CHAPTER

TWO
RANDOM
VARIABLES

6-1 BIVARIATE DISTRIBUTIONS

We are given two random variables x and y, defined as in Sec. 4-1, and we wish to
determine their joint statistics, that is, the probability that the point (x, y) is in a specified
region' D inthe xy plane. The distribution functions F, (x) and F, (y) of the given random
variables determine their separate (marginal) statistics but not their joint statistics. In
particular, the probability of the event

x<xjN{y<yl={x<x,y<y]

cannot be expressed in terms of F, (x) and F,(y). Here, we show that the joint statistics
of the random variables x and y are completely determined if the probability of this event

is known for every x and y.
Joint Distribution and Density

The joint (bivariate) distribution F,,(x, y) or, simply, F(x, y) of two random variables
x and y is the probability of the event

x<x,y<yl={xy) € D}
where x and y are two arbitrary real numbers and D is the quadrant shown in Fig. 6-1a:

F(x,y)=P{x<x,y <y} (6-1)

intersection of rectangles.

"The region D is arbitrary subject only to the mild condition that it can be expressed as a countable union or
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FIGURE 6-1

PROPERTIES
1. The function F(x, y) is such that

F(-o00,y)=0, F(x,—00)=0, F (00, 00) =1

Proof. As we know, P{x = —oo} = P{y = —oc} = 0. And since
(x=—-00,y <yl C{x=-00} ([x=<x,y=—00}C(y=—00)} E:
the first two equations follow. The last is a consequence of the identities
(x < —00,y < —00}=3$ P(S) =1
2. The event {x; <X <Xy, ¥y <] consists of all points (X, y) in the vertical half-strip

D, and the event {X < x, y; <Y < y2} consists of all points (x, y) in the horizontal
half-strip D of Fig. 6-1b. We maintain that

(x1 <X <x2,y <y} = F(xa,y) — F(x1, ¥) (6-2)

(x<x,y1 <y<nl=Fx - Fxy) (6-3) 5

Proof. Clearly, for x; > x;

(x<x,y<yl={x=<x,y=<ylU (x1 <x<x3,¥y =}
The last two events are mutually exclusive; hence [see (2-10)] '-
Plx<xy<yl=Px<x,y<yl+Plxy<x=x,¥= v} -
and (6-2) results. The proof of (6-3) is similar. '-—'
3. Plx; <x<x2,y1 <y <n}l=Fx,y)- F(x1, y2)
— F(x3, 1) + F(x1, 1) (6-4)
]
This is the probability that (x, y) is in the rectangle Dy of Fig. 6-1c. 5
Proof. It follows from (6-2) and (6-3) because B

X <X<xy<yl={n<x<xy<nlUixn <x=xy<y=synl

and the last two events are mutually exclusive.
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JOINT DENSITY. The joint density of x and y is by definition the function

_ *F(x,y)
F, s — =222 (6-5)
dxdy
From this and property 1 it follows that
F(x,y) = / / fla, B)da dB (6-6)
J=00 J —0C

JOINT STATISTICS. We shall now show that the probability that the point (x, y) isin a
region D of the xy plane equals the integral of f(x, y) in D. In other words,

Pl(x,y) e D} = / / fx,v)dxdy (6-7)
o D

where {(x, y) € D}isthe eventconsisting of all outcomes ¢ such that the point [x(¢), ¥(¢)]
isin D.
Proof. As we know, the ratio
‘ F(x + Ax,y+ Ay) — F(x, y+ Ay) — F(x 4+ Ax, y) + F(x, v)
Ax Ay
tends to d F(x, y)/dxdy as Ax — 0 and Ay — (. Hence [see (6-4) and (6-5)]

Plx <x<x+Ax,y <y <y+ Ay}~ f(x.y) Ax Ay (6-8)

We have thus shown that the probability that (x, y) is in a differential rectangle equals
f(x, y) times the area Ax Ay of the rectangle. This proves (6-7) because the region D
can be written as the limit of the union of such rectangles.

MARGINAL STATISTICS. In the study of several random variables, the statistics of
each are called marginal. Thus F (x) is the marginal distribution and fi(x) the marginal
density of x. Here, we express the marginal statistics of x and y in terms of their joint
statistics F(x, y) and f(x, y).

We maintain that

F.(x) = F(x, 00) Fy(y) = F(oo, y) (6-9)
B 50

TulEli= / Sflx,v)dy Fi(y) = / flx,y)dx (6-10)
=00 v =00

Proof. Clearly, (x < 0o} = {y < o0} = §; hence
x=x}=(x<xy<o0) (y<yl={x<o0,y<y)

The probabilistics of these two sides yield (6-9),
Differentiating (6-6), we obtain

dF(x,y) - dF(x.y)
X =

= / fla, v)da (6-11)

dy o0

o0

Setting y = oo in the first and x = oo in the second equation, we obtain (6-10) because
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[see (6-9)] 5 EXAMPLE

£.(x) aF(x,00) £ () aF (o0, y)
(X)) = ——7—" wix) = ——— 3
. x ' ay -

EXISTENCE THEOREM. From properties | and 3 it follows that
F(—o0,y) =0 F(x,—o0)=0 F(oo, 00) = 1 (6-12)
and
F(x2, y2) — F(x;, ) — F(x2, y) + F(x;, 1) 2 0 (6-13)

for every x; < x, y; < y2. Hence [see (6-6) and (6-8)]

o0 * 00
/ / flx, y)dxdy =1 flx,y)=0 (6-14)
-0 J —00

. , : . . INDEPENDE?}
Conversely, given F(x, y) or f(x, y) as before, we can find two random variables

x and y, defined in some space S, with distribution F(x, y) or density f(x, y). This can
be done by extending the existence theorem of Sec. 4-3 to joint statistics.

Probability Masses o

The probability that the point (x, y) is in a region D of the plane can be interpreted as
the probability mass in this region. Thus the mass in the entire plane equals 1. The mass
in the half-plane x < x to the left of the line L, of Fig. 6-2 equals F,(x). The mass in
the half-plane y < y below the line L, equals F,(y). The mass in the doubly-shaded
quadrant {x < x,y < y} equals F(x, y).

Finally, the mass in the clear quadrant (x > x,y > y) equals

Plx>x,y>yl=1—F(x)= F,(y)+ F(x,y) (6-15)
The probability mass in a region D equals the integral [see (6-7)] , EXAMPLE 6
/ / flx,y)dxdy E BUFFON’S
- » NEEDLE

If, therefore, f(x, v) is a bounded function, it can be interpreted as surface mass density.

x>x,y>y)
'L\

IXERyYys)y

FIGURE 6-2

. e
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6-2 ONE FUNCTION OF TWO :
RANDOM VARIABLES

Given two random variables x and y and a function g(x, y), we form a new random :
variable z as .,

Z=g(x,y) (6-36) : m

Given the joint p.d.f. f,,(x, v). how does one obtain [f:(z), the p.d.f. of z? Problems of
this type are of interest from a practical standpoint. For example, a received signal in
a communication scene usually consists of the desired signal buried in noise, and this
formulation in that case reduces to z = x 4 y. It is important to know the statistics of the
incoming signal for proper receiver design. In this context, we shall analyze problems
of the type shown in Fig. 6-6. Referring to (6-36), to start with,

F.(z) = P{z(§) < z} = P{g(x.y) < z) = P((x.y) € D}

// _/-HL\A._\')H'.\' (/_\‘ (6‘37] -_
JJx.veD 3

where D. inthe x y plane represents the region where the inequality g (x, v) < z is satisfied 5
(Fig. 6-7). :

max(x, y) X—Y

min(x, y) x/y #
1

h] . B B
VX&' ¥ Xy "

. £y

min(x, y) s

. Vrwrtos 23

max(x, y) tan™ '(x/y) FIGURE 6-6 d

D.

gly, y) =z

" |

FIGURE 6-7

=

=AM

.




EXAMPLE 6-6

Z=X+y
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Note that D, need not be simply connected. From (6-37), to determine F.(z)itis
enough to find the region D, for every z, and then evaluate the integral there.

We shall illustrate this method to determine the statistics of various functions of x
andy.

P Letz = x + y. Determine the p.d.f. f-(z).
From (6-37),

D0 ")
F(z)=Plx+y=<z]= / / Joy(x, y)dxdy (6-38)
Jy==00 Jx=—-0C

since the region D. of the xy plane where x -+ ¥y = z is the shaded area in Fig. 6-8 to
the left of the line x + y < z. Integrating over the horizontal strip along the x axis first
(inner integral) followed by sliding that strip along the y axis from —oo to 400 (outer
integral) we cover the entire shaded area.

We can find f.(z) by differentiating F.(z) directly. In this context it is useful to
recall the differentiation rule due to Leibnitz. Suppose

b(z)
F.(z) = / flx,2)dx (6-39)
Salz)
Then
1F.(z) 1b(z) la(z) P 3 f(x, 2)
file) = —=2 = fb). ) - = fla(z) :)+/ ('f__—d,r (6-40)
dz dz dz Jaeay 9z

Using (6-40) in (6-38) we get

00 £ prey 3
fi(2) = / (;— / .f\.‘.(.\‘._\')d‘\‘) dy
J= \IZ J =

: =Y 0fep(x, )
I ',fn(: =Y W)= 0+ / ‘J_)(h
(1 4

v =00

Il
3 g 2 8

= / fo(z—y, v)dy (6-41)
. oG

Alternatively, the integration in (6-38) can be carried out first along the y axis
followed by the x axis as in Fig. 6-9 as well (see problem set).

=Y

FIGURE 6-8

ke
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FIGURE 6-9
If x and y are independent, then ;
forx, y) = fi(x) fu(y) (6-42) 3

and inserting (6-42) into (6-41) we get

EXAMPL

e O
f:(z) = / filz =¥ fily)dy = / fr(x) fy(z —x)dx (6-43)
JA=—020 Jx=—00
This integral is the convolution of the functions f,(z) and f,(z) expressed two different
ways. We thus reach the following conclusion: If two random variables are independent,
then the density of their sum equals the convolution of their densities.
As a special case, suppose that fe(x)=0forx <0and f,(y)= 0 for y <0, then
we can make use of Fig. 6-10 to determine the new limits for D..

In that case
rZ "2—)
F.(z) = / / fer(x, v)dxdy
y=0 Jx=0

"z 7] =y
f:(2) = / ((— / fer(x,¥) c!_\') dy 4
Jv=0 \ 92 Ji=0 3
/‘ fo@—=y,»dy z>0
= < Jo (6-44)
(

o EXAMPLE

) z<0

-

FIGURE 6-10 3




EXAMPLE 6-7

8 EXAMPLE 6-8
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On the other hand, by considering vertical strips first in Fig. 6-10, we get

F,(:]:/ / fov(x, v)dydx
Jx=0 J y=0

J:(2) = / Jxp(x, 2 —x)dx
J x=0

/ fr(x)fi(z=—x)dx z>0
/s (6-45)

0 z<0

or

if x and y are independent random variables, <

P> Suppose x and y are independent exponential random variables with common pa-
rameter A. Then

felx) = ke ™ U (x) fuly) =re ™M U(y) (6-46)

and we can make use of (6-45) to obtain the p.d.f.ofz=x+y.

fi(z) = / Ae MM gy = )27 / dx
Jo Jo
= 222U (2) (6-47)

As Example 6-8 shows, care should be taken while using the convolution formula for
random variables with finite range. <

P xandyare independent uniform random variables in the common interval (0, 1).
Determine f.(z), where z = x + y. Clearly,
z=x+y=>0<z<2

and as Fig. 6-11 shows there are two cases for which the shaded areas are quite different
in shape, and they should be considered separately.

FIGURE 6-11
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ForO0<z <1,

F:(:):/ / Id.rd\v:/ (z—y)dy =
Jy=0Jx=0 J y=0

For 1 <z < 2, notice that it is easy to deal with the unshaded region. In that case,

(& ]
2

D<z<1 (6-48)

|

d| 3|
F.(z)=1—Plz>z}=1 —/ / ldxdy
y=z—1 Ja=z—)

d! (27:)1
:1—/ l]—:+.\')d_\'=1——j'— l1<z<2 (6-49)
y=z—I ~
Thus
dF.(z) Z 0<z<] 6.50)
(z) = = =)
f2(2) 1z 2—z 1l<z<2 ( ‘

By direct convolution of f,(x) and f,(y), we obtain the same result as above. In fact,

for0 <z < 1 (Fig. 6-12a)

f:(z2) = / iz —x) fi(x)dx = / ldx =z (6-51)
Jo
S0 Sz — x)A fdz — x) f,(x)
1 -—_l 7 — | “x k4 ;r

) 0=sz<1

filz = x) flz =21,

FREIPY

Y

,.
r
|

fAz)

ra
¢

(c)

FIGURE 6-12




EXAMPLE 6-9

=X—Y
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and for 1 < z < 2 (Fig. 6-12b)
|l
L@ = / ldx =2z (6-52)
Jz-1

Fig. 6-12¢ shows f.(z), which agrees with the convolution of two rectangular waveforms

as well. <«

P Lletz=x- y. Determine f.(z).
From (6-37) and Fig. 6-13

OC 243
F.z)=P{x—y=<z}= / / Jey(x, y)dxdy
Jy=—00 Jy=—0c

L)

and hence

;= 1F.(z) o =
f:(@) = / Jo+y, y)dy (6-53)
iz o
If x and y are independent, then this formula reduces to
00
f(2) = / L+ dy = fi:(—2) @ f,(y) (6-54)
J =00

which represents the convolution of f,(—z) with [ (2).
As a special case, suppose

Sfe(x) =0 x <0, fHy) =0 y<0

In this case, z can be negative as well as positive, and that gives rise to two situations
that should be analyzed separately, since the regions of integration forz > 0Qand z < 0
are quite different.

For z > 0, from Fig. 6-14a

00 pz+y
F(2) = / / Solx, y)dxdy

FIGURE 6-13
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Differentiating with respect to w, we obtain

(4.56)

o

; /(L + pw) w=0,
r(w) = I

W { 0 otherwise.

Quiz 4.6
(A) Two computers use modems and a telephone line to transfer e-mail and Internet
news every hour. At the start of a data call, the modems at each end of the line
negotiate a speed that depends on the line quality. When the negotiated speed is
low, the computers reduce the amount of news that they transfer. The number of bits
transmitted L and the speed B in bits per second have the joint PMF

_PLp(l.b) | b=14,400 b=21,600 b = 28, 800
I'=518,400 0.2 0.1 0.05 -
= ; (4.57)
1=2,592,000|  0.05 0.1 0.2
1 =7.776,000 | 0 0.1 0.2

Let T denote the number of seconds needed for the transfer. Express T as a function
of L and B. What is the PMF of T ?

(B) Find the CDF and the PDF of W = XY when random variables X and Y have joint

PDF
i |l 0<x<1,0<y=<l, =
Jxyx.y) = 0 otherwise. (4.38)

4.7 Expected Values

There are many situations in which we are interested only in the expected value of a derived
random variable W = g(X, Y), not the entire probability model. In these situations, we
can obtain the expected value directly from Py y(x, y) or fx.y(x, y) without taking the
trouble to compute Py (w) or fw(w). Corresponding to Theorems 2.10 and 3.4, we have:

Theorem 4.12  For random variables X and Y, the expected value of W=g(X,Y)is
Discrete: EWl= " 3 g0 y)Pry (5.3
":-\‘,\' YESY
Vo0

00
Continuous: E [W] = j / g(x, v) fx.y (x,y) dxdy.
o0

—00 J—

Example 4.11 In Example 4.8, compute E[D] directly from P 7 (/. 7).
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Theorem 4.13

e

Theorem 4.14

——

Applying Theorem 4.12 to the discrete random variable D, we obtain

3
EDI=Y > ItP 7,1 (4.59)

I=1 1=40,60
= (1)(40)(0.15) + (1)60(0.1) + (2)(40)(0.3) + (2)(60)(0.2) (4.60)
+ (3)(40)(0.15) + (3)(60)(0.1) = 96 sec, 4.61)

which is the same result obtained in Example 4.8 after calculating Pp(d).

Theorem 4.12 is surprisingly powerful. For example, it lets us calculate easily the expected
value of a sum.

Proof Letg(X,Y) = g(X,Y)+---+gu(X, Y). Fordiscrete random variables X, ¥, Theorem 4.12
states
E[gX.1)]= D > (@&, + - +gnx, ) Pxy(xy). (4.62)
.KES_\( _\'ES}'

We can break the double summation into n double summations:

Elg(X,Y)]= Z Z g1(x, Py y(x,y)+ -+ Z Z en(x,y)Px y(x,y). (4.63)

xESx yESY reSy yeSy
By Theorem 4.12, the ith double summation on the right side is E[g; (X, ¥)], thus
Elg(X,")]=E[g1(X. V)] + -+ E [gn(X, V)]. (4.64)

For continuous random variables, Theorem 4.12 says
00 oo
Elg(X,Y)]= [ [ (g1(x, )+ -+ gnlx, ) fx.y (x,y) dxdy. (4.65)
J—00 J—00

To complete the proof, we express this integral as the sum of n integrals and recognize that each of
the new integrals is an expected value, E[g; (X, Y)].

In words, Theorem 4.13 says that the expected value of a sum equals the sum of the expected
values. We will have many occasions to apply this theorem. The following theorem
describes the expected sum of two random variables, a special case of Theorem 4.13.

For any two random variables X and Y,

E[X+Y]=E[X]+ E[Y].

An important consequence of this theorem is that we can find the expected sum of two
random variables from the separate probability models: Pyx(x) and Py(y) or fx(x) and
fy(y). Wedo not need a complete probability model embodied in Py y (x, ¥) or fx y(x, y).

Th
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Theorem 4.15

Definition 4.4

Definition 4.5

Theorem 4.16
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By contrast, the variance of X + Y depends on the entire joint PMF or joint CDF:;

The variance of the sum of two random variables is

Var[X + Y] = Var[X] + Var[Y] 4+ 2E [(X — ux)(Y — uy)].

Proof Since E[X + Y] = uyx + puy,

Var(X + Y] = E [m’ +¥ =y + m-_n?} (4.66)
=E [((X —pux)+ (Y — ,',t)-))-"jI (4.67)
=E [(X - ,uxlz +2(X —pux)(Y —py)+ (¥ — py !2] ; (4.68)

We observe that each of the three terms in the preceding expected values is a function of X and .
Therefore, Theorem 4.13 implies

Var[X + Y] = E [(x =y ;3] +2E[(X — ux)(Y — py)] + E [(_Y >y F] (4.69)
The first and last terms are, respectively, Var[X ] and Var] Y].
The expression E[(X — pux)(Y — j1y)]in the final term of Theorem 4.15 reveals important
properties of the relationship of X and Y. This quantity appears over and over in practical

applications, and it has its own name, covariance.

Covariance
The covariance of two random variables X and Y is

Cov[X,Y1=E[(X —ux) (Y —uy)].

Sometimes, the notation oy y is used to denote the covariance of X and Y. The correlation
of two random variables, denoted ry y, is a close relative of the covariance.

Correlation
The correlation of X and Y isry y = E[XY]

The following theorem contains useful relationships among three expected values: the
covariance of X and Y, the correlation of X and ¥, and the variance of X + V.

(a) Cov[X, Y] =rxy — uxpuy.
(b) Var[X + Y] = Var[X] + Var[Y] 4+ 2Cov|[X, Y.
(c) If X =Y, Cov[X, Y] = Var[X] = Var[Y] and ry.y = E[X2] = E[Y?].

i
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Theorem 4.18  If X and Y are random variables such that Y = aX + b, 4.¢
-1 a<0,
PXY = 0 a=0,
1 a>0.

The proof is left as an exercise for the reader (Problem 4.7.7). Some examples of positive,
negative, and zero correlation coefficients include:

e X is the height of a student. Y is the weight of the same student. 0 < px y < 1.

e X is the distance of a cellular phone from the nearest base station. Y is the power of

the received signal at the cellular phone. —1 < py y < 0. Dej

e X is the temperature of a resistor measured in degrees Celsius. Y is the temperature
of the same resistor measured in degrees Kelvin. pyy = 1.

e X is the gain of an electrical circuit measured in decibels. Y is the attenuation,
measured in decibels, of the same circuit. py y = —1.
e X is the telephone number of a cellular phone. Y is the social security number of the

phone’s owner. py y = 0.

Quiz 4.7 The
) (A) Random variables L and T given in Example 4.8 have joint PMF

Prrt) ‘ t =40sec t = 60sec

I =1 page 0.15 0.1 :
s 4.81
[ = 2 pages 0.30 0.2 ( )
| = 3 pages 0.15 0.1.
Find the following quantities.
(1) E[L] and Var[L] (2) E[T)and Var[T]
(3) The correlationry v+ = E[LT)] (4) The covariance Cov[L, T
(5) The correlation coefficient pr T
(B) The joint probability density function of random variables X and Y is '
xy 0<sx<l1,0<y<2
W 1 - <x=<l0<y=<2 i o
Jx.x (%, ¥) = 0  otherwise. (A.52)
Find the following quantities.
(1) E[X] and Var[X] (2) E[Y] and Var[Y]
(3) The correlation rx y = E[XY] (4) The covariance Cov[X, Y]

(5) The correlation coefficient px .y

-
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4.10 Independent Random Variables %l
-
Chapter 1 presents the concept of independent events. Definition 1.7 states that events A *{; i
and B are independent if and only if the probability of the intersection is the product of the | ¥ B
individual probabilities, P[AB] = P[A]P[B]. !
Applying the idea of independence to random variables, we say that X and Y are inde- | g !
pendent random variables if and only if the events {X = x} and {Y = y} are independent | ‘
forall x € Sy and all y € Sy. In terms of probability mass functions and probability
density functions we have the following definition. !
1
Definition 4.16 Independent Random Variables | _-{
- Random variables X and Y are independent if and only if 5
Discrete: Pxy(x,y) = Px (x) Py (y), ‘
Continuous: fx.y (x,y) = fx (x) fr (). i
&
bd]
L
Because Definition 4.16 is an equality of functions, it must be true for all values of x and | -
y. Theorem 4.22 implies that if X and Y are independent discrete random variables, then f :
Pxy (x|y) = Px (x), Pyix (v|x) = Py (y). (4.129)
i1
Theorem 4.24 implies that if X and Y are independent continuous random variables, then ; |
]
fxyy (x|y) = fx (x) frix lx) = fr (). (4.130) |
|
Example 4.23 f"{,
=SS A 4xy 0<x<l,0<y=l '
bl oyias | 50 DEAELU IR 4.13 ' y
Ix.y (x.9) { 0  otherwise. (4.131) o
Are X and Y independent? 1§
The marginal PDFs of X and Y are
2x 0=<x=%1, 2y 0<y<l, }
'y (x) = T v (V) = ; e 4.132
Fx (%) ! 0 otherwise, Jr ) 0 otherwise. @.232)
It is easily verified that fx y(x, y) = fx (x) fy (y) for all pairs (x, y) and so we conclude | :
that X and ¥ are independent. | "
Example 4.24 ' ; r‘-
- , ; 2uv u=0v=0u+v=<l, ; | y
R ) = o - 4.133
fu.v . v) { 0 otherwise. @.153) | :
Are U and V independent? ‘ 2
Since fy. v (u, v) looks similar in form to fy y(x, y) in the previous example, we might 1
suppose that U and V can also be factored into marginal PDFs fy(u) and fy(v). i

sapevt ik

v
g
=
5
B
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(A) Randomvariables X and Y in Example 4.1 and random variables Q and G in Quiz 4.2
have joint PMFs:

P,{y('.t_\")‘_\':() y=1 y=2 Poglg.8) |g=0 g=1 g=2 g=3

= 0.01 0 0 qg=0 0.06 0.18 0.24 0.12
x=il 0.09 0.09 0 g=1 0.04 0.12 0.16 0.08
=2 0 0 0.81

(1) Are X and Y independent? (2) Are Q and G independent?

(B) Random variables X| and X, are independent and identically distributed with prob-
ability density function

l1—-x/2 0<x<2,

Ifx (x) = 0 otherwise.

(4.144)

(1) Whatis rhejur'n!PDFf_\'llxl(1| ,X2)? (2) Findthe CDF of Z = max (X, X7).

4.11 Bivariate Gaussian Random Variables

Definition 4.17

i et

The bivariate Gaussian disribution is a probability model for X and ¥ with the property
that X and Y are each Gaussian random variables.

Bivariate Gaussian Random Variables
Random variables X and Y have a bivariate Gaussian PDF with parameters |1, 01, L2, N
a3, and p if

2 2
r—uy VT 2plx—p)(y—p2) s y—2
ap o100y a2

2(1 - p?)
fxy(x,y) =
2ra1024/1 — p?

where ju| and p; can be any real numbers, oy > 0, 02 >0,and -1 < p < 1.

S L L T e

exp | —

Figure 4.5 illustrates the bivariate Gaussian PDF for m1 =2 =0,01 =09 =1, and
three values of p. When p = 0, the joint PDF has the circular symmetry of a sombrero.
When p = 0.9, the joint PDF forms a ridge over the line x = ¥, and when p = —0.9 there
is a ridge over the line x = —y. The ridge becomes increasingly steep as p — +1.

To examine mathematically the properties of the bivariate Gaussian PDF, we define

ﬁz(.x‘)=xtz+p2(x—m), 02 =02\/1 - p?, (4.145)
aj
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Figure 4.5 The Joint Gaussian PDF fy y (x, y) for u; = py =0, o) = 02 = 1, and three values
of p.
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Theorem 4.29
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and manipulate the formula in Definition 4.17 to obtain the following expression for the
joint Gaussian PDF:

- | 2 ym 2 1 e
fx.y (x, y) = - e~ \X—H1)° /20 ~ J‘(,—(_\—-,ft'_‘(.lll 235 (4.146)
o1V 2 g~/ 2w

Equation (4.146) expresses fy y (x, ) as the product of two Gaussian PDFs, one with
parameters .| and o} and the other with parameters /i and 2. This formula plays a key
role in the proof of the following theorem.

If X and Y are the bivariate Gaussian random variables in Definition4.17, X is the Gaussian
(i1, 01) random variable and Y is the Gaussian (12, 02) random variable:

| 29,2 1 n 2 492
fx (%) = ——=e BB 1y (y) = ——e~0-H2)' 20}
(Tg\/EJT g2+ 2

Proof Integrating fy y(x.y)in Equation (4.146) over all y, we have

00
)= [ fx.y (x,v)dy (4.147)
J—00
= 5 POO = e
_ lﬁ_(—u—uu-;lnf / . ITH—(\‘—;zz(t)}‘_‘Eaf dy (4.148)
gV J—oo O/ 2w

|
The integral above the bracket equals 1 because it is the integral of a Gaussian PDF. The remainder
of the formula is the PDF of the Gaussian (#1, op) random variable. The same reasoning with the
roles of X and Y reversed leads to the formula for fr(y).

Given the marginal PDFs of X and Y, we use Definition 4.13 to find the conditional PDFs,

If X and Y are the bivariate Gaussian random variables in Definition 4.17, the conditional
PDF of Y given X is

. Ay =T (N2 252
Srix (ylx) = g =Rl 720

3

5’: \f’ 271’
where, given X = x, the conditional expected value and variance of Y are

S a2 | -9 ) ¢
H2(X) = p2 + p—(x — uy), oy =0o;5(1 — p*).
a)

Theorem 4.29 is the result of dividing fx y(x, y) in Equation (4.146) by fx (x) to obtain
Jyix(y|x). The cross sections of Figure 4.6 illustrate the conditional PDF. The figure is a
graph of fx y(x,y) = fyix(y|x) fx(x). Since X is a constant on each cross section, the
cross section is a scaled picture of Sfr1x(y]x). As Theorem 4.29 indicates, the cross section
has the Gaussian bell shape. Corresponding to Theorem 4.29, the conditional PDF of X
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Theorem 4.30

s s

Theorem 4.31

T—

Figure 4.6 Cross-sectional view of the joint Gaussian PDF with yu; = up = 0,07 = 03 = 1,
and p = 0.9. Theorem 4.29 confirms that the bell shape of the cross section occurs because the
conditional PDF fy |y (y|x) is Gaussian.

given Y is also Gaussian. This conditional PDF is found by dividing fy y(x, y) by fy(y)
to obtain fxy(x|y).

If X and Y are the bivariate Gaussian random variables in Definition 4.17, the conditional
PDF of X given Y is

1
5]\/271’

e ey
{‘_“_“] (_\*H',"Zo’l“

fxiy (x|y) =
where, given Y =y, the conditional expected value and variance of X are

5 o o 5 A
M) =m+p=—m) &=l - pd).
o2

The next theorem identifies p in Definition 4.17 as the correlation coefficient of X and
Y, px.y.

Bivariate Gaussian random variables X and Y in Definition 4.17 have correlation coefficient

PXY = pP.

Proof Substituting 1, o1, 2, and o3 for pyx, oy, iy, and oy in Definition 4.4 and Definition 4.8,
we have
E|(X — u)(Y — pa) ;
.‘DX.}' = [ £ 2 :[ (4149)

0102

-
4
4
:
i
e
*
i.
3

Thec
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Quiz 4.11
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To evaluate this expected value, we use the substitution fy y(x, v) = fy|x(y|x) fx (x) in the double
integral of Theorem 4.12. The result can be expressed as

| “ 00 00
Xy = / (x —pmy) ( / (v — u2) frix (vIx) .1'\') fy (x) dx (4.150)
g102 J-oo J—o0 )
= [ (.\'—m]ff[i"—,u3|,\’=,\]‘f'_\-(.\u1.\ (4.151)
0102 J—o0

Because E[Y|X = x] = fiz(x) in Theorem 4.29, it follows that

—~ r - a2 =
E [} — Ma|X = .\'] = (a(x) —pr=p—(x — ) (4.152)
gl

Therefore,
P e 2 : -
PXY =— (x — 1) fx (x)dx =p. (4.153)
(TF =00

. . . ) . < 2
because the integral in the final expression is Var[ X ] = o

From Theorem 4.31, we observe that if X and Y are uncorrelated, then p = 0 and, from
Theorems 4.29 and 4.30, fy|x(y|x) = fr(y) and fxy(x|y) = fx(x). Thus we have the
following theorem.

Bivariate Gaussian random variables X and Y are uncorrelated if and only if they are
independent.

Theorem 4.31 identifies the parameter p in the bivariate gaussian PDF as the correlation
coefficient py y of bivariate Gaussian random variables X and Y. Theorem 4.17 states
that for any pair of random variables, |px y| < 1, which explains the restriction [p| < 1
in Definition 4.17. Introducing this inequality to the formulas for conditional variance in
Theorem 4.29 and Theorem 4.30 leads to the following inequalities:

(4.154)
(4.155)

Var[Y|X = x] = o5(1 — p?) <
Var[X|Y = y] = o*f(l - 0%

A
qQ
= B

|A
Q

These formulas state that for p # 0, learning the value of one of the random variables leads
to a model of the other random variable with reduced variance. This suggests that learning
the value of ¥ reduces our uncertainty regarding X.

Let X and Y be jointly Gaussian (0, 1) random variables with correlation coefficient 1/2.
(1) What is the joint PDF of X and Y ?

(2) What is the conditional PDF of X givenY =27
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