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.8 Conditioning by an Event

efinition 4.9

teorem 4.19

An experiment produces two random variables. X and Y. We learn that the outcome (x, y) is
an element of an event, B. We use the information (x, y) € B toconstruct a new probability
model. If X and ¥ are discrete, the new model is a conditional joint PMF, the ratio of the
Joint PMF to P[B]. If X and ¥ are continuous. the new model is a conditional joint PDF,
defined as the ratio of the joint PDF to P[B]. The definitions of these functions follow from
the same intuition as Definition 1.6 for the conditional probability of an event. Section 4.9
considers the special case of an event that corresponds to an observation of one of the two
random variables: either B = {(X=x},orB={(Y = v}

Conditional Joint PMF

For discrete random variables X and Y and an event, B with P[B] > 0, the conditional
Joint PMF of X and Y given B is

Pxyig(x,y)=P[X =x,Y = y|B].

The following theorem is an immediate consequence of the definition.

For any event B, a region of the X, Y plane with P[B] > 0,

Pxy (x,y)
Pxyg(x,y) = P[B]

0 otherwise.

(x,y) € B,

Example 4.13

1
Px y(x,y) o6

1
ol @T6

L Random variables X and ¥ have the joint PMF Py y(x, v)

of olf el5 as shown. Let B denote the event X -+ ¥ < 4. Find the
] oi of o ot conditional PMF of X and ¥ given B.

v Event B = ((1,1). (2. 1).(2,2). (3. 1)) consists of all points
' (x.y) such that x + y < 4. By adding up the probabilities of
all outcomes in B, we find

P[Bl=Pxy(,1)+ Px y (2, 1)

L]
L ]
L J
0
| <

+ Pxy(2,2)+ Pxy (3, 1) =

]

The conditional PMF Py y|p(x, y) is shown on the left,
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178 CHAPTER 4 PAIRS OF RANDOM VARIABLES

In the case of two continuous random variables, we have the following definition of the
conditional probability model.

Definition 4.10 Conditional Joint PDF
_— Given an event B with P[B] > 0, the conditional joint probability density function of X
and Y is
x,y)
. _f_i{_)i_( (x‘ '\") € B‘
fx‘}‘m(.t'._\‘)‘—’ P [B]
0

otherwise.

Example 4.14 X and Y are random variables with joint PDF

1/15 0=<x <50<y=<3

rvi(x.y)= 4.83
fx.y (5:3) 0 otherwise. (4.82)
Find the conditional PDF of X and Y given theevent B= (X +Y = 4).
We calculate P[B] by integrating fx,y(x,¥) over the region B.
}?
A 3 pS5 1
[ B P[B] = f f - dxdy (4.84)
- o 0 Ja—y 15
1 3
=2 .!0 (1+y)dy (4.85)
L .4 =1/2. (4.86)
Definition 4.10 leads to the conditional joint PDF
3 x <5, § 23X ) > 4, ;
fx.y|B (x,¥)= 3“5 O3 £5,05Y 532 P2 (4.87)

otherwise.

p——— ]

Corresponding to Theorem 4.12, we have
Theorem 4.20  C onditional Expected Value
— For random variables X and Y and an event B of nonzero probability, the conditional

expected value of W=2g(X,Y) given B is

Discrete: E[W|B1= Y 2 8 NPxyip Xy,

xeSx yeSy

o0 o0
Continuous: E [W|B] = f f g(x, ) fx.y\B (X, y) dxdy.
—00 J—00

S ——

Another notation for conditional expected value 1S LW|B-

Definitio

P S —

Theorem

Exa

Exa
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- : 1G in Quiz 4.2
n4.11 Conditional variance : C
The conditional variance of the random variable W — g(X.Y)is .
=7 —
£§=< g
: ) 024 0.12
Var [WIB] = E[(W = ) 18]. 0.16 008
Another notation for conditional variance is aﬁ.m. The following formula is a convenient 'pendent?

computational shortcut, suted with prob-

121
2 (4.144)
Var [W|B] = E[W:[B] ~ Gawip)?.
7 = max(X, X2).
nple 4,15 Continuing Example 4.13, find the conditional expected value and the conditional vari-
- anceof W=x + vy given the event B — (X+7Y <4).
We recall from Example 4.13 that Px y|8(x, y) has four points with nonzero proba- with the property
bility: (1, 1), (1, 2), (1,3), and (2, 2). Their probabilities are 3,7, 3/14, 1/7, and 3/14,
respectively. Therefore,
E[W|B] = Z“’ + ¥)Px y|g (x, ) ; (4.88) —
v,y neters [Ly, 01, L2,
23 433 4l+43 i 4.89) ‘
=L=4 33— - —_ = "
7 | M 7 14 14 ; N
Similarly, )-
E [l1’3|8] =D 6+ 2Py yip (x, y) (4.90)
X, ) —
53 5 3 51 7 3 131
=432 L 20 491
7 T 14 * 7 14 14 l 4 1
p < 1,
The conditional variance is Var[W|B] = E[W‘?IBJ—(E[WIB}_)? = (131/14)~(41/14)2 = e
153/196.
le 4.16 Continuing Example 4.14, find the conditional expected value of W = xy given the .01 =0z =1, and
R event B = (X + ¥ > 4). etry of a sombrero.
.................................................................................... nen p = —0.9 there
¥ as p — =+1.
A For the event B shown in the adjacent graph, Example 4.14 PDF, we define
1 showed that the conditional PDF of X, ¥ given B is
| 2/15 0<x<50<y<3 (x y) € B, 2 (4.145)

Tx.xg (x,y) = ! 0 otherwise.
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Quiz 4.8

From Theorem 4.20,

3 r5 9
E[XY|B] = [ j —xydxdy (4.92)
) 4—y 15
L 37 55
== / (.\--J ) ydy (4.93)
15Jp \ l4-y
l 3 2 } ]23 10
=13 /(; (9}.'+ 8y~ — ) dy = =" (4.94)
(A) From Example 4.8, random variables L and T have joint PMF
PLr(l 1) | t =40sec t = 60sec
I =1 page | 0.15 0.1 x
‘ 4.95
| = 2 pages | 0.3 0.2 ( )
| = 3 pages | 0.15 0.1

For random variable V. = LT, we define the event A = [V > 80). Find the condi-
tional PMF Py r1a(l,t) of L and T given A. What are E[V|A] and Var[V |A]?

(B) Random variables X and Y have the joint PDF

xy/4000 1<x <3,40 <y <60,

frr =) =1 g (4.96)

otherwise.

For random variable W = XY, we define the event B = (W > 80). Find the
conditional joint PDF fx yg(l,t) of X and Y given B. What are E[W|B] and
Var[W|B]?

4.9 Conditioning by a Random Variable

In Section 4.8, we use the partial knowledge that the outcome of an experiment (x, y) € B
in order to derive a new probability model for the experiment. Now we turn our attention
to the special case in which the partial knowledge consists of the value of one of the
random variables: either B = (X = x} or B = (¥ = y}. Learning {¥Y = y} changes our
knowledge of random variables X, ¥. We now have complete knowledge of ¥ and modified
knowledge of X. From this information, we derive a modified probability model for X. The
new model is either a conditional PMF of X given Y or a conditional PDF of X given Y.
When X and Y are discrete, the conditional PMF and associated expected values represent a
specialized notation for their counterparts, Py y|p(x, y) and E[g(X, Y)|B] in Section 4.8.
By contrast, when X and Y are continuous, we cannot apply Section 4.8 directly because
P[B] = P[Y = y] = 0 as discussed in Chapter 3. Instead, we define a conditional PDF as
the ratio of the joint PDF to the marginal PDF.

Defini

Theo.




4.9 CONDITIONING BY A RANDOM VARIABLE

Definition 4.12  Conditional PMF

For any event Y = y such that Py(y) > O, the conditional PMF of X given Y = y is

Pxiy (x]y) = P[X =x|Y = y].

The following theorem contains the relationship between the joint PMF of X and ¥ and

the two conditional PMFs, Py y(x|y) and Py x (y|x).

Theorem 4.22
o and Py(y) > 0,

Pxy (x,y) = Pxjy (x|y) Py (¥) = Py|x (y|x) Px (x).

For random variables X and ¥ with joint PMF Py y (x, ¥), and x and y such that Px(x) >0

Proof Referring to Definition 4.1 2, Definition 1.6, and Theorem 4.3, we observe that

. , PIX=x,¥Y=y] Pyyy)
Pxiy xI») = P[X =x|¥ = y] = Y ,

PlY =y]

(4.97)

Py (y)

Hence, Py y(x,y) = Px|y (x|y)Py(y). The proof of the second part is the same with X and ¥

reversed.

Example 4.17

y .

4 T Px y(x,y) .%

Ll
39 o1l oT6 Random variables X and ¥ have the joint PMF
) j of P ok Px y(x,y), as given in Example 4.13 and repeated in
B the accompanying graph. Find the conditional PMF
1 W| o .FI -s—': .r'f, of ¥ given X = x for each r Sx.
0 -— X

To apply Theorem 4.22, we first find the marginal PMF Py (x).

Px(x) = %
along the vertical line X = x. That is,

Py (x)

1/4 x=1
1/8 +1/8 x=2,
Px (x)=1{ 1/1241/12 + 1/12 x =3 -
l,-’lﬁ+l/l6+l/l(w+l,f16 x =4,
0 otherwise,
Theorem 4.22 implies that for x e {1, 2,3, 4},
Px y (x,y)
Pyix (y|x) = B ) =4Py y(x,y).

1/4
1/4
1/4
1/4
0

By Theorem 4.3,
Lyesy Px,y(x,y). Foragiven X = x, we sum the nonzero probablities

x=1
x=2
=3
x=4,
otherwise.

(4.98)
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Theorem 4.23

Foreach x € {1,2,3,4}, Pyjx(ylx)isa different PMF.

= i
otherwise.
1/3 ye({l,23},

1 1/2 yef{l,2},
)
0 otherwise.

Pyix (y|1) = Pyix (¥|2) = ‘
yix (v vix (¥12) { 0 otherwise.

Py x (¥13) :{

Given X = x, the conditional PMF of Y is the discrete uniform (1, x) random variable.

(

1/4 ye(1,2,3,4}],

1y (v]4) = :
Prix (y19) { 0  otherwise.

For each y € Sy, the conditional probability mass function of X, gives us a new prob-
ability model of X. We can use this model in any way that we use Px (x), the model we
have in the absence of knowledge of Y. Most important, we can find expected values with
respect to Py y (x|y) just as we do in Chapter 2 with respect to Py (x).

Conditional Expected Value of a Function

X and Y are discrete random variables. For any y € Sy, the conditional expected value of
g(X,Y)givenY =y is

ElgX, DY =y]l= Z g(x, v)Pxy (x[y).

xeSx
The conditional expected value of X given ¥ =y is a special case of Theorem 4.23:

E[X|Y =y]= »_ xPxy (x[). (4.99)

xeSy

Theorem 4.22 shows how to obtain the conditional PMEF given the joint PMF, Px y (x, ).
In many practical situations, including the next example, we first obtain information about
marginal and conditional probabilities. We can then use that information to build the
complete model.

Example 4.18 In Example 4.17, we derived the following conditional PMFs: Py x (y11), Py x(¥|2),

Pyx (¥]3), and Py x (y|4). Find E[Y|X =x]forx=1,2,3,4.

Applying Theorem 4.23 with g(x, y) = x, We calculate

E¥Y|IXx=11=1, E[Y|X=2]=15, (4.100)
E[¥Y|X =3]1=2, E[Y|X =4]=25. (4.101)

Now we consider the case in which X and Y are continuous random variables. We
observe {¥ = y} and define the PDF of X given {¥ = y}. We cannot use B = (Y =y}
in Definition 4.10 because P[Y =y] = 0. Instead, we define a conditional probability
density function, denoted as fxy (x|y).

e~
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Definition 4.13  Conditional PDF
For y such that fy(y) > 0, the conditional PDF of X given {Y = y}is

o Sx.y(x,y)
Fxir x|y} = —————.
Jr (y)
Definition 4.13 implies
; x.y (x,¥)
frix Olx) = f—”—— (4.102)
Jx (x)

Example 4.19 Returning to Example 4.5, random variables X and ¥ have joint PDF
Y

Suolx.y)=2

2 0=<y=<x<l,

. 4,103
0 otherwise. l )

fxyx,y)=

I
For 0 < x < 1, find the conditional PDF fy x(y|x). For0 < y < I, find the conditional
PDF fxy(x|y).

For0 < x = 1, Theorem 4.8 implies

00 o
fx (x)= / fxy @,y dy= / 2dy = 2x. (4.104)

co JO

The conditional PDF of Y given X is

Xy (X, ) /x ) <x
mi‘zl l/x 0=y=x (4.105)

frix vlx) = fx 7 0  otherwise.

Given X = x, we see that ¥ is the uniform (0, x) random variable. For(0 < y < I,
Theorem 4.8 implies

00 a
Jy (¥) = [ fxyx, yv)dx= / 2dx =2(1 = y). (4.106)
o — vy

o0

Furthermore, Equation (4.102) implies

(4.107)

Sx.y (x.y) I/(1—y) v<x<l,
Ixiy (xly) = ——"=

fr (v) 0 otherwise.

Conditioned on Y = y, we see that X is the uniform (y, 1) random variable.

We can include both expressions for conditional PDFs in the following formulas.

Theorem 4.24
Fxy (x,y) = frix (v|x) fx (x) = fxpy (x|y) fr ().

For each y with fy(y) > 0, the conditional PDF fyy(x|y) gives us a new probability

91
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Definition 4.14

Definition 4.15

model of X. We can use this model in any way that we use fx(x), the model we have in
the absence of knowledge of Y. Most important, we can find expected values with respect
to fx|y (x|y) just as we do in Chapter 3 with respect to fy (x). More generally, we define
the conditional expected value of a function of the random variable X.

Conditional Expected Value of a Function
For continuous random variables X and Y and any y such that fy(y) > 0, the conditional
expected value of g(X,Y) given Y = vy is

o0

ElglX,)|Y =y] = [ glx, y) fxyy (x|y) dx.

J—00

s s srwn s

The conditional expected value of X given ¥ = y is a special case of Definition 4.14:

00
E[X|Y =y] = f xfxy (x|y) dx. (4.108)
—00 .

When we introduced the concept of expected value in Chapters 2 and 3, we observed that
E[X] is a number derived from the probability model of X. This is also true for E[X|B].
The conditional expected value given an event is a number derived from the conditional
probability model. The situation is more complex when we consider E[X|Y = y], the
conditional expected value given a random variable. In this case, the conditional expected
value is a different number for each possible observation y € Sy. Therefore, E[X|Y = y]
is a deterministic function of the observation y. This implies that when we perform an
experiment and observe ¥ = y, E[X|Y = y] is a function of the random variable ¥. We
use the notation E[X|Y] to denote this function of the random variable ¥. Since a function
of a random variable is another random variable, we conclude that E[X|Y] is a random
variable! For some readers, the following definition may help to clarify this point.

Conditional Expected Value

The conditional expected value E[X|Y] is a function of random variable Y such that if
Y =y then E[X|Y] = E[X]|Y = y].

Example 420  For random variables X and Y in Example 4.5, we found in Example 4.19 that the

conditional PDF of X given Y is

' fx,y (x,y) l/(1—-y) y<x<l1,
Fxly) = —— = ’ = EST = 4.1
Fxy (x1y) fr ) 0 otherwise. (4.109)
Find the conditional expected values E[X|Y = y] and E[X|Y].
Given the conditional PDF fyy (x|y), we perform the integration
o0
E[X\Y:yl:f xfxy (x|y) dx (4.110)
—00
Lo O
X y
=[ xdx = —— = —, (4.111)
Jy 1=y 21—y | _ 2

Theoren

Theorem 4.
ORI N e s




Theorem 4.25

Theorem 4.26
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Since E[X|Y = yl = (1 + y)/2, E[X|¥] = (1 + ¥)/2.

An interesting property of the random variable E[X |Y] s its expected value E[E[X|Y]].
We find E[E[X|Y]] in two steps: first we calculate g(y) = E[X|Y = y] and then we apply
Theorem 3.4 to evaluate E[g(Y)]. This two-step process is known as iterated expectation.

Iterated Expectation

E[E[X|Y]]= E[X].

Proof We consider continuous random variables X and ¥ and apply Theorem 3.4:

oo
E[E[XIYJ']:] E[X|Y =y] fy (y) dy. (4.112)
— 00 -
To obtain this formula from Theorem 3.4, we have used E[X|Y = y] in place of g(x) and fy(y) in
place of fy (x). Next, we substitute the right side of Equation (4.108) for E[X|Y = v]:

o "0
E[E[X]Y]] = f (/ xfxy (x]y) n",r) fr () dy. (4.113)

—00 00

Rearranging terms in the double integral and reversing the order of integration, we obtain:

oo oG
E[E[X|Y]] =/ _\-f fxiy (x1y) fy (v) dy dx. (4.114)
—00 —0O0

Next, we apply Theorem 4.24 and Theorem 4.8 to infer that the inner integral is simply [y (x).
Therefore, '
OO

E[E[X|Y])= / xfx (x) dx. (4.115)

v =00
The proof is complete because the right side of this formula is the definition of E[X]. A similar
derivation (using sums instead of integrals) proves the theorem for discrete random variables.

The same derivation can be generalized to any function g(X) of one of the two random
variables:

E[E[g(X)|Y]] = E [g(X)].

The following versions of Theorem 4.26 are instructive. If ¥ is continuous,

oo
E[g(X)] = E[E [g(X)|Y]] :[ E[g(X)|Y = y] fr () dy, (4.116)

=00

and if Y is discrete, we have a similar expression,

E[g(X)] = E[E[g(X)|¥Y]] = Z E[g(X)|Y = y] Py (y). (4.117)

veSy

o
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Theorem 4.26 decomposes the calculation of E[g(X)] into two steps: the calculation of
E[g(X)|Y = y], followed by the averaging of E[g(X)|Y = y] over the distribution of Y.
This is another example of iterated expectation. In Section 4.11, we will see that the iterated
expectation can both facilitate understanding as well as simplify calculations.

Example 4.21 At noon on a weekday, we begin recording new call attempts at a telephone switch.
Let X denote the arrival time of the first call, as measured by the number of seconds
after noon. Let Y denote the arrival time of the second call. In the most common
model used in the telephone industry, X and ¥ are continuous random variables with
joint PDF

12 ,—AYy Ny — e
roe 0<x <y, (4.118) 5

oy (X y) = 3
fxy &x.y) ‘ 0 otherwise. vy

where » > 0 calls/second is the average arrival rate of telephone calls. Find the
marginal PDFs fy(x)and fy(y) and the conditional PDFs fyy(x|v) and fyx (ylx).

For x <0, fx(x) =0. Forx = 0, Theorem .4.8 gives fy(x): Quiz
o .
fx (x) = [ Ae M dy = re™H. (4.119)

Referring to Appendix A.2, we see that X is an exponential random variable with
expected value 1/i. Given X = x, the conditional PDF of Y is

(4.120)

) vy (x,y) e My—x) ) > x.
f}‘|,\’()'|»\') . Ix.y P :i Aé y>X

fx (x) 0 otherwise.

To interpret this result, let U = ¥ — X denote the interarrival time, the time between
the arrival of the first and second calls. Problem 4.10.15 asks the reader to show that
given X = x, U has the same PDF as X. That is, U is an exponential (1) random
variable. Now we can find the marginal PDF-of Y. Fory <0, fy(y) = 0. Theorem 4.8
implies

Y a2e= M dx = A2ye™™ y =0,

fr ) = lo

. ; (4.121
0 otherwise. )

Y is the Erlang (2. ») random variable (Appendix A). Given Y =y, the conditional
PDF of X is ¢

. fx.y(x.y) 1/y 0<x<Yy,

fx|y (xiy) fr ) 0 otherwise. (4.122)
Under the condition that the second call arrives at time y, the time of arrival of the first
call is the uniform (0, y) random variable.

In Example 4.21, we begin with a joint PDF and compute two conditional PDFs. Often
in practical situations, we begin with a conditional PDF and a marginal PDF. Then we use
this information to compute the joint PDF and the other conditional PDF.

Example 422  Let R be the uniform (0, 1) random variable. Given R = r, X is the uniform (0, r)
random variable. Find the conditional PDF of R given X.

The problem definition states that

1 0<r<l, 1/r 0<x <r<l,
otherwise,

R (1) = p 4.123
fr(r) 0 otherwise. [ )
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It follows from Theorem 4.24 that the joint PDF of R ang Xis

1/r O<x<r< I,

; 4.124
0 otherwise. ( :

TRx (r,x) = TXiR (xIr) fg (r) = {

Now we can find the marginal PDF of y from Theorem 4.8 For <y < I,

: o Vdr -
Jx (x) :f SR x (r,x) dr :f — = —Inx. (4.125)
<5 r

X

By the definition of the conditiona| PDF,

: Sr x (r,x) ‘__"!hn X=<r<],
- (rlx) = — —7 J - e 4126
JRix (rlx) Sx (x) { 0 otherwise, ( )
4.9
o (A) The probability mode| for random variable A js
04 a=0
Pata)=1{ 06 a=2 (4.127)
0 otherwise,
The conditiongl Probabiliry model for random variable B given A is
0.8 b=y, 0.5 b=y,
Pgia (b]0) = 02 b=1. Pgia (b)2) = 5 b=, (4.128)
0 otherwise, 0 otherwise.
(1) What is the probabiliry model for (2) IfA =2 what is the conditional
A and B» Write the Joint PMF expected valye E [BIA = 2]?
Pa g(a, b) as g table.
(3) If B =, what is the conditional (4) If B = what is the conditional
PMF Py p (al0)? variance Var[ A [B=0]ofA?
(B) The PDF of random variable X and the conditional PDF of random variable ¥ given
X are
) 3x? 0 =x<], 3 i 2y/x2 0 E¥=2x0<=x <1,
Tay= { 0 otherwise, Irx () = ( otherwise.
(1) Whar is the pmbuhr’!.r‘.'_v model for (2) If X = 1/2, find the conditional
Xandy? Find fy y(x, y). PDF Syix(y| 1/2).
Bl Yy = 172, whar is the condi- (4)Ify = 1/2, whar is the condi-
tional PDF Fxiy(x|1/2)2 tional varignee Var[X|¥ = | /2]?

191

Juiz4.2

1?

ith prob-

(4.144)

x(X1, X7).

Z property

i1, 01, K2, .

L e e —

72 = 1, and
a sombrero.
: —0.9 there
e o I8

re define

(4.145)
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and for 1 < z < 2 (Fig. 6-12b)

.l
f:(z) = / ldx =2 -7 (6-52)
—

Fig. 6-12c shows f.(z), which agrees with the convolution of two rectangular waveforms

as well. <

EXAMPLE 6-9 P Letz = x — y. Determine f:(2).
From (6-37) and Fig. 6-13
L=X-—Y o ;
F,(z)=P{x—y<z}]= / / fev(x, ¥)dxdy ‘
J y=—00 J X=—0Q c
and hence p
_ dF,(z)- [* . :
f:(z) = — == / fo@+y,»)dy (6-53) ;
dz J =60 ':
1 If x and y are independent, then this formula reduces to :
: "00 A
k. (@) = / fi@+ () dy = fi(—2) @ fy(y) (6-54)
¢ J o

which represents the convolution of f,(—z) with f,(z).
As a special case, suppose

Felx)=0 x <0, () =0 y<0

In this case, z can be negative as well as positive, and that gives rise to two situations
that should be analyzed separately, since the regions of integration for z > Oand z < 0
are quite different.

For z > 0, from Fig. 6-14a

PO rI+y
F.(z) = / / fey(x, v)dxdy
Jy=0 Jx=0 ’

s 3 L O ST R T MR I3 A 7 ST s L35 L RS W et

FIGURE 6-13
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y 3 k|
+ y L
= s &
< X X d
(a) (b) :
pls: .
FIGURE 6-14 . -
and for z < 0, from Fig. 6-14b T;.r
rOC rZ4¥ :
F.(z) = / / fon(x, y)dxdy
o y=—12 v=0 l
After differentiation, this gives
= ‘
/ ,l‘”\ A 'S '1) (’['\' 2 0 ‘4
fid) =" roo (6-55)
/ Fey(Z 4+ Y5 y)dy z<0 ,j
P Letz=x/y. Determine f-(z). &
We have
F,(z) = P{x/y =2} (6-56)

The inequality x/y < z canbe rewritten as X < yz ify > 0,and X = yz2 if y < 0. Hence

the event {x/y < z) in (6-56) needs to be conditioned by the event A = {y > 0} andits
compliment A. Since A U A = S, by the partition theorem, we have

P{x/y <z} = P{x/y <zN(AU A))
= P{x/y<z,y>0+P{x/y=zy< 0}
= P{xgy:.y>U]+P{x2y3.y<0} (6-57]_

+
S

| EXAMPLE 6-11

Fig. 6-15a shows the area corresponding to the first term, and Fig. 6-15b shows thal3
corresponding to the second term in (6-57).
Integrating over these two regions, we get

roo Y2 0 OO
F.(z) = / / foy(x, V) dxdy + / / foy(x, y)dxdy (6-588
Jy=0 . vy X

r=—0C y=—00 Jx=yz
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Y ‘.‘
xly=z —
X
<
% ly =g
3 !
(@) Pix=yz,y > 0) BYPIx=yz.y<0)

FIGURE 6-15

FIGURE 6-16

Differentiation gives
-0

OO
f:(2) / yfy(yz, y)dy + / —vfiy(yz, y)dy
JO .

—00

*C0
/ [y|fey(yz, ¥)dy (6-59)
- ou

Note that if x and y are non-negative random variables, then the area of integration
reduces to that shown in Fig. 6-16.

This gives
F.(2) = / / foolx. v)dxdy
Jy=0J =0

a3 )
f-(2) = / v (yz, ¥)dy
 y=U

P xand y are jointly normal random variables with zero mean and

e
foplx,¥) = ————F——=¢ : I vt
) 2rroyoav 1 —r-

Show that the ratio z = x/y has a Cauchy density centered at ra) /os.
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SOLUTION ‘-
Inserting (6-61) into (6-39) and using the fact that fi,(—x, =y) = fey(x, ¥), We obtain [
£.(2) 2/—_— /.\ ~¥12% ¢ % 4
@)= y&—r gy = e i3
’ 2rojoav 1 —r= Jo mooaN 1 —r” I
where
5 =%
2 I =r 5
0y = 75,2 o L) %
(_:-/o,)—(_f:/rr,og)—k(i/a:) s,
Thus
A ayoav 1 —rijm
f.(2) = = ok A - 6-62)
th:—rm_:o;}-+o;(l —r?) B
which represents a Cauchy random variable centered at roy /o». Integrating (6-62) from
— 00 to z. we obtain the corresponding distribution function to be -
1 027 — IO b
F.(z) = = + — arctan — ' (6-63) G

2 b/ 4 01V1 —I'z 4

As an application, we can use (6-63) to determine the probability masses m, M3,
ms, and my in the four quadrants of the xy plane for (6-61). From the spherical symmetry
of (6-61), we have

my; = msjy ms = My

But the second and fourth quadrants represent the region of the plane where x/y < 0.

The probability that the point (x, y) is in that region equals, therefore, the probability - 2 oy
that the random variable z = X/y is negative. "Thus B y
| 1 r '|
my+my=Plz=<0)= F.(0) = = — — arctan ———
2 =z —-re |
and e
11 ' it
ml+m;=l—(mg+m4)= — 4+ — arctan ¥
2 1—r2 .,
If we define o = arc tan r/~/1 — r?, this gives 4
1 o 1 o N
m=my=—=-+— My =my=— — (6-64) e
4 2nm 4 2n
Of course. we could have obtained this result by direct integration of (6-61) in each

quadrant. However, this is simpler.

m P Letxandy be independent gamma random variables with x ~ G(m, «) andy

G(n, «). Show thatz = x/(x +¥) has a beta distribution.

Proof. foolx, ¥) = filx) fiy)
1

= '\_m— 1 \‘u—h(,—n‘\\ o r > [) 7‘{ > 0 (f]
a" I (m)T(n)
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that 0 < z < 1, since x and y are non-negative random variables

F.(z) = Plz <z} = ‘P(.\-; » -'5“.) = P(XS}'I%:)

e pyz/il=2)
= / / folx, y)dxdy
JO JO

where we have made use of Fig. 6-16. Differentiation with respect to z gives

a5 .
f-(@) / —— fo(yz/(1 = 2), ¥)dy
Jo (l—=2z)
e ¥ |
Jo (=22 am™T(m)T(n)

| m=1 hexX
= o \‘H"Ah' It’ -‘m!—wu,\.
"t C(m)C(n) (1 =) J, -

m—1 "= POC

F4 1=z : I'(m+n)

S Wl dy = ———2""'(1—2)""
C(m)C(n) N C{m)C(n)

I m
Blm.n)
0 otherwise

D<z<

which represents a beta distribution. ‘

DV IGAABRY P Letz = x° + y°. Determine f(z).
We have

T e

F.(z) = P{r\‘z + ,\'2 <z}= // 7 feov(x, v)dxdy

But, x? 4+ y* < z represents the area of a circle with radius J/z, and hence (see Fig. 6-17)

/

3 W
F.(z) = / B / feu(x, y)dxdy

v v

h o+ y =2z

is‘
:
I
!
3
5
i
-'i

Al

s

FIGURE 6-17

e

B ot () Tl e
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This gives

2L 1 PR e )
f:(2) = / By A PATL A v2, ¥) + feo(=vVz — ¥3, v)ldy  (6-67) b

v '\/‘i: = 7\‘3 ' ’ B
R

As an illustration, consider Example 6-14.

[ ENYIGHNNEY P x and y are independent normal random variables with zero mean and common 8-

variance 2. Determine f.(z) forz = x*> + y*._

SOLUTION
Using (6-67), we get

Fi2)= e"":*‘:":”') dy =
e (72 [7cosB 3
— = \/_ (!H
no? Jo Jzcos#
l -z/2a?
= 262() U(z) (6-68)

where we have used the substitution y = /z sin . From (6-68), we have the following!

If x and y are independent zero mean Gaussian random variables with common variance
2 . . . . )

o2, then x> + y? is an exponential random variable with parameter 20~ ]

DOV IZIABE] P Lectz= /x> +y2. Find f.(2).

SOLUTION .
From Fig. 6-17, the present case corresponds to a circle with radius z2. Thus

Ll

=—\/2-y?

zZ= \_/':XZ + }'2

F,(z) = folx, ¥)dxdy

and by differentiation,

f-(2) = / ] ol V22 = 3, 9) 4 fo(=Vz2 = y2, »)}dy  (6-6)]
J—z fz* =y°
In particular, if x and y are zero mean independent Gaussian random variables as in the

previous example, then

7 2 3 3
A S Ba - ,=(z"=) +v=)/2a° .
f:(z) =2 /“ T S € dy
V< .

22 _.2p 22 _,p5,0 [™? zcos@
= —e /7 — . dy = A / df
ol 0 22— y? 2 o zcos@
= Ze 7Y (r) (6-70)

)

which represents a Rayleigh distribution. Thus, if w = x + iy, where x and y &
real independent normal random variables with zero mean and equal variance, thel
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the random variable |w| = /X2 + y* has a Rayleigh density. w is said to be a complex
Gaussian random variable with zero mean, if its real and imaginary parts are independent.
So far we have seen that the magnitude of a complex Gaussian random variable has
Rayleigh distribution. What about its phase

§ = tan™' (%) (6-71)

Clearly, the principal value of @ lies in the interval (—7/2, /2). If we letu = tanf =
y/x, then from Example 6-11, u has a Cauchy distribution (see (6-62) with oy = 02,
r=>0)

) 4
Julu) = — -0 < U <00
241
As a result, the principal value of @ has the density function
| l/m
~ (1/sec?@) tan> @ + 1

fo(8) = f.(tan )

|dé /du|’

l/m —-n/2<8<m/2
, (6-72)
0 otherwise
However, in the representation X+ jy = re/? the variable @ lies in the interval (—m, ),
and taking into account this scaling by a factor of two, we obtain
i 127 —-m<b<m
fa(@) =4 _ _ (6-73)
0 otherwise
To summarize, the magnitude and phase of a zero mean complex Gaussian random
variable have Rayleigh and uniform distributions respectively. Interestingly, as we will
show later (Example 6-22), these two derived random variables are also statistically
independent of each other! E

Let us reconsider Example 6-15 where x and y are independent Gaussian random
variables with nonzero means ., and p, respectively. Thenz = /X% + y? is said to be
a Rician random variable. Such a scene arises in fading multipath situations where there
is a dominant constant component (mean) in addition to a zero mean Gaussian random
variable. The constant component may be the line of sight signal and the zero mean
Gaussian random variable part could be due to random multipath components adding up
incoherently. The envelope of such a signal is said to be Rician instead of Rayleigh.

P Redo Example 6-15, where x and y are independent Gaussian random variables with
nonzero means (i, and jt, respectively.

SOLUTION
Since

! . _—p
p P —[(x—pe )"+ (y—py) |/ 207
feor (X, ¥) = = —e [Cx—ps T |
LITO*"

substituting this into (6-69) and letting y =z sinfl, p= V’ﬂf 4+ 3, e =jLcosd,

i bl o A A S I St i

A s TR e s S A
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iy = i sin @, we get the Rician distribution to be

EXAMPLE 6-1

,€-£:3+543l1203 /2 - i
f:(2) = - = [ (E’:“C""'(H—Q’]’W - e*“cmt“’mm&) do z = max(x, y)
Lo J-n/2 . W= min(x, y)

)

o~ (@ +u) 20 /2 ) /2 ‘
= - ] etneet0=9)e" g P L LT [
Ta” J=m)2 Jm/2

—(224+ph)/20°

ze M
I AN
a? o’

where
A 1 o2 1 T _'_I
ll)“?) — ;— / (,’H.u\{ri—q'zl dH 2 / (}p;LmH de q'
21 Jo T Jo 4
is the modified Bessel function of the first kind and zeroth order. <
Order Statistics
In general, given any n-tuple X, X2, ..., x,, we can rearrange them in an increasing

order of magnitude such that

X(1) EX(Z)S"'SXHH ge

where X;;) = min(xy, X2, ..., X, ), and X2, is the second smallest valueamong Xy, Xa, - .-,
X,, and finally X¢,) = max(x;, X2, ..., X, ). The functions min and max are nonlinear op-
erators, and represent special cases of the more general order statistics. If Xi, X2, .0s X
represent random variables, the function X, that takes on the value x in each pos-
sible sequence (x|, X2, ..., Xn) is known as the kth-order statistic. [Xc1), X2)s - - =+ X(a)}
represent the set of order statistics among n random variables. In this context

R =Xu — X (6-75]

represents the range, and when n = 2. we have the max and min statistics.

Order statistics is useful when relative magnitude of observations is of importance,
When worst case scenarios have to be accounted for, then the function max(+) is quite A
useful. For example, let X;, Xz, ... . Xy represent the recorded flood levels over the past
n years at some location. If the objective is to construct a dam to prevent any mare
flooding, then the height H of the proposed dam should satisfy the inequality

H > max(Xj, X2, -+ Xn) (6-76)

with some finite probability. In that case, the p.d.f. of the random variable on the right’
side of (6-76) can be used to compute the desired height. In another case, if a bulb
manufacturer wants to determine the average time to failure (1) of its bulbs based oné
sample of size n, the sample mean (X, +X 4+ - - +X,)/n can be used as an estimate for =
. On the other hand, an estimate based on the least time to failure has other attractive B
features. This estimate min(X;, X2, ..., X,) may not be as good as the sample mean in E
terms of their respective variances, but the min(-) can be computed as soon as the fir

bulb fuses, whereas to compute the sample mean one needs to wait till the last of the lol
extinguishes.




