations give the input and output autocorrelation functions, except the argument for
the input autocorrelation function is the difference between the two arguments, t —8+7 — (1 —a) =
T +a — B. Thus Eq. (6.3.2) becomes

+00 +00
Row(t) = / f Rin(t +a — Blh(a)h(B) da dp (6.3.3)
—0Q —00

Equation (6.3.3) is a double convolution. It gives us a means for calculating the output autocorre-
lation function, given the input autocorrelation function and the impulse response of the system.
In certain simple cases this would be a reasonable way to solve a problem; however, our goal is
to take the analysis into the frequency domain, where matters are usually simpler. We therefore
perform the Fourier transform of Eg. (6.3.3) to obtain the output power spectrum:

r+Ho0 _ +00 ptoo ptoo
Sou(w) = ] Rou(t)e 79T dr = [ / / Rin(t +a— P))C’i'wrh(a)h(ﬂ) da df dt
—00 J—oo J-oo J-o

(6.3.4)

The triple integral divides nicely into three integrals when we make the substitution x = 7+« - B.
The key factor in this separation is what happens to the exponential term:

e~ et _ e—;(uufcﬂ-,dl = g~ Jox e+,ﬂ¢uu % (,g_,'wﬁ (6.3.5)

Substitution of Eq. (6.3.5) into Eq. (6.3.4) and separation of the result into three single integrals
give the following:

+00 +00 +00 )
Sout (@) :f Rin(x)e ™ 7% dx x [ h(a)e™ ™ do xf h(B)e™/“F dp (6.3.6)

oo J—00 —o0,

Sin(w) H(jw)" H(jw)

In Eq. (6.3.6) we have identified the first term as the input PSD. The last term is the Fourier
transform of the impulse response and thus is the system function, and the middle term is the
complex conjugate of the last term. Thus Eq. (6.3.6) reduces to

Sout(@) = Sin(w) x |H(jw)|? (6.3.7)

which is the same relation, Eq. (6.2.18), we derived for deterministic signals by squaring the
voltage spectrum relationship between input and output. Equation (6.3.7) allows us to use
frequency-domain techniques for PSDs of WSS random processes and hence is the final vindica-
tion of the definition of the PSD as the Fourier transform of the autocorrelation function and its
interpretation as a power spectrum,

Input and output DC. Other relationships between input and output can be investigated.
For notational simplicity, let the input be Vi,(r) — X (7) and the output be V,,, — Y(r). The
relationship between input and output given in Eq. (6.3.1) in this notation is

+00
Y1) = [ Xt —a)h(a) da (6.3.8)

o0
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If we take the expectation of Eq. (6.3.8) and take the resulting constant outside the integral,

we have

+00
Uy = KX [ h(a) da (6.3.9)
65

The impulse response, (), is related to the system function by the inverse Fourier transform in
Eq. (6.2.21). The associated forward transform is

400
H(jw) = [ h(t)e /¥t dr (6.3.10)

—00

If we set w = 0 in Eq. (6.3.10), we have

+00
H(0) =[ h(t)drt (6.3.11)

00

Thus Eq. (6.3.9) merely tells us that the output DC is the input DC times the system response
at DC.

Cross-correlation between input and output. We may cross-correlate the input and
output as

+00
Ryy(r) = E[X(DY(+1)]= / E[X(r)Xli—u-{—r)]h(a)dor (6.3.12)

J =00

where we used Eq. (6.3.8) and took the expectation inside the convolution integral. The result is

+00
Rxy(T) Zf Rx(t — a)h(e) da (6.3.13)

—00

Thus the cross-correlation between input and output can be expressed as a convolution between
the input autocorrelation function and the impulse response of the system.

Cross-power spectra between input and output. If we take the Fourier transform of
Eq. (6.3.13), we have

Syy(w) = Sx(wH(jw) (6.3.14)

Note in Eq. (6.3.14) that Sx(w) is a real function, but the system response, H(jw), has both
amplitude and phase, 50 the cross-power spectrum has both amplitude and phase associated with it.

We will now illustrate some of these general relationships by passing our four models through
a low-pass filter.

6.3.2 Modeling a Random Analog Signal Through a Low-Pass Filter

To keep the mathematics manageable, we will consider a low-pass filter for our linear system and
treat in turn the four models for random signals that we have been exploring in this chapter.
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R
oA — 5
Sin(w) pmy Soulw)
1
JwC
o O

Figure 6.3.2 The RC low-pass filter in the frequency domain. The input is a WSS random
process, described in the frequency domain by its PSD function.

System properties. The low-pass filter in the frequency domain is shown in Fig. 6.3.2.
The power system function for the RC low-pass filter is given in Eq. (6.2.19) as

H(jw)|* =

\ 1 |2 | ]

7 e S (6.3.15)
1+ jwRC I+ (wRC) 14 (f/f)*

where f, = E-r]W is the half-power frequency of the filter, also called the cutoff frequency. The
relationship we will use to determine the output spectrum Is given in Eq. (6.3.7) as

Sout(®) = Sin(w) x H(jw)|? (6.3.16)

Generally, our method of analysis follows the pattern Rjn(7) = Sin(@) = Sou(®) — Ry (t).
Matters of concern are the DC and AC power in the output, the coherence function, and the
bandwidth and coherence time. In Sec. 6.1 we determined the input autocorrelation function for
our four models. The Rj,(1) — Sip(w) part of the analysis was accomplished in Sec. 6.2 for the
four models. We here complete the remainder of the analysis.

Model for a random analog signal

Input characteristics. We begin with the model for a random analog signal because the
math is simplest. Our model is a sinusoid with fixed amplitude and frequency but random phase.

We showed that this model is WSS and ergodic. The autocorrelation function was given in
Eq. (6.1.35) as

V2 )
Rin(z) = TI cosw| T volts* (6.3.17)

The input PSD function is given in Eq. (6.2.48) as

72 72
Sin(f) = T”a(f + f1) + {a(f — f1) volts®/Hz (6.3.18)
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The output PSD function is given by Eq. (6.3.18) multiplied by the power system response,
Eq. (6.3.15), with the result

; V; | ,
Sout(f) = | £8(f + fi) + L8(f — fi) | x —————— volts?/Hz (6.3.19)
out [ 4 4 j I+(Jf/"|‘()"
The filter function gives its response at + f| and diminishes the amplitude by the factor ﬁ
with the final result 1.
l/"' "}: 5
Sout(f) : 8(f+ fi) + ——E——-8(f — f1) volts* /Hz (6.3.20)

A0+ (A/fDY 41+ (fil f)D)
Finally, the inverse transform of Eq. (6.3.20) is identical with Eq. (6.3.17), except the amplitude
is diminished by the power system response.

2
Vp

— = cos2nfit volts? (6.3.21)
2(1+ (A/f)D)

Rllul (.T ) =

Summary. The low-pass filter has the expected effect of reducing the amplitude of the
random sinusoid. The magnitude of the effect depends on the relationship between the frequency
of the random sinusoid and the cutoff frequency of the filter. For f; < f,., the filter has little
effect; for f| > f., the effect will be strong; and for f; = f,, the signal power will be reduced
by a factor of 2. .

6.3.3 Model for Broadband Noise in a Low-Pass Filter

Resistor noise output. The effect of a low-pass filter on broadband noise is best consid-
ered as a problem in circuit theory. The question we will address is, How much noise voltage
comes out of a real resistor? The problem is stated, and translated into circuit theory, in Fig. 6.3.3.

The source resistance and stray capacitance amount to a low-pass filter. We model the input
PSD as white noise of magnitude Sy = 2kTR (two sides) [Eq. (6.2.57)]. The output PSD is
therefore

| 5
Sou(w) = Sy x ———— volt“/Hz (6.3.22)
l +(wRC)*

and the output autocorrelation function is the inverse Fourier transform. The form of Eq. (6.3.22)

R'c. and some juggling of the constants, with the result

requires in the table,!? & =

Rou (1) = T‘C,e“”f“‘ volts? (6.3.23)
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Jf
RT v,(f) v,,(f)
i

S.(f) = 2kTR =3,— \U“\ (two sides)

Figure 6.3.3 A resistor has output noise owing to thermal movement of carriers. The
equivalent circuit shows the internal noise source, with its PSD, the output impedance of the
resistor source, and a capacitance to account for stray, or paraS|t|c capacitance inherent to the
physical structure.

If we insert the value for Sy = 2kTR, we find that the output autocorrelation function has the form

IIT ¥ Tl -
Row(T) = ‘?e—“'*“ volts® (6.3.24)

Character of the output. We consider now the broad features of the output. The output
voltage will still be Gaussian and ergodic. There is no mean, but the variance has the value

Rou(0) = E[Vau(®] =07 = ;R\C = AT (6.3.25)
The rms value of the output noise is therefore
o
Vou = ‘V' — rms volts (6.3.26)

For example, at room temperature with 1 pF stray capacitance, we have an rms voltage of 64 1V,
independent of R.
A noise bandwidth, B,, is found by equating the total noise power given in Eq. (6.3.23) to0

Sn

Sy X 2By = — (6.3.27)

2RC

It follows that
1
B, = —— Hz (6.3.28)
4RC

The half-power point of the low-pass filter is fo = 2—7—'17\? and therefore the noise bandwidth is

about 1.6 times the half-power frequency.
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The coherence function for the output noise is

oy (x) = e~ITIRC (6.3.29)

The coherence time, defined as the value of 7 after which the coherence function remains below
0.1, is therefore

7. = —RCIn(0.1) = 2.303 RC (6.3.30)

The noise bandwidth and the coherence time are related as

(6.3.31)

An application of this theory. Let us say we have a sample of wideband noise and we
wish to estimate the variance. Of course, with a true rms voltmeter that has adequate bandwidth
one can measure the noise directly, but we will use an oscilloscope. Our method will be to display
the noise on the scope and estimate its peak-to-peak (PP) value. The scope trace looks like that
plotted in Fig. 6.3.4.

Let us say the known bandwidth of the signal, either from the source or from the scope,
is B, and that the trace speed is § cm/s. Because the coherence time is roughly ]E the 10-cm
trace contains approximately n = 10B/S independent samples of the voltage. For example, if the
scope bandwidth is 30 MHz, and the trace speed is 1 cm/us, the number of independent samples

(§ 8]
|

Figure 6.3.4 Simulated noise as it would appear on the screen of an oscilloscope. There are
n = 300 independent samples in this scan.
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is approximately 10 x 30 x 10° x 1 x 10~% = 300, which corresponds to the number of samples
pictured in Fig. 6.3.4. We measure the peak-to-peak voltage .md find this to be PP volts (about
5.5 in the plot). We reason as follows: The samples sp.lu.d = 33 ns apart are IID random
Gaussian random variables. A probability statement about IhE\L random variables is

p[(w,<?)ﬂ(|v3<§)ﬂ(v;<)ﬂ m(|\,,|<T):|=O.5 (6.3.32)

Why 0.57 Well, if you did it again, would you expect the PP value to be larger or smaller? Not
knowing, you can comfortably say the probability that you would get just what you got is 0.5.
Because these are IID variables, we may turn the N — x, and we have the result

(%]

PP]" PP i
P[l’<7:l =050 w( )f1= V0.5 (6.3.33)

2oy
Here we took the nth root of the equation and used the standard formula [Eq. (3.4.9)] for the
central probability of a Gaussian random variable. We may solve Eq. (6.3.33) for oy, which
is the standard deviation, or the rms value, of the noise. The formula is a bit awkward and is

best illustrated by an example. We have 300 samples and a PP value of approximately 5.5. For
n = 300, we have

PP _ (1 + W05
- 2

20’\‘

) = &~ 1(0.9988) ~ 3.09 (6.3.34)

where we used the inverse CDF table [see endnote 34 in Chapter 3]. We solve Eq. (6.3.34) for
oy with the result that oy =~ ( Ib = 0.89. (We generated Fig. 6.3.4.with a standard deviation of
1, so this is acceptable agreement.)

Summary. We showed how to estimate the standard deviation, or the rms value, of wide-
band noise based on the peak-to-peak value and the number of independent samples. The results
amount to dividing the PP noise by a factor in the range of 6 to 7. Use 6 if you have hundreds
of samples, 7 if you have thousands.

6.3.4 Model for an Asynchronous Digital Signal in a Low-Pass Filter

Model. Our model for an asynchronous digital signal was a flip-flop triggered by a Poisson

process with an average rate of A. The random process was WSS with an autocorrelation function.,
Eq. (6.1.17),

l 7 5 -
Rin(v) = 2[1+ e #71] volts? (6.3.35)
The PSD is given in Eq. (6.2.40):

I A .
Sin(f) = -8(f) + ———— volts*/Hz (6.3.36)
in 4 / 202 + (2:7]')'
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We pass this signal through the low-pass filter to produce the output spectrum

I A 1
Sow(f) = =8(F) + x \olls /Hz (6.3.37)
4 O +@rf)? T 1+ (f/ 1)

We leave the first term alone because this is a DC term, which passes unaffected through the
filter. The second term gives the effect of the filter on the AC spectrum of the digital signal.
We now determine the autocorrelation function by performing the inverse Fourier transform on
Eq. (6.3.37). For this purpose we make a partial-fraction expansion of the second term, which is
of the form

| 1 | 1 ]
3 5 X —5 7 = 7195 3 9 ) - It}
xs4a x+4b br—a’|x24+ag2 x24+p2
where x =2 f, a =2, and b = 27 f, (6.3.38)

Using this partial fraction expansion, we obtain the form

(f) s 8(f) + Am A : : Its*/H
So = = =3 s = s — — | volts“/Hz
" 4777 @rf? - @2 LR+ 202 Qaf) + 2af,)?
(6.3.39)
From the table of Fourier transform pairs, we find the inverse transform to be!3
I 425 f? | P | ;
Rou(t) = — + *# — e~ e~ felrl (6.3.40)
4 (2rf)r—(2x0)2 | 4) 4 f,

Equation (6.3.40) is not easily interpreted. We consider two extremes.

Signal bandwidth « filter bandwidth. 1f 20 « 27 f,, then the first term in the bracket
dominates the second term in the bracket, and the second term in the denominator out front is
negligible. In that case, the output autocorrelation function approaches the input,

| |
Rou (1) = =l if'ﬁ-)‘m = Rin(7) (6.3.41)

20 L 2nf,

This is what we would expect to happen. Essentially, the bandwidth of the low- -pass filter is much
wider than the spectrum in the input and thus the signal goes through the filter with little change.
The frequency-domain picture of this situation is shown in Fig. 6.3.5, where 2\ = ,”_:7/

The time-domain picture shows the input pulses slightly rounded due to the loss of high
frequencies. Figure 6.3.6 shows the output when the filter bandwidth is much larger than the

signal bandwidth, A = ;{—,f The main effect is that the pulse corners are rounded.
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S(w), H((u)|:

Filter

Frequency

Figure 6.3.5 The signal bandwidth is 5% of the filter half-power bandwidth. The filter has
little effect on the signal in this case. The vertical scale is arbitrary.

B
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L

L
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~ figure 6.3.6 The output of the low-pass filter with an asynchronous digital signal input. The

filter bandwidth is much broader than the signal bandwidth, so the effect of the filter is to
round the corners slightly.
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4. forall N >0, allt; <ty <... <ty and all complex ay,az,..., an, i when this integral exists

N N ) EY(t)
Z Zﬂkﬂ( Rxx(ty —t;) = 0.

k=1 l=1

This was shown in Section 7.1 to be a necessary condition for a given function§

g(t,s) = g(t—s) to be an autocorrelation function. We will show that this property ]
is also a sufficient condition, so that positive semidefiniteness actually characterizs§ b .
autocorrelation functions. In general, however, it is very difficult to check property4 Y. ero'H(-_,.') is the syster
directly. We thus see that the
’ times the system functio
To start off, we can specialize the results of Theorems 7.3-1 and 7.3-2, which were derived Comﬁprulto 1T he cross-correl
for the general case, to LSI systems. Rewriting Equation 7.3-2 we have i e tind that
, ' Ry x (1)
E[Y(t)] = L{px(t)}
oo |
= / px (T)h(t —7)dT B
65 | B
A |
= ux(t) * h(t). .
px(t) * h(t) and bringing the operatc
Using Theorem 7.3-2 and Equations 7.3-3 and 7.3-4, we get also ,
+0o0 ] 3
ARy st = -/—Y h*(r2) Rx x (t1,t2 — T2)dT2, ' J which can be rewritten a
and ;-
60 @ Thus the cross-correlatic
Ryvy(t1,t2) = / h(m1)Rxy (t1 — 71,t2)dT1, ;- * fact can be used to ident
-0 | B The output autocor
which can be written in convolution operator notation as i 3 follows:
Rxy(ty,t2) = h*(t2) * Rxx (t1,t2), B Ryy(7)
where the convolution is along the f;-axis, and :
Ryvy(t1,t2) = h(t1) * Rxy(t1,t2), A
where the convolution is along the t;-axis. Combining these two equations, we get 1
Ryy(t1,t2) = h(t1) * Rxx (t1,t2) * h*(t2). R
a ¥,
Wide-Sense Stationary Case
d
If we input the stationary random process X (t) to an LSI system with imipulse response§
h(t), then the output random process can be expressed as the convolution integral, i &
+00 {;
Y ()= / h(T)X(t — 7)dr, (7.5-1) -
—0Q




b Sec. 7.5.  WIDE-SENSE STATIONARY PROCESSES AND LSI SYSTEMS 441

when this integral exists. Computing the mean of the output process Y (t), we get

E[Y(t) = / h(T)E[X(t — 7)]dr by Theorem 7.3-1,
J—ox

00 o0
/ h(T)uxdr = ,u.\'/ h(7)dr,

— 00

wx H(0),

(7.5-2)
where H(w) is the system’s frequency response.

We thus see that the mean of the output is constant and equals the mean of the input
times the system function evaluated at w = 0, the so-called “dc gain” of the system. If we
' compute the cross-correlation function between the input process and the output process
we find that

Ryx(t)=E[Y(t+ T) X (1))

= E[Y(t)X"(t —7)] by substituting t — 7 for t,

:/ h(Q)E[X (t — &) X*(t — 7)]da,

Land bringing the operator F inside the integral by Theorem 7.3-2,

400
= / h(a)Rx x (17 — a)da
—O0
Bwhich can be rewritten as
[ Ry x (m) = IJ(T) * Rxx (7). (7.5-3)
Thus the cross-correlation Ry x equals h convolved with the autocorrelation Ry x. This

flact can be used to identify unknown systems (see Problem 7.28)

The output autocorrelation function Ryy () can now be obtained from Ry x(t

) as
p follows:

Ryy(r) = E[Y(t+7)Y*(t)]

=EY(t)Y*(t—7)] by substituting ¢ for t — T,

= / Vf('(n)ffl'}'(f)X'(t -7 —a)lda

00
= / h"(a)lf[)’{t}.\"((—(T+u,})]r1’u

20

= / h*(a)Ry x (T + a)da

:/ 7 h*(—a)Ry x (T — a)da
J =00

=h"(—7) * Ry x (7).
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Combining both equations, we get 3 Power Spectral Den

For wide-sense statio;

Ryy(7) = h(r) * h*(=7) * Rxx (). (7.54)

for average power vel
We observe that when Rxx(7) = 6(7), then the output correlation function is
Ryy (T) = h(7) * h*(—7), which is sometimes called the autocorrelation impulse response
denoted as g(7) = h(7) * h*(—7). Note that g(7) must be positive semidefinite, and indeed
FT{g(7)} = |H(w)[* > 0.

Similarly, we also find (proof left as an exercise for the reader)

: Definition 7.5-
B power spectral densit

Rxvy(7T) = / h*(—a)Rxx (7 — a)da Under quite gene
o =00 7
_ B equals Ry x (1) at all
= h*(—7) * Rxx(7), (7.5-5) . S
and | 3
00 3
Bselts) = / h(a)Rxy (7 — a)da. S In operator notation 1
= h(7) * Rxv(7) - o

= h(r) * h"(—7) * Rxx (7)
where F'T and IFT s

=g(7) * Rxx(7).
The name power

Example 7.5-1 ’ . SR ;
Kl Bl . M thus far is define it a:
(Derivative of wide-sense stationary process.) Let the second-order random process X(t) B tronsform of tl
, _ L . . i | B s of the cross
be stationary with one parameter correlation function Rx(7) and constant mean function _ =
. I y the CToss-power spectr:
px (t) = px. Consider the system consisting of a derivative operator, i.e., i e
dx(t)
¥ = =
dt
= . " / 1 t . . 1 3 afar ¢
Using the above equations we find py (f) = (-—*““}‘r( ) = 0 and cross-correlation function We will see later that
) i nonnegative and in fac
(T =07 (—T) * R X\ T i - i
Rxy(7) 1(—7) xx(7) @ for average power vers
_ dRxx(7) 4 such interpretation anc
- dr ' ; : We next list some
since the impulse response of the derivative operator is h(t) = 6;(t), the (formal) derivative S 1. Sxxlw)i |
: . : : : : - Ooxx(w) is real-
of the Dirac delta function or impulse §(¢). e 2. If X(4) )
| . 2. If X(¢) is a real-
Ryy (1) = 61(7) * Rxy (T) B is real and even

dRxy(T) 3 5 Sxx(@) 20 (b
dr B Additional propert
PR (] & a table, but it will suit
——3F note the simplicity of t
Systems and stationary
(formal) derivative of §(7). ‘ iliic:m“"; }:} h%'STl“'Hl'LF
arry out the indicatec

Notice the autocorrelation impulse response here is g(t) = —d;(7), or minus the second 8




Sec. 7.5. WIDE-SENSE STATIONARY PROCESSES AND LS| SYSTEMS 443

Power Spectral Density

For wide-sense stationary, and hence for stationary processes, we can define a useful density
for average power versus frequency, called the power spectral density (psd).

Definition 7.5-1 Let Ry x(7) be an autocorrelation funct ion. Then we define the
power spectral density Sx x (w) to be its Fourier transform (if it exists). that is.

.Si\:\'(w"}':/ 7 Rxx(t)e ™ dr. B (7.5-6)

Under quite general conditions one can define the inverse Fourier transform. which
equals Rx x (7) at all points of continuity,
1

-
il

H_\' w{TN=

)

P00
/ S,\',\'!‘.\,‘JF*—'“‘— dw. (7.5-7)
-0

In operator notation we have,
Sxx =FT{Rxx}
and
Rxx = IFT{Sxx}
where F'T and I FT stand for the respective Fourier operafors.

The name power spectral density (psd) will be Jjustified later. All that we have done
thus far is define it as the Fourier transform of Rxx(7). We can also define the Fourier
transform of the cross-correlation function Rxy (7) to obtain a frequency function called
the cross-power spectral density,

A p==0OC
Sxy(w) £ / Rxy(r)e T dr, (7.5-8)
v — 00

We will see later that the power spectral density or psd, Sxx(w), is real and everywhere
nonnegative and in fact, as the name implies, has the interpretation of a density function
b for average power versus frequency. By contrast, the cross-power spectral density has no
such interpretation and is generally complex valued.

We next list some properties of the psd Sx x(w):

l. Sxx(w) is real-valued since Ry x (7) is conjugate symmetric.
9

is real and even. Otherwise Sy y (w) may not be an even function of w.
3. Sxx(w) >0 (to be shown in Section in Theorem 7.5-1 )i

Additional properties of the psd are shown in Table 7.5-1. One could continue with such
a table, but it will suit our purposes to stop at this point. One comment is in order: We
note the simplicity of these operations in the frequency domain. This suggests that for LSI
systems and stationary or WSS random processes, we should solve for output correlation
functions by first transforming the input correlation function into the frequency domain,
carry out the indicated operations, and then transform back to the correlation domain.

2. If X(t) is a real-valued WSS process, then Sx x (w) is an even function since Ry x (1)

-

-,
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Table 7.5-1 Correlation Function Properties of Corresponding Power Spectral Densities

Random Process Correlation Function Power Spectral Density

Rxx(T)
lal*Rx x(7)

X(t)

aX(t)

Xi(t) + Xal(t) with

X, and X2 orthogonal

X'(t)

X\™H(t)

X(t) exp(jwot)

X (t) cos(wot + ©)
with independent (S] LRxx(T) cos(woT)

‘lfz""..‘-f\' (W)
Rx,x,(7) + Rxaxa(r)  Sxixi(@) + Sx2x, (W)
_d*Rxx(r)/dr?
(=1)"d*" Rxx (r)/dr"™"
exp(jwor)Rxx(T)

w?Sxx(w)
w?" Sx x(w)
Sxx(w

— -I-'U.l

% EE"\ x (W + wo ) + Sxx (w— wo )]

uniform on [—, +)

X(t)+b (X =0) Sx x (w) + 2m|b]*0(w)

Rxx (1) + [b]°

This is completely analogous to the situation in determinist ic linear system theory for
shift-invariant systems.

Another comment would be that if the interpretation of Sx x(w) as a density of average
power is correct, then the constant or mean component has all its average power CONCeL-
trated at w = 0 by the last entry in the table. Also by the next-to-last two entries in
the table, modulation by the frequency wo shifts the distribution of average power up in

frequency by wo. Both of these results should be quite intuitive.

-

correlation function of a white noise process
= g26(7). Hence the power .s'pwtre-\l density

Example 7.5-2
( Power spectral density of white noise.) The
W (t) with parameter o2 is given by Rww (7)

(psd), its Fourier transform, is just

2 .
g, —o0 < w < TOC.

Sww(w) =
The psd is thus flat, and hence the name, white noise, by analogy to white light, which
contains equal power at every wavelength. Just like white light, white noise is an idealization 3
since as we have seen earlier Rww (0) = o<, necessitating infinite

3
that cannot really occur,
power. y

———

-

An Interpretation of the psd

Given a WSS process X (t). consider the finite support segment,

o wiw B xr
Xr(t) £ X (-7 +7)(t);
where I|—T +T) is an indicator function equal to 1if T <t = 4T and equal to 0 otherwise, 3
and T > 0. We can compute the Fourier transform of X7 by the integral
4T
X (t)e ¥t dt.

FT{Xr(t)} = /

J =1

Sxx(w) b
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Figure 7.5-1 a) Square

the transformation s = t;

The magnitude square

|FT{

Dividing by 27T and ta
1 ;

Q—TE [\FT{.\

To evaluate the doubl

tl +12,T = f] -—f-_), _I

is shown in Figure 7.5

the region of integratio

Figure 7.5-1a rotated ¢
double integral in Equ:

1
%]

1 0
=aT /H_R\'x:

1 2T
Tar /0 Rx >

In the limit as T —
thus

so that Sx x(w) is real




