becomes complexthe poles

efficients but if  $a_i$ shown in

(8.17)

ns of the gital filter sections. propriate ressed as

(8.18)

her-order ond-order one filter pler filter We characterize each second-order filter section by the frequencies of the magnitude response extremes and by the 3-dB frequencies. The 3-dB frequencies, denoted by  $f_{3dB} = \theta_{3dB}/(2\pi)$ , are frequencies at which the magnitude response  $M(f) = |H(e^{j2\pi f})|$  is  $\sqrt{2}$  times smaller than the magnitude response at some reference frequency  $f_r$  (3 dB only approximately corresponds to  $\sqrt{2}$ , strictly speaking it is  $10^{3/20}$ ):

$$\frac{M(f_{3dB})}{M(f_r)} = \frac{|H(e^{j2\pi f_{3dB}})|}{|H(e^{j2\pi f_r})|} = \frac{1}{\sqrt{2}}$$
(8.19)

For example, for lowpass filters, the reference frequency is  $f_r = 0$ .

In filter design, we prefer to use the *normalized transfer function*,  $H_n(z)$ , defined by

$$H_n(z) = \frac{H(z)}{\max_f M(f)}$$
(8.20)

The transfer function can be obtained by scaling the normalized transfer function by a constant:

$$H(z) = kH_n(z) (8.21)$$

Quite generally, the normalization constant k can take any real value.

## 8.2.1 Second-Order Transfer Functions

In this section we analyze the properties of the basic second-order transfer functions. We examine the magnitude response  $M(f) = |H(e^{j2\pi f})|$  for real positive digital angular frequencies  $\theta = 2\pi f$ . The angular frequencies of the magnitude response local extrema are designated by  $\theta_e = 2\pi f_e$ . We find it convenient to define the frequency  $f_j$  at which the frequency response becomes purely imaginary,  $\text{Re}(H(e^{j2\pi f_j})) = 0$ .

Lowpass Transfer Function. The second-order lowpass transfer function is defined

$$H_{LP}(z) = \frac{1+a+b}{4} \frac{(z+1)^2}{z^2+bz+a} = \frac{1+a+b}{4} \frac{(1+z^{-1})^2}{1+bz^{-1}+az^{-2}}$$
(8.22)

At higher frequencies  $(f > f_i > f_e)$ , where

$$f_j = \frac{1}{2\pi} \cos^{-1} \frac{-b}{1+a} \tag{8.23}$$

the magnitude response  $M(f) = |H_{LP}(e^{j2\pi f})|$  decreases and, thus, high-frequency sinusoidal sequences are rejected.

The key properties of the lowpass transfer function are summarized below:

$$M(0) = H_{LP}(1) = 1, z = 1, f = 0$$

$$M(0.5) = H_{LP}(-1) = 0, z = -1, f = 0$$

$$M(f_j) = |H_{LP}(e^{j2\pi f_j})| = |jQ_p| = Q_p, z = e^{j2\pi f_j}, f = f_0$$

$$M_e = \max_{0 \le f \le 0.5} (M(f)) = |H_{LP}(e^{j2\pi f_e})| = \frac{Q_p}{\sqrt{1 - \frac{1}{4Q_p^2}}}, z = e^{j2\pi f_e}, f = f_0$$
where  $f_e$  is the frequency at which  $M(f)$  has its maximal value  $M_e$ :

where  $f_e$  is the frequency at which M(f) has its maximal value  $M_e$ :

$$f_e = \frac{1}{2\pi} \cos^{-1} \frac{(1-a)^2 - b(1+a-b)}{4a-b-ab}$$
 (82)

and the pole Q-factor is

$$Q_p = \frac{\sqrt{(1+a)^2 - b^2}}{2(1-a)} \tag{82}$$

The maximal value of the magnitude response is approximately equal to  $Q_p$  for  $Q_p \gg 1$  (i.e., for  $a \approx 1$ ), as shown in Fig. 8.8:

$$\max_{0 \le f \le 0.5} \left| H_{LP} \left( e^{j2\pi f} \right) \right| = \left| H_{LP} \left( e^{j2\pi f_e} \right) \right| \approx Q_p, \quad f_e \approx f_j, \quad Q_p \gg 1$$
 (82)

This fact is very important for digital filters implemented in fixed point arithmetic Suppose that the filter output sequence,  $y_k$ , must be bounded to  $-1 \le y_k \le 1$ . That the amplitude of the sinusoidal sequence of frequency  $f_e$ , at the input of the lowest second-order filter, must be smaller than  $1/Q_p$ , so that, after filtering, the amplitude the output sequence remains within the prescribed range,  $-1 \le y_k \le 1$ .

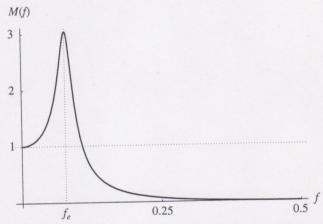


Figure 8.8 Magnitude of second-order lowpass transfer function:  $Q_p = 3$ , a = 0.85117, and b = -1.621545.

The maximal val the coefficients a and a

Me

The magnitude of the normalized transfer fu

$$H_{LPn}(z) = \frac{F}{-}$$

and it has the maximal

For  $Q_p \leq 1/\sqrt{2}$  $1/\sqrt{2}$  the maximal ma

The maximal val  $M_e$ , in terms of the coe approaches to 1, while

Highpass Transfer Full

$$H_{HP}(z) = \frac{1+a}{4}$$



**Figure** lowpa

The maximal value of the magnitude response,  $M_e$ , can be expressed in terms of the coefficients a and b:

$$M_e = \max_{0 \le f \le 0.5} (M(f)) = \frac{(1+a)^2 - b^2}{2(1-a)\sqrt{4a-b^2}}$$
(8.28)

The magnitude of the normalized transfer function,  $H_{LPn}(z)$ , is shown in Fig. 8.9. This normalized transfer function is defined as

$$H_{LPn}(z) = \frac{H_{LP}(z)}{M_e} = \frac{(1-a)\sqrt{4a-b^2}}{2(1+a-b)} \frac{(z^{-1}+1)^2}{1+bz^{-1}+az^{-2}}$$
(8.29)

and it has the maximal magnitude, equal to 1, at the frequency  $f_e$ .

0.5

.24)

.25)

.26)

for

3.27)

de of

For  $Q_p \le 1/\sqrt{2}$  we find  $f_e = 0$  as shown in Fig. 8.10. Therefore, for  $1/2 < Q_p \le 1/\sqrt{2}$  the maximal magnitude function is at frequency  $f_e = 0$ .

The maximal value of the magnitude of second-order lowpass transfer functions,  $M_e$ , in terms of the coefficients is shown in Fig. 8.11.  $M_e$  dramatically increases when a approaches to 1, while the influence of b is negligible.

**Highpass Transfer Function.** The second-order *highpass transfer function* is defined as

$$H_{HP}(z) = \frac{1+a-b}{4} \frac{(z-1)^2}{z^2+bz+a} = \frac{1+a-b}{4} \frac{(z^{-1}-1)^2}{1+bz^{-1}+az^{-2}}$$
(8.30)

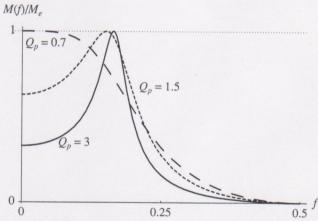
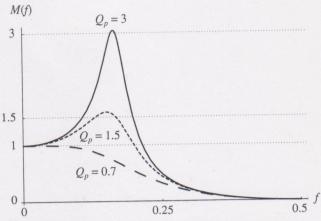


Figure 8.9 Magnitude of second-order normalized lowpass transfer functions  $M(f)/M_e$ :  $Q_p = 3, 1.5, 0.7$ .

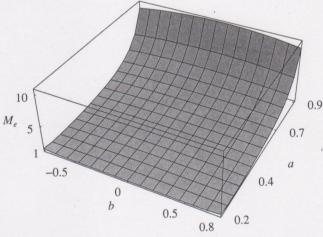


**Figure 8.10** Magnitude of second-order lowpass transfer functions:  $Q_p = 3, 1.5, 0.7$ .

At lower frequencies,  $f < f_j < f_e$ , where

$$f_j = \frac{1}{2\pi} \cos^{-1} \frac{-b}{1+a} \tag{83}$$

the magnitude response  $M(f) = |H_{HP}(e^{j2\pi f})|$  decreases when f approaches zero and, thus, low-frequency sinusoidal sequences are rejected, while the high-frequency sinusoidal sequences,  $f \geq f_p$ , pass without attenuation.



**Figure 8.11** Maximal value of magnitude of second-order lowpass transfer functions in terms of filter coefficients.

The key proper

$$M(0) = H_{HP}(1) =$$
 $M(0.5) = H_{HP}(-1)$ 
 $M(f_j) = |H_{HP}(e^{j2\pi})|$ 
 $M_e = \max_{0 \le f \le 0.5} (M(f))$ 

where  $f_e$  is the frequency

 $f_{\epsilon}$ 

and the pole Q-factor

The maximal va  $Q_p \gg 1$  (i.e., for  $a \approx$ 

$$\max_{0 \le f \le 0.5} \left| H_{HP} \left( e^{j2} \right. \right|$$

As in the case of response is approximathat  $f_e = 0.5$ , as show



Figure trans b = 0

The key properties of the highpass transfer function are summarized below:

$$M(0) = H_{HP}(1) = 0, z = 1, f = 0$$

$$M(0.5) = H_{HP}(-1) = 1, z = -1, f = 0.5$$

$$M(f_j) = |H_{HP}(e^{j2\pi f_j})| = |jQ_p| = Q_p, z = e^{j2\pi f_j}, f = f_j$$

$$M_e = \max_{0 \le f \le 0.5} (M(f)) = |H_{HP}(e^{j2\pi f_e})| = \frac{Q_p}{\sqrt{1 - \frac{1}{4Q_p^2}}}, z = e^{j2\pi f_e}, f = f_e$$

$$(8.32)$$

where  $f_e$  is the frequency at which M(f) has its maximal value  $M_e$ 

$$f_e = -\frac{1}{2\pi} \cos^{-1} - \frac{(1-a)^2 + b(1+a+b)}{4a+b+ab}$$
 (8.33)

and the pole Q-factor is

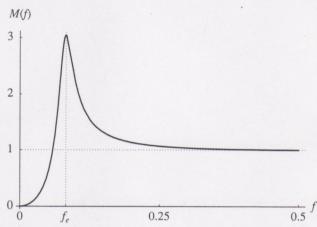
ro

$$Q_p = \frac{\sqrt{(1+a)^2 - b^2}}{2(1-a)} \tag{8.34}$$

The maximal value of the magnitude response is approximately equal to  $Q_p$  for  $Q_p \gg 1$  (i.e., for  $a \approx 1$ ), as shown in Fig. 8.12:

$$\max_{0 \le f \le 0.5} \left| H_{HP} \left( e^{j2\pi f} \right) \right| = \left| H_{HP} \left( e^{j2\pi f_e} \right) \right| \approx Q_p, \quad f_e \approx f_j, \quad Q_p \gg 1$$
 (8.35)

As in the case of the lowpass transfer function, the maximal value of the magnitude response is approximately equal to  $Q_p$ , as shown in Fig. 8.12. For  $Q_p \le 1/\sqrt{2}$  we find that  $f_e = 0.5$ , as shown in Fig. 8.13.



**Figure 8.12** Magnitude of second-order highpass transfer function:  $Q_p = 3$ , a = 0.85117, and b = -1.621545.

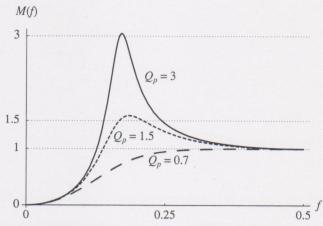


Figure 8.13 Magnitude of second-order highpass transfer functions:  $Q_p = 3, 1.5, 0.7$ .

The maximal value of the magnitude response,  $M_e$ , can be expressed in terms the coefficients a and b:

$$M_e = \frac{(1+a)^2 - b^2}{2(1-a)\sqrt{4a-b^2}} \tag{83}$$

The magnitude of the normalized transfer function,  $H_{HPn}(z)$ , is shown in Fig. 8.14. In normalized transfer function

$$H_{HPn}(z) = \frac{H_{HP}(z)}{M_e} = \frac{(1-a)\sqrt{4a-b^2}}{2(1+a+b)} \frac{(z^{-1}-1)^2}{1+bz^{-1}+az^{-2}}$$
(83)

has the maximal magnitude, equal to 1, at the frequency  $f_e$ .

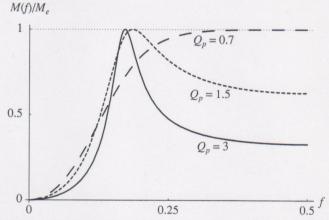


Figure 8.14 Magnitude of second-order normalized highpass transfer functions  $M(f)/M_e$ :  $Q_p = 3$ , 1.5, 0.7.

The maximal va  $M_e$ , in terms of the c functions shown in Fi

Bandpass Transfer F fined as

$$H_{BP}(z) =$$

The key properti

$$M(0) = H_{BP}(1) =$$

$$M(0.5) = H_{BP}(-1)$$

$$M_e = \max_{0 \le f \le 0.5} (M(f$$

where

The frequency at t times called the *resonal* Second-order ban cies  $f_{low,3dB} < f < f_{low,3dB}$  3dB), but reject sinusoid

$$\frac{1}{\sqrt{2}} \le M(f) =$$

$$|H_{BP}(e^{j2\pi f_{low,3dB}})| =$$

$$f_{low,3dB} =$$

$$f_{high,3dB} =$$

The pole Q-factor

The maximum of the  $f_{low,3dB}$ , is affected by  $Q_i$  (Fig. 8.16).

The maximal value of the magnitude of second-order highpass transfer functions,  $M_e$ , in terms of the coefficients is the same as for the second-order lowpass transfer functions shown in Fig. 8.11.

**Bandpass Transfer Function.** The second-order *bandpass transfer function* is defined as

$$H_{BP}(z) = \frac{1-a}{2} \frac{z^2 - 1}{z^2 + bz + a} = \frac{1-a}{2} \frac{1-z^{-2}}{1 + bz^{-1} + az^{-2}}$$
(8.38)

The key properties of the bandpass transfer function are summarized below:

$$M(0) = H_{BP}(1) = 0,$$
  $z = 1,$   $f = 0$   
 $M(0.5) = H_{BP}(-1) = 0,$   $z = -1,$   $f = 0.5$  (8.39)  
 $M_e = \max_{0 \le f \le 0.5} (M(f)) = |H_{BP}(e^{j2\pi f_e})| = 1,$   $z = e^{j2\pi f_e},$   $f = f_e$ 

where

ns of

8.36)

This

8.37)

$$f_e = \frac{1}{2\pi} \cos^{-1} \frac{-b}{1+a} \tag{8.40}$$

The frequency at which the magnitude response reaches its maximum,  $f_e$ , is sometimes called the resonant frequency or the central frequency.

Second-order bandpass filters pass sinusoidal sequences from the band of frequencies  $f_{low,3\text{dB}} < f < f_{high,3\text{dB}}$  with insignificant attenuation (less than  $20\log_{10}\sqrt{2} \approx 3\text{dB}$ ), but reject sinusoidal sequences whose frequencies are on either side of this band:

$$\frac{1}{\sqrt{2}} \le M(f) = |H_{BP}(e^{j2\pi f})| \le 1, \quad f_{low,3dB} \le f \le f_{high,3dB}$$

$$|H_{BP}(e^{j2\pi f_{low,3dB}})| = |H_{BP}(e^{j2\pi f_{high,3dB}})| = \frac{1}{\sqrt{2}}$$

$$f_{low,3dB} = \frac{1}{2\pi} \cos^{-1} \frac{-b(1+a) - (1-a)\sqrt{2+2a^2-b^2}}{2(1+a^2)}$$

$$f_{high,3dB} = \frac{1}{2\pi} \cos^{-1} \frac{-b(1+a) + (1-a)\sqrt{2+2a^2-b^2}}{2(1+a^2)}$$
(8.41)

The pole Q-factor of the bandpass filter is

$$Q_p = \frac{\sqrt{(1+a)^2 - b^2}}{2(1-a)} \tag{8.42}$$

The maximum of the magnitude response is 1. The 3-dB bandwidth,  $f_{high,3dB} - f_{low,3dB}$ , is affected by  $Q_p$  (Fig. 8.15). Higher Q-factors produce narrower bandwidths (Fig. 8.16).