Sums of Random Variables

Random variables of the form
Wo=X1+---+ X, (6.1)

appear repeatedly in probability theory and applications. We could in principle derive the

probability model of W), from the PMF or PDF of X, ..., X,. However, in many practical

applications, the nature of the analysis or the properties of the random variables allow

us to apply techniques that are simpler than analyzing a general n-dimensional probability
: model. In Section 6.1 we consider applications in which our interest is confined to expected
9 values related to W,,, rather than a complete model of W,,. Subsequent sections emphasize
techniques that apply when X, ..., X, aremutually independent. A useful way to analyze
; the sum of independent random variables is to transform the PDF or PMF of each random
z variable to a moment generating function.

The central limit theorem reveals a fascinating property of the sum of independent random
variables. It states that the CDF of the sum converges to a Gaussian CDF as the number of
. terms grows without limit. This theorem allows us to use the properties of Gaussian random
k- variables to obtain accurate estimates of probabilities associated with sums of other random
variables. In many cases exact calculation of these probabilities is extremely difficult.

6.1 Expected Values of Sums

The theorems of Section 4.7 can be generalized in a straightforward manner to describe
expected values and variances of sums of more than two random variables.

Theorem 6.1 For any set of random variables X, . .., . X ., the expected value of W, = X1 +---+ X, is

E[W,]=E[X|]+ E[X2]+ -+ E[X,].

Proof We prove this theorem by induction on n. In Theorem 4.14, we proved E[W;] = E[X ] +
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244 CHAPTER 6 SUMS OF RANDOM VARIABLES

Theorem 6.2

Theorem 6.3

E[X;]. Now we assume E[W,_] = E[X ]+ -+ E[X,—]. Notice that Wy = W,_| + X,. Since
W, is a sum of the two random variables W,,_ and X;, we know that E[W,] = E[W,_| ]+ E[X;,] =
E[X1]1+---+ E[X,—1]1+ E[Xn].

Keep in mind that the expected value of the sum equals the sum of the expected values
whether or not Xy, ...,/ X, are independent. For the variance of W,,, we have the general-

ization of Theorem 4.15:

The variance of Wy = Xy + -+ X, is

n n=1 n
Var[W,] = Y Var[X;1+2)_ Y Cov[Xi, X;].
i=1 i=1 j=i+l]

Proof From the definition of the variance, we can write Var[W,] = E[(W, — EIW,,I'JZI. For
convenience, let j¢; denote E[X;]. Since W, = Y_'_, X, and E[W,] = 3/, i, we can write

af=] *
2
n n n
Var[W,] = E Z(,\',— - ,u,]) =E | (X — ) Z (X; —uj) (6.2)
i=l1 ; i=l j=l1
n n
=ZZCOV[X"XJ]' (6.3)
i=1 j=I
In terms of the random vector X = [X; - X,,]'. we see that Var[W] is the sum of all the

elements of the covariance matrix Cx. Recognizing that Cov[X;, X;] = Var[X] and Cov[X;, X ;] =
Cov[X, X;], we place the diagonal terms of Cx in one sum and the off-diagonal terms (which occur
. . . . - . A

in pairs) in another sum to arrive at the formula in the theorem.

When X1, ..., X, are uncorrelated, Cov[X;, X;] = 0 fori # j and the variance of the
sum is the sum of the variances:

When Xy, ..., X, are uncorrelated,

Var[W,] = Var[X] + - - - 4+ Var[X,].

Example 6.1 Xo. X1, X2, ... is a sequence of random variables with expected values E[X;] = 0

and covariances, Cov[X;, X ;] = 0.8//~/|. Find the expected value and variance of
a random variable ¥; defined as the sum of three consecutive values of the random
sequence

Yi=X;i+ Xi—1 +X;-2. (6.4)
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Applying Theorem 6.2, we obtain for each i,

Var[Y;] = Var[X;] + Var[X; 1]+ Var[X;_2]
+2Cov X, Xi—1] +2Cov [Xi. X _2] +2Cov [Xi=1, X2l (6.6)

We next note that Var[X;] = Cov[X;j, X;] = 0.8~ =1 and that
Cov [X;, Xj—1] = Cov [Xi—1, X;_y]=08'  Cov[Xi, Xi_2]=08% (67

Therefore
Var[¥;] = 3 x 0.8° +4 x 0.8 +2x0.82 =748, (6.8)

The following example shows how a puzzling problem can be formulated as a question
about the sum of a set of dependent random variables.

t

:

Example 6.2 At a party of n > 2 people, each person throws a hat in a common box. The box is ]
e o alcen and each person blindly draws a hat from the box without replacement. We
say a match occurs if a person draws his own hat. What are the expected value and ;

variance of V,, the number of matches? i

Let X; denote an indicator random variable such that

nid his hat,

X; = | person i draws his h 69) F

0 otherwise. i

The number of matches is V, = Xy + -+ X,. Note that the X; are generally not
independent. For example, with n = 2 people, if the first person draws his own hat,
then the second person must also draw her own hat. Note that the ith person is
equally likely to draw any of the n hats, thus Py, (1) = 1/n and E[X;] = Px, (1) = 1/n.
Since the expected value of the sum always equals the sum of the expected values,

EVal=E[X|]+-+EXal=n(/m) =1 (6.10)

To find the variance of V,, we will use Theorem 6.2. The variance of X; is

2 11
Var(X;1 = E[X?] - (E X)) =--— 6.11)

To find Cov[X;, X ], we observe that
Cov[Xi, X;] = E[X:X;] - E[Xi] E[X;]. (6.12)

Note that X; X; = | if and only if X; = 1 and X; =1, and that X;X; =0 otherwise.
Thus
E[XiX;] = Px,.x; (1. 1) = Px;X, (11) Px; (1). (6.13)

Given Xj =1, that is, the jth person drew his own hat, then X; = 1 if and only if the
ith person draws his own hat from the n — 1 other hats. Hence Py, ix; (1) = 1/(n—1)

and , l
Cov[Xi. Xjl=——5 ~ = (6.14)

E [X'.X‘i] - nin—1) n

e S RS

nin—1)"

E_
|
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Finally, we can use Theorem 6.2 to calculate

Var[Vy] = n Var[X;] + n(n — 1)Cov [X;, X;] = 1. (6.15)

That is, both the expected value and variance of V,, are 1, no matter how large n is!

Example 6.3 Continuing Example 6.2, suppose each person immediately returns to the box the hat

that he or she drew. What is the expected value and variance of V,,, the number of
matches?

In this case the indicator random variables X; are iid because each person draws from
the same bin containing all n hats. The number of matches V, = X| +... 4+ X,, is the
sum of » iid random variables. As before, the expected value of V, is

E[Val=nE[X;] =1 (6.16)

In this case, the variance of Vv, eq'uals the sum of the variances,

1 1 1
Var[Vy] = n Var[X;] =n (— - —) =1--. (6.17)

>
n n=

The remainder of this chapter examines tools for analyzing complete probability models
of sums of random variables, with the emphasis on sums of independent random variables.

Quiz 6.1

Let W, denote the sum of n independent throws of a fair four-sided die. Find the

expected
value and variance of W,

6.2 PDF of the Sum of Two Random Variables

Before analyzing the probability model of the sum of n random
variables, it is instructive to examine the sum W = X + ¥ of two
continuous random variables. As we see in Theorem 6.4, the PDF
of W depends on the joint PDF fy y (x, ¥). In particular, in the
proof of the theorem, we find the PDF of W using the two-step
procedure in which we first find the CDF Fyy (w) by integrating the
Joint PDF fy y(x, y) over the region X + Y < w as shown.

Theorem 6.4 The PDFof W = X + Y is

o0 OO
fw (w) = f fxy(x,w—x)dx = ] fxy (w—y,y) dy.
| 78 =

o0

Proof

00 ;o pw—x
Fw(w)=P[X+Y <w]= [ (/ fxy(x,y) (1’_\') dx. (6.18)

v =00 o0

— e = et e TR B et e
il e s o *".‘""'L“ﬂ"""“""_""f'"‘”"""""" B w2 S .dt*' o T4

el
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Example

Theorem 6.5
e e A i
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Taking the derivative of the CDF to find the PDF, we have

_ i Fy (w) 0 /d wx
Fiii) =D =f (‘_ ([ fxy (x.y) (1_\-)) dx (6.19)
dw —oo \dw \J_ao ' /

* 00
/ fxy (x,w—x)dx. (6.20)

J =00

By making the substitution y = w — x, we obtain

00
fw (w) = j fx.y(w—y. vy dy. (6.21)
—00

Example 6.4 Find the PDF of W = X + Y when X and Y have the joint PDF

2 0<y<l,0<x<lx+y=<l,

fxy®. =1 o otherwise.

The PDF of W = X + Y can be found using Theorem 6.4.
The possible values of X, Y are in the shaded triangular
region where 0 < X + ¥ = W < 1. Thus fw(w) = 0 for
w<0orw> 1. For0 < w < I, applying Thearem 6.4
yields

u
X fw (w) = f 2dx = 2w, D<w<l. (6.23)
0

w i
The complete expression for the PDF of W is

w O<w=<l,

- 6.24
otherwise. ( )

2
fw (w) = ( 0

When X and Y are independent, the joint PDF of X and Y can be written as the product
of the marginal PDFs fx y(x,y) = fx(x ) fy (v). In this special case, Theorem 6.4 can be
restated.

Theorem 6.5 When X and Y are independent random variables, the PDF of W = X + Y is

o o] o0
Sw(w) = f fx(w—y) fy(y)dy = f fx (x) fy (w—x) dx.
Y e

o0

In Theorem 6.5. we combine two univariate functions, fy(-) and fy(.), in order to produce
a third function, fw(-). The combination in Theorem 6.5, referred to as a convolution,
arises in many branches of applied mathematics.
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When X and ¥ are independent integer-valued discrete random variables, the PMF of
W = X + Y is a convolution (Problem 4.10.9).

o0
Pw (w) = E Py (k) Py (w — k). (6.25)

k=—00

You may have encountered convolutions already in studying linear systems. Sometimes,
we use the notation fy(w) = fx(x) * fy(y) to denote convolution.

Let X and Y be independent exponential random variables with expected values E[X] =
1/3 and E[Y] = 1/2. Find the PDF of W = X + Y.

6.3 Moment Generating Functions

L10
wiz 6.2
Yefinii Q s
i
Dgﬁniﬁorl 6.1
Ej
Ex

The PDF of the sum of independent random variables Xoronns X, is a sequence of convo-
lutions involving PDFs fx, (x), fx,(x), and so on. In linear system theory, convolution in
the time domain corresponds to multiplication in the frequency domain with time functions
and frequency functions related by the Fourier transform. In probability theory, we can, in
a similar way, use transform methods to replace the convolution of PDFs by multiplication
of transforms. In the language of probability theory, the transform of a PDF or a PMF is a
moment generating function. '

Moment Generating Function (MGF)
For a random variable X, the motent generating function (MGF) of X is

dx(s) =E [e-‘*"].

S

Definition 6.1 applies to both discrete and continuous random variables X. What changes
in going from discrete X to continuous X is the method of calculating the expected value.
When X is a continuous random variable,

-
dx(s) = f e fx (x) dx. (6.26)
—00
For a discrete random variable ¥, the MGF is
dy(s) = D Py (). (6.27)
vieSy

Equation (6.26) indicates that the MGF of a continuous random variable is similar to the
Laplace transform of a time function. The primary difference is that the MGF is defined
for real values of s. For a given random variable X, there is a range of possible values of s
for which ¢y (s) exists. The set of values of s for which ¢y (s) exists is called the region of
convergence. For example, if X isa nonnegative random variable, the region of convergence
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6.3 MOMENT GENERATING FUNCTIONS

PMF or PDF

MGF ¢x(s)

249

l—p x=0

Bernoulli (p) Px(x) P x=1 1 — p+ pe’
0 otherwise
. . n\ .
Binomial (n, p) Px(x) ( )p‘(’l —p)t (1—p-+ pe’)”
X,
_ x—1 — ) 2¥
Geometric (p) Px(x) ’f)( 2 ' L, o O O . S
0 otherwise 1 —(1—pe’
x—1 ne’
Pascal (k, p) Px(x) ( )p‘{l —p)yF (—l——
k—1 1 —(1—p)e’
Xe=@/x! x= 2 :
Poisson (&) Py (x) Syl o el .] """" e(e—1)
0 otherwise
1 sk s(l+1)
) = b ool (RN —€
Disc. Uniform (k, 1) Px(x) =kt X !\'.!\ il =
0 otherwise | —e*
Constant (a) fx(x) d(x —a) e’
; : L a<x<b els — e
Uniform (a, b) fx(x) b—a e —_—
’ . 0 otherwise s(b—a)
. . . re ™ x=0 P
Exponential () r il
P W) fx(x) { 0 otherwise A—5
)_n_\n—\(,—i\\ !
Erlang (n, A) fx(x) (n—=1)! xz0 ) (- )"
0 otherwise A—3S
Gaussian (@, o) fx(x) ],Te""‘“:"‘z"k eShtsta?/2
[« EVS 4

Table 6.1 Moment generating function for families of random variables.

includes all s < 0. Because the MGF and PMF or PDF form a transform pair, the MGF
1 is also a complete probability model of a random variable. Given the MGF, it is possible
k3 to compute the PDF or PMF. The definition of the MGF implies that ¢x (0) = E[e" = 1.

Moreover, the derivatives of ¢y (s) evaluated at s = 0 are the moments of X.

|
5
'
il
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Theorem 6.6

A random variable X with MGF ¢x(s) has nth moment

n - |
plxr] = K8

ds"

Proof The first derivative of ¢x (5) 18

1oy (s i © : ©
dex®) . 2. ( f e fx (x) d,\-) - [ xe®™ fx (x) dx. (6.28)
ds ds \J-ec —00

Evaluating this derivative ats = 0 proves the theorem forn = 1.

dox(s)
ds

r 00
= j xfx (x) dx = E(X]. (6.29)
s=0 —00

Similarly, the nth derivative of ¢y (§) 1

{n () oo 5
d"px (s = j e’ fy (x) dx. (6.30)
—00 -

ds"

The integral evaluated at s = 0 is the formula in the theorem statement.

- s el

Typically itis easier to calculate the moments of X by finding the MGF and differentiating
than by integrating x" fx (x).

Example 6.5 X is an exponential random variable with MGF ¢y (s) = A/(h — 5). What are the first

Theorem 6.7

and second moments of X7 Write a general expression for the nth moment.

i dox(s)
E[X]= —i——

|
s=0 (A -‘H: ls=0 .

The second moment of X is the mean square value:

2dy(s 2) 2
5 [xll _ qb,xqm _ % \ = i (6.32)
ds? | _o - 5P ls=0 A

Proceeding in this way, it should become apparent that the nth moment of X is

E[X“] - d"¢x(s) = r__ﬂl,'\_— = -n—|- (6.33)
A" |mg  G—sltll=o A

Table 6.1 presents the MGF for the families of random variables defined in Chapters 2
and 3. The following theorem derives the MGF of a linear transformation of a random

variable X in terms of ¢x (5).

The MGF of Y =aX +bis¢r(s) = Loy (as).

Proof From the definition of the MGF,

Quiz 6.3
#

Theorem
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Py (s) = E [(,.s'('a,\’+bj] = e.th [(,UHJX:, — é’”’cﬁ‘x (as). (6.34)

Quiz 6.3

e e T—

Random variable K has PMF
02 k=0,.... 4
Pr (k) = [ 0 otherwise. (6.35)

Use the MGF ¢ (s) to find the first, second, third and fourth moments of K.

6.4 MGF of the Sum of Independent Random Variables

Moment generating functions are particul

random variables, because if X and ¥ are
product:

arly useful for analyzing sums of independent
independent, the MGF of W = x + Y is the

dw(s) = E [e“'xc"‘ "'] —E [c\] E [e-""] = dx (s)oy (s). (6.36)

Theorem 6.8 generalizes this result to a sum of n independent random variables,

Theorem 6.8 For a set of independent random variables X |, . . .
————————

s Xn, the moment generating function of
””:X[ +-+ X, is

Pw(s) = dx, ()ex, (s) - - “@x, (5).

When X, .. .. Xy are iid, each with MGF ox, (5) = ¢y (s),

dw(s) = [px(s)]".

Proof From the definition of the MGF,

dw(s) = E [E.\(.\’L+---T.‘f,,l] =F [t,‘\(\'](;‘\.‘fg . (,A’.Y,,]. (6.37)

Here, we have the expected value of a

product of functions of independent random variables. Theo-
rem 5.9 states that this expected value

is the product of the individual expected values:
E[g1(X1)ga(X7) - “8n(Xn)] = E [g1(XD] E [02(X2)] - E [ (X,)].
By Equation (6.38) with 8i(X;) = e5X

(6.38)

!, the expected value of the product is

bw(s) = E [ef"l] E {e-“x!] oo E [p‘“""] = 0x,(5)px,(5) -+ py_(s). (6.39)

When X1, ..., . Xn areiid, ¢y, (5) = ¢x (5) and thus Pw (s) = (pw(s))".

e —
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Moment generating functions provide a convenient way to study the properties of sums
of independent finite discrete random variables.
|
Example 6.6 J and K are independent random variables with probability mass functions
)2 J=
(06 =1 0.5 k=-—1, f'
P =1 o5 f.:;' Prkk)=1 05 k=1, (6.40) ;
& I R 0  otherwise. i
0 otherwise, :
k
Find the MGF of M = J + K? What are E[M?] and Py (m)? r
J and K have have moment generating functions J Theore
¢ (s) = 0.2¢* +0.6¢% +0.2¢°°, Pr(s) =0.5¢° +0.5¢°. (6.41)
Therefore, by Theorem 6.8, M = J + K has MGF ;
dum(s) = s ()dx (s) = 0.1 +0.3¢° + 0.2¢* + 0.3 +0.1e*. (6.42) ’
To find the third moment of M, we differentiate ¢ (s) three times:
31 dom(s)|
E [M-} = SomE (6.43)
ds- .
s=0
= 0.3¢° +0.2(2%)e® 4 0.3(3%)e? +0.1(43)e™ o= 164 (6.44)
= .
The value of Py, (m) at any value of m is the coefficient of ¢ in ¢y (s):
dpls)=E [u-"-‘”] = 0.1 + 03 &'+ 02 e¥+ 03 ¥+ 0.1 &¥. (645
—_— —— . —— S —
Py (0)  Py(1) Py(2) Py (3) Py (4)
The complete expression for the PMF of M is
0.1 m=0,4, Theoren
: 03 m=1,3, . 3
Fy (m) = 02 m=2, L
0 otherwise. o
’e

Besides enabling us to calculate probabilities and moments for sums of discrete random
variables, we can also use Theorem 6.8 to derive the PMF or PDF of certain sums of iid E
random variables. In particular, we use Theorem 6.8 to prove that the sum of indepen- .
dent Poisson random variables is a Poisson random variable, and the Sum of independent
Gaussian random variables is a Gaussian random variable.

Theorem 6.9 )3 & [Pa—_— K, are independent Poisson random variables, W = K|+ - -+ K, is a Poisson =
. random variable.

] ik

Proof We adopt the notation E[K;] = «; and note in Table 6.1 that K; has MGF ok, (s) = %€~ B . Quiz 6.4
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By Theorem 6.8,

ot — t"‘ ¥ — Lves=t .l\' 7
ow(s) = L;“I“ 'I)L,Lxgll 1 ... L',u,,iz 1} = (‘Iup— tay) et —1) — glo7 et —1) (6.47)

where a = ay + - T &n: Examining Table 6. |. we observe that dw (s) is the moment generating
function of the Poisson (1) random variable. Therefore,

ae % /w! w= 0, 1, -
Pww)=1 of g (6.48
w (W) { 0 otherwise. )

Theorem 6.10 The sum of n independent Gaussian random variables W = X1+ " 4+ X, is a Gaussian
= random variable.

Proof For convenience, let i = E[X;)and (TI: — Var[X;]. Since the X; are independent, we know

that
dw(s) = dx,(§ yhx,(5) - -¢px, () (6.49)
= t).\‘;u*cr%s:,.’lf,,\'jtg-t—all,\],!"2 (,.V.f.l,a-*-ﬁ,}&': /2 (6.50)
= (,\lul-.v—-‘——r-u“)*(nllﬁr —--rn,fl\:,.‘._ 6.51)

From Equation (6.5 ), we observe that ¢ (s)isthe moment generating function of a Gaussian random
)

- . . 2
variable with expected value py + -+ Hn and variance o7 + + oy

e

In general, the sum of independent random variables in one family is a different kind of
random variable. The following theorem shows that the Erlang (n, ») random variable is
the sum of n independent exponential (1) random variables.

Theorem 6.11 1P STRERE X, are iid e,\'pmrerlrr'al' (») random variables, then wW=Xi1+ T X, has the -

Erlang PDF

A=l A

fw (w) = (=1
A 0 —-aijrer'wise.

w =0,

Proof 1nTable 6.1 we observe that each X; has MGF ¢x () = A/ —5). By Theorem 6.8, W has
MGF

n

ow(s) = (J—) . (6.52)

A—SF
Returning to Table 6.1, we see that W has the MGF of an Erlang (. ) random variable.
Similar reasoning demonstrates that the sum of n Bernoulli (p) random variables is the
binomial (n, P) random variable, and that the sum of k geometric (p) random variables is
a Pascal (k, p) random variable. :

i Qui: 6.4

e gz T

:
g
]
t
‘é
‘i
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(A) Let Ky, K>, ..., K be iid discrete uniform random variables with PMF 3 MI_‘Z,

lin k= 1% v n,

Pg (k) = 0 otherwise.

(6.53) F

Find the MGF of ] = Ky + -+ + K. 5

(B) Let Xy, ..., X, be independent Gaussian random variables with E[X; = 0] and
Var[X;] = i. Find the PDF of

W =aX| +o?Xs+ - +a"X,. (6.54)
—— ?

6.5 Random Sums of Independent Hand.om Variables

Many practical problems can be analyzed by reference to a sum of iid random variables in
which the number of terms in the sum is also a random variable. We refer to the resultant
random variable, R, as a random sum of iid random variables. Thus, given a random
variable N and a sequence of iid random variables X, X», ..., let

. R=X1+--+Xpn. (6.55)

The following two examples describe experiments in which the observations are random
sums of random variables.

Example 6.7 At a bus terminal, count the number of people arriving on buses during one minute. If
B the number of people on the ith bus is K; and the number of arriving buses is N, then -
the number of people arriving during the minute is b,

R=K|+ -+ Kpn. (6.56)

In general, the number N of buses that arrive is a random variable. Therefore, R is a A Exam
random sum of random variables. 2 B S—

Example 6.8 Count the number N of data packets transmitted over-a communications link in one
" minute. Suppose each packet is successfully decodéd with probability p, independent e
of the decoding of any other packet. The number of successfully decoded packets in .

the one-minute span is i

R=X1+ - -+Xpn. (6.57) B

where X; is 1 if the ith packet is decoded correctly and 0 otherwise. Because the e
number N of packets transmitted is random, R is not the usual binomial random
variable.

B

In the preceding examples we can use the methods of Chapter 4 to find the joint PMF
Py r(n, r). However, we are not able to find a simple closed form expression for the PMF
Pr(r). On the other hand, we see in the next theorem that it is possible to express the
probability model of R as a formula for the moment generating function ¢z (s).
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Example 6,10  Let X, X, ... be a sequence of independent Gaussian (100,10) random variables. If .
= 1 is a Poisson (1) random variable independent of X, X ..., find the expected value :

The PDF and MGF of R are complicated. However, Theorem 6.13 simplifies the
calculation of the expected value and the variance. From Appendix A, we observe
that a Poisson (1) random variable also has variance I. Thus

E[R] = E[X]EI[K]= 100, (6.69)
and
Var[R] = E [K] Var[X] + var[K] (E [X])? = 100 + (100)% = 10, 100. (6.70)

We see that most of the variance is contributed by the randomness in K. This is
true because K is very likely to take on the values 0 and 1, and those two choices
dramatically affect the sum. j

s - )

Quiz 6.5 Let X1, X2, ... denote a sequence of iid random variables with exponential PDF |5

X e x=0, a‘

JxX =19 otherwise. (o) iE

Let N denote a geometric (1/5) random variable. { 3

. o

(1) What is the MGF of R = X1 + -+ XN7 *'

(2) Find the PDF of R. K

g i

. R i

: h
6.6 Central Limit Theorem >

=', L]
Probability theory provides us with tools for interpreting observed data. In many practical Pt
situations, both discrete PMFs and continuous PDFs approximately follow a bell-shaped i |

curve. For example, Figure 6.1 shows the binomial (n, 1/2) PMF forn = 5,n = 10 and
n = 20. We see that as n gets larger, the PMF more closely resembles a bell-shaped curve.
Recall that in Section 3.5, we encountered a bell-shaped curve as the PDF of a Gaussian &
random variable. The central limit theorem explains why so many practical phenomena
produce data that can be modeled as Gaussian random variables. _

We will use the central limit theorem to estimate probabilities associated with the iid i

sum W, = X; + --- + X,. However, as n approaches infinity, E[W,] = nux and i
: Var[W, ] = n Var[X] approach infinity, which makes it difficult to make a mathematical - E
n - 1
3 statement about the convergence of the CDF Fy, (w). Hence our formal statement of the f 1
central limit theorem will be in terms of the standardized random variable i ]
n . 8
"X —nux g
Zy = _ZLI_'__L_ (6.72) §
I

VHO'",,

e
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Figure 6.1 The PMF of the X, the number of heads in n coin flips forn = 5, 10, 20. As n increases,
the PMF more closely resembles a bell-shaped curve.

We say the sum Z,, is standardized since for all n

E[Z,]=0, Var[Z,] = 1. (6.73)

Central Limit Theorem

Given X1, X2, . . ., a sequence of iid random variables with expected value py and variance
2 . / 3

oy, the CDF of Z, = (}_{_) Xi —nux)/~noy has the property

lim Fz, (z) = ®(2).

n—od

The proof of this theorem is beyond the scope of this text. In addition to Theorem 6.14,
there are other central limit theorems, each with its own statement of the sums W,. One
remarkable aspect of Theorem 6.14 and its relatives is the fact that there are no restrictions
on the nature of the random variables X; in the sum. They can be continuous, discrete, or
mixed. In all cases the CDF of their sum more and more resembles a Gaussian CDF as the
number of terms4fi the sum increases. Some versions of the central limit theorem apply to
sums of sequences X; that are not even iid.

To use the central limit theorem, we observe that we can express the iid sum W, =
X1+ -+ X,as

W, =V no_% Zn+nuy. (6.74)

The CDF of W, can be expressed in terms of the CDF of Z,, as

—— w—npx "
Fw,(w)=P [\ noyZy +npx < ur] =3 (t) . (6.75)
il Vno‘%

For large n, the central limit theorem says that Fz, (z) &~ ®(z). This approximation is the
basis for practical applications of the central limit theorem.
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Figure 6.2 The PDF of W, the sum of n uniform (0, 1) random variables, and the corresponding
central limit theorem approximation for n = 1, 2, 3, 4. The solid — line denotes the PDF fw, (w),
while the — - — line denotes the Gaussian approximation.

Central Limit Theorem Approximation .
Let Wy, = X| + -+ X,, be the sum of n iid random variables, each with E[X] = ux and
Var[X] = g%. The central limit theorem approximation to the CDF of W, is

r N w—niyx
w, w)yxbd| ——|.
Vnoy

9

We often call Definition 6.2 a Gaussian approximation for W,,.

To gain some intuition into the central limit theorem, consider a sequence of iid con-
tinuous random variables X;, where each random variable is uniform (0,1). Let
Wop=X;+ -+ Xn. (6.76)

—

Recallthat E[X] = 0.5 and Var[X] = 1/12. Therefore, W, has expected value E[W,] =
n/2 and variance n/12. The central limit theorem says that the CDF of W, should
approach a Gaussian CDF with the same expected value and variance. Moreover,
since W, is a continuous random variable, we would also expect that the PDF of W,
would converge to a Gaussian PDF. In Figure 6.2, we compare the PDF of W, to the
PDF of a Gaussian random variable with the same expected value and variance. First,
W, is a uniform random variable with the rectangular PDF shown in Figure 6.2(a).
This figure also shows the PDF of W, a Gaussian random variable with expected
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Figure 6.3 The binomial (n, p) CDF and the corresponding central limit theorem approximation
forn =4,8,16,32,and p = 1/2.

Example 6.12

value u = 0.5 and variance o2 = 1/12. Here the PDFs are very dissimilar. When we
consider n = 2, we have the situation in Figure 6.2(b). The PDF of W, is a triangle with
expected value 1 and variance 2/12. The figure shows the corresponding Gaussian
PDF. The following figures show the PDFe of Wx, ..., Ws. The convergence to a bell
shape is apparent.

Now suppose W, = X| + --- + X, is a sum of independent Bernoulli (p) random
variables. We know that W,, has the binomial PMF

Pw, (w) = (”)‘"““] -p)"r. (6.77)
) w

No matter how large n becomes, W, is always a discrete random variable and would
have a PDF consisting of impulses. However, the central limit theorem says that the
CDF of W;, converges to a Gaussian CDF. Figure 6.3 demonstrates the convergence
of the sequence of binomial CDFs to a Gaussian CDF for p = 1/2 and four values
of n, the number of Bernoulli random variables that are added to produce a binomial
random variable. For n > 32, Figure 6.3 suggests that approximations based on the
Gaussian distribution are very accurate.

et

Quiz 6.6 The random variable X milliseconds is the total access time (waiting time + read time) to
get one block of information from a computer disk. X is uniformly distributed between 0 and
12 milliseconds. Before performing a certain task, the computer must access 12 different

[ P

6.7 Appli

Example
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blocks of information from the disk. (Access times for different blocks are independent of one
another.) The total access time for all the information is a random variable A milliseconds.

(1)

What is E[ X, the expected value of the access time?

What is Var[ X ], the variance of the access time?

What is E[A], the expected value of the total access time?
What is o 4, the standard deviation of the total access time?

Use the central limit theorem to estimate P[A > 75 ms), the probability that the total
access time exceeds 75 ms.

Use the central limit theorem to estimate P[A < 48 ms], the probability that the total
access time is less than 48 ms.

6.7 Applications of the Central Limit Theorem

In addition to helping us understand why we observe bell-shaped curves in so many situ-
ations, the central limit theorem makes it possible to perform quick, accurate calculations
that would otherwise be extremely complex and time consuming. In these calculations,
the random variable of interest is a sum of other random variables, and we calculate the
probabilities of events by referring to the corresponding Gaussian random variable. In the
following example, the random variable of interest is the average of eight iid uniform random
variables. The expected value and variance of the average are easy to obtain. However, a
complete probability model is extremely complex (it consists of segments of eighth-order
polynomials). .

Example 6.13

A compact disc (CD) contains digitized samples of an acoustic waveform. In a CD
player with a “one bit digital to analog converter,” each digital sample is represented
to an accuracy of +£0.5 mV. The CD player “oversamples” the waveform by making
eight independent measurements corresponding to each sample. The CD player
obtains a waveform sample by calculating the average (sample mean) of the eight
measurements. What is the probability that the error in the waveform sample is greater
than 0.1 mvV?

The measurements X, X7..... Xg all have a uniform distribution between v — 0.5 mV
and v+ 0.5 mV, where v mV is the exact value of the waveform sample. The compact
disk player produces the output U = Wy/8, where

8
Wy =) X;. (6.78)

=1

To find P[|U — v| > 0.1] exactly, we would have to find an exact probability model for
Wg, either by computing an eightfold convolution of the uniform PDF of X; or by using
the moment generating function. Either way, the process is extremely complex. Al-
ternatively, we can use the central limit theorem to model Wy as a Gaussian random
variable with E[Wg] = 8ux = 8v mV and variance Var[Wg] = 8 Var[X] = 8/12.
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Therefore, U is approximately Gaussian with E[U] = E[Wg]/8 = v and variance
Var[Wg]/64 = 1/96. Finally, the error, U — v in the output waveform sample is approx-
imately Gaussian with expected value 0 and variance 1/96. It follows that

PlU -v|>0.1]=2 [1 —® (m,wfl,f%ﬂ = 0.3272. (6.79)

The central limit theorem is particularly useful in calculating events related to binomial
random variables. Figure 6.3 from Example 6.12 indicates how the CDF of a sum of n
Bernoulli random variables converges to a Gaussian CDF. When n is very high, as in the
next two examples, probabilities of events of interest are sums of thousands of terms of a
binomial CDF. By contrast, each of the Gaussian approximations requires looking up only
one value of the Gaussian CDF ¢ (x).

Example 6.14 A modem transmits one million bits. Each bit is 0 or 1 independently with equal
) probability. Estimate the probability of at least 502,000 ones.

Let X; be the value of bit i (either 0 or 1). The number of ones in one million bits is W =
Zi.“:’('l X;. Because X, is a Bernoulli (0.5) random variable, E[X;] = 0.5 and Var[X;]

0.25 for all i. Note that E[W] = 1[)°E[X,‘] = 500,000 and Var[W] = 106 Var[ X;]
250,000. Therefore, oy = 500. By the central limit theorem approximation,

P[W >502,000] = 1 — P[W < 502,000] (6.80)
502,000 — 500,000
~l-o (——

=1— D). 6.81)
500 ) K (

Using Table 3.1, we observe that | — @ (4) = Q(4) = 3.17 x 1075,

Example 6.15  Transmit one million bits. Let A denote the event that there are at least 499,000 ones
‘ but no more than 501,000 ones. What is P[A]?

As in Example 6.14, E[W] = 500,000 and oy = 500. By the central limit theorem
approximation,

P[A]= P[W < 501,000 — P [W < 499,000] (6.82)
501,000 — 500,000 499,000 — 500,000
- q)( = ) - (i) (6.83)
500 500
=P(2) — P(-2) =0.9544 (6.84)

e ]

These examples of using a Gaussian approximation to a binomial probability model contain
events that consist of thousands of outcomes. When the events of interest contain a small
number of outcomes, the accuracy of the approximation can be improved by accounting
for the fact that the Gaussian random variable is continuous whereas the corresponding
binomial random variable is discrete.

| In fact, using a Gaussian approximation to a discrete random variable is fairly common.
We recall that the sum of n Bernoulli random variables is binomial, the sum of n geometric
random variables is Pascal, and the sum of n Bernoulli random variables (each with success

Definiti

.

im




Definition 6.3

6.7 APPLICATIONS OF THE CENTRAL LIMIT THEOREM 263

probability A/n) approaches a Poisson random variable in the limit as n = ©0. Thus a
Gaussian approximation can be accurate for a random variable K that is binomial, Pascal,
or Poisson.

In general, suppose K is a discrete random variable and that the range of K is Sk C
(ntln =0, £1,£2.. .}. For example, when K is binomial, Poisson, or Pascal, T = 1 and
Sg =1(0,1,2...} We wish to estimate the probability of the event A = (k} < K = ka},
where k; and k2 are integers. A Gaussian approximation to P[A] is often poor when k| and
k, are close to one another. In this case, we can improve our approximation by accounting
for the discrete nature of K. Consider the Gaussian random variable, X with expected value
E[K and variance Var[K]. An accurate approximation to the probability of the event Ais

P[A] = P]klwr/ZSXSkg-i—r/Z] (6.85)
k3+r/2—ElK]) (k;—t/?_—E[K]')

— & «— =~ V| ——) - (6.86

( Var[K ] W/ Var[K ] )

When K is a binomial random variable for n trials and success probability p, E[K] = np,
and Var[K] = np(l — p). The formula that corresponds to this statement is known as the
De Moivre-Laplace formula. It corresponds to the formula for P[A] with T = 1.

De Moivre-Laplace Formula
For a binomial (n, p) random variable K,

Pk < K < ko] ¢(k3+().5—np) q)(kI#O.S—:r,r)) .
(] = <K= - e i
vnp(l—p) CAnp(l=p)

To appreciate why the +0.5 terms increase the accuracy of approximation, consider the
following simple but dramatic example in which ky = ka.

Example 6.16 Let K be a binomial (n = 20, p =0.4) random variable. What is P[K = 817

Since E[K] = np = 8 and Var[K] = np(l — p) = 4.8, the central limit theorem
approximation to K is a Gaussian random variable X with E[X] =8 and Var[X] = 4.8.
Because X is a continuous random variable, P[X = 8] = 0, a useless approximation
to P[K = 8]. On the other hand, the De Moivre-Laplace formula produces

PB<K <8~ P[15= < 8.5] (6.87)

<X
( 3 ) qa(ﬁ":—’\) 0.1803 (6.88)
- ) =080 :

The exact value is () (0.H8(1 — 0.4)!? = 0.1797.

Example 6.17 K is the number of heads in 100 flips of a fair coin. What is P[50 < K < 51]?

- P[50 < K < 51] = Pk (50) + Pg (51) (6.89)

100" 100 00\ /1)
= ( UO) (i) + (l_ ) (—) = 0.1576. (6.90)
50/ \2 51 2

e i e

\
]
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Since E[K] = 50 and ox = vnp(l —p) = 5, the ordinary central limit theorem
approximation produces

51— 50 50 — 50
P[505K5511x¢>( . )7¢(“ . ):0.0793. (6.91)

This approximation error of roughly 50% occurs because the ordinary central limit
theorem approximation ignores the fact that the discrete random variable K has two
probability masses in an interval of length 1. As we see next, the De Moivre—Laplace
approximation is far more accurate.

51+0.5 — 50 50 — 0.5 — 50
P|505K55l]’~:<b( : )—tb(-———q———) (6.92)
= ©(0.3) — ®(—0.1) = 0.1577. (6.93)

Although the central limit theorem approximation provides a useful means of calculating
events related to complicated probability models, it has to be used with caution. When the
events of interest are confined to outcomes at the edge of the range of a random variable,
the central limit theorem approximation can be quite inaccurate. In all of the examples in
this section, the random variable of interest has finite range. By contrast, the corresponding
Gaussian models have finite probabilities for any range of numbers between —o0 and 0.
Thus in Example 6.13, P[U —v > 0.5] = 0, while the Gaussian approximation suggests

", that P[U — v > 0.5] = Q(0.5/« 1/96) = 5 X 1077. Although this is a low, probability,

l there are many applications in which the events 'of interest have very low probabilities
or probabilities very close to 1. In these applications, it is necessary to resort to more
complicated methods than a central limit theorem approximation to obtain useful results.
In particular, it is often desirable to provide guarantees in the form of an upper bound rather
than the approximation offered by the central limit theorem. In the next section, we describe
one such method based on the moment generating function.

Quiz 6.7 Telephone calls can be classified as voice (V) if someone is speaking or data (D) if there
= is @ modem or fax transmission. Based on a lot of observations taken by the telephone
company, we have the following probability model: P[V]= 3/4, P[D] = 1/4. Data calls
and voice calls occur independently of one another. The random variable K, is the number
of voice calls in a collection of n phone calls.

(1) What is E[Kag), the expected number of voice calls in a set of 48 calls?
(2) What is ok, the standard deviation of the number of voice calls in a set of 48 calls?

(3) Use the central limit theorem to estimate P[30 < Kag < 42], the probability of be-
tween 30 and 42 voice calls in a set of 48 calls.

(4) Use the De Moivre-Laplace formula to estimate P[30 < Kag < 42].
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6.8 The Chernoff Bound

I‘heorem 6.15

We now describe an inequality called the Chernoff bound. By referring to the MGF of a
random variable, the Chernoff bound provides a way to guarantee that the probability of an
unusual event is small.

Chernoff Bound
For an arbitrary random variable X and a constant c,

P[X = ¢] <min e *“¢x(s).
s>0
Proof In terms of the unit step function, u(x), we observe that

00 o
P[X =c]= / fx (x) dx = [ u(x —c)fy (x) dx. (6.94)

—00

Foralls > 0, u(x —¢) < &5~ This implies

PlX =¢)] < / e £ (x) dx = e_""f e fx (x) dx = e oy (s). (6.95)
—00 —00
This inequality is true for any s > 0. Hence the upper bound must hold when we choose s to minimize
e oy (s).

The Chernoff bound can be applied to any randw variable. However, for small values
of ¢, e™* ¢y (s) will be minimized by a negative” value of 5. In this case, the minimizing
nonnegative s is s = 0 and the Chernoff bound gives the trivial answer P[X > ¢] < 1.

Example 6.18 If the height X, measured in feet, of a randomly chosen adult is a Gaussian (5.5, 1)

random variable, use the Chernoff bound to find-an upper bound on P[X > 11].

In Table 6.1 the MGF of X is

by (s) = (1154572, (6.96)
Thus the Chernoff bound is
P[X > 11] < min e~ 1se(11s+5%)/2 _ mi?) els?=115)/2, (6.97)
5s=>0 5>

To find the minimizing s, it is sufficient to choose s to minimize A(s) = s2 — 11s. Setting
the derivative dh(s)/ds = 2s — 11 = 0 yields s = 5.5. Applying s = 5.5 to the bound
yields
PX > 11] < e —119)/2 . = e~ 2 271077, (6.98)
§F=2.0
Based on our model for adult heights, the actual probability (not shown in Table 3.2)
is Q(11 —5.5) =1.90 x 1078,

Even though the Chernoff bound is 14 times higher than the actual probability, it still
conveys the information that the chance of observing someone over 11 feet tall is ex-
tremely unlikely. Simpler approximations in Chapter 7 provide bounds of 1/2 and 1/30 for
P[X > 11].




