HW #3 4.1 9,10,11,13 4.2 3,11,15,25 4.3 9, 13, 19, 26

- b. Find specific vector \mathbf{u} and \mathbf{v} in W such that $\mathbf{u} + \mathbf{v}$ is not in W. This is enough to show that W is not a vector space.
- 3. Let H be the set of points inside and on the unit circle in the xy-plane. That is, let $H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \le 1 \right\}$. Find a specific example—two vectors or a vector and a scalar—to show that H is not a subspace of \mathbb{R}^2 .
- **4.** Construct a geometric figure that illustrates why a line in \mathbb{R}^2 not through the origin is not closed under vector addition.

In Exercises 5–8, determine if the given set is a subspace of \mathbb{P}_n for an appropriate value of n. Justify your answers.

- 5. All polynomials of the form $\mathbf{p}(t) = at^2$, where a is in \mathbb{R} .
- **6.** All polynomials of the form $\mathbf{p}(t) = a + t^2$, where a is in \mathbb{R} .
- 7. All polynomials of degree at most 3, with integers as coefficients.
- **8.** All polynomials in \mathbb{P}_n such that $\mathbf{p}(0) = 0$.
- 9. Let H be the set of all vectors of the form $\begin{vmatrix} -2t \\ 5t \end{vmatrix}$. Find a vector \mathbf{v} in \mathbb{R}^3 such that $H = \text{Span}\{\mathbf{v}\}$. Why does this show that H is a subspace of \mathbb{R}^3 ?
- 10. Let H be the set of all vectors of the form $\begin{bmatrix} 3t \\ 0 \\ -7t \end{bmatrix}$, where t is any real number. Show that H is a subspace of \mathbb{R}^3 . (Use the method of Exercise 9.)
- 11. Let W be the set of all vectors of the form where b and c are arbitrary. Find vectors \mathbf{u} and \mathbf{v} such that $W = \operatorname{Span} \{\mathbf{u}, \mathbf{v}\}$. Why does this show that W is a subspace of \mathbb{R}^3 ?
- 12. Let W be the set of all vectors of the form $\begin{vmatrix} 2s \\ 2s 3t \end{vmatrix}$ Show that W is a subspace of \mathbb{R}^4 . (Use the method of Exercise 11.)
- 13. Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$.
 - a. Is w in $\{v_1, v_2, v_3\}$? How many vectors are in $\{v_1, v_2, v_3\}$?
 - b. How many vectors are in Span $\{v_1, v_2, v_3\}$?
 - c. Is w in the subspace spanned by $\{v_1, v_2, v_3\}$? Why?
- 14. Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be as in Exercise 13, and let $\mathbf{w} = \begin{bmatrix} 1 \\ 3 \\ 14 \end{bmatrix}$. Is \mathbf{w} in the subspace spanned by $\{v_1, v_2, v_3\}$? Why

In Exercises 15–18, let W be the set of all vectors of the form shown, where a, b, and c represent arbitrary real numbers. In each case, either find a set S of vectors that spans W or give wexample to show that W is *not* a vector space.

$$15. \begin{bmatrix} 2a + 3b \\ -1 \\ 2a - 5b \end{bmatrix}$$

$$\begin{bmatrix}
1 \\
3a - 5b \\
3b + 2a
\end{bmatrix}$$

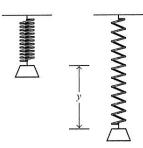
17.
$$\begin{bmatrix} 2a - b \\ 3b - c \\ 3c - a \\ 3b \end{bmatrix}$$

16.
$$\begin{bmatrix} 1 \\ 3a - 5b \\ 3b + 2a \end{bmatrix}$$
18.
$$\begin{bmatrix} 4a + 3b \\ 0 \\ a + 3b + c \\ 3b - 2c \end{bmatrix}$$

19. If a mass m is placed at the end of a spring, and if the mass is pulled downward and released, the mass-spring system will begin to oscillate. The displacement y of the mass from it resting position is given by a function of the form

$$y(t) = c_1 \cos \omega t + c_2 \sin \omega t \tag{5}$$

where ω is a constant that depends on the spring and the mass (See the figure below.) Show that the set of all functions described in (5) (with ω fixed and c_1 , c_2 arbitrary) is a vector space.



- 20. The set of all continuous real-valued functions defined on closed interval [a,b] in \mathbb{R} is denoted by C[a,b]. This set is a subspace of the vector space of all real-valued functions defined on [a, b].
 - a. What facts about continuous functions should be proved in order to demonstrate that C[a,b] is indeed a subspace as claimed? (These facts are usually discussed in a calculus class.)
 - b. Show that $\{\mathbf{f} \text{ in } C[a,b] : \mathbf{f}(a) = \mathbf{f}(b)\}\$ is a subspace of C[a,b].

For fixed positive integers m and n, the set $M_{m \times n}$ of all $m \times n$ matrices is a vector space, under the usual operations of addition of matrices and multiplication by real scalars.

- **21.** Determine if the set H of all matrices of the form $\begin{bmatrix} a \\ 0 \end{bmatrix}$ is a subspace of $M_{2\times 2}$.
- 22. Let F be a fixed 3×2 matrix, and let H be the set of all matrices A in $M_{2\times 4}$ with the property that FA=0 (the zero matrix in $M_{3\times4}$). Determine if H is a subspace of $M_{2\times4}$.

In Exercises 2 each answer.

- 23. a. If f is funct zero
 - A vei
 - c. A sul zero
 - d. A sul
 - e. Anale the s chapt
- 24. a. A vec
 - b. If u is as the
 - c. A vec
 - d. \mathbb{R}^2 is
 - e. A sul follor V is scala

Exercises 25be used to pi definition of a axiom numbe respectively, t

- 25. Complete unique. $\mathbf{u} + \mathbf{w} =$ But 0 +
- 26. Complete in V suc $\mathbf{u} + \mathbf{w} =$ (-u) + [

[(-u) +

- 27. Fill in the $0\mathbf{u} = \mathbf{0} \, \mathbf{f}$ 0u = (0Add the 1 0u + (-(0u + (-(
- 28. Fill in the

In Exercises 3–6, find an explicit description of Nul A, by listing vectors that span the null space.

3.
$$A = \begin{bmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 3 & -2 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 1 & -3 & 2 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix}$$

5.
$$A = \begin{bmatrix} 1 & -4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

6.
$$A = \begin{bmatrix} 1 & 3 & -4 & -3 & 1 \\ 0 & 1 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

In Exercises 7–14, either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.

7.
$$\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+c=2 \right\}$$
 8.
$$\left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : 3r-2=3s+t \right\}$$

9.
$$\left\{ \begin{bmatrix} p \\ q \\ r \\ s \end{bmatrix} : p - 3q = 4s \\ 2p = s + 5r \right\}$$
 10.
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : 3a + b = c \\ a + b + 2c = 2d \right\}$$

11.
$$\left\{ \begin{bmatrix} s - 2t \\ 3 + 3s \\ 3s + t \\ 2s \end{bmatrix} : s, t \text{ real} \right\}$$
 12.
$$\left\{ \begin{bmatrix} 3p - 5q \\ 4q \\ p \\ q + 1 \end{bmatrix} : p, q \text{ real} \right\}$$

13.
$$\left\{ \begin{bmatrix} c - 6d \\ d \\ c \end{bmatrix} : c, d \text{ real} \right\}$$
 14.
$$\left\{ \begin{bmatrix} -s + 3t \\ s - 2t \\ 5s - t \end{bmatrix} : s, t \text{ real} \right\}$$

In Exercises 15 and 16, find A such that the given set is Col A.

15.
$$\left\{ \begin{bmatrix} 2s+t \\ r-s+2t \\ 3r+s \\ 2r-s-t \end{bmatrix} : r, s, t \text{ real} \right\}$$

16.
$$\left\{ \begin{bmatrix}
b-c \\
2b+3d \\
b+3c-3d \\
c+d
\end{bmatrix} : b, c, d \text{ real} \right\}$$

For the matrices in Exercises 17–20, (a) find k such that Nul A is a subspace of \mathbb{R}^k , and (b) find k such that Col A is a subspace of \mathbb{R}^k .

17.
$$A = \begin{bmatrix} 6 & -4 \\ -3 & 2 \\ -9 & 6 \\ 9 & -6 \end{bmatrix}$$
 18. $A = \begin{bmatrix} 5 & -2 & 3 \\ -1 & 0 & -1 \\ 0 & -2 & -2 \\ -5 & 7 & 2 \end{bmatrix}$

19.
$$A = \begin{bmatrix} 4 & 5 & -2 & 6 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

20.
$$A = \begin{bmatrix} 1 & -3 & 2 & 0 & -5 \end{bmatrix}$$

- 21. With A as in Exercise 17, find a nonzero vector in Nul A at a nonzero vector in Col A.
- **22.** With *A* as in Exercise 18, find a nonzero vector in Nul *A* and a nonzero vector in Col *A*.

23. Let
$$A = \begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Determine if \mathbf{w} is in Col. 4. Is \mathbf{w} in Nul. 4?

24. Let
$$A = \begin{bmatrix} 10 & -8 & -2 & -2 \\ 0 & 2 & 2 & -2 \\ 1 & -1 & 6 & 0 \\ 1 & 1 & 0 & -2 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ 2 \\ 0 \\ 2 \end{bmatrix}$. Determing if \mathbf{w} is in Col.4. Let \mathbf{w} in Null 42.

In Exercises 25 and 26, A denotes an $m \times n$ matrix. Mark each statement True or False. Justify each answer.

- **25.** a. The null space of *A* is the solution set of the equation $A\mathbf{x} = \mathbf{0}$.
 - b. The null space of an $m \times n$ matrix is in \mathbb{R}^m .
 - c. The column space of A is the range of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.
 - d. If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then Col A is \mathbb{R}^m .
 - e. The kernel of a linear transformation is a vector space.
 - f. Col A is the set of all vectors that can be written as Ax for some x.
- 26. a. A null space is a vector space.
 - b. The column space of an $m \times n$ matrix is in \mathbb{R}^m .
 - c. Col A is the set of all solutions of $A\mathbf{x} = \mathbf{b}$.
 - d. Nul A is the kernel of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.
 - e. The range of a linear transformation is a vector space.
 - f. The set of all solutions of a homogeneous linear differential equation is the kernel of a linear transformation.
- 27. It can be shown that a solution of the system below is $x_1 = 3$, $x_2 = 2$, and $x_3 = -1$. Use this fact and the theory from this section to explain why another solution is $x_1 = 30$, $x_2 = 20$, and $x_3 = -10$. (Observe how the solutions are related, but make no other calculations.)

$$x_1 - 3x_2 - 3x_3 = 0$$

$$-2x_1 + 4x_2 + 2x_3 = 0$$

$$-x_1 + 5x_2 + 7x_3 = 0$$

28. Consider the following two systems of equations:

$$5x_1 + x_2 - 3x_3 = 0$$
 $5x_1 + x_2 - 3x_3 = 0$
 $-9x_1 + 2x_2 + 5x_3 = 1$ $-9x_1 + 2x_2 + 5x_3 = 5$
 $4x_1 + x_2 - 6x_3 = 9$ $4x_1 + x_2 - 6x_3 = 45$

It can be shown that the first system has a solution. Use this fact and the theory from this section to explain why the second system must also have a solution. (Make no row operations.)

- 29. Prove The element is and Aw re
 - a. Explaib. Show
 - c. Given
- 30. Let T: V space V i is a subsprince the f
- 31. Define T

$$\mathbf{p}(t) = 3$$

- a. Show arbitra $T(c\mathbf{p})$
- b. Find a descri
- 32. Define

$$T(\mathbf{p}) =$$

span the l

33. Let $M_{2\times}$ and defin

$$A = \left[\begin{array}{c} a \\ c \end{array} \right]$$

- a. Show
- b. Let B an A i
- c. Show prope
- d. Descr
- For f in that F(0) describe 1
 Section 4

the spanning property.

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} \right\}$$
 Linearly independent but does not span \mathbb{R}^3 but is linearly dependent

PRACTICE PROBLEMS

1. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 7 \\ -9 \end{bmatrix}$. Determine if $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for \mathbb{R}^3 . Is $\{\mathbf{v}_1, \mathbf{v}_2\}$ a basis for \mathbb{R}^2 ?

2. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \\ -1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, and $\mathbf{v}_4 = \begin{bmatrix} -4 \\ -8 \\ 9 \end{bmatrix}$. Find a basis for the subspace W spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$.

3. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $H = \left\{ \begin{bmatrix} s \\ s \\ 0 \end{bmatrix} : s \text{ in } \mathbb{R} \right\}$. Then every vector in H is a linear combination of \mathbf{v}_1 and \mathbf{v}_2 because

$$\begin{bmatrix} s \\ s \\ 0 \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Mastering: Basis 4-9

Is $\{\mathbf{v}_1, \mathbf{v}_2\}$ a basis for H?

4.3 EXERCISES

Determine whether the sets in Exercises 1–8 are bases for \mathbb{R}^3 . Of the sets that are *not* bases, determine which ones are linearly independent and which ones span \mathbb{R}^3 . Justify your answers.

1.
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
2. $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$
3. $\begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ -4 \end{bmatrix}$, $\begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$
4. $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -8 \\ 5 \\ 4 \end{bmatrix}$
5. $\begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 7 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -3 \\ 5 \end{bmatrix}$
6. $\begin{bmatrix} 1 \\ 2 \\ -4 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 3 \\ 6 \end{bmatrix}$
7. $\begin{bmatrix} -2 \\ 3 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -1 \\ 1 \end{bmatrix}$
8. $\begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Find bases for the null spaces of the matrices given in Exercises 9 and 10. Refer to the remarks that follow Example 3 in Section 4.2.

9.
$$\begin{bmatrix} 1 & 0 & -2 & -2 \\ 0 & 1 & 1 & 4 \\ 3 & -1 & -7 & 3 \end{bmatrix}$$
 10.
$$\begin{bmatrix} 1 & 1 & -2 & 1 & 5 \\ 0 & 1 & 0 & -1 & -2 \\ 0 & 0 & -8 & 0 & 16 \end{bmatrix}$$

- 11. Find a basis for the set of vectors in \mathbb{R}^3 in the plane x - 3y + 2z = 0. [Hint: Think of the equation as a "system" of homogeneous equations.]
- 12. Find a basis for the set of vectors in \mathbb{R}^2 on the line y = -3x.

In Exercises 13 and 14, assume that A is row equivalent to B. Find bases for Nul A and Col A.

14.
$$A = \begin{bmatrix} 1 & 2 & 3 & -4 & 8 \\ 1 & 2 & 0 & 2 & 8 \\ 2 & 4 & -3 & 10 & 9 \\ 3 & 6 & 0 & 6 & 9 \end{bmatrix},$$
$$B = \begin{bmatrix} 1 & 2 & 0 & 2 & 5 \\ 0 & 0 & 3 & -6 & 3 \\ 0 & 0 & 0 & 0 & -7 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

In Exercises 15–18, find a basis for the space spanned by the given vectors, $\mathbf{v}_1, \dots, \mathbf{v}_5$.

15.
$$\begin{bmatrix} 1 \\ 0 \\ -2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 10 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ -6 \\ 9 \end{bmatrix}$$
16.
$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 5 \\ -3 \\ 3 \\ -4 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix}$$
17.
$$[\mathbf{M}] \begin{bmatrix} 2 \\ 0 \\ -4 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ -4 \\ 0 \end{bmatrix}, \begin{bmatrix} 8 \\ 4 \\ 8 \end{bmatrix}, \begin{bmatrix} -8 \\ 4 \\ 0 \end{bmatrix}$$

18. [M]
$$\begin{bmatrix} -3 \\ 2 \\ 6 \\ 0 \\ -7 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -9 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -4 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 6 \\ -2 \\ -14 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -6 \\ 3 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$

19. Let
$$\mathbf{v}_1 = \begin{bmatrix} 4 \\ -3 \\ 7 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 9 \\ -2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 7 \\ 11 \\ 6 \end{bmatrix}$, and also let

 $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. It can be verified that $4\mathbf{v}_1 + 5\mathbf{v}_2 - 3\mathbf{v}_3 = \mathbf{0}$. Use this information to find a basis for H. There is more than one answer.

20. Let
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 4 \\ -2 \\ -5 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 3 \\ 2 \\ 4 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 5 \\ -6 \\ -14 \end{bmatrix}$. It can be

verified that $2\mathbf{v}_1 - \mathbf{v}_2 - \mathbf{v}_3 = \mathbf{0}$. Use this information to find a basis for $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

In Exercises 21 and 22, mark each statement True or False. Justify each answer.

- 21. a. A single vector by itself is linearly dependent.
 - b. If $H = \text{Span}\{\mathbf{b}_1, \dots, \mathbf{b}_p\}$, then $\{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for H.
 - c. The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^n .
 - d. A basis is a spanning set that is as large as possible.
 - e. In some cases, the linear dependence relations among the columns of a matrix can be affected by certain elementary row operations on the matrix.

- 22. a. A linearly independent set in a subspace H is a basis for
 - b. If a finite set S of nonzero vectors spans a vector space V, then some subset of S is a basis for V.
 - c. A basis is a linearly independent set that is as large at possible.
 - d. The standard method for producing a spanning set for Nul A, described in Section 4.2, sometimes fails to produce a basis for Nul A.
 - e. If B is an echelon form of a matrix A, then the pivot columns of B form a basis for Col A.
- 23. Suppose $\mathbb{R}^4 = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_4\}$. Explain why $\{\mathbf{v}_1, \dots, \mathbf{v}_4\}$ is a basis for \mathbb{R}^4 .
- **24.** Let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a linearly independent set in \mathbb{R}^n . Explain why \mathcal{B} must be a basis for \mathbb{R}^n .

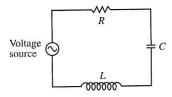
25. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and let H be the

set of vectors in \mathbb{R}^3 whose second and third entries are equal. Then every vector in H has a unique expansion as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, because

$$\begin{bmatrix} s \\ t \\ t \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + (t - s) \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + s \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

for any s and t. Is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ a basis for H? Why or why not?

- **26.** In the vector space of all real-valued functions, find a basis for the subspace spanned by $\{\sin t, \sin 2t, \sin t \cos t\}$.
- 27. Let V be the vector space of functions that describe the vibration of a mass–spring system. (Refer to Exercise 19 in Section 4.1.) Find a basis for V.
- 28. (*RLC circuit*) The circuit in the figure consists of a resistor (*R* ohms), an inductor (*L* henrys), a capacitor (*C* farads), and an initial voltage source. Let b = R/(2L), and suppose R L, and C have been selected so that b also equals $1/\sqrt{LC}$. (This is done, for instance, when the circuit is used in a voltmeter.) Let v(t) be the voltage (in volts) at time t measured across the capacitor. It can be shown that v is in the null space H of the linear transformation that map v(t) into Lv''(t) + Rv'(t) + (1/C)v(t), and H consists of all functions of the form $v(t) = e^{-bt}(c_1 + c_2t)$. Find a basis for H.



Exercises 29 and 30 show that every basis for \mathbb{R}^n must contain exactly n vectors.

- 29. Le Us a b
- 30. Le Us bas

Exercis ear indeusing the vector s $\{v_1, \ldots$

- 31. Sh the der tio {*T*
- 32. Su equ the the a c der the
- 33. Co t². no
- 34. Co